WO2010029196A1 - Compuestos peptídicos antibacterianos - Google Patents

Compuestos peptídicos antibacterianos Download PDF

Info

Publication number
WO2010029196A1
WO2010029196A1 PCT/ES2009/000445 ES2009000445W WO2010029196A1 WO 2010029196 A1 WO2010029196 A1 WO 2010029196A1 ES 2009000445 W ES2009000445 W ES 2009000445W WO 2010029196 A1 WO2010029196 A1 WO 2010029196A1
Authority
WO
WIPO (PCT)
Prior art keywords
dab
thr
dphe
leu
cycle
Prior art date
Application number
PCT/ES2009/000445
Other languages
English (en)
French (fr)
Inventor
Francesc Rabanal Anglada
Yolanda Cajal Visa
Maria Garcia Subirats
Montserrat RODRÍGUEZ NUÑEZ
Original Assignee
Universidad De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Barcelona filed Critical Universidad De Barcelona
Publication of WO2010029196A1 publication Critical patent/WO2010029196A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/60Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation occurring through the 4-amino group of 2,4-diamino-butanoic acid
    • C07K7/62Polymyxins; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to compounds that are active against Gram-positive and Gram-negative bacteria, their preparation process, pharmaceutical compositions containing them, and their use in the treatment of bacterial infections.
  • antimicrobial peptides offer a new class of therapeutic agents to which bacteria are not able to develop genetic resistance, since they act primarily on the lipid component of cell membranes.
  • PxB polymyxin B
  • Polymyxins in particular Ia polymyxin B, constitute a family of antibiotics discovered in 1947 with a high activity against Gram-negative bacteria.
  • Polymyxin B is an antibiotic lipopeptide isolated from Bacillus polvmvxa. Its basic structure consists of a polycationic peptide cycle from which a tripeptide linked to a fatty acid chain hangs.
  • Polymyxin B has resurfaced in medical practice in recent years and its use will continue to increase due to the limited development of new antibiotics by the pharmaceutical companies and the increasing worldwide prevalence of nosocomial infections caused by multiresistant Gram-negative bacteria ("multidrug resistant ", MDR).
  • Polymyxin B and other members of the polymyxin family are drugs that are used as a last resort to treat infections caused by multiresistant bacteria and are sometimes the only active antibiotic available. In addition, resistance to polymyxin is rare and in general, adaptive and, therefore, reversible. Polymyxin B is also capable of inhibiting the biological activity of bacterial lipopolysaccharide (LPS) by means of high affinity binding to lipid A, thus being the agent of choice for the treatment of septic shock induced by LPS. Unfortunately, polymyxin B has no activity against Gram-positive or anaerobic bacteria. In addition, polymyxins are of limited use because they have some nephrotoxicity and neurotoxicity.
  • LPS bacterial lipopolysaccharide
  • peptide compounds with antibiotic activity that act on the lipid component of bacterial membranes and that are active against both Gram-positive and Gram-negative bacteria. These compounds are based on the structure of the natural polymyxin. However, unlike polymyxins, these compounds are active not only against Gram-negative bacteria but also in Gram-positive in the micromolar range. This is advantageous since they can act in response to infections caused by both types of bacteria.
  • one aspect of the present invention is to provide compounds of formula (I),
  • R 0 is a radical selected from CH 3 - (CH 2 ) m -, CH 3 -O- (CH 2 CH 2 O) 2 CH 2 -, and
  • R 10 is a radical selected from phenyl, 3-indolyl, 4-imidazolyl, 4-hydroxyphenyl, naphthyl and pyridyl; with the condition that the compound of formula (I) is not one of the compounds of the following list, which have been previously described, but not its application as antibacterial agents against Gram-positive bacteria:
  • nonanoil-Dab-Thr-Dab-cycle S-S
  • rCvs-Dab-DPhe-Leu-Dab-Dab-Cvsl Sp-B
  • nonanoil-Dap-Thr-Dab-cycle S-S
  • rCvs-Dab-DPhe-Leu-Dap-Dab-Cvsl SP-D
  • nonanoil-Dab-Thr-Dab-cclo S-S) rCvs-Dab-DPhe-Met-Dab-Dab-Cvsl.
  • cycle (S-S) means a macrocycle formed by a disulfide bridge between the two cysteines.
  • a retroenantiomer of a peptide is a peptide analogue consisting of the reverse amino acid sequence with respect to the original peptide with simultaneous inversion of the configuration of the stereocenters, in particular those of the alpha carbon of each amino acid. It is known that retroenantiomers of certain cyclic peptides and depsypeptides maintain the biological activity despite the fact that the direction of the amide bond (defined in the direction of the carbonyl carbon atom to the nitrogen atom) that binds the residues has been reversed (cf. M. Goodman et al., "On the concept of linear modified retro-peptide structures", Acc. Chem. Res. 1979 vol. 12, pp. 1-7). The biological activity is attributed to the three-dimensional orientation of the side chains and not to the peptide skeleton.
  • the retroenantiomeric compound (I ') is an analog peptide consisting of the reverse amino acid sequence of the compound (I) with simultaneous inversion of the configuration of all chiral centers except that of the amino acid with the side chain R 2 when said R 2 is threonine, and that is not necessarily acylated at its N-terminal end.
  • the compounds of formula (I) or (I ') are those mentioned above where R 2 is -CH (CHs) (OH), that is, R 2 is the threonine side chain.
  • Preferred compounds of formula (I) are those selected from the following list:
  • nonanoil-Arq-Thr-Dab-cycle SS
  • sp-2Arg nonano ⁇ l-Arq-Thr-Arg-cclo
  • sp-2Arg nonanoil-Arq- Thr-Arq-c ⁇ clo
  • nonano ⁇ l-DaprC NH) -NH ? 1-Thr-Dab-c ⁇
  • Preferred compounds of formula (I 1 ) are those selected from the following list:
  • the compounds of the present invention can be prepared by solid phase synthesis Fmoc.
  • the preparation process for each amino acid can comprise the following steps: (i) several washings of the resin with N.hl-dimethylformamide (DMF); (ii) treatment with 20% piperidine / DMF; (iii) washing with DMF several times; (iv) acylation with the amino acid Fmoc protected and NN ⁇ diisopropylcarbodiimide / 1-hydroxybenzotriazole (DIPCDI / HOBt) in DMF; (v) washing with DMF several times and then in dichloromethane (CH 2 CI 2 ) several times; (vi) Kaiser test (with a sample of peptide resin); and (vii) washing with DMF several times.
  • DMF N.hl-dimethylformamide
  • the preparation procedure for each amino acid can comprise the following steps: (i) washing the resin with CH 2 CI 2 several times; (ii) treatment with 40% trifluoroacetic acid (TFA) / CH 2 CI 2 ; (ii) washing the resin with CH 2 CI 2 several times; (iv) treatment with 5% DIEA / CH 2 CI 2 several times; (v) washing the resin with CH 2 CI 2 several times; (vi) washing the resin with DMF several times; (vii) acylation with the amino acid protected Boc and benzotriazol-1-yloxytris (pyrrolidino) phosphonium hexafluorophosphate (PyBOP) and NN-diisopropylethylamine (DIEA) hexafluorophosphate in the minimum amount of DMF; (viii) washed with DMF several times and CH 2 CI 2 several times; and (ix) Kaiser test (with a sample
  • the peptides obtained by the above procedures can be purified by preparative HPLC, whereby a purity greater than 99% can be obtained.
  • the compounds of the present invention are easily prepared by chemical synthesis according to the procedures mentioned above while commercial polymyxin is obtained by fermentation.
  • Another aspect of the present invention are the compounds of formula (I) or (I 1 ), as well as any of the following compounds: nonano ⁇ l-Dab-Thr-Dab-cclo (SS) ⁇ Cvs-Dab-DPhe-Leu-Dab-Dab-Cvs1, (sp-B); nonanoil-Dab-Thr-Dab-cicloofS-SHCvs-Dab-DPhe-Dab-Leu-Dab-Cvsl, (sp-C); nonanoil-Dap-Thr-Dab-cclo (SS) rCvs-Dab-DPhe-Leu-Dap-Dab-Cvsl, (sP-D); nonano ⁇ l-Dab-Thr-Dab-cycle (SS) rCvs-Dab-DPhe-Met-Dab-Dab-Cvsl, (sp-Met); nonanoil-D
  • Gram-positive bacteria for use as antibacterial agents against Gram-positive bacteria.
  • medically relevant Gram-positive bacteria are several of the well-known genus such as Bacillus. Listeria, Staphylococcus, Streptococcus, Enterococcus, Clostridium, Mvcoplasma and Actinobacteria.
  • Gram-positive bacteria are selected from Micobacterium phlei, Staphylococcus aureus and Bacillus cereus var. Mvcoides In a particular embodiment, Gram-positive bacteria are selected from Staphylococcus aureus 6538 and Bacillus cereus var. mvcoides 11778.
  • This aspect of the invention can also be formulated as the use of a compound as defined above, including the known compounds mentioned for the preparation of a medicament for the treatment of a bacterial infection caused by Gram-positive bacteria in a mammal, including a human.
  • the invention is also related to a method for the treatment and / or prophylaxis of a mammal, including a human, that suffers or is susceptible to bacterial infections caused by Gram-positive bacteria, in particular to the aforementioned infections, said method comprising The administration to said patient of a therapeutically effective amount of compounds of the present invention, including the known compounds mentioned above, together with pharmaceutically acceptable excipients or carriers.
  • Gram-negative bacteria include Escherichia coli, Salmonella, Enterobacteriaceae, Pseudomonas, Moraxella, Helicobacter, Legionella, Hemophilus influenzae, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens and Acinetobacter baumanü.
  • Gram-negative bacteria are selected from Salmonella typhimur ⁇ um, Pseudomonas aeruginosa and Escherichia coli.
  • Gram-negative bacteria are selected from Salmonella tvphimurium 14028, Pseudomonas aeruginosa 9027 and Escherichia coli 8739.
  • This aspect of the invention can also be formulated as the use of a compound of formula (I) or (I 1 ) as defined above for the preparation of a medicament for the treatment of a bacterial infection caused by Gram-negative bacteria in a mammal, including a human.
  • the invention is also related to a method for the treatment and / or the prophylaxis of a mammal, including a human who suffers or is susceptible to bacterial infections caused by Gram-negative bacteria, in particular to any of the infections mentioned above, the method the administration to said patient comprising a therapeutically effective amount of the compounds of formula (I) or (I 1 ) as defined above, together with pharmaceutically acceptable excipients or carriers.
  • the compounds of the present invention can be used analogously to other known antibacterial agents. These can be used alone or in combination with other appropriate bioactive compounds.
  • the compounds of formula (I) or (I 1 ) can be used in the treatment of bacteremias and / or septicemia resulting from infections by Gram-negative bacteria, administered alone or in combination with conventional antibiotics.
  • the compounds of formula (I) or (I 1 ) of the present invention are used topically, or orally for the decontamination of the digestive tract prior to surgery.
  • these compounds have the advantage that they can act on a broad spectrum of bacteria and because Since it is apparently believed that they act on the membrane, they may be more effective than other antibiotics that act on a receptor or enzyme against antibiotic resistance.
  • a further aspect of the present invention is related to a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of the compounds of formula (I) or (I 1 ), together with appropriate amounts of pharmaceutically acceptable excipients or carriers.
  • compositions can be prepared by combining the compounds of formula (I) or (I 1 ) of the present invention with pharmaceutically acceptable solid or liquid carriers or excipients, following standard pharmaceutical practices.
  • compositions of the present invention can be administered in a manner suitable for the disease to be treated, for example by oral, parenteral, inhalation, rectal, transdermal or topical route.
  • said pharmaceutical compounds or compositions are preferably administered at a dose to obtain or maintain a concentration, that is, a amount or level in blood of the active component in the patient following the treatment that is effective as an antibacterial.
  • said amount or dose that is effective as an antibacterial will be in the approximate range of 0.1 to 100 mg / kg, more preferably about 3.0 to 50 mg / kg body weight / day. It is understood that the doses may vary depending on the requirements of the patient, the severity of the bacterial infection to be treated and the particular compound used.
  • Fmoc synthesis protocol for each amino acid cycle it consists of the following steps: (i) washing the resin with DMF (5 x 30 s); (ii) treatment with 20% piperidine / DMF (1 x 1 min. + 2 x 10 min., Fmoc deprotection); (iii) washing with DMF (5 x 30 s); (iv) acylation with the amino acid Fmoc protected (3 times in excess) and DIPCDI / HOBt (3 times in excess) in the minimum amount of DMF; (v) washing with DMF (5 x 30 s) and CH 2 CI 2 (5 x 30 s); (vi) Kaiser test (with a sample of peptide resin); (vii) DMF wash (5 x 30 s).
  • Boc synthesis protocol for each amino acid cycle it consists of the following steps: (i) washing the resin with CH 2 CI 2 (5 x 30 s); (ii) treatment with 40% trifluoroacetic acid / CH 2 CI 2 (1 x 1 min.
  • step (vii) washing the resin with CH 2 CI 2 several times; (iv) treatment with 5% DlEA / CH 2 Cb several times; (v) washing the resin with CH 2 CI 2 (5 x 30 s); (vi) washing the resin with DMF (5 x 30 s); (vii) acylation with the amino acid protected Boc (3 times in excess) and PyBOP (3 times in excess) and DIEA (9 times in excess) in the minimum amount of DMF; (viii) washed with DMF (5 x 30 s) and CH 2 CI 2 (5 x 30 s); (ix) Kaiser test (with a sample of peptide resin).
  • step (vii) instead of PyBOP and DIEA, alternatively, DIPCDI / HOBt can be used.
  • the peptides were characterized by amino acid analysis with a Beckman 6300 analyzer and by MALDI-TOF mass spectrometry in a VOYAGER-DE-RP (Applied Biosystems) mass spectrometer or in an Electrospray (ESI +) ZQ-Micromass (Waters mass spectrometer) ) or ESI + LC / MSD-TOF (Agilent Technologies) mass spectrometer.
  • the homogeneity of the purified peptides was checked by analytical HPLC using Nucleosil C18 reverse phase columns (4 x 250 mm, 5 ⁇ m particle diameter and a pore measurement of 120 A). Elution was carried out at 1 ml-min "1 with mixtures of H 2 O- 0.045% TFA and acetonitrile-0.036% TFA and UV detection at 220 nm.
  • the nonanoic acid (103.6 ⁇ l, 0.59 mmol, 3 times excess) was coupled with DIPCDI / HOBt in the minimum amount of DMF.
  • the reaction was completed as verified by the Kaiser test (with a sample of peptide resin), the resin was washed with DMF (5 x 30 s) and CH 2 Cb (5 x 30 s).
  • the disulfide bond was formed by oxidation with iodine (200.3 mg, 4 equiv.) In DMF for two hours.
  • the resin was washed with DMF (8 x 5 mL) and CH 2 CI 2 (5 x 5 mL).
  • De-anchoring and deprotection of the peptide was performed by acidolysis with TFA: triethylsilic: water (95: 3: 2, v / v / v, 5 mL) for 1.5 hours at room temperature. Then, the acidolytic mixture was evaporated with a stream of N 2 and the oily residue was precipitated with dry ethyl ether. The peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 200 mg (yield 76%, purity 80%).
  • the resin was washed with DMF (5 x 30 s) and CH 2 CI 2 (5 x 30 s). Once the lipopeptide was completed, the disulfide bond was formed by oxidation with iodine (150.6 mg, 4 equiv.) In DMF for two hours. The resin was washed with DMF (8 x 5 mL) and CH 2 CI 2 (5 x 5 mL).
  • TMS-CI HBr (33% n AcOH): triethylsilane (3.21 ml TFA, 1.29 ml TMS-CI, 0.25 ml TES, 0, 25 ml HBr, total volume 5 ml) for 3 hours at room temperature. Then, the acidolytic mixture was evaporated with a stream of N 2 and the oily residue was precipitated with dry ethyl ether. The peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 75.1 mg (yield 82%, purity 80%).
  • R 2 -CH (CHg) QH,
  • R 3 CH 3 CHpNH 2 (Dab side chain),
  • R 4 -CHaCHgNH 2 (Dab side chain),
  • R n -CH 2 Ph (DPhe side chain),
  • Rs -CH 2 CH (CH ⁇ Leu side chain),
  • R n -CH 2 CH 2 NH 2 (Dab side chain): sp-2Ar ⁇ (NO ? )
  • the nonanoic acid (107.4 ⁇ l, 0.61 mmol, 3 times excess) was coupled with DIPCDI / HOBt in the minimum amount of DMF.
  • the reaction was completed as verified by the Kaiser test (with a sample of peptide resin), the resin was washed with DMF (5 x 30 s) and CH 2 CI2 (5 x 30 s).
  • the disulfide bond was formed by oxidation with iodine (207.6 mg, 4 equiv.) In DMF for two hours.
  • the resin was washed with DMF (8 x 5 mL) and CH 2 CI 2 (5 x 5 mL).
  • De-anchoring and deprotection of the peptide was performed by acidolysis with TFA: triethylsilane: water (95: 3: 2, v / v / v, 5 mL) for 1.5 hours at room temperature. Then, the acidolytic mixture was evaporated with a stream of N 2 and the oily residue was precipitated with dry ethyl ether. The peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 245 mg (yield 84%, purity 85%).
  • Rg -CH 2 CH 2 CHgNHCf-NH) -NH 2 (Aro side chain).
  • Rg -CHpPh
  • the resin was washed with DMF (5 x 30 s) and CH 2 CI 2 (5 x 30 s). Once the lipopeptide was completed, the disulfide bond was formed by oxidation with iodine (150.6 mg, 4 equiv.) In DMF for two hours. The resin was washed with DMF (8 x 5 mL) and CH 2 CI 2 (5 x 5 mL).
  • De-anchoring and deprotection of the peptide was carried out by acidolysis with TFAiTMS-ChHBr (33% in AcOH): triethylsilane (3.21 mi TFA, 1.29 mi TMS-CI, 0.25 mi TES, 0.25 mi HBr, volume total 5 mi) for 3 hours at room temperature. Then, the acidolytic mixture was evaporated with a stream of N 2 and the oily residue was precipitated with dry ethyl ether. The peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 97.9 mg (yield 80%, purity 80%).
  • the rest of the amino acids of the sequence were introduced according to a standard Fmoc / 'Bu solid phase synthesis protocol as described above: Fmoc-Dab (Z) -OH, Fmoc-Dap (Boc) -OH, Fmoc-Leu -OH, Fmoc-DPhe-OH, Fmoc-Dab (Z) -OH, Fmoc-Cys (Acm) -OH, Fmoc-Dab (Z) -OH, Fmoc-Thr (Bzl) -OH, Fmoc-Dap (Boc ) - OH.
  • nonanoic acid (65.3 ⁇ l, 0.37 mmol, 3 times excess) was coupled with DIPCDI / HOBt in the minimum amount of DMF.
  • the resin was washed with DMF (5 x 30 s) and CH 2 CI 2 (5 x 30 s).
  • the Boc groups of the Dap residues were removed by acidolysis with TFA following steps ii) to iv) of the Boc synthesis protocol.
  • the free amino groups of the amino acids Dap were guanidylated with N, N '-di-Boc- H "-trifluoromethanesulfonyl guanidine (486.3 mg, 1.24 mmol, 5 equiv. Excess by NH 2 ) in DMF for five days.
  • disulfide was achieved by oxidation with iodine (126.2 mg, 4 equiv.) in DMF for two hours.
  • the resin was washed with DMF (8 x 5 mL) and CH 2 CI 2 (5 x 5 mL).
  • TMS-CI HBr (33% in AcOH): triethylsilane (3.4 mLTFA, 0.2 mL HBr, 0.4 mL total anisole volume 4 mL) for 4 hours at 35 0 C.
  • the acidolytic mixture was evaporated with N 2 stream and the oily residue was precipitated with dry ether.
  • the peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 34.3 mg (yield 22%, purity 50%).
  • the resin was washed with DMF (5 x 3Os). Then, the spacer ("linker") 4-hydroxyphenylpropionic acid (97.7 mg, 0.59 mmol, 3 equiv. Excess) was introduced into the aminoacrylic resin by reaction with DIPCDI (91 ⁇ l, 0.59 mmol, 3 times excess) and HOBt (91 mg, 0.59 mmol, 3 excess equiv) in the minimum amount of DMF. The resin was left overnight with 20% piperidine solution in DMF and subsequently washed with DMF (5 x 3Os). The first amino acid of the sequence, Boc-DArg ( ⁇ 2 ) -OH (319 mg, 0.59 mmol, 3 equiv.
  • the peptide was removed from the resin by aminolysis with octylamine (28.4 ⁇ L, 0.19 mmol, 1 equiv.) In DMF overnight. The solution was filtered and the solvent was removed by rotary evaporation. The oily residue was triturated with acetonitrile. A white solid was obtained.
  • the deprotection of the side chains was performed by acidolysis with TFA: HBr (33% in AcOH): thioanisole (85: 5: 10) for 3 hours at 35 0 C.
  • the acidolytic mixture was evaporated with N 2 stream and the residue Oily precipitated with dry ether.
  • the peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 90 mg (35% yield, 50% purity due to the presence of thioanisole residues and the thioanisole benzyl sulphonium salt).
  • the deprotection of the side chains was performed by acidolysis with TFA: HBr (33% in AcOH): anisole (85: 5: 10) for 3 hours at 35 0 C.
  • the acidolytic mixture was evaporated with N 2 stream and the residue Oily precipitated with dry ether.
  • the peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 191 mg (quantitative yield, 50% purity). Characterization of the purified peptide: Homogeneity (by integration of the HPLC trace area)>98%; MALDI-TOF: m / z 1578.18 ([M + H] + , 100%), 1600.16 ([M + Na] + , 37%).
  • Ri -CH 2 CH 2 NH 2 (side chain of f Dab)
  • R z -CH (CHg) OH
  • R 3 -CH 2 CH 2 NH 2 (side chain of Dab)
  • R 4 -CH 2 CH 2 NH 2 (Dab side chain)
  • R 5 -CH 2 Ph (DPhe side chain)
  • R 6 -CH 2 CH (CHs) 2 (Leu side chain)
  • R 7 -CH 2 CH 2 NH 2 (Dab side chain)
  • R 8 -CH 2 CH 2 NH 2 (Dab side chain) (spB)
  • Nonanoil-Dap-Thr-Dab-cclo S-S) rCvs-Dab- (D) Phe-Leu-Dap-Dab-Cvsl
  • Example 9 Preparation of the sP-Met peptide
  • the nonanoic acid (58.5 ⁇ l, 0.33 mmol, 3 times excess) was coupled with DIPCDI / HOBt in the minimum amount of DMF.
  • the reaction was completed as verified by the Kaiser test (with a sample of peptide resin), the resin was washed with DMF (5 x 30 s) and CH2CI2 (5 x 30 s).
  • the disulfide bond was formed by oxidation with iodine (113.1 mg, 4 equiv.) In DMF for two hours.
  • the resin was washed with DMF (8 x 5 mL) and CH 2 CI 2 (5 x 5 mL).
  • TMS-CI triethylsilane (2.77 mL TFA, 1.03mL TMS-CI, 0.2 mL TES, total volume 4 mL) for 3 hours at room temperature. Then, the acidolytic mixture was evaporated with a stream of N 2 and the oily residue was precipitated with dry ether. The peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 109.7 mg (yield 79.3%, purity 75%).
  • the nonanoic acid (58.0 ⁇ l, 0.33 mmol, 3 times excess) was coupled with DIPCDI / HOBt in the minimum amount of DMF.
  • the reaction was completed as verified by the Kaiser test (with a sample of peptide resin), the resin was washed with DMF (5 x 30 s) and CH 2 CI 2 (5 x 30 s).
  • the disulfide bond was formed by oxidation with iodine (112.1 mg, 4 equiv.) In DMF for two hours.
  • the resin was washed with DMF (8 x 5 mL) and CH 2 CI 2 (5 x 5 mL).
  • the de-anchoring and deprotection of the peptide was carried out by acidolysis with TFA: triethylsilane (95: 5, v / v, 4 mL) for 3 hours at 45 0 C. Then, the acidolytic mixture was evaporated with N 2 stream and the residue Oily precipitated with dry ether. The peptide crude was recovered by centrifugation and decantation of the ether phase. The weight of the peptide crude was 43.5 mg (yield 31'4%, purity 80%).
  • the antibacterial activity of synthetic lipopeptides was determined in sterile 96-well plates (Corning Costar 3598 microtiter plates) with a final volume of 200 ⁇ L as follows: aliquots (100 ⁇ L) of a suspension of bacteria at a concentration of 10 5 colony forming units / mL in culture medium (MH, Muller Hinton Broth, Difco, USA) at pH 7.4, were added to 100 ⁇ L of lipopeptide solution prepared from a stock solution in water of 1 mg / mL, in serial dilutions at double dilution in MH at pH 7.4 (Jorgensen & Turnide, 2003).
  • Inhibition of bacterial growth was determined from the absorbance at 492 nm in a Microplate Absorbance reader ELx 800 (Bio-tek Instruments) instrument after incubation at 37 0 C for 18-20 h.
  • the antibacterial activity was expressed as MIC, the concentration at which no growth is detected after 18-20 h of incubation.
  • Organisms were cultured in Tryptycase Soy Broth (Pronadisa, Barcelona), incubating at 37 0 C to observe bacterial growth. Then, they plated on Trypticase Soy Agar (Pronadisa, Barcelona) and incubated at 37 0 C until observing the formation of colonies.
  • the microorganisms were stored in cryoballs (EAS Victoria, France) at -20 0 C.
  • the strains of the bacteria used to carry out the antibacterial activity test were obtained from: the American Type Culture Collection (ATCC, Rockville, MD, USA):
  • Staphylococcus aureus ATCC 6538 Bacillus cereus var. mycoides ATCC11778 Mvcobacterium phlei ATCC41423
  • Table 1 Antibacterial activity (MIC) in Gram positive expressed in ⁇ g / ml
  • Table 2 Antibacterial activity (MIC) in Gram negative expressed in ⁇ g / ml

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Los compuestos de formula (I), o retroenantiόmeros de los mismos no acilados en su extremo N-terminal y con la configuraciόn del aminoácido con la cadena lateral R2 no invertida cuando R2 es -CH(CH3)(OH), donde: R0 es CH3-(CH2)m-, CH3-O-(CH2CH2O)2CH2- o fenil-(CH2)x-; m es un entero entre 7 y 10; x es un entero entre 1 y 3; R1, R3, R4, R7 y R8 se seleccionan independientemente de la formula GF-(CH2)n- donde n es un entero entre 1 y 4; y GF es -NH2, -NH-C(=NH)-NH2 o 4-imidazolilo; R2 es -CH(CH3)(OH), -CH(CH3)2, -CH2NH2 o -CH2OH; R5 y R6 son -(C1-C4-alquilo lineal o ramificado, -(CH2)-R10, -CH2-CH2-S-CH3 o -CH2-CH2-S(=O)-CH3; Rg es H o Gly-espermida; y R10 es fenilo, 3-indolilo, 4-imidazolilo, 4-hidroxifenilo, α o β- naftilo o 2-, 3- o 4-piridilo, se ha encontrado que son ύtiles en el tratamiento de infecciones bacterianas.

Description

Compuestos peptídicos antibacterianos
La presente invención está relacionada con compuestos que son activos contra bacterias Gram-positivas y Gram-negativas, su procedimiento de preparación, composiciones farmacéuticas que los contienen, y su uso en el tratamiento de infecciones bacterianas.
ESTADO DE LA TÉCNICA
El hecho de que ciertos microorganismos patógenos se hayan convertido en resistentes a las terapias antibióticas es un problema grave en Ia salud pública. Parte de este problema radica en el hecho de que ciertas bacterias y otros microorganismos infecciosos son extraordinariamente capaces de desarrollar resistencia a los antibióticos. Otra causa principal se debe al uso deficiente de los antibióticos en medicina, veterinaria y agricultura.
Existe una preocupación a nivel mundial por Ia creciente prevalencia de infecciones causadas por bacterias multiresistentes, como por ejemplo Staphylococcus aureus resistente a metilicina, los Enterococcus resistentes a vancomincina y ciertas bacterias Gram-negativas como Pseudomonas aeruginosa, Acinetobacter baumanii y Klebsiella pneumoniae. Dichas infecciones son muy difíciles de controlar y una causa constante de enfermedad y mortandad. Los antibióticos convencionales actúan habitualmente sobre una o mas proteínas o receptores diana y Ia resistencia genética aparece a una frecuencia que depende de muchos factores, tales como el número de dichas proteínas o receptores diana.
La continua aparición de cepas bacterianas resistentes a los antibióticos convencionales está llevando a enormes esfuerzos dirigidos al desarrollo de nuevos fármacos que actúen en Ia membrana bacteriana, como los péptidos antimicrobianos ("anti-microbial peptides", AMP). Los péptidos antimicrobianos ofrecen una nueva ciase de agentes terapéuticos a los cuales las bacterias no son capaces de desarrollar resistencia genética, puesto que actúan principalmente sobre el componente lipídico de las membranas celulares. Entre dichos compuestos, Ia polimixina B (PxB), que se halla aprobada para su uso clínico, esta adquiriendo una nueva relevancia terapéutica y está empezando a ser considerado como un representante de Ia clase de antibióticos activos contra bacterias multiresistentes.
Las polimixinas, en particular Ia polimixina B, constituyen una familia de antibióticos descubierta en 1947 con una elevada actividad contra bacterias Gram-negativas. La polimixina B es un lipopéptido antibiótico aislado de Bacillus polvmvxa. Su estructura básica consiste en un ciclo peptídico policatiónico del cual pende un tripéptido unido a una cadena de ácido graso. La polimixina B ha resurgido en Ia práctica médica durante los últimos años y su uso continuará en aumento debido al escaso desarrollo de nuevos antibióticos por parte de Ia compañías farmacéuticas y a Ia creciente prevalencia mundial de infecciones nosocomiales causadas por bacterias Gram-negativas multiresistentes ("multidrug resistant", MDR). La polimixina B y otros miembros de Ia familia de las polimixinas son fármacos que se utilizan como último remedio para tratar infecciones causadas por bacterias multiresistentes y algunas veces son el único antibiótico activo disponible. Además, Ia resistencia a polimixina es rara y en general, adaptativa y, por tanto, reversible. La polimixina B es también capaz de inhibir Ia actividad biológica del lipopolisacárido (LPS) bacteriano por medio de Ia unión de alta afinidad al lípido A, siendo así el agente de elección para el tratamiento del shock séptico inducido por LPS. Desgraciadamente, Ia polimixina B no presenta actividad contra bacterias Gram-positivas o anaeróbicas. Además, las polimixinas son de uso limitado debido a que presentan cierta nefrotoxicidad y neurotoxicidad.
Por todo ello, existe todavía Ia necesidad de encontrar nuevos agentes antibacterianos activos no sólo contra bacterias Gram-negativas sino también contra bacterias Gram-positivas.
EXPLICACIÓN DE LA INVENCIÓN
Los inventores han encontrado algunos compuestos peptídicos con actividad antibiótica que actúan sobre el componente lipídico de las membranas bacterianas y que son activos tanto contra bacterias Gram-positivas como contra Gram-negativas. Estos compuestos se basan en Ia estructura de Ia polimixina natural. Sin embargo y a diferencia de las polimixinas, dichos compuestos son activos no sólo contra bacterias Gram-negativas sino también en Gram-positivas en el rango micromolar. Esto es ventajoso puesto que pueden actuar en respuesta a infecciones causadas por ambos tipos de bacteria.
Así, un aspecto de Ia presente invención es el proporcionar compuestos de fórmula (I),
Figure imgf000005_0001
(i)
o retroenantiómeros de los mismos de fórmula (V),
Figure imgf000005_0002
(!') donde R0 es un radical seleccionado entre CH3-(CH2)m-, CH3-O- (CH2CH2O)2CH2-, y
Figure imgf000006_0001
m es un entero entre 7 y 10; x es un entero entre 1 y 3; R-i, R3, R4, R7, y Re son radicales seleccionados independientemente que responden a Ia fórmula: GF-(CH2)n-; n es un entero entre 1 y 4; GF es un radical seleccionado entre -NH2 (amino), -NH-C(=NH)-NH2 (guanidino) y 4- imidazolilo; R2 es un radical seleccionado entre -CH(CH3)(OH), -CH(CH3)2, -CH2NH2 y -CH2OH; R5 y Re son radicales seleccionados entre: -(Ci-C4)-aIquilo lineal o ramificado; -(CH2)-R10, -CH2-CH2-S-CH3, y -CH2-CH2-S(=O)-CH3, R9 es H o
GIy-NHCH2CH2CH2NHCH2CH2CH2CH2NHCH2CH2CH2NH2 (Gly-espermida); y R10 es un radical seleccionado entre fenilo, 3-indolilo, 4-imidazolilo, 4-hidroxifenilo, naftilo y piridilo; con Ia condición de que el compuesto de fórmula (I) no es uno de los compuestos de Ia siguiente lista, que se han descrito previamente, pero no su aplicación como agentes antibacterianos contra bacterias Gram-positivas:
nonanoil-Dab-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dab-Dab-Cvsl, (sp-B); nonanoil-Dap-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dap-Dab-Cvsl, (sP-D); nonanoil-Dab-Thr-Dab-c¡clo(S-S)rCvs-Dab-DPhe-Met-Dab-Dab-Cvsl.
(sp-Met); nonanoil-Dab-Thr-Dab-ciclo(S-S)[Cvs-Dab-DPhe-Met(O)-Dab-Dab-Cvs1: (sp-
Met(O)); o nonanoil-Dab-Thr-Dab-ciclo(S-S)rCvs-Dab-DTrp-Leu-Dab-Dab-Cvs1, (sp-Bw).
Por el término "ciclo(S-S)" se entiende un macrociclo formado por un puente disulfuro entre las dos cisteínas.
Un retroenantiómero de un péptido es un análogo peptídico que consiste en Ia secuencia de aminoácidos reversa respecto al péptido original con inversión simultánea de Ia configuración de los estereocentros, en particular los del carbono alfa de cada aminoácido. Es conocido que los retroenantiómeros de ciertos péptidos y depsipéptidos cíclicos mantienen Ia actividad biológica a pesar de que Ia dirección del enlace amida (definido en el sentido del átomo de carbono del carbonilo al átomo de nitrógeno) que une los residuos se haya invertido (cf. M. Goodman et al. ,"On the concept of linear modified retro-peptide structures", Acc. Chem. Res. 1979 vol. 12, pp. 1-7). La actividad biológica se atribuye a Ia orientación tridimensional de las cadenas laterales y no al esqueleto peptídico.
El compuesto retroenantiomérico (I') es un péptido análogo que consiste en Ia secuencia de aminoácidos reversa del compuesto (I) con inversión simultánea de Ia configuración de todos los centros quirales excepto el del aminoácido con Ia cadena lateral R2 cuando dicho R2 es treonina, y que no necesariamente se halla acilado en su extremo N-terminal.
En una realización preferida, los compuestos de fórmula (I) o (I') son aquéllos anteriormente mencionados donde R2 es -CH(CHs)(OH), es decir, R2 es Ia cadena lateral de Ia treonina.
Los compuestos preferidos de fórmula (I) son aquéllos seleccionados de Ia siguiente lista:
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-Cvsl. (sp-2Arg); nonano¡l-Arq-Thr-Arg-c¡clo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-Cys1, (sp-3Arg); nonano¡l-Arg(NO2)-Thr-Dab-cjcJρiSIS)ICys-Dab-DPhe-Leu-Arg(NO2)-Dab- Cys], (sp-2Arg(NO2); nonanoil-Arq-Thr-Arq-c¡clo(S-S)fCvs-Arq-DPhe-Leu-Arg-Arq-Cvs1, (sp-5Arg); nonano¡l-DaprC(NH)-NH?1-Thr-Dab-c¡clo(S-S)rCvs-Dab-DPhe-Leu-DaprC(NH)-
NH2]-Dab-Cys], (sP-2Dap guanidilado); y nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1-Glv- NHCH2CH2CH2NHCH2CH2CH2CH2NHCH2CH2CH2NH2, (sP-2Arg-Gly- espermida).
Los compuestos preferidos de fórmula (I1) son aquéllos seleccionados de Ia siguiente lista:
ciclo(S-S)fDCvs-DDab-DArg-DLeu-Phe-DDab-DCys1-DDab-DThr-DArq- octilamida, (sP-2Arg retroenantio); y ciclo(S-S)rDCvs-DDab-DDab-DLeu-Phe-DDab-DCvs1-DDab-DThr-DDab- octilamida, (sP-B retroenantio).
Los compuestos de Ia presente invención pueden prepararse por síntesis en fase sólida Fmoc. El procedimiento de preparación para cada aminoácido puede comprender las etapas siguientes: (i) varios lavados de Ia resina con N.hl-dimetilformamida (DMF); (ii) tratamiento con 20% de piperidina/DMF; (iii) lavado con DMF varias veces; (iv) acilación con el aminoácido Fmoc protegido y N.N^diisopropilcarbodiimida /1-hidroxibenzotriazol (DIPCDI/HOBt) en DMF; (v) lavado con DMF varias veces y posteriormente en diclorometano (CH2CI2) varias veces; (vi) prueba de Kaiser (con una muestra de resina peptídica); y (vii) lavado con DMF varias veces.
También se pueden preparar por síntesis en fase sólida Boc. En este caso el procedimiento de preparación para cada aminoácido puede comprender las etapas siguientes: (i) lavado de Ia resina con CH2CI2 varias veces; (ii) tratamiento con 40% de ácido trifluoroacético (TFA)/ CH2CI2 ;(ii¡) lavado de Ia resina con CH2CI2 varias veces; (iv) tratamiento con 5% DIEA/ CH2CI2 varias veces; (v) lavado de Ia resina con CH2CI2 varias veces; (vi) lavado de Ia resina con DMF varias veces; (vii) acilación con el aminoácido Boc protegido y hexafluorofosfato de benzotriazol-1-iloxitris(pirrolidino)fosfonio hexafluorofosfato (PyBOP) y N.N-diisopropiletilamina (DIEA) en Ia cantidad mínima de DMF; (viii) lavado con DMF varias veces y CH2CI2 varias veces; y (ix) prueba de Kaiser (con una muestra de resina peptídica). En Ia etapa (vii) en lugar de PyBOP y DIEA puede utilizarse DIPCDI/HOBt.
Los péptidos obtenidos por los procedimientos anteriores pueden purificarse por HPLC preparativa, mediante Io cual puede obtenerse una pureza superior al 99%.
Así, los compuestos de Ia presente invención se preparan fácilmente por síntesis química según los procedimientos mencionados anteriormente mientras que Ia polimixina comercial se obtiene por fermentación.
Otro aspecto de Ia presente invención son los compuestos de fórmula (I) o (I1), así como cualquiera de los siguientes compuestos: nonano¡l-Dab-Thr-Dab-c¡clo(S-S)ÍCvs-Dab-DPhe-Leu-Dab-Dab-Cvs1, (sp-B); nonanoil-Dab-Thr-Dab-ciclofS-SHCvs-Dab-DPhe-Dab-Leu-Dab-Cvsl, (sp-C); nonanoil-Dap-Thr-Dab-c¡clo(S-S)rCvs-Dab-DPhe-Leu-Dap-Dab-Cvsl, (sP-D); nonano¡l-Dab-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Met-Dab-Dab-Cvsl, (sp-Met); nonanoil-Dab-Thr-Dab-c¡clo(S-S)rCvs-Dab-DPhe-Met(O)-Dab-Dab-Cvs1, (sp- Met(O)); o nonanoil-Dab-Thr-Dab-ciclo(S-SHCvs-Dab-DTrp-Leu-Dab-Dab-Cvs1, (sp-Bw);
para uso como agentes antibacterianos contra bacterias Gram-positivas. Entre las bacterias Gram-positivas médicamente relevantes se encuentran varias de género bien conocido tales como Bacillus. Listeria, Staphylococcus, Streptococcus, Enterococcus, Clostridium, Mvcoplasma y Actinobacteria.
En una realización preferida, las bacterias Gram-positivas se seleccionan entre Micobacterium phlei, Staphylococcus aureus y Bacillus cereus var. Mvcoides. En una realización particular, las bacterias Gram-positivas se seleccionan entre Staphylococcus aureus 6538 y Bacillus cereus var. mvcoides 11778.
Este aspecto de Ia invención se puede formular también como el uso de un compuesto como se ha definido anteriormente, incluyendo los compuestos conocidos mencionados para Ia preparación de un medicamento para el tratamiento de una infección bacteriana causada por bacterias Gram- positivas en un mamífero, incluyendo un humano.
La invención también está relacionada con un método para el tratamiento y/o Ia profilaxis de un mamífero, incluyendo un humano, que sufre o es susceptible a infecciones bacterianas causada por bacterias Gram-positivas, en particular a las infecciones mencionadas anteriormente, dicho método comprendiendo Ia administración al mencionado paciente de una cantidad terapéuticamente efectiva de compuestos de Ia presente invención, incluyendo los compuestos conocidos mencionados anteriormente, junto a excipientes o portadores farmacéuticamente aceptables.
Es también parte de Ia invención los compuestos de fórmula (I) o (I') como se han definido anteriormente para su uso como agentes antibacterianos contra bacterias Gram-negativas. Las bacterias Gram-negativas médicamente relevantes comprenden Escherichia coli, Salmonella, Enterobacteriaceae, Pseudomonas, Moraxella, Helicobacter, Legionella, Hemophilus influenzae, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens y Acinetobacter baumanü.
En una realización preferida, las bacterias Gram-negativas se seleccionan entre Salmonella typhimuríum, Pseudomonas aeruginosa y Escherichia coli. En una realización particular, las bacterias Gram-negativas se seleccionan entre Salmonella tvphimurium 14028, Pseudomonas aeruginosa 9027 y Escherichia coli 8739.Este aspecto de Ia invención puede ser también formulado como el uso de un compuesto de fórmula (I) o (I1) como se ha definido anteriormente para Ia preparación de un medicamento para el tratamiento de una infección bacteriana causada por bacterias Gram- negativas en un mamífero, incluyendo un humano.
La invención también está relacionada con un método para el tratamiento y/o Ia profilaxis de un mamífero, incluyendo un humano que sufra o es susceptible a infecciones bacterianas causada por bacterias Gram-negativas, en particular a alguna de las infecciones mencionadas anteriormente, el método comprendiendo Ia administración al mencionado paciente de una cantidad terapéuticamente efectiva de los compuestos de fórmula (I) o (I1) como se han definido anteriormente, junto a excipientes o portadores farmacéuticamente aceptables.
Los compuestos de Ia presente invención se pueden utilizar análogamente a otros agentes antibacterianos conocidos. Estos se pueden utilizar solos o en combinación con otros compuestos bioactivos apropiados. En una realización particular, los compuestos de fórmula (I) o (I1) se pueden utilizar en el tratamiento de bacteremias y/o septicemia consecuencia de infecciones por bacterias Gram-negativas, administrados solos o en combinación con antibióticos convencionales. En una realización preferida, los compuestos de fórmula (I) o (I1) de Ia presente invención se usan por vía tópica, o bien por vía oral para la descontaminación del tracto digestivo previa a cirugía.
Como se ha mencionado anteriormente, estos compuestos presentan Ia ventaja de que pueden actuar sobre un espectro amplio de bacterias y debido a que aparentemente se cree que actúan sobre Ia membrana, pueden resultar más efectivos que otros antibióticos que actúan sobre un receptor o enzima frente a Ia resistencia a los antibióticos.
Un aspecto adicional de Ia presente invención está relacionado con una composición farmacéutica que comprende una cantidad terapéuticamente efectiva de los compuestos de fórmula (I) o (I1), junto con cantidades apropiadas de excipientes o portadores farmacéuticamente aceptables.
Las composiciones farmacéuticas se pueden preparar por combinación de los compuestos de fórmula (I) o (I1) de Ia presente invención con excipientes o portadores sólidos o líquidos farmacéuticamente aceptables, siguiendo prácticas farmacéuticas estándar.
Las composiciones farmacéuticas de Ia presente invención se pueden administrar de manera adecuada para Ia enfermedad que se desea tratar, por ejemplo por vía oral, parenteral, inhalatoria, rectal, transdérmica o tópica. En el uso terapéutico para tratar o combatir infecciones bacterianas en pacientes como los humanos y otros animales que pudieren ser diagnosticados con infecciones bacterianas, dichos compuestos o composiciones farmacéuticas, preferentemente, se administran a una dosis para obtener o mantener una concentración, o sea, una cantidad o nivel en sangre del componente activo en el paciente que sigue el tratamiento que sea efectiva como antibacteriano. Generalmente, dicha cantidad o dosis que sea efectiva como antibacteriano se encontrará en el intervalo aproximado de 0.1 a 100 mg/Kg, más preferentemente alrededor de 3.0 a 50 mg/Kg de peso corporal/día. Se entiende que las dosis pueden variar dependiendo de los requisitos del paciente, Ia severidad de Ia infección bacteriana a tratar y del compuesto particular que se use.
Además, Ia presente invención cubre todas las posibles combinaciones de grupos particulares mencionados previamente.
A Io largo de Ia descripción y las reivindicaciones, Ia palabra "comprende" y sus variaciones no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no pretenden que sean limitativos de Ia presente invención.
EJEMPLOS
Abreviaciones: Acm, acetamidometilo; AcOH, ácido acético; Boc, terc-butoxicarbonilo; Bn, bencilo; Dab: ácido 2,4-diaminobutírico; DMAP, N,N-d¡metilaminopir¡dina; DIEA, N.N-diisopropiletilamina; DIPCDI, N.N'-düsopropilcarbodiimida; DMF, N,N-dimetilformamida; ES, electrospray; Fmoc, 9-fluorenilmetoxicarbonilo; HOBt, 1-hidroxibenzotriazol; HPLC, cromatografía liquida de alta eficacia; MALDI-TOF, ionización por desorción láser asistida por matriz-tiempo de vuelo; MBHA, resina 4-metilbencidrilamina; MIC, concentración mínima inhibitoria; Pmc, 2,2,5,7,8-pentametil-cromano-6-sulfonilo; PyBOP, hexafluorofosfato de benzotriazol-1-iloxitris(pirrol¡dino)fosfonio; TES: trietilsilano; TFA, ácido trifluoroacético; TIS: triisopropilsilano; TMS-CI, cloruro de trimetilsililo; Trt, tritilo; DAB, ácido 2,4-diaminobutírico.
Métodos generales
Se han empleado dos métodos para preparar los compuestos de los ejemplos: síntesis en fase sólida Fmoc y síntesis en fase sólida Boc
Protocolo de síntesis Fmoc: para cada ciclo de aminoácido consiste en las etapas siguientes: (i) lavado de Ia resina con DMF (5 x 30 s); (ii) tratamiento con 20% de piperidina/DMF (1 x 1 min. + 2 x 10 min., desprotección Fmoc); (iii) lavado con DMF (5 x 30 s); (iv) acilación con el aminoácido Fmoc protegido (3 veces de exceso) y DIPCDI/HOBt (3 veces de exceso) en Ia cantidad mínima de DMF; (v) lavado con DMF (5 x 30 s) y CH2CI2 (5 x 30 s); (vi) prueba de Kaiser (con una muestra de resina peptídica); (vii) lavado con DMF (5 x 30 s).
Protocolo de síntesis Boc: para cada ciclo de aminoácido consiste en las etapas siguientes: (i) lavado de Ia resina con CH2CI2 (5 x 30 s); (ii) tratamiento con 40% de ácido trifluoroacético/CH2CI2 (1 x 1 min. + 2 x 10 min., eliminación Boc); (iii) lavado de Ia resina con CH2CI2 varias veces; (iv) tratamiento con 5% DlEA/ CH2Cb varias veces; (v) lavado de Ia resina con CH2CI2 ( 5 x 30 s); (vi) lavado de Ia resina con DMF (5 x 30 s); (vii) acilación con el aminoácido Boc protegido (3 veces de exceso) y PyBOP (3 veces de exceso) y DIEA (9 veces de exceso) en Ia cantidad mínima de DMF; (viii) lavado con DMF (5 x 30 s) y CH2CI2 (5 x 30 s); (ix) prueba de Kaiser (con una muestra de resina peptídica). En Ia etapa (vii) en lugar de PyBOP y DIEA alternativamente puede utilizarse DIPCDI/HOBt.
La purificación se llevó a cabo por HPLC preparativa. En los Ejemplos se empleo un equipo Waters Delta Prep 3000 system con una columna Phenomenex C18 (2) (250 x 10 mm, 5 μm) y se eluyó en gradiente con mezclas de H2O-acetonitr¡lo-0.1% TFA y detección UV a 220 nm.
Los péptidos se caracterizaron por análisis de aminoácidos con un analizador Beckman 6300 y por espectrometría de masas MALDI-TOF en un espectrómetro de masas VOYAGER-DE-RP (Applied Biosystems) o en un espectrómetro de masas Electrospray (ESI+) ZQ-Micromass (Waters) o en espectrómetro de masas ESI + LC/ MSD-TOF (Agilent Technologies). La homogeneidad de los péptidos purificados se comprobó por HPLC analítica empleando columnas Nucleosil C18 de fase reversa (4 x 250 mm, 5 μm de diámetro de partícula y una medida de poro de 120 A). La elución se llevó a cabo a 1 ml-min"1 con mezclas de H2O- 0.045% TFA y acetonitrilo-0.036% TFA y detección UV a 220 nm.
Ejemplo 1 : Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)ÍCvs-Dab-DPhe- Leu-Arq-Dab-Cysi (compuesto de fórmula (I) con Rn = CHa(CHg)7-, Ri = -CH?CH?CH?NHC(=NH)-NH? (cadena lateral de Am). R?, = -CH(CH3)OH, Rn = -CH7CH9NH7 (cadena lateral de Dab), Rá = -CH?CH?NH? (cadena lateral de Dab), Rn = -CH?Ph (cadena lateral de DPhe), RR = -CH?CH(CHgMcadena lateral de Leu). Rz = -CH?CH?CH?NHC(=NH)-NH? (cadena lateral de Am). v RR = -CHpCH2NH? (cadena lateral de Dab): sp-2Arq)
Aminoácidos protegidos: Fmoc-Cys(Acm)-OH, Fmoc-Dab(Boc)-OH, Fmoc- Arg(Pmc)-OH, Fmoc-Leu-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH.
Se llevo a cabo Ia síntesis manual según un protocolo estándar Fmoc/Bu en jeringas de polipropileno con un filtro de polietileno. El espaciador ("linker") Fmoc-Rink (319 mg, 0.59 mmoles, 3 equiv. exceso) se ancló a Ia resina 4-MBHA-pol¡estireno (201 mg, f=0,98 mmol/g) por activación con DIPCDI (92 μl_, 0.59 mmoles, 3 equivalentes exceso). Los aminoácidos de Ia secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/Bu como se ha descrito anteriormente. Una vez Ia secuencia se completó, se acopló el ácido nonanoico (103,6 μl, 0.59 mmoles, 3 veces de exceso) con DIPCDI/HOBt en Ia cantidad mínima de DMF. Una vez concluida Ia reacción según se comprobó por Ia prueba de Kaiser (con una muestra de resina peptídica), Ia resina se lavó con DMF (5 x 30 s) y CH2Cb (5 x 30 s). Una vez el lipopéptido se completó, el enlace disulfuro se formó por oxidación con yodo (200.3 mg, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5mL).
El desanclaje y desprotección del péptido se realizó por acidólisis con TFA:triet¡lsílano:agua (95:3:2, v/v/v, 5 mL) durante 1.5 horas a temperatura ambiente. A continuación, Ia mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter etílico seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 200 mg (rendimiento 76%, pureza 80%). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >99%; MALDI-TOF: m/z 1335.32 ([M+H]+, 100%), 1357.31 ([M+Na]+, 16.8%).
Ejemplo 2: Preparación de nonanoil-Aro-Thr-Arg-ciclofS-SKCvs-Dab-DPhe- Leu-Arg-Dab-Cvsi (Compuesto (I) con R0 = CH3(CHg)?-. Ri =
-CH2CHZCH?NHC(=NH)-NH2 (cadena lateral de Arg), R? = -CH(CHg)OH, Ra = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arg), R4 = -CH2CH2NH? (cadena lateral de Dab). Rg = -CH2Ph (cadena lateral de DPhe), Rg = -CH2CH(CH3)? (cadena lateral de Leu), R7 = -CH?CH2CH2NHC(=NH)-NH2 (cadena lateral de Aro), v Rq = -CH2CH2NH2 (cadena lateral de Dab): sp- 3Arc
Aminoácidos protegidos: Fmoc-Cys(Acm)-OH, Fmoc-Dab(Boc)-OH, Fmoc- Arg(Pmc)-OH, Fmoc-Leu-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH.
Se llevo a cabo Ia síntesis manual según un protocolo estándar Fmoc/Bu en jeringas de polipropileno con un filtro de polietileno. El primer aminoácido de Ia secuencia, Fmoc-Cys(Acm)-OH, se ancló directamente a Ia resina 4-MBHA-poliestireno (151 ,4 mg, f=0,98 mmol/g). Los aminoácidos de Ia secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/Bu como se ha descrito anteriormente. Una vez Ia secuencia se completó, se acopló el ácido nonanoico (78,0 μl, 0,45 mmoles, 3 veces de exceso) con DIPCDI/HOBt en Ia cantidad mínima de DMF. Una vez concluida Ia reacción según se comprobó por Ia prueba de Kaiser (con una muestra de resina peptídica), Ia resina se lavó con DMF (5 x 30 s) y CH2CI2 (5 x 30 s). Una vez el lipopéptido se completó, el enlace disulfuro se formó por oxidación con yodo (150,6 mg,, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5mL).
El desanclaje y desprotección del péptido se realizó por acidólisis con TFA:TMS-CI:HBr (33% ¡n AcOH): trietilsilano (3,21 mi TFA, 1 ,29 mi TMS-CI, 0,25 mi TES, 0,25 mi HBr, volumen total 5 mi) durante 3 horas a temperatura ambiente. A continuación, Ia mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter etílico seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 75.1 mg (rendimiento 82%, pureza 80%). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >99%; MALDI-TOF: m/z 1391.73 ([M+H]+, 32.9%), 1413.70 ([M+Naf, 100%).
Ejemplo 3: Preparación de nonanoil~Arq(NO2)-Thr-Dab-ciclo(S-S')ljCvs-Dab- DPhe-Leu-Arq(NO2)-Dab-Cvs] (Compuesto (I) con Rn = CHg(CH?)?- , Ri = -CH2CH2CH2NHCf=NH)-NH-NO2 (cadena lateral de Am(NOp)), R2 = -CH(CHg)QH, R3 = CH3CHpNH2 (cadena lateral de Dab), R4 = -CHaCHgNH2 (cadena lateral de Dab), Rn = -CH2Ph (cadena lateral de DPhe), Rs = -CH2CH(CHñMcadena lateral de Leu),R7 = ~CH2CH2CH2NHC(=NH)-NH-NO2 (cadena lateral de Am(NO2)) y
Rn = -CH2CH2NH2 (cadena lateral de Dab): sp-2Arα(NO?)
Aminoácidos protegidos: Fmoc-Cys(Acm)-OH, Fmoc-Dab(Boc)-OH, Fmoc-Arg(NO2)~OH, Fmoc-Leu-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH.
Se llevo a cabo Ia síntesis manual según un protocolo estándar Fmoc/Bu en jeringas de polipropileno con un filtro de polietileno. El espaciador ("linker") Fmoc-Rink (329 mg, 0.61 mmoles, 3 equiv. exceso) se ancló a Ia resina 4-MBHA-poliestireno (209 mg, f=0,98 mmol/g) por activación con DIPCDI (95 μl_, 0.61 mmoles, 3 equiv. exceso). Los aminoácidos de Ia secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/Bu como se ha descrito anteriormente. Una vez Ia secuencia se completó, se acopló el ácido nonanoico (107,4 μl, 0.61 mmoles, 3 veces de exceso) con DIPCDI/HOBt en Ia cantidad mínima de DMF. Una vez concluida Ia reacción según se comprobó por Ia prueba de Kaiser (con una muestra de resina peptídica), Ia resina se lavó con DMF (5 x 30 s) y CH2CI2 (5 x 30 s). Una vez el lipopéptido se completó, el enlace disulfuro se formó por oxidación con yodo (207,6 mg, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5mL).
El desanclaje y desprotección del péptido se realizó por acidólisis con TFA:trietilsilano:agua (95:3:2, v/v/v, 5 mL) durante 1.5 horas a temperatura ambiente. A continuación, Ia mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter etílico seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 245 mg (rendimiento 84%, pureza 85%). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >99%; ESI+: m/z 476.5 ([M+3H]3+/3, 100%), 714.0 ([M+2H]2+/2, 73%).
Ejemplo 4: Preparación de nonanoil-Arg-Thr-Arg-ciclo(S-S)fCvs-Arg-DPhe-
Leu-Arq-Arq-Cvsi (Compuesto (I) con Rn = CHj(CH?)?, Ri = -CHZCHZCHZNHC(=NH)-NHZ (cadena lateral de Aro),
R? = -CH(CHn)OH,
Rg = -CH2CH2CHgNHCf-NH)-NH2 (cadena lateral de Aro).
R¿ = -CHZCHZCH?NHC(=NH)-NHZ (cadena lateral de Aro). Rg = -CHpPh
(cadena lateral de DPhe),Rg = -CH?CH(CHgMcadena lateral de Leu),
Figure imgf000016_0001
Rn = -CHZCHZCH?NHC(=NH)-NHZ (cadena lateral de Ara); sp-5Arg)
Aminoácidos protegidos: Fmoc-Cys(Acm)-OH, Fmoc-Arg(Pmc)-OH, Fmoc- Leu-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH.
Se llevo a cabo Ia síntesis manual según un protocolo estándar Fmoc/Bu en jeringas de polipropileno con un filtro de polietileno. El primer aminoácido de Ia secuencia, Fmoc-Cys(Acm)-OH, se ancló directamente a Ia resina 4-MBHA-poliestireno (151 '4 mg, f=0,98 mmol/g). Los aminoácidos de Ia secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/Bu como se ha descrito anteriormente. Una vez Ia secuencia se completó, se acopló el ácido nonanoico (78,0 μl, 0,45 mmoles, 3 veces de exceso) con DIPCDI/HOBt en Ia cantidad mínima de DMF. Una vez concluida Ia reacción según se comprobó por Ia prueba de Kaiser (con una muestra de resina peptídica), Ia resina se lavó con DMF (5 x 30 s) y CH2CI2 (5 x 30 s). Una vez el lipopéptido se completó, el enlace disulfuro se formó por oxidación con yodo (150,6 mg, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5mL).
El desanclaje y desprotección del péptido se realizó por acidólisis con TFAiTMS-ChHBr (33% in AcOH): trietilsilano (3,21 mi TFA, 1,29 mi TMS-CI, 0,25 mi TES, 0,25 mi HBr, volumen total 5 mi) durante 3 horas a temperatura ambiente. A continuación, Ia mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter etílico seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 97.9 mg (rendimiento 80%, pureza 80%). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >99%; MALDI-TOF: m/z 1503'63 ([M+H]\ 29.3%), 1525.64 ([M+Na]\ 100%).
Ejemplo 5: Preparación de nonanoil-Dapr(C=NH)-NH?)1-Thr-Dab-ciclo(S- S)rCvs-Dab-DPhe-Leu-Dapr(C=NH)-NH?)l-Dab-Cvs1 (Compuesto (I) con Rn = CHs(CH2)?-, R1 = -CH2NH(C=NH)-NH? (cadena lateral de Dap [(C=NH)-NHg)I: Dap guanidilado: versión corta de Arq, con dos metilenos menosl R? = -CH(CHa)OH, Ra = -CH2CH2NH? (cadena lateral de Dab). R4 = -CH2CH2NH? (cadena lateral de Dab), Rs = -CH2Ph (cadena lateral de DPheV RR = -CHgCHfCHaMcadena lateral de Leu), Rz = -CH2NH(C=NH)-NH2
(cadena lateral de DaPf(C=NH)-NH?)!, Dap guanidilado), v R« = -CH2CH2NH? (cadena lateral de Dab): sP-2Dap quanidilado)
Aminoácidos protegidos: Fmoc-Cys(Acm)-OH, Fmoc-Dab(Z)-OH, Fmoc- Dap(Boc)-OH, Fmoc-Leu-OH, Fmoc-DPhe-OH, Fmoc-Dab(Z)-OH, Fmoc- Thr(Bzl)-OH, Fmoc-Dap(Boc)-OH. Se llevo a cabo Ia síntesis manual según un protocolo estándar Fmoc/Bu en jeringas de polipropileno con un filtro de polietileno. El primer aminoácido de Ia secuencia, Fmoc-Cys(Acm)-OH, se ancló directamente a Ia resina 4-MBHA-poliestireno (126'8 mg, f=0,98 mmol/g). El resto de los aminoácidos de Ia secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/'Bu como se ha descrito anteriormente: Fmoc-Dab(Z)-OH, Fmoc-Dap(Boc)-OH, Fmoc-Leu-OH, Fmoc-DPhe-OH, Fmoc-Dab(Z)-OH, Fmoc-Cys(Acm)-OH, Fmoc-Dab(Z)-OH, Fmoc-Thr(Bzl)-OH, Fmoc-Dap(Boc)- OH. Finalmente, se acopló el ácido nonanoico (65,3 μl, 0,37 mmoles, 3 veces de exceso) con DIPCDI/HOBt en Ia cantidad mínima de DMF. Una vez concluida Ia reacción según se comprobó por Ia prueba de Kaiser (con una muestra de resina peptídica), Ia resina se lavó con DMF (5 x 30 s) y CH2CI2 (5 x 30 s). Los grupos Boc de los residuos de Dap se eliminaron por acidólisis con TFA siguiendo las etapas ii) a iv) del protocolo de síntesis Boc. Los grupos amino libres del aminoácidos Dap se guanidilaron con N, N '-di-Boc- H "-trifluorometanosulfonil guanidina (486.3 mg, 1.24 mmoles, 5 equiv. de exceso por NH2) en DMF durante cinco días. La delación por enlace disulfuro se consiguió por oxidación con yodo (126.2 mg, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5mL).
El desanclaje y desprotección del péptido se realizó por acidólisis con TFA:TMS-CI:HBr (33% en AcOH):trietilsilano (3.4 mLTFA, 0,2 mL HBr, 0.4 mL anisol total volumen 4 mL) durante 4 horas a 35 0C. La mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 34.3 mg (rendimiento 22%, pureza 50%). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >95%; MALDI-TOF: m/z 1279.54 ([M+H]+, 100%), 1301.29 ([M+Na]+, 50,3%), 1317.25 ([M+K]+, 5.5%).
Ejemplo 6: Preparación de ciclofS-SWDCvs-DDab-DArq-DLeu-Phe-DDab-DCvs] DDab pThr-DArq- octilamida of sP-retroenantio 2Ara (Compuesto de fórmula (!') con R0 = CHa(CH2)?-, R1 = -CH2CH2CH2NHCf=NH)-NH? (cadena lateral de DArq), R2 = -CH(CHa)OH, Rg = -CH2CHgNH2 (cadena lateral de DDab), R£ = -CH2CH2NH2 (cadena lateral de DDab), Rfi = -CH2Ph (cadena lateral de Phei. RR = -CH2CH(CHrQ? (cadena lateral de DLeu), R7 = -CH2CH2CH?NHC(=NHV NH? (cadena lateral de DArq), y Ra = -CH7CH7NH2 (cadena lateral de DDab); sP-retroenantio 2Arg)
Aminoácidos protegidos: Boc-DArg(Z2)~OH, Boc-DThr(Bzl)-OH, Boc-DDab(Z)- OH Boc-DCys(Acm)-OH, Fmoc-Phe-OH, Boc-DLeu-OH.
Se llevo a cabo Ia síntesis manual según un protocolo estándar Boc en jeringas de polipropileno con un filtro de polietileno. Se introdujo en primer lugar un aminoácido de referencia (GIy). Fmoc-Gly-OH(174 mg, 0.59 mmoles, 3 equiv. exceso), se ancló a Ia resina 4-MBHA-poliestireno (200 mg, f=0,98 mmol/g) por reacción con DIPCDI (91 μl, 0,59 mmoles, 3 veces de exceso) y HOBt (91 mg, 0.59 mmoles, 3 equiv. exceso). El grupo Fmoc se eliminó por tratamiento con solución de 20% piperidina en DMF (2x10 min). La resina se lavó con DMF (5 x 3Os). A continuación, se introdujo el espaciador ("linker") ácido 4-hydroxifenilpropiónico (97.7 mg, 0.59 mmoles, 3 equiv. exceso) en Ia resina aminoacílica por reacción con DIPCDI (91 μl, 0,59 mmoles, 3 veces de exceso) y HOBt (91 mg, 0.59 mmoles, 3 equiv. exceso) en Ia cantidad mínima de DMF. La resina se dejó toda Ia noche con solución de 20% piperidina en DMF y posteriormente se lavó con DMF (5 x 3Os). El primer aminoácido de Ia secuencia, Boc-DArg(∑2)-OH (319 mg, 0.59 mmoles, 3 equiv. exceso) se esterificó al espaciador ("linker") con DIPCDI (91 μl, 0.59 mmoles, 3 equiv. exceso) y DMAP (7.18 mg, 0.059 mmoles, 0.3 equiv.). Esta etapa se repitió dos veces. El resto de los aminoácidos de Ia secuencia de Thr a Cys, se introdujeron según un protocolo estándar de síntesis Boc como se ha descrito anteriormente. Una vez Ia secuencia se completó, el enlace disulfuro se formó por oxidación con yodo (198.98 mg, 0.78 mmol, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5 mL). El péptido se desancló de Ia resina por aminolisis con octilamina (28.4μL, 0.19 mmol, 1 equiv.) en DMF durante Ia noche. Se filtró Ia solución y el disolvente se elimino al rotavapor. El residuo aceitoso se trituró con acetonitrilo. Se obtuvo un sólido blanco.
La desprotección de las cadenas laterales se realizó por acidólisis con TFA:HBr (33% en AcOH):tioanisol (85:5:10) durante 3 horas a 35 0C. La mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 90 mg (rendimiento 35%, pureza 50% por presencia de restos de tioanisol y de Ia sal de bencilsulfonio del tioanisol). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >99%; MALDI- TOF: m/z 1308.21 ([M+H]+, 100%), 1330.20 ([M+Na]+, 23%).
Ejemplo 7: Preparación de ciclo(S-S)rDCys-DDab-DDab-DLeu-Phe-DDab- DCyslDDab-DThr-DDab-octilamida (Compuesto de fórmula (V) con Rn = CHa(CH2)?-., Rj = CH2CH2NH? (cadena lateral de DDab), R2 = -CH(CH3)OH, Ra = -CH2CH2NH2 (cadena lateral de DDab), R4 = -CH2CH2NH2 (cadena lateral de DDab), Rn = -CH2Ph (cadena lateral de Phe), Rn = -CH2CH(CHa)? (cadena lateral de DLeu), R? = -CH2CH2NH2 (cadena lateral de DDab), y RR = -CH2CH2NH2 (cadena lateral de DDab): sP-B retroenantio)
Aminoácidos protegidos: Boc-DDab(Z)-OH, Boc-DThr(Bzl)-OH, Boc- DCys(Acm)-OH, Fmoc-Phe-OH, Boc-DLeu-OH.
Se llevo a cabo Ia síntesis manual según un protocolo estándar Boc en jeringas de polipropileno con un filtro de polietileno como se describe en el Ejemplo 6, partiendo de resina 4-MBHA-poliestireno (200 mg, f=0,98 mmol/g). El peso del crudo peptídico fue 190 mg (rendimiento 80%, pureza 40% por presencia de restos de tioanisol y de Ia sal de bencilsulfonio del tioanisol). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >95%; MALDI-TOF: m/z 1196.15 ([M+H]+, 100%), 1218.07 ([M+Na]+, 87.2%).
Ejemplo 8: Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)fCvs-Dab-DPhe- Leu-Arg-Dab-Cvsl-Glv-NHCH2CH2CH2NHCH2CH2CH2CH2NHCH2CH2CH2NH2 (Compuesto de fórmula (I) con Rn = CHa(CH2)?-, Rj = -CH2CH2CH2NHCf=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CHa)OH. Rn = -CH2CH2NH2 (cadena lateral de Dab), R4 = -CH2CH2NH2 (cadena lateral de Dab), Rn = -CH2Ph (cadena lateral de DPhe), Rg = -CH2CH (CHaMcadena lateral de Leu), R7 = -CH2CH2CH2NHC(=NH)-NH? (cadena lateral de Arg), y Rs = -CH2CH2NH2 (cadena lateral de Dab): sP-2Arg-espermida)
Aminoácidos protegidos: Fmoc-Ala-OH, Boc-Gly-OH, Boc-Cys(Acm)-OH, Boc-Dab(Z)-OH, Boc-Arg(Z2)-OH, Boc-Leu-OH, Boc-DPhe-OH. Se introdujo en primer lugar un aminoácido de referencia (Ala). Fmoc-Ala-OH (167 mg, 0.54 mmoles, 3 equiv. exceso), se ancló a Ia resina 4-MBHA-poliestireno (113 mg, f=0,98 mmol/g) por reacción con DIPCDI (83.5 μl, 0,54 mmoles, 5 veces de exceso) y HOBt (82'5 mg, 0.54 mmoles, 5 equiv. exceso). El grupo Fmoc se eliminó por tratamiento con solución de 20% piperidina en DMF (2x10 min.). La resina se lavó con DMF (5 x 3Os). A continuación, se introdujo el espaciador ("linker") ácido 4-hydroxifenilpropiónico (97.7 mg, 0.59 mmoles, 3 equiv. exceso) en Ia resina aminoacílica por reacción con DIPCDI (50 μl, 0,32 mmoles, 3 veces de exceso) y HOBt (49'5 mg, 0.32 mmoles, 3 equiv. exceso) en Ia cantidad mínima de DMF. La resina se dejó toda Ia noche con solución de 20% piperidina en DMF. El primer aminoácido de Ia secuencia, Boc-Gly-OH (188.86 mg, 1'08 mmoles, 10 equiv. exceso) se esterificó al espaciador ("linker") con DIPCDI (167μl, 1'08 mmoles, 10 equiv. exceso) y DMAP (13.16 mg, 0.108 mmoles, 1 equiv.). El resto de los aminoácidos de Ia secuencia de Cys a Arg, se introdujeron según un protocolo estándar de síntesis Boc como se ha descrito anteriormente. Finalmente, se acopló el ácido nonanoico (94'3 μl, 0,53 mmoles, 5 veces de exceso) con DIPCDI/HOBt en Ia cantidad mínima de DMF. Una vez Ia secuencia se completó, el enlace disulfuro se formó por oxidación con yodo (99 mg, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5 mL). El péptido se desancló de Ia resina por aminolisis con espermina (259.5μL, 0.32 mmole, 3 equiv. de exceso) en DMF durante Ia noche. Se filtró Ia solución y el disolvente se elimino al rotavapor. El residuo aceitoso se trituró con acetonitrilo. Se obtuvo un sólido blanco.
La desprotección de las cadenas laterales se realizó por acidólisis con TFA:HBr (33% en AcOH):anisol (85:5:10) durante 3 horas a 35 0C. La mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 191 mg (rendimiento cuantitativo, pureza 50%). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >98%; MALDI-TOF: m/z 1578.18 ([M+H]+, 100%), 1600.16 ([M+Na]+, 37%).
Los péptidos siguientes: Nonanoil-Dab-Thr-Dab-ciclo(S-8)rCvs-Dab-(D)Phe-Leu-Dab-Dab-Cvsl (Compuesto de fórmula (I) con R0 = CH3(CH2)?-, Ri = -CH2CH2NH2 (cadena lateral de f Dab), Rz = -CH(CHg)OH, R3 = -CH2CH2NH2 (cadena lateral de Dab), R4 = -CH2CH2NH2 (cadena lateral de Dab), R5 = -CH2Ph (cadena lateral de DPhe), R6 = -CH2CH(CHs)2 (cadena lateral de Leu), R7 = -CH2CH2NH2 (cadena lateral de Dab), R8 = -CH2CH2NH2 (cadena lateral de Dab) (spB);
Nonanoil-Dab-Thr-Dab-ciclo(S-S)rCvs-Dab-(D)Phe-Dab-Leu-Dab-Cvs1 (Compuesto de fórmula (I) con R0 = CH3(CH2)/-, Ri = -CH2CH2NH2 (cadena lateral de Dab], R2 = -CH(CH3)OH, R3 = -CH2CH2NH2 (cadena lateral de Dab), R4 = CH2CH2NH2 (cadena lateral de Dab), R5 = -CH2Ph (cadena lateral de DPhe), R6 = -CH2CH2NH2 (cadena lateral de Dab), R7 = CH2CH(CH3)2 (cadena lateral de Leu),y R8 = CH2CH2NH2 (cadena lateral de Dab) (sp-C); y
Nonanoil-Dap-Thr-Dab-c¡clo(S-S)rCvs-Dab-(D)Phe-Leu-Dap-Dab-Cvsl
(Compuesto de fórmula (I) con Ro = CH3(CH2)7, Ri = CH2NH2 (cadena lateral de Dap), R2 = -CH(CH3)OH, R3 = -CH2CH2NH2 (cadena lateral de Dab), R4 = CH2CH2NH2 (cadena lateral de Dab), R5 = CH2Ph (cadena lateral de DPhe), R6 = CH2CH(CH3)2 (cadena lateral de Leu), R7 = -CH2NH2 (cadena lateral de Dap), y R8 = -CH2CH2NH2 (cadena lateral de Dab) sP-D);
son conocidos y se pueden preparar tal y como se describe en Ia siguiente publicación científica: Adriá Clausell et al., "Gram negative bacteria outer y inner membrane models: Insertion of cyclic cationic peptides" J. Phvs. Chem B, 2007, vol. 111 , pp. 551-563.
Nonanoil-Dab-Thr-Dab-ciclo(8-S)rCys-Dab-DPhe-Met-Dab- Dab-Cvs (Compuesto de fórmula (I) con R0 = CH3(CH2)7-, Ri = -CH2CH2NH2 (cadena lateral de Dab), R2 = -CH(CH3)OH, R3 = -CH2CH2NH2 (cadena lateral de Dab], R4 = -CH2CH2NH2 (cadena lateral de Dab), R5 = -CH2Ph (cadena lateral de DPhe), R6 = CH2 CH2SCH3 (cadena lateral de Met), R7 = -CH2CH2NH2 (cadena lateral de Dab), y R8 = -CH2CH2NH2 (cadena lateral de Dab]; sp-Met) es también conocido y se pueden preparar como se describe en el Ejemplo 9. Ejemplo 9: Preparación del péptido sP-Met
Aminoácidos protegidos: Fmoc-Cys(Acm)-OH, Fmoc-Dab(Boc)-OH, Fmoc- Dap(Boc)-OH, Fmoc-Met-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH.
Se llevó a cabo Ia síntesis manual según un protocolo estándar Fmoc/Bu en jeringas de polipropileno con un filtro de polietileno. El primer aminoácido de Ia secuencia, Fmoc-Cys(Acm)-OH, se ancló directamente a Ia resina 4-MBHA-poliestireno (113,7 mg, f = 0,98 mmol/g) por activación con DIPCDI (52 μl_, 0.33 mmoles, 3 equiv. exceso). Los aminoácidos de Ia secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/Bu como se ha descrito anteriormente. Una vez Ia secuencia se completó, se acopló el ácido nonanoico (58,5 μl, 0,33 mmoles, 3 veces de exceso) con DIPCDI/HOBt en Ia cantidad mínima de DMF. Una vez concluida Ia reacción según se comprobó por Ia prueba de Kaiser (con una muestra de resina peptídica), Ia resina se lavó con DMF (5 x 30 s) y CH2CI2 (5 x 30 s). Una vez el lipopéptido se completó, el enlace disulfuro se formó por oxidación con yodo (113,1 mg,, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5mL).
El desanclaje y desprotección del péptido se realizó por acidólisis con TFA:TMS-CI:trietilsilano (2,77 mL TFA, 1,03mL TMS-CI, 0,2 mL TES, volumen total 4 mL) durante 3 horas a temperatura ambiente. A continuación, Ia mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 109,7 mg (rendimiento 79'3%, pureza 75%). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >99%; MALDI- TOF: m/z 1241 ,62 ([M+H]\ 59,4%), 1263,68 ([M+Na]+, 100%).
Ejemplo 10: Preparación del péptido sP-Met(O)
Aminoácidos protegidos: Fmoc-Cys(Acm)-OH, Fmoc-Dab(Boc)-OH, Fmoc- Dap(Boc)-OH, Fmoc-Met(O)-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH.
Se llevó a cabo Ia síntesis manual según un protocolo estándar Fmoc/Bu en jeringas de polipropileno con un filtro de polietileno. El primer aminoácido de Ia secuencia, Fmoc-Cys(Acm)-OH, se ancló directamente a Ia resina 4-MBHA-poliestireno (112,7 mg, f = 0,98 mmol/g) por activación con DIPCDI (51 '3 μl_, 0.33 mmoles, 3 equiv. exceso). Los aminoácidos de Ia secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/Bu como se ha descrito anteriormente. Una vez Ia secuencia se completó, se acopló el ácido nonanoico (58,0μl, 0,33 mmoles, 3 veces de exceso) con DIPCDI/HOBt en Ia cantidad mínima de DMF. Una vez concluida Ia reacción según se comprobó por Ia prueba de Kaiser (con una muestra de resina peptídica), Ia resina se lavó con DMF (5 x 30 s) y CH2CI2 (5 x 30 s). Una vez el lipopéptido se completó, el enlace disulfuro se formó por oxidación con yodo (112,1 mg,, 4 equiv.) en DMF durante dos horas. La resina se lavó con DMF (8 x 5 mL) y CH2CI2 (5 x 5mL).
El desanclaje y desprotección del péptido se realizó por acidólisis con TFA:trietilsilano (95:5, v/v, 4 mL) durante 3 horas a 45 0C. A continuación, Ia mezcla acidolítica se evaporó con corriente de N2 y el residuo aceitoso se precipitó con éter seco. El crudo peptídico se recuperó por centrifugación y decantación de Ia fase etérea. El peso del crudo peptídico fue 43,5 mg (rendimiento 31 '4%, pureza 80%). Caracterización del péptido purificado: Homogeneidad (por integración del área de Ia traza de HPLC) >99%; MALDI- TOF: m/z 1257,84 ([M+H]+, 100%), 1279,84 ([M+Naf, 95,0%).
Ejemplo 11 : test de actividad antibacteriana
La actividad antibacteriana de los lipopéptidos sintéticos se determinó en placas estériles de 96 pocilios (Corning Costar 3598 microtiter plates) con un volumen final de 200 μL como se indica a continuación: alícuotas (100 μL) de una suspensión de bacterias a una concentración de 105 unidades formadoras de colonias/mL en medio de cultivo (MH, Muller Hinton Broth, Difco, USA) a pH 7.4, se adicionaron a 100 μL de solución de lipopéptido preparada a partir de una disolución madre en agua de 1 mg/mL, en diluciones seriadas a doble dilución en MH a pH 7.4 (Jorgensen & Turnide, 2003). La inhibición de crecimiento bacteriano se determinó a partir de Ia absorbancia a 492 nm en un instrumento Absorbance Microplate reader ELx 800 (Bio-tek Instruments) tras incubación a 37 0C durante 18-20 h. La actividad antibacteriana se expresó como CMI, Ia concentración a Ia cual no se detecta crecimiento tras las 18-20 h de incubación. Los microorganismos se cultivaron en Tryptycase Soy Broth (Pronadisa, Barcelona), incubando a 37 0C hasta observar crecimiento bacteriano. A continuación, se sembraron en Trypticase Soy Agar (Pronadisa, Barcelona) y se incubaron a 37 0C hasta observar Ia formación de colonias. Los microorganismos se conservaron en criobolas (EAS laboratoire, France) a -20 0C.
Las cepas de las bacterias usadas para llevar a cabo el test de actividad antibacteriana se obtuvieron de: the American Type Culture Collection (ATCC, Rockville, MD, USA):
Escherichia coli ATCC 8739 Pseudomonas aeruginosa ATCC 9027 Salmonella tvphimurium ATCC14028
Staphylococcus aureus ATCC 6538 Bacillus cereus var. mycoides ATCC11778 Mvcobacterium phlei ATCC41423
Los resultados se muestran en Ia Tabla 1 y en Ia Tabla 2.
Tabla 1 : Actividad antibacteriana (CMI) en Gram positivos expresada en μg/ml
Figure imgf000026_0001
Tabla 2: Actividad antibacteriana (CMI) en Gram negativos expresada en μg/ml
Figure imgf000027_0001
Control (polimixina B): (S)-6-metiloctanoil-Dab-Thr-Dab-cjc¡o[Dab-Dab-DPhe- Leu-Dab-Dab-Dab].
Estos resultados demuestran que los compuestos (I) y (I') muestran actividad antibacteriana a nivel micromolar tanto contra bacterias Gram-positivas como contra bacterias Gram-negativas (en este último caso, Ia CMI es ligeramente superior a Ia de Ia polimixina natural, pero Ia polimixina no muestra actividad contra bacterias Gram-positivas). En consecuencia, los nuevos compuestos presentan un espectro de actividad superior puesto que los antibióticos peptídicos disponibles (polimixina natural y daptomicina) son sólo activos contra un tipo de bacteria, Gram-negativas o Gram-positivas, respectivamente.

Claims

REIVINDICACIONES
1. Compuesto de fórmula (I),
Figure imgf000029_0001
(O o un retroenantiómero del mismo de fórmula (I1),
R,
Figure imgf000029_0002
(i1) donde:
Ro es un radical seleccionado entre el grupo que consiste en: CH3-(CH2)nrr>
CH3-O-(CH2CH2O)2CH2-, y
Figure imgf000030_0001
m es un entero entre 7 y 10;
x es un entero entre 1 y 3;
Ri, R3, R4, R7, y Rs son radicales seleccionados independientemente que tienen Ia fórmula siguiente:
GF-(CH2)n-;
donde n es un entero entre 1 y 4; y GF es un radical seleccionado entre el grupo que consiste en -NH2, -NH-C(=NH)-NH2 y 4-imidazolilo;
R2 es un radical seleccionado entre el grupo que consiste en -CH(CHs)(OH), -CH(CHs)2, -CH2NH2 y -CH2OH;
R5 y RQ son radicales seleccionados independientemente entre el grupo que consiste en -(Ci-C4)-alquilo lineal o ramificado, -(CH2)-Ri0, -CH2-CH2-S-CH3 y -CH2-CH2-S(=O)-CH3;
R9 es H ó GIy-NHCH2CH2CH2NHCH2CH2CH2CH2NHCH2CH2CH2NH2; y
R-io es un radical seleccionado entre el grupo que consiste en fenilo, 3- indolilo, 4-imidazolilo, 4-hidroxifenilo, α o β-naftilo y 2-, 3- o 4-piridilo;
con Ia condición de que el compuesto de fórmula (I) no es uno de los siguientes compuestos: nonanoil-Dab-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dab-Dab-Cvsl: nonanoil-Dap-Thr-Dab-ciclo(S-S)fCvs-Dab-DPhe-Leu-Dap-Dab-Cvsl: nonanoil-Dab-Thr-Dab-ciclo(S-S)rCys-Dab-DPhe-Met-Dab-Dab-Cys1: nonanoil-Dab-Thr-Dab-ciclo(S-S)|'Cys-Dab-DPhe-Met(Q)-Dab-Dab-Cys]: o nonanoil-Dab-Thr-Dab-ciclo(S-SMCys-Dab-DTrp-Leu-Dab-Dab-Cys].
2. Compuesto según Ia reivindicación 1 , donde R2 es -CH(CH3)(OH).
3. Compuesto según cualquiera de las reivindicaciones 1-2, que es el compuesto de fórmula (I).
4. Compuesto según Ia reivindicación 3, que se selecciona de entre los siguientes:
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1; nonano¡l-Arg-Thr-Arg-c¡clo(S-S)fCvs-Dab-DPhe-Leu-Arg- Dab-Cys]; nonano¡l-Arg("Nθ7)-Thr-Dab-c¡clo(S-S)fCvs-Dab-DPhe-Leu-Arg(NO?)-Dab-
Cy8]; nonanoil-Arg-Thr-Arg-c¡clo(S-S)ÍCvs-Arg-DPhe-Leu-Arg-Arq-Cvs1; nonanoil-Dapr(C=NH)-NH?1-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-
Dap[(C=NH)-NH2]-Dab-Cys]; y nonanoil-Arg-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-Cvs1-Glv-
NHCH2CH2CH2NHCH2CH2CH2CH2NHCH2CH2CH2NH2.
5. Compuesto según cualquiera de las reivindicaciones 1-2, que es el compuesto de fórmula (I1).
6. Compuesto según Ia reivindicación 5, que se selecciona de entre los siguientes:
ciclo(S-S)rDCvs-DDab-DArg-DLeu-Phe-DDab-DCvsiDDab-DThr-DArg- octilamida; y ciclo(S-S)fDCvs-DDab-DDab-DLeu-Phe-DDab-DCvsiDDab-DThr-DDab- octilamida.
7. Compuesto según cualquiera de las reivindicaciones 1-6, o uno de los siguientes compuestos:
nonanoil-Dab-Thr-Dab-ciclo(S-S)fCvs-Dab-DPhe-Leu-Dab-Dab-Cys1: nonano¡l-Dab-Thr-Dab-ciclofS-S)fCys-Dab-DPhe-Dab-Leu-Dab-Cvs1; nonanoií-DaD-Thr-Dab-ciclo(rS-S)rCvs-Dab-DPhe-Leu-Dap-Dab-Cvs1: nonano¡l-Dab-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Met-Dab-Dab-Cvs1: nonanoil-Dab-Thr-Dab-cicloíS-S)fCvs-Dab-DPhe-Met(O)-Dab-Dab-Cvsl; o nonanoil-Dab-Thr-Dab-ciclo('S-S)rCvs-Dab-DTrp-Leu-Dab-Dab-Cvsl;
para su uso como agente antibacteriano contra bacterias Gram-positivas.
8. Compuesto según Ia reivindicación 7, donde las bacterias Gram-positivas se seleccionan entre el grupo que consiste en Micobacterium phlei,
Staphylococcus aureus v Bacillus cereus var. mvcoides.
9. Compuesto según cualquiera de las reivindicaciones 1-6, para uso como agente antibacteriano contra bacterias Gram-negativas.
10. Compuesto según Ia reivindicación 9, donde las bacterias Gram- negativas se seleccionan entre el grupo que consiste en Salmonella typhimurium, Pseudomonas aeruqinosa y Escherichia coli.
11. Uso de un compuesto como se ha definido en cualquiera de las reivindicaciones 1-6, o uno de los siguientes compuestos,
nonanoil-Dab-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dab-Dab-Cvsl; nonanoil-Dab-Thr-Dab-ciclo(S-S)fCvs-Dab-DPhe-Pab-Leu-Dab-Cvs1; nonano¡l-Dap-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dap-Dab-Cvs1; nonanoil-Dab-Thr-Dab-ciclo(S-S)fCvs-Dab-DPhe-Met-Dab-Dab-Cvs1; nonanoil-Dab-Thr-Dab-c¡clo(S-S)fCvs-Dab-DPhe-Met(O)-Pab-Dab-Cys1; y nonanoil-Dab-Thr-Dab-ciclo(S-S)rCvs-Dab-DTrp-Leu-Pab-Dab-Cvs1;
para Ia preparación de un medicamento para el tratamiento de una infección bacteriana causada por bacterias Gram-positivas en un mamífero, incluyendo un humano.
12. Uso según Ia reivindicación 11 , donde las bacterias Gram-positivas se seleccionan entre el grupo que consiste en Micobacterium phlei, Staphylococcus aureus y Bacillus cereus var. mvcoides.
13. Uso de un compuesto como se ha definido en cualquiera de las reivindicaciones 1-6, para Ia preparación de un medicamento para el tratamiento de una infección bacteriana causada por bacterias Gram- negativas en una mamífero, incluyendo un humano.
14. Uso según Ia reivindicación 13, donde las bacterias Gram-negativas se seleccionan entre el grupo que consiste en Salmonella tvphimurium, Pseudomonas aeruginosa y Escherichia coli.
15. Composición farmacéutica que comprende una cantidad terapéuticamente efectiva de un compuesto como se ha definido en cualquiera de las reivindicaciones 1-6, junto a excipientes o portadores farmacéuticamente aceptables.
PCT/ES2009/000445 2008-09-10 2009-09-09 Compuestos peptídicos antibacterianos WO2010029196A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802626 2008-09-10
ES200802626A ES2334547B1 (es) 2008-09-10 2008-09-10 Compuestos peptidicos antibacterianos.

Publications (1)

Publication Number Publication Date
WO2010029196A1 true WO2010029196A1 (es) 2010-03-18

Family

ID=41716706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000445 WO2010029196A1 (es) 2008-09-10 2009-09-09 Compuestos peptídicos antibacterianos

Country Status (2)

Country Link
ES (1) ES2334547B1 (es)
WO (1) WO2010029196A1 (es)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168820A1 (en) * 2011-06-08 2012-12-13 Pfizer Inc. Polymyxin derivatives useful as antibacterial agents
ES2506715A1 (es) * 2013-04-12 2014-10-13 Universitat De Barcelona Compuestos peptídicos útiles como agentes antibióticos
US9234006B2 (en) 2011-11-18 2016-01-12 Novacta Biosystems Limited Compounds
EP3173421A1 (en) 2015-11-30 2017-05-31 Universitat de Barcelona Peptidic compounds useful as antibacterial agents
CN108467424A (zh) * 2018-04-02 2018-08-31 中国农业大学 线性抗菌寡肽slap-s25及其应用
US10407467B2 (en) 2013-05-22 2019-09-10 New Pharma Licence Holdings Limited Polymyxin derivatives and their use in combination therapy together with different antibiotics
EP3636659A1 (en) 2018-10-08 2020-04-15 Universitat de Barcelona Polymyxin-based compounds useful as antibacterial agents
US11459357B2 (en) 2018-06-25 2022-10-04 Spero Therapeutics, Inc. Polymyxin compounds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020034520A1 (en) * 1998-07-29 2002-03-21 Massimo Porro Vaccine for prevention of gram-negative bacterial infections and endotoxin related diseases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020034520A1 (en) * 1998-07-29 2002-03-21 Massimo Porro Vaccine for prevention of gram-negative bacterial infections and endotoxin related diseases

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CLAUSELL, A. ET AL.: "Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 111, no. 3, 2007, pages 551 - 563 *
CLAUSELL, A. ET AL.: "Membrane association and contact formation by a synthetic analogue of polymyxin B and its fluorescent derivatives", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 110, no. 9, 2006, pages 4465 - 4471 *
CLAUSELL, A. ET AL.: "Synthesis and membrane action of polymyxin B analogues", LUMINISCENCE, vol. 20, no. 3, 2005, pages 117 - 123 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168820A1 (en) * 2011-06-08 2012-12-13 Pfizer Inc. Polymyxin derivatives useful as antibacterial agents
US9234006B2 (en) 2011-11-18 2016-01-12 Novacta Biosystems Limited Compounds
ES2506715A1 (es) * 2013-04-12 2014-10-13 Universitat De Barcelona Compuestos peptídicos útiles como agentes antibióticos
WO2014167160A1 (es) * 2013-04-12 2014-10-16 Universitat De Barcelona Compuestos peptídicos útiles como agentes antibióticos
US10407467B2 (en) 2013-05-22 2019-09-10 New Pharma Licence Holdings Limited Polymyxin derivatives and their use in combination therapy together with different antibiotics
EP3173421A1 (en) 2015-11-30 2017-05-31 Universitat de Barcelona Peptidic compounds useful as antibacterial agents
WO2017093210A1 (en) 2015-11-30 2017-06-08 Universitat De Barcelona Peptidic compounds useful as antibacterial agents
CN108467424A (zh) * 2018-04-02 2018-08-31 中国农业大学 线性抗菌寡肽slap-s25及其应用
CN108467424B (zh) * 2018-04-02 2020-12-01 中国农业大学 线性抗菌寡肽slap-s25及其应用
US11459357B2 (en) 2018-06-25 2022-10-04 Spero Therapeutics, Inc. Polymyxin compounds
EP3636659A1 (en) 2018-10-08 2020-04-15 Universitat de Barcelona Polymyxin-based compounds useful as antibacterial agents
WO2020074405A1 (en) 2018-10-08 2020-04-16 Universitat De Barcelona Polymyxin-based compounds useful as antibacterial agents

Also Published As

Publication number Publication date
ES2334547A1 (es) 2010-03-11
ES2334547B1 (es) 2010-12-03

Similar Documents

Publication Publication Date Title
ES2334547B1 (es) Compuestos peptidicos antibacterianos.
ES2575521T3 (es) Derivados de polimixina y sus usos
ES2615813T3 (es) Derivados de Polimixina de ácido graso de cola corta y usos de los mismos
US11046730B2 (en) Antimicrobial compositions
KR101730680B1 (ko) 치료용 펩티드
CA2942240C (en) Antimicrobial peptide dendrimers
WO2015161820A1 (zh) 两亲性合成抗菌肽、其药物组合物及其用途
ES2374779B1 (es) Compuestos péptidicos útiles como agentes antibacterianos.
KR20100065639A (ko) 새로운 피시딘 유도체 항생 펩타이드 및 그 용도
US10829520B2 (en) Beta-hairpin peptidomimetics
KR20030024961A (ko) Ca-ma 펩타이드의 아미노산 중 하나 또는 그 이상을치환하여 + 전극과 소수성 영역이 증가된 신규한펩타이드 및 그를 포함하는 약학적 조성물
WO2017093210A1 (en) Peptidic compounds useful as antibacterial agents
WO2014167160A1 (es) Compuestos peptídicos útiles como agentes antibióticos
US20210253520A1 (en) Polymyxin-based compounds useful as antibacterial agents
CN113045627A (zh) 一种抗菌多肽sa-2及其制备方法和应用
DE60226351T2 (de) Matrizenfixierte peptidomimetika mit antimikrobieller wirkung
US20230181678A1 (en) Novel antibacterial peptide or peptide analog and use thereof
CN107001426A (zh) β‑发夹肽模拟物
CN107001425A (zh) β‑发夹肽模拟物
WO2020065595A1 (es) Lipopeptidos cortos con actividad antimicrobiana contra bacterias gram negativas y gram positivas
KR20200101344A (ko) 베타-헤어핀 펩티도미메틱스
JPH06199893A (ja) 新規ペプチドおよび抗菌剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09812723

Country of ref document: EP

Kind code of ref document: A1