WO2010028546A1 - 同步后流风机 - Google Patents
同步后流风机 Download PDFInfo
- Publication number
- WO2010028546A1 WO2010028546A1 PCT/CN2009/001019 CN2009001019W WO2010028546A1 WO 2010028546 A1 WO2010028546 A1 WO 2010028546A1 CN 2009001019 W CN2009001019 W CN 2009001019W WO 2010028546 A1 WO2010028546 A1 WO 2010028546A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impeller
- synchronous
- supercharger
- passage
- longitudinal
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/288—Part of the wheel having an ejecting effect, e.g. being bladeless diffuser
Definitions
- the invention relates to a synchronous rear flow fan, belonging to the technical field of air purification compression. Background technique
- centrifugal fans including centrifugal after-flow fans
- various centrifugal fans are complex in structure, bulky, use materials, expensive, low flow, poor pressurization effect, low efficiency, high noise, and the fan consumes a lot of resources but cannot Significant energy savings are not conducive to environmental protection. Disclosure of invention
- the object of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a synchronous backflow that can make the centrifugal fan simple in structure, small in size, low in cost, resource-saving, good in suction and supercharging effect, high in efficiency, and low in noise. Fan.
- Synchronous rear flow fan which has a fan casing, an airflow diffusing passage inside the casing, an impeller, an impeller bushing, an impeller blade disk, an impeller blade, an impeller blade and an impeller blade disk.
- the inner airflow passage formed between the impellers is characterized in that a synchronous diversion booster is arranged in the airflow passage inside the impeller, and a synchronous diversion booster inlet is arranged at the front end of the synchronous diversion booster, and a synchronous guide is arranged at the rear end thereof.
- the flow supercharging outlet, the longitudinal edge of the synchronous diversion supercharger is connected with the longitudinal side of the impeller blade, and the synchronous diversion supercharger and the impeller blade form a synchronous downstream air inlet.
- the synchronous diversion turbocharger is a full traverse type, and the synchronous diversion supercharger is placed in the airflow passage inside the impeller from the front to the rear of the impeller in the radial direction of the impeller.
- the longitudinal side edges of the synchronous flow supercharger are connected to the longitudinal sides of the two impeller blades on the longitudinal sides of the air flow passage on the inner side of the impeller.
- the synchronous flow supercharger is a full traverse type, and the synchronous flow supercharger is steered in the radial direction of the impeller from front to back and along the impeller to the inner side of the impeller.
- the longitudinal side edges of the synchronous flow supercharger are connected to the longitudinal sides of the two impeller blades on the longitudinal sides of the air flow passage on the inner side of the impeller.
- the synchronous diversion turbocharger is a full traverse type, and the synchronous diversion supercharger is steered by the impeller, and is inclined from the front and the front to the inside of the impeller.
- the longitudinal side edges of the synchronous flow supercharger are connected to the longitudinal sides of the two impeller blades on the longitudinal sides of the air flow passage on the inner side of the impeller.
- the synchronous diversion turbocharger is a full traverse type, and the synchronous diversion supercharger is steered by the front and rear, and is inclined from the front and the rear to the inner side of the impeller.
- the longitudinal side edges of the synchronous flow supercharger are connected to the longitudinal sides of the two impeller blades on the longitudinal sides of the air flow passage inside the impeller.
- the synchronous flow supercharger is a semi-span type, and the synchronous flow supercharger is disposed at the front part of the air flow passage inside the impeller, and the longitudinal front side edge thereof is in front of the inner air flow passage of the impeller.
- the longitudinal impeller blades of the side are connected to the longitudinal rear side surface, and the longitudinal rear side edge of the synchronous flow supercharger is provided with an unobstructed air flow passage between the front side of the other impeller blades on the rear side of the air flow passage on the inner side of the L 0 impeller.
- the synchronous flow supercharger is a semi-span type, and the synchronous flow supercharger is disposed at the rear of the air flow passage inside the impeller, and the longitudinal rear side edge thereof is followed by the inner air flow passage of the impeller.
- the longitudinal impeller blades are connected to the longitudinal front side surface, and an unobstructed air flow passage is provided between the longitudinal front side edge of the synchronous drafting supercharger and the other impeller vane rear side of the front side of the impeller inner air flow passage.
- a front and a rear of an impeller inner air flow passage are respectively provided with a semi-span synchronous steam booster, and the front semi-span synchronous steam booster corresponds thereto. : rear semi-synchronous flow across the booster is not connected, an intermediate unobstructed air flow passage therebetween.
- the axial edges of the impeller blades are not connected to their respective blade 10 vanes, and the axial edges of the impeller blades are axially leafless with their respective impeller blades. Diffusion channel.
- a partitioning deflector is disposed in the airflow diffusing passage inside the fan casing, and the separating deflector is disposed at the periphery of the impeller outlet, and is turned toward the impeller, and is close to the front end of the outer circular outlet of the impeller. Separate the deflector inlet to its rear end and separate the deflector outlet away from the impeller >5 outer circle.
- the longitudinal edge of the split deflector is connected to the axial side wall of the casing.
- the key technology of the synchronous flow fan is to set a synchronous diversion booster in the airflow channel inside the impeller.
- the main function of the synchronous diversion turbocharger is to pump gaseous material from the axially outer side of the impeller, and the gas material that is diverted by the flow through the inner airflow passage of the impeller prevents vortex flow in the inner airflow passage of the impeller.
- the flowing gaseous material transfers energy to accelerate the pressurization.
- the synchronized backflow fan is designed for the shortcomings of the existing old centrifugal fans and backflow fans.
- the old centrifugal fan impeller and the rear flow fan impeller must be provided with impeller blades (or single impeller blades or double impeller blades).
- Some centrifugal fan impellers do not have impeller blades (or both sides do not have impellers).
- the centrifugal fan can not be equipped with a dedicated impeller blade, it must be provided with an impeller vane negative pressure partition wall, and the impeller vane negative pressure partition wall is equivalent to the impeller vane.
- the flow fan can also be used in the middle of the radial front of the impeller without the special impeller air inlet and only the impeller negative pressure gap to suck the foreign matter, but the negative pressure gap is only the part between the thrust walls of the two impeller blades.
- the axial side of the impeller is only partially spatially pumped to process the foreign matter, and the rotation blocking effect of the negative pressure partition wall, thereby increasing the friction loss of the fan impeller and causing the axial outer side of the impeller Some of the gas cannot be processed into the impeller due to blocking.
- the axial side of the impeller of the flow fan is provided with a synchronous diversion supercharger, and the synchronous downstream air inlet formed by the synchronous diversion supercharger and the impeller blades directly acts on the entire axial direction of the impeller by means of centrifugal force. The side can be pumped to the outside for processing.
- the old centrifugal fan impeller must be equipped with a special impeller air inlet in the middle of the impeller.
- the airflow directly enters the inner airflow passage of the impeller from the special impeller air inlet.
- the inner airflow passage formed between the two impeller blades is radial. If it is expanded, it will inevitably generate eddy currents, causing eddy current loss.
- the flow fan impeller may not have a special impeller air inlet in the middle of the impeller.
- the gas material is sucked by the negative pressure gap of the impeller, and part of the gas substance is sucked from the impeller.
- the negative pressure gap enters the inner airflow passage of the impeller, which is also straight through, and also inevitably forms eddy currents, causing eddy current losses.
- a synchronous flow supercharger is arranged in the air flow passage inside the impeller, and the air flow from the special impeller air inlet and the negative pressure gap directly into the inner air flow passage of the impeller is always guided to avoid eddy current and avoid eddy current loss.
- a centrifugal fan is provided with a special impeller inlet and an impeller negative pressure gap after a centrifugal process
- the radial airflow entering the airflow passage inside the impeller from the special impeller inlet is radially collided with the axial airflow entering the impeller inner airflow passage from the impeller negative pressure gap, which inevitably produces more intense eddy current. , causing greater eddy current losses.
- the synchronous diversion supercharger is placed in the airflow passage inside the impeller, and the airflow in the airflow passage inside the impeller is guided by the airflow, and the airflow is naturally transmitted during the diversion process.
- the synchronous diversion supercharger on the impeller of the flow fan can directly extract the gaseous substance from the axial side of the impeller by using the centrifugal force inside the impeller, and directly introduce the sucked gas substance into the airflow passage inside the impeller, and then export Impeller outlet.
- the gas can be directly transferred to the gas substance to accelerate the pressurization of the gas.
- the aerodynamic characteristic of the flow fan impeller after synchronization is that the gas is accompanied by an axial side or two axial sides of the impeller.
- the impeller is named as a synchronous after-flow fan impeller, and the fan assembled by the impeller is named as a synchronous after-flow fan.
- the flow fan impeller is the same as the general rear-flow fan impeller, which sucks the foreign matter from the axial side of the impeller.
- the airflow that is sucked into the airflow passage inside the impeller transmits energy.
- the airflow transmits energy to the airflow outside the axial direction of the impeller (because the airflow inside the impeller and the airflow outside the impeller are integrated), the gas processed by the fan does not have to be driven by the impeller blades, so it can also save energy.
- the synchronous pilot supercharger Just because of the synchronous pilot supercharger
- the axial direction of one or both sides of the impeller blade constituting the air flow passage on the inner side of the impeller may be gradually expanded from the front to the rear in the radial direction of the impeller, and may be flat without widening and widening, or even Gradually axial contraction narrows.
- the impeller vane constituting the air flow passage inside the impeller may be a conical cylinder shape and may be a flat disc shape.
- the impeller leaf disc diameter can be large or small, forming the sides of the impeller
- the impeller blades of the air flow passage may be flat plate-shaped, may be curved plate-shaped, may be airfoil-shaped or the like, and the outlet thereof may be forward, may be backward, or may be radial.
- the axial edges of the impeller blades constituting the air flow passage on the inner side of the impeller may be connected to the corresponding impeller vanes or may not be connected to each other.
- the axial side edge of the impeller vane may be partially corresponding to the corresponding impeller vane disc. Connected to each other.
- the axial side edge of the impeller blade is not connected with the corresponding impeller blade disc or the part of the impeller blade is not connected, and the axial side edge of the impeller blade and the corresponding impeller blade disc form the axial direction of the impeller.
- Leafless diffuser channel is not connected with the corresponding impeller blade disc or the part of the impeller blade is not connected, and the axial side edge of the impeller blade and the corresponding impeller blade disc form the axial direction of the impeller.
- the inner side of the impeller has an axial vane-free diffusing passage, and the airflow processed by the impeller blade can be sufficiently decelerated and diffused at any time and any place, and then the airflow is obliquely arranged axially outward of the axial side of the impeller. Since the air flow has been sufficiently decelerated and diffused in the axial vaneless diffuser passage inside the impeller, the impeller outlet pressure will be quite large.
- the outer diameter of the impeller vane constituting the inner air passage of the impeller may be equal to the outer diameter of the impeller vane or smaller than the outer diameter of the impeller vane.
- a negative pressure partition wall is provided on the axial side of the blade (the negative pressure partition wall corresponds to the impeller blade disk, and the blade disk of the present invention is sometimes referred to as a negative pressure partition wall.
- the inner flow passage of the impeller of this type is formed by the impeller vane thrust wall and the negative pressure partition wall of the axial side of the impeller vane. If the axial flow side passage of the impeller inside the impeller is axially expanded and widened from front to back in the radial direction of the impeller, the impeller blade thrust wall of the structural form is axially one or both sides along the impeller radial direction. It must be gradually expanded and widened from front to back.
- the effect of the inner side airflow passage of the impeller on one side or both sides of the impeller impeller blade in the axial direction of the impeller is gradually expanded axially from the front to the rear, and the inner flow passage of the impeller formed by the single-wall impeller blade and the impeller vane The effect is the same. Since the impeller does not need to be equipped with a dedicated impeller vane, the impeller is lighter in weight, more material-saving, and more mechanically efficient.
- Airflow passage inside the impeller the airflow passage formed between the impeller blades and the impeller vane, the impeller vane thrust wall and the negative pressure partition wall.
- the turning side is the front side;
- the front side of the airflow passage from the inner side of the impeller is the front, and the front side of the airflow passage on the inner side of the impeller is far behind (any two points are compared);
- the side part is the front part of the airflow passage on the inner side of the impeller, and the rear part of the air flow passage near the inner side of the impeller is the rear part of the airflow passage inside the impeller.
- the direction of the front and rear, front and rear, front and rear of the synchronous diversion booster is the same as the direction of the airflow passage on the inner side of the impeller.
- the front side and the rear side of the impeller blades are turned along the impeller.
- the turning side of the impeller blades is the front side, and the turning side of the impeller is the rear side.
- the impeller blades, the inner flow passage of the impeller, and the longitudinal and lateral directions of the synchronous pilot supercharger - their radial directions are called longitudinal directions, and they are turned transversely with the impeller.
- the leaf disc of the present invention comprises a negative pressure dividing wall of a multi-walled blade.
- the synchronous flow supercharger is arranged on the inner side of the impeller.
- the air flow passage refers to the synchronous flow guide supercharger across the impeller blades (the impeller blades are the air passages between the general centrifugal fan impeller blades and the centrifugal rear flow fan impeller blades). .
- This span can be either full or semi-cross.
- Full span means that the synchronous flow supercharger spans the air flow passage between the two impeller blades, and the longitudinal sides of the synchronous flow supercharger are connected to the longitudinal sides of the two impeller blades between the inner air flow passages of the impeller.
- the semi-crossing means that the synchronous pilot supercharger is narrower than the full-crossing synchronous pilot supercharger, with one longitudinal side edge connected to a longitudinal side of an impeller blade in the inner air flow passage of the impeller.
- the synchronous diversion booster spans the inner airflow passage of the impeller and includes four structural forms:
- the synchronous diversion supercharger is placed in the airflow passage of the impeller inside from the front and the rear of the impeller in the radial direction of the impeller.
- the longitudinal sides of the impeller are connected to the longitudinal sides of the two impeller blades between the inner airflow passages of the impeller.
- the synchronous pilot booster is referred to as a full span radial tilt synchronous pilot booster. In the inner airflow passage of the impeller, only one or more than two such synchronous pilot superchargers can be arranged along the radial direction of the impeller.
- the synchronous pilot supercharger is placed in the radial direction of the impeller from front to back, along the impeller, and placed in the airflow passage inside the impeller from the front and the rear, and the longitudinal edges of the two impeller blades between the longitudinal side edges and the sides of the inner airflow passage of the impeller The sides are connected.
- the synchronous diversion booster is referred to as a full-crossing fully-integrated synchronous diversion booster. In the inner airflow passage of an impeller, only one or more such two synchronous pilot superchargers may be provided along the radial direction of the impeller.
- the synchronous diversion supercharger is steered by the front and rear, and is placed obliquely in the inner airflow passage of the impeller from the front and the rear, and the longitudinal side edges of the impeller are opposite to the longitudinal sides of the two impeller blades on both sides of the impeller airflow passage in the impeller.
- the faces are connected.
- the synchronous diversion booster is referred to as a fully traversing front and rear tilting synchronous pilot supercharger. In the inner air flow passage of an impeller, only one or more than two such synchronous flow superchargers may be arranged along the radial direction of the impeller.
- the synchronous diversion supercharger is steered by the impeller, and is placed obliquely in the airflow passage on the inner side of the impeller.
- the longitudinal side edges and the longitudinal sides of the two impeller blades on the longitudinal sides of the airflow passage on the inner side of the impeller All connected.
- the synchronous pilot supercharger is referred to as a full-cross rear front tilt type synchronous pilot supercharger. In the inner airflow passage of an impeller, only one or more such two synchronous pilot superchargers may be provided along the radial direction of the impeller.
- the synchronous pilot supercharger spans the airflow passage on the inside of the impeller and consists of 12 different structural forms:
- the synchronous pilot supercharger is placed in front of the airflow passage on the inner side of the impeller from the front and the rear of the impeller in the radial direction of the impeller, and its longitudinal front side edge is connected with the longitudinal rear side surface of the impeller blade on the front side of the impeller inner airflow passage.
- the synchronous pilot booster is referred to as a front half-span radial tilting synchronous pilot booster.
- the front of the airflow passage on the inside of the impeller can be provided with only one such synchronous pilot supercharger along the radial direction of the impeller, or two or more such synchronous diversion boosters can be provided.
- the synchronous diversion booster is connected in the radial direction of the impeller from the front to the rear, and is placed in the rear of the airflow passage on the inner side of the impeller, and the longitudinal rear side edge is connected to the longitudinal front side surface of the impeller blade on the inner side of the impeller inner airflow passage.
- An unobstructed air flow passage is provided between the longitudinal front side edge of the synchronous flow supercharger and the other impeller blade on the front side of the inner air flow passage of the impeller.
- the synchronous pilot booster is referred to as the rear half-span radial tilting synchronous pilot booster.
- a rear side of the inner flow passage of the impeller may be provided with one or more such synchronous flow superchargers downstream of the impeller in the radial direction of the impeller, or two or more such synchronous flow accumulators may be provided.
- the synchronous deflector supercharger is turned to the impeller from front to back, and is disposed at the front of the airflow passage on the inner side of the impeller.
- the longitudinal front side edge is connected to the longitudinal rear side surface edge of the impeller blade on the front side of the inner airflow passage of the impeller.
- An unobstructed air flow passage is provided between the longitudinal rear side edge of the synchronous flow supercharger and the other impeller blade on the rear side of the inner air flow passage of the impeller.
- the synchronous pilot supercharger is called the front half span Rear tilt synchronous pilot booster.
- a front side of the air flow passage on the inner side of the impeller may be provided with only one such synchronous flow supercharger along the radial direction of the impeller, or two or more such synchronous flow superchargers may be provided.
- the synchronous diversion supercharger is turned toward the impeller, and is placed obliquely behind the airflow passage on the inside of the impeller.
- the longitudinal rear side edge is opposite to the longitudinal front side surface of the impeller blade on the rear side of the airflow passage on the inner side of the impeller.
- the connecting, the longitudinal front edge of the synchronous flow supercharger is provided with an unobstructed air flow passage between the other impeller blade on the front side of the air flow passage on the inner side of the impeller.
- the synchronous pilot booster is referred to as a rear half-crossing rear front tilt type synchronous pilot supercharger.
- the rear of the airflow passage inside the impeller can be provided with only one such synchronous pilot supercharger downstream of the impeller in the radial direction of the impeller, or two or more such synchronous pilot superchargers can be provided.
- the synchronous diversion booster is placed in the radial direction of the impeller from front to back, along the impeller, and is placed in front of the airflow passage on the inside of the impeller.
- the longitudinal front edge is connected to the longitudinal rear side surface of the impeller blade on the front side of the impeller.
- An unobstructed airflow passage is provided between the longitudinal rear side edge of the synchronous flow supercharger and the other impeller blade on the rear side of the inner air flow passage of the impeller.
- the synchronous pilot booster is referred to as a front half-cross full-scale synchronous pilot booster.
- the front of the airflow passage on the inside of the impeller can be provided with only one such synchronous pilot supercharger downstream of the impeller in the radial direction of the impeller, or two or more such synchronous pilot superchargers can be provided.
- the synchronous flow supercharger is placed in the radial direction of the impeller from front to back, along the impeller, and then placed in the rear of the airflow passage on the inner side of the impeller.
- the longitudinal rear side edge is opposite to the inner side of the impeller.
- the connecting, the longitudinal front edge of the synchronous flow supercharger is provided with an unobstructed air flow passage between the other impeller blade on the front side of the air flow passage on the inner side of the impeller.
- the synchronous pilot supercharger is called a rear half-cross-span full-mounted synchronous pilot supercharger.
- the rear of the airflow passage on the inside of the impeller can be provided with only one such synchronous pilot supercharger downstream of the impeller in the radial direction of the impeller, or two or more such synchronous pilot superchargers can be provided.
- a rear half-span radial inclined synchronous steam booster is arranged, and a front half-span radial inclined synchronous steaming supercharger is arranged, the front half cross
- the trans-radial tilting synchronous pilot supercharger is not connected with its corresponding rear half-span radial tilting synchronous superconductor, and there is an intermediate unobstructed airflow passage between them (intermediate unobstructed airflow passage) It is part of the airflow passage inside the impeller).
- a rear semi-crossing front and front inclined synchronous diversion booster is provided, and a front semi-crossing front and rear inclined synchronous diversion booster is provided, the front half span
- the front and rear tilting synchronous steam booster is not connected to its corresponding rear half-span rear front inclined synchronous steam booster, and there is an intermediate unobstructed air flow passage between them.
- An inner airflow passage of the impeller is provided with a rear half-span full-synchronous deflector and a front semi-span full-synchronous deflector.
- the front half spans the full-mounted synchronous deflector and The corresponding rear half-crossing full-size synchronous deflectors are not connected, and there is an unobstructed air flow passage between them.
- the front rear portion is respectively provided with a front half-span radial tilt type and a rear half-span rear front tilt type synchronous guide supercharger, or respectively, the front half span is arranged before and after.
- the front and rear portions of an impeller inner airflow passage are respectively provided with a front half-span full-synchronous synchronous superconductor and a rear semi-span radial inclined synchronous diversion supercharger or a rear half-span
- the front tilting synchronous steam booster, the front and rear two semi-span synchronous steam boosters are not connected, and there is an intermediate unobstructed air flow passage between them.
- the rear and front portions of an impeller inner airflow passage are respectively provided with a rear semi-cross-full synchronous pilot supercharger and a front semi-span radial tilting synchronous superconductor, or a front half span
- the front and rear tilting synchronous steaming supercharger is not connected to the front two kinds of semi-span synchronous guiding supercharged helmets, and there is an intermediate non-blocking air flow passage between them.
- the longitudinal side or both sides of the synchronous pilot supercharger may intersect perpendicularly with the longitudinal side of the impeller blades, or may be obliquely intersected. The smaller the angle of intersection with the impeller blades, the greater the thrust generated by the gas. The more energy that is delivered.
- the synchronous diversion booster is different from the negative pressure isolation wall of the ordinary backflow fan impeller.
- the negative pressure isolation wall is arranged on the axial edge of the thrust wall of the impeller blade, that is, on the outer side of the air flow passage on the inner side of the impeller, and is synchronized
- the pilot supercharger is located inside the airflow passage on the inner side of the impeller; the function of the negative pressure isolation wall is to block the gas material in the airflow passage inside the impeller from axially overflowing the inner airflow passage of the impeller, preventing foreign matter from entering the inside of the impeller. (The external part of the material enters the inner side of the impeller through the negative pressure gap, and cannot enter the impeller through the negative pressure isolation wall.)
- the function of the synchronous diversion supercharger is to directly introduce the foreign matter into the inner side of the impeller and give guidance to the inner air flow passage of the impeller. Flow to prevent eddy currents; connected to an impeller
- the negative pressure isolation wall of the piece can be set to one, and the synchronous flow supercharger connected to one impeller blade can be provided with one or two or more.
- the front and rear half-crossing front and rear inclined and rear front inclined synchronous superconducting superchargers are the same as the negative pressure separating walls of the multi-walled blades of the ordinary rear-flow fan impeller. (impeller blade thrust wall) Axial edge connection, however, the negative pressure barrier wall can only be perpendicular or slightly obliquely intersected with the impeller blade, while the front rear half spans the front and rear tilting and the rear front tilting synchronous diversion booster The blade and the impeller blade can only intersect obliquely, and the inclination is larger (but not close to parallel).
- Only one negative pressure isolation wall can be provided on one impeller blade, and one or more synchronous superchargers can be connected to one impeller blade; even if it is connected to the front or rear half of an impeller blade
- the inclined and rear front inclined synchronous superconductor may have different front and rear connection angles along the radial direction of the impeller, or the intersection angle of the radial front portion is larger than the intersection angle of the radial rear portion, or the radial rear portion The intersection angle of the portion is greater than the intersection angle of the radial front portion.
- a fan impeller can be provided with both a negative pressure isolation wall and a synchronous flow guide supercharger; a negative pressure isolation wall and a synchronous flow supercharger, one impeller, can be respectively disposed on both sides of an impeller inner air flow passage on the impeller On one side of the inner flow passage of the impeller, a negative pressure separation wall and a synchronous flow supercharger can be simultaneously provided.
- the shape of the airflow passage on the inner side of the impeller is also different, and the structure of the synchronous diversion booster is also different. That is to say, the synchronous diversion booster can be designed into various types. Different shapes, such as a straight shape, a curved plate shape, a curved plate shape, a wing shape, and the like.
- a fan impeller can be provided with a synchronous flow supercharger from an axial side of the impeller to the inner air flow passage of the impeller, or a synchronous diversion accumulator can be arranged from the axial side of the impeller to the inner air flow passage of the impeller.
- the airflow passage inside the impeller should be made into an axial or two-axial expansion type, which requires the fan impeller blades to pass from the radial front to the radial rear.
- the end is gradually expanded in the axial direction to increase the size.
- the axial side of the flow fan impeller is provided with a synchronous downstream air inlet, and the centrifugal suction force can be used to pump the external material on the entire axial side of the impeller. If both axial sides are provided with synchronous downstream air inlets, the fan impeller can be sucked from outside materials from both axial sides. It can be seen that after the synchronization, the flow fan impeller has a large flow rate, which can be compared with the axial flow fan impeller, but its wind pressure is higher than that of the general axial flow fan.
- the flow fan impeller After synchronizing the impeller of the flow fan, since the impeller inlet is arranged on the axial side of the entire impeller, the radial length of the impeller blade is large, the radial length of the synchronous diversion turbocharger is also large, and the external matter is directly sucked by the action of the centrifugal force, and Synchronous diversion turbocharger and impeller blades can transmit energy to the gas at the same time. Therefore, after the synchronization, the flow fan impeller has strong suction force, large flow rate and high wind pressure, which is much superior to the general centrifugal fan impeller and the ordinary rear-flow fan impeller.
- the small and medium synchronous rear flow fan of the present invention can save 15% energy, and the large synchronous rear flow fan can save energy by 20%.
- the flow fan impeller is the same as the ordinary rear-flow fan impeller, and the gas is axially drawn from the axial side, and the gas is exhausted from the axial end of the impeller outlet, and the synchronous flow fan is synchronized.
- the function of the pressure device, the radial end of the impeller outlet axial discharge of gas is better. Therefore, the synchronous fan fan is more suitable for multi-stage series assembly of high-pressure UHV gas compressors.
- the high-pressure UHV gas compressor assembled by the impeller in series has a small absolute length and a short airflow process due to the bending and bending of the airflow passage, so that the compression effect is better, the efficiency is higher, the energy is saved, and the synchronous fan is synchronized.
- the impeller is especially suitable for multi-stage series use.
- a partitioning deflector may be further disposed in the airflow diffusing passage on the inner side of the casing of the present invention.
- the separating deflector is disposed at the periphery of the impeller outlet, and is turned toward the impeller, and the inlet of the deflector is separated from the front end of the outer circular outlet of the impeller.
- the end of the splitter deflector outlet is gradually away from the outer circumference of the impeller, and the longitudinal edge of the split deflector is connected to the axial side wall of the casing.
- the dividing deflector can be in a variety of different structural forms, such as a curved plate shape, Curved plate shape, wing shape and so on.
- the eddy current can be reduced in the airflow diffusing passage inside the casing, and the eddy current loss can be reduced, so that the efficiency in the fan can be further improved and the fan noise can be reduced.
- Figure 1 is a schematic view showing the structure of an impeller according to Embodiment 1 of the present invention.
- FIG. 2 Schematic diagram of the structure of the impeller synchronous diversion turbocharger according to the embodiment of the present invention
- Figure 4 is a schematic view showing the structure of an impeller according to Embodiment 2 of the present invention.
- Figure 5 is a schematic view showing the structure of the impeller synchronous diversion turbocharger according to the embodiment of the present invention.
- FIG. 6 - Embodiment 3 of the present invention is a schematic diagram of the structure of the impeller synchronous diversion turbocharger
- FIG. 7 - Embodiment 4 of the present invention is a schematic diagram of the structure of the impeller synchronous diversion booster
- Figure 8 is a schematic view showing the assembly and use of the casing impeller according to the embodiment of the present invention.
- FIG. 9 - Embodiment of the present invention 5 Schematic diagram of the impeller synchronous diversion booster
- Figure 10 is a schematic view showing the structure of an impeller synchronous flow supercharger according to an embodiment of the present invention.
- FIG. 11 - Embodiment 7 of the present invention is a schematic diagram of the structure of an impeller synchronous pilot supercharger
- FIG. 12 is a schematic structural view of an impeller synchronous diversion booster according to an embodiment of the present invention.
- Figure 13 - Embodiment 9 of the present invention is a schematic view of the structure of the impeller synchronous flow supercharger
- FIG. 14 Schematic diagram of the impeller structure (cross section) of the embodiment 10 of the present invention.
- Figure 15 is a schematic view showing the structure of an impeller according to Embodiment 11 of the present invention.
- Figure 16 A schematic view of the assembly and use of the casing impeller according to the embodiment of the present invention.
- Fig. 17 is a view showing the structure of a partitioning deflector in the airflow diffusing passage inside the casing of the embodiment 12 of the present invention.
- Embodiment 1 a synchronous back flow fan (refer to FIG. 1, FIG. 2, FIG. 3), the structure thereof comprises a fan casing 1, an inner airflow diffusing passage 2, an impeller 3, an impeller bushing 4, an impeller vane 5, Impeller blade 6, impeller blade and impeller blade disk inner airflow passage 7 (the body is provided with the motor on both sides of the fan inlet side of the fan is the front side of the machine or the axial front side, corresponding to one The side is the rear side of the machine body or the axial rear side, and the other parts of the body are called, and so on.
- the inner airflow passage 7 of each impeller on the impeller is provided with two full-span synchronous steaming superchargers in the radial direction. 8.
- the first synchronous pilot supercharger 8 is disposed on the front side of the impeller from the impeller bushing 4 in the radial direction of the impeller to the inner airflow passage 7 of the impeller, and is placed obliquely from the front and the rear to the inner airflow passage of the impeller.
- the front end is provided with a synchronous diversion boost inlet 9, which is provided with a synchronous diversion boosting outlet 10 at the rear end of the inner airflow passage 7 of the impeller, and the longitudinal side edges of the synchronous diversion booster 8 follow Longitudinal side welding of two impeller blades 6 left and right (front and rear) Together, leaving a gap of the synchronization between the flow deflector turbocharger boost synchronized with the outlet end 58 of the impeller blisk.
- the second synchronous pilot booster 8 is disposed radially behind the first synchronous pilot booster, and the radial front synchronous pilot boost inlet is synchronized with the first synchronous pilot booster. There is a certain distance between the inlet and the inlet of the diversion booster.
- the synchronous diversion booster 8 is parallel to the first synchronous diversion booster and is placed in the radial direction from the front to the rear. 7 Radial rear part, its connection with the impeller blades, the inlet and outlet forms are the same as the first synchronous diversion booster.
- the axially front and rear edges of the impeller blades on the left and right sides of the impeller are formed by the radial front and the rear, and the axially front side edges of the impeller blades are formed in the radial front of the impeller.
- the second synchronous diversion is used to pressurize the inlet end.
- the axial front side edge of the two impeller blades connected to the second synchronous flow supercharger to the impeller outlet constitutes a radial downstream of the impeller.
- the axial direction of the impeller blade 6 is gradually increased from the radial front portion of the impeller to the radial rear end of the impeller, and the corresponding inner air passage of the impeller is axially expanded from front to back along the radial direction of the impeller. .
- the axial front side of the impeller is in addition to the sleeve portion, and the other are synchronous downstream air inlet portions, and the entire front axial side of the impeller can suck the material externally. All the impeller blades of the impeller form a firm whole by the synchronous guiding supercharger support connection Body, the entire impeller has high strength and good rigidity.
- the impeller of the embodiment is assembled in the fan casing 1 and connected to the motor shaft of the motor 14, and is driven to rotate by the motor.
- the fan casing 1 is provided with a fan air inlet 15 and a fan air outlet 16, and the fan air inlet 15 is disposed on the casing shaft.
- the axial front side of the fan impeller is directly opposite the air inlet of the fan.
- the synchronous guide supercharger on the axial front side of the impeller directly presses the synchronous inlet and the synchronous downstream air inlet by the action of the rotating centrifugal force, so that the axial front side of the entire impeller can pass through the wind inlet of the fan. Pumping outside air. The gas sucked into the inner side of the impeller is accelerated by the impeller blades and the synchronous diversion booster to absorb energy. Since there is no blade disc on the entire front axial side of the impeller, there is no blade disc friction loss. Obviously, this example has a large amount of wind, high wind pressure, high efficiency and low noise.
- This example is suitable for use in assembly ventilation and air blower.
- Embodiment 2 after synchronizing the flow fan (refer to FIG. 4 and FIG. 5), the basic structure of the impeller of this example is the same as that of the example 1 impeller, except that the synchronous diversion booster 8 on the impeller of this example is a semi-span radial Tilted, disposed at the rear of the airflow passage on the inside of the impeller, and in front of the impeller blade 6 on the rear side, the longitudinal rear side edge is welded to the longitudinal front side surface of the impeller blade, and the front side of the synchronous draft supercharger 8 is synchronously side
- the unobstructed airflow passage 11 draws foreign matter by the centrifugal force generated by the centrifugal force and the air flow.
- the axial side of the impeller is externally sucked by the synchronous diversion inlet and the unblocked air passage inlet, that is, the entire front axial side of the impeller is externally sucked with gaseous substances, and the fan corresponding to the phase is entered.
- the diameter of the air outlet is also relatively large, so the flow of the entire fan is relatively large. Since the synchronous pilot supercharger is semi-span type, it only occupies part of the inner airflow passage of the impeller, and has a narrow structure, small size and light weight, so that the friction loss of the impeller is smaller and the mechanical efficiency is higher.
- this example is suitable for use in an assembly ventilation and air blower.
- Embodiment 3 after the synchronous flow fan (refer to FIG. 6), this example is basically the same as the example 2, and the difference 5 is that the impeller blade has a rear wall disc on the rear side of the impeller, and the impeller blade has a multi-wall structure type, and the axial direction thereof A negative pressure partition wall 13 is provided on the rear side.
- the impeller is lighter in weight, has less friction loss, lower noise, is more energy efficient, and is more environmentally friendly.
- this example is basically the same as Example 1.
- the entire fan impeller is axially expanded, and the axial side of the fan impeller is not provided with a leaf disc.
- an intermediate reinforcing isolating vane 17 is arranged in the middle of the front and rear axial side of the impeller, and six impeller blades are respectively fixed on the front and rear axial sides of the intermediate reinforcing isolating vane 17 That is, the impeller blades are separately provided on the two axial sides of the entire impeller, and the intermediate reinforcing isolating disc 17 divides the inner airflow passage of the impeller into two parts, a front axial air flow passage 18 and a rear axial air flow passage 19, each front axial air flow.
- Two full-crossing synchronous flow superchargers 8 are provided in the passage 18 and each of the rear axial air flow passages 19 (for clarity, only one front axial air flow passage and one rear axle are shown in FIG.
- the impeller has two special axial inlets 23 on the radial front side.
- the fan casing of this example is provided with a fan inlet air inlet 20, and the entire fan is fed by the air inlets of the front and rear fans.
- the synchronous diversion supercharger on the front and rear sides of the fan impeller sucks in gas from the inlet and outlet of the two front and rear fans by means of the rotating centrifugal force, and processes it to accelerate the pressurization.
- the airflow directly from the special impeller air inlet is isolated and guided by the synchronous diversion booster, and the airflow entering from the special impeller air inlet is introduced into the inner airflow passage of the impeller (the inner side of the synchronous diversion booster)
- the flow in the air flow passage), and the flow that is sucked from the axially outer side of the impeller by the synchronous flow supercharger flows in the outer inner air flow passage of the impeller (the air flow passage on the outer side of the synchronous flow supercharger), thus avoiding
- the airflow that is directly inserted into the airflow passage on the inner side of the impeller by the special impeller air inlet collides with the airflow introduced from the axial direction by the synchronous pilot supercharger to generate a strong eddy current. Therefore
- the flow rate is large and the wind pressure is high, which can be used instead of the large-flow axial flow fan.
- the volume will be much smaller and the wind pressure will be much larger.
- Embodiment 5 after synchronizing the flow fan (refer to FIG. 9), the basic structure of the impeller of this example is the same as that of the impeller of the first example, except that the synchronous diversion supercharger 8 in the inner air flow passage of the impeller is completely spanned.
- two such synchronous flow superchargers are arranged radially from front to back in the inner air flow passage of each impeller, and the two synchronous flow superchargers 8 are all turned in the radial direction of the impeller from front to back and along the impeller.
- the impeller is radially inclined from front to back to the inner airflow passage of the impeller, and the longitudinal side edges thereof are connected to the longitudinal sides of the two impeller blades between the two sides of the inner airflow passage of the impeller.
- the function, performance, and effect of the synchronous pilot supercharger on the impeller is radially inclined from front to back to the inner airflow passage of the impeller, and the longitudinal side edges thereof are connected to the longitudinal sides of the two impeller blades between the two sides of the inner airflow passage of the impeller.
- Embodiment 6 the synchronous backflow fan (refer to FIG. 10), the basic structure of the impeller of this example is the same as that of the impeller of the example 2, except that the synchronous diversion booster of this example is a rear semi-cross-full type, each Two such synchronous flow superchargers are arranged in the air flow passage inside the impeller from the front to the rear in the radial direction of the impeller. Each synchronous superconducting supercharger is placed in the radial direction of the impeller from the front to the rear of the impeller.
- the longitudinal rear side edge is connected to the longitudinal front side surface of the impeller blade on the rear side of the inner air flow passage of the impeller.
- An unobstructed air flow passage 11 is provided between the longitudinal front side edge of the synchronous deflector and the other impeller blade on the front side of the inner air flow passage of the impeller.
- Embodiment 7 the synchronous back flow fan (refer to Fig. 11), the basic structure of the impeller of this example is the same as that of the impeller of the first example, except that the synchronous flow supercharger of this example is fully spanned and rear inclined. There is only one such synchronous flow supercharger in the inner air flow passage of each impeller.
- the synchronous flow supercharger 8 is turned in the forward direction, and is inclined from the front and the rear to the inner air flow passage of the impeller.
- the two side edges are connected to the longitudinal sides of the two impeller blades on the longitudinal sides of the air flow passage on the inner side of the impeller.
- the second difference between this example and the example 1 is that a special impeller inlet 23 is provided on the axial side of the impeller.
- the airflow directly from the special impeller air inlet 23 is introduced into the inner airflow passage of the impeller through the synchronous pilot supercharger 8 and then discharged to the outer circumference of the impeller, which can greatly slow the vortex flow of the airflow, and at the same time,
- the shunt isolation of the synchronous pilot supercharger the airflow introduced into the inner airflow passage of the impeller flows mostly in the inner inner side of the inner airflow passage of the impeller (the air flow passage on the inner side of the synchronous diversion booster), a small part
- the outer side of the inner airflow passage of the impeller (the air flow passage on the outer side of the synchronous pilot supercharger) flows, so that the front axial side of the impeller passes straight through the isolation and diversion of the synchronous pilot supercharger.
- the airflow will not collide with the radial flow of the inner airflow passage in the inner airflow passage of the impeller, thus avoiding the occurrence of intense eddy currents, all of which naturally ensure that the entire turbine can improve
- Embodiment 8 the synchronous back flow fan (refer to FIG. 12), the basic structure of the impeller of this example is the same as that of the example 2 impeller, except that the synchronous diversion booster 8 of this example is a rear half-span rear front tilt type.
- Two such synchronous flow superchargers are arranged in the inner air flow passage of each impeller along the radial direction of the impeller, each of which is The step-conducting supercharger 8 is steered by the impeller, and is placed obliquely behind the front and rear sides of the airflow passage of the impeller.
- the longitudinal rear side edge is connected with the longitudinal front side surface edge of the impeller blade.
- An unobstructed air flow passage 11 is provided between the longitudinal front side edge of the supercharger and the other impeller blade on the front side of the air flow passage on the inner side of the impeller.
- the first synchronous guide supercharger in the radial front of each impeller inner air passage is turned by the impeller, and the inclination angle from the front and the inner side of the impeller is greater than the radial direction of the latter.
- the impeller is turned from the front to the front, from the front and back to the inner side of the impeller.
- the inner diameter of the airflow passage inside the impeller is forwarded to the first rear half of the front.
- the rear forward inclined synchronous superconductor is pumped.
- the airflow guided to the inside of the impeller flows radially to the rear of the radial direction.
- the synchronous pilot supercharger is led to the impeller through the second synchronous diversion booster, which basically avoids eddy currents in the airflow passage inside the impeller, thereby improving efficiency, saving energy, and reducing noise.
- Embodiment 9 the synchronous back flow fan (refer to FIG. 13), the synchronous flow supercharger in the inner air flow passage of the impeller is also semi-span type, and the difference is that the front and rear of the inner air flow passage of the impeller in this example
- a semi-span synchronous steam booster is provided, that is, two front semi-span radial inclined synchronous superconductors are arranged at the front of the air flow passage on the inner side of the impeller, and one rear portion is arranged at the rear of the air flow passage inside the impeller.
- the semi-crossing front and rear tilting synchronous steaming supercharger is not connected to the front and rear two semi-span synchronous steaming superchargers, and an intermediate unobstructed air flow passage 21 is disposed between them.
- the front half-span radial inclined synchronous flow supercharger is placed in front of the airflow passage on the inner side of the impeller in the radial direction of the impeller from the front to the rear, and the longitudinal front side edge and the front side of the air flow passage on the inner side of the impeller
- the longitudinal rear side surface of the impeller blade is connected; wherein the rear half-span rear front inclined synchronous steaming supercharger is turned toward the impeller, and is placed obliquely in the airflow passage inside the impeller from the front and the rear, and the longitudinal rear side thereof The edge is joined the longitudinal front side surface edge of the impeller blade.
- the front half crosses the radial tilting synchronous superconductor to draw the diversion gas along the radial direction of the impeller into the inner airflow passage of the impeller, and the rear half crosses the rear front inclined synchronous propulsion supercharger to the impeller
- the steering is directed to the inside of the impeller inner airflow passage to suck the diversion gas, and the suction diversion gas flows through the intermediate unobstructed airflow passage and then exits the impeller from the outer circumference of the impeller. The whole process is synchronized by the front and rear two columns.
- the diversion supercharger sucks the diversion gas into the airflow passage inside the impeller, and the pumping force of the whole impeller is stronger, which causes the flow of the whole fan to be large, the wind pressure is high, the efficiency is high, and the energy is saved.
- Embodiment 10 synchronous back flow fan (refer to FIG. 14, schematic cross-sectional view of the impeller), the impeller base of this example
- This structure is basically the same as the impeller of Example 1, and the synchronous pilot supercharger is also fully inclined across the radial direction.
- the rear impeller vane 5 of the present example has a tapered cylindrical shape with the expanded end facing backward, and the impeller vane 6 is radially connected to the rear impeller vane 5 and the impeller bushing 4, and is radially rearward.
- the half of the blade is not connected to the impeller vane 5 until the axial exit rear edge of the vane outlet, and the axial rear side edge of the entire impeller vane
- An axial vaneless diffuser passage 22 is provided between the corresponding impeller vane portions. .
- the synchronous drafting supercharger 8 sucks the airflow flowing into the airflow passage inside the impeller from the axial direction of the impeller at any time, and is inclined to be introduced into the axially non-lobular diffusing passage at the rear of the radial direction of the impeller at any time to fully decelerate Pressing, then the airflow is axially inclined along the radial direction of the impeller in the axially outer side of the impeller. Since the airflow has been sufficiently decelerated and diffused in the axial vaneless diffuser passage inside the impeller, the impeller outlet pressure will be
- Embodiment 11 the synchronous back flow fan (refer to FIG. 15 and FIG. 16), the basic structure of the impeller of this example is the same as that of the impeller of Example 2, except that the rear part of the inner side of the air flow passage of each impeller of the present embodiment is radially forward. Then, there is only one semi-crossing radial inclined synchronous superconductor 8 in the table and the inside, and the front side of the axial side of the impeller is provided with a reinforcing leaf disc 24 at the front side of the radial direction, and the reinforcing vane 24 and the impeller bushing 4 are Impeller blades 6
- the material guided by the synchronous pilot supercharger 8 can smoothly flow through the airflow passage inside the impeller without causing any blockage, especially for sucking solid materials with large volume and area, which can smoothly pass through the inner airflow of the impeller. aisle.
- This example is suitable for the production of various material suction and discharge machines for pumping and transporting various waste materials and production materials, such as suction and transportation of various waste sheets, waste paper, wood blocks, wood chips, melons.
- Wastes such as skin and vegetable leaves, as well as a variety of solid raw materials in industrial and agricultural production.
- the material suction and discharge machine assembled in this example not only blocks the impeller, but also saves energy and energy, and can save energy by more than 15%.
- Embodiment 12 after the synchronous flow fan (refer to FIG. 17), the impeller structure of this example is the same as that of the impeller of the first example, except that the casing of the present example is in the form of a volute structure, and the airflow diffusing passage 2 inside the casing is in the middle.
- the 5 rearward portions are provided with a circular plate-shaped partitioning deflector 25, and the dividing deflector 25 is disposed at the outer circumference of the impeller, and is turned toward the impeller, and the front end of the outer deflector 12 of the impeller is separated by the separating deflector.
- the split deflector inlet 26 to its rear end split deflector outlet 27 is gradually away from the outer circumference of the impeller, and the axial edge of the split deflector is connected to the axial rear sidewall of the casing.
- the part after the impeller can be avoided.
- the high-speed airflow directly collides with the airflow discharged from the impeller in the airflow diffusing channel on the inner side of the casing to generate a strong eddy current, thereby reducing the eddy current loss, improving the efficiency inside the fan, and reducing the fan noise.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
同步后流风机 技术领域
本发明涉及一种同步后流风机, 属空气净化压缩技术领域。 背景技术
现在人们使用的各种离心式风机 (包括离心后流风机) 结构复杂, 体积 庞大, 使用材料多, 造价昂贵, 流量小, 增压效果差, 效率低, 噪音大, 致 使风机耗费资源多却不能大幅度节省能源, 又不利于环境保护。 发明的公开
本发明的目的在于克服上述己有技术的缺点, 而提供一种能使离心式风 机结构简单, 体积小, 造价低, 节省资源, 抽吸增压效果好, 效率高, 噪音 低的同步后流风机。
本发明的目的可以通过如下技术措施来达到: 同步后流风机, 它具有风 机机壳、 机壳内侧气流扩压通道、 叶轮、 叶轮轴套、 叶轮叶盘、 叶轮叶片、 叶轮叶片跟叶轮叶盘之间形成的叶轮内侧气流通道, 特点是, 叶轮内侧气流 通道内设有同步导流增压器, 同步导流增压器前端设有同步导流增压进口, 其后部末端设有同步导流增压出口, 同步导流增压器纵向边缘跟叶轮叶片纵 向侧面连接, 同步导流增压器跟叶轮叶片构成同步顺流进风口。
为了进一步实现本发明的目的, 所述的同步导流增压器为全横跨式, 该 同步导流增压器沿叶轮径向由前而后、 由表及里倾斜置于叶轮内侧气流通道 内, 同步导流增压器纵向两侧边缘跟叶轮内侧气流通道纵向两侧的两个叶轮 叶片纵向侧面都连接。
为了进一步实现本发明的目的, 所述的同步导流增压器为全横跨式, 该 同步导流增压器沿叶轮径向由前而后、 沿叶轮转向由前而后置于叶轮内侧气 流通道内, 同步导流增压器纵向两侧边缘跟叶轮内侧气流通道纵向两侧的两 个叶轮叶片纵向侧面都连接。
为了进一步实现本发明的目的, 所述的同步导流增压器为全横跨式, 该 同步导流增压器顺叶轮转向由后而前、 由表及里倾斜置于叶轮内侧气流通道
内, 同步导流增压器纵向两侧边缘跟叶轮内侧气流通道纵向两侧的两个叶轮 叶片纵向侧面都连接。
为了进一步实现本发明的目的, 所述的同步导流增压器为全横跨式, 该 同步导流增压器顺叶轮转向由前而后、 由表及里倾斜置于叶轮内侧气流通道
5 内, 同步导流增压器纵向两侧边缘跟叶轮内侧气流通道纵向两侧的两个叶轮 叶片纵向侧面都连接。
为了进一步实现本发明的目的, 所述的同步导流增压器为半横跨式, 该 同步导流增压器设在叶轮内侧气流通道前部, 其纵向前侧边缘跟叶轮内侧气 流通道前侧的叶轮叶片纵向后侧表面连接, 同步导流增压器纵向后侧边缘跟 L 0 叶轮内侧气流通道后侧的另一个叶轮叶片前侧之间设有无阻挡气流通道。
为了进一步实现本发明的目的, 所述的同步导流增压器为半横跨式, 该 同步导流增压器设在叶轮内侧气流通道后部, 其纵向后侧边缘跟叶轮内侧气 流通道后侧的叶轮叶片纵向前侧表面连接, 同步导流增压器纵向前侧边缘跟 叶轮内侧气流通道前侧的另一个叶轮叶片后侧之间设有无阻挡气流通道。
L 5 为了进一步实现本发明的目的, 一个叶轮内侧气流通道的前部和后部分 别设置半横跨式同步导流增压器, 该前部半横跨式同步导流增压器跟其对应 : 的后部半横跨式同步导流增压器不相连接, 它们之间设有中间无阻挡气流通 道。
为了进一步实现本发明的目的, 所述的叶轮叶片轴向边缘跟其相应的叶 10 轮叶盘不相连接, 该叶轮叶片轴向边缘跟其相应的叶轮叶盘之间设有轴向无 叶扩压通道。
为了进一步实现本发明的目的, 所述的风机机壳内侧气流扩压通道内设 有分隔导流器, 分隔导流器设在叶轮出口外围, 顺叶轮转向, 由其靠近叶轮 外圆出口的前端分隔导流器进口到其后部末端分隔导流器出口逐渐远离叶轮 >5 外圆, 分隔导流器纵向边缘跟机壳轴向侧壁连接。
同步后流风机的关键技术就是在叶轮内侧气流通道内设置同步导流增压 器。 同步导流增压器的主要功能是, 从叶轮轴向外侧抽吸气体物质, 导流被 抽吸的气体物质流经叶轮内侧气流通道, 防止叶轮内侧气流通道内产生涡旋 气流, 给被导流的气体物质传递能量, 使之加速加压。
同步后流风机是针对现有的各种旧式离心风机和后流风机的缺点而设计 的。
一般旧式离心风机叶轮和后流风机叶轮必须设置叶轮叶盘 (或设单叶轮 叶盘、或设双叶轮叶盘), 有的离心风机叶轮虽然不设叶轮叶盘(或双面都不 设叶轮叶盘、或仅一面设单叶盘),但该叶轮不设叶盘的轴向侧面必须靠近风 机机壳轴向侧面(叶轮中轴线指向的叶轮或机体侧面称为轴向侧面),各种离 心风机叶轮径向前部 (靠近叶轮中心位置称为叶轮径向前部, 远离叶轮中心 位置称为叶轮径向后部, 离叶轮中心近的位置为前, 离叶轮中心远的位置为 后) 中间位置必须设置专用叶轮进风口, 依靠中间专用叶轮进风口进风。 离 心后流风机虽然可以不设专用叶轮叶盘,但它必须设置叶轮叶片负压隔离壁, 叶轮叶片负压隔离壁相当于叶轮叶盘作用。 离心后流风机虽然也可以在叶轮 径向前部中间位置不设专用叶轮进风口而仅靠叶轮负压间隙抽吸外界物质, 但该负压间隙仅只是两个叶轮叶片推力壁之间的部分位置, 也就是叶轮轴向 侧面只有部分空间位置抽吸加工外界物质, 加上又有负压隔离壁的旋转阻挡 作用, 这样, 既加大了风机叶轮的摩擦损失, 又致使叶轮轴向外侧大部分气 体因阻挡而不能进入叶轮得以加工。 同步后流风机叶轮轴向侧面, 由于设有 同步导流增压器, 而由同步导流增压器和叶轮叶片构成的同步顺流进风口, 直接借助离心力作用, 几乎可以使叶轮整个轴向侧面都能对外抽吸物质给以 加工。
一般旧式离心风机叶轮必须在叶轮中间设置专用叶轮进风口, 工作时, 气流从专用叶轮进风口沿径向直接贯进叶轮内侧气流通道 (两叶轮叶片之间 形成的叶轮内侧气流通道是沿径向扩张的), 势必产生涡流, 造成涡流损失; 离心后流风机叶轮虽然可以在叶轮中间不设专用叶轮进风口, 工作时, 靠叶 轮负压间隙抽吸气体物质, 抽吸的部分气体物质从叶轮负压间隙进入叶轮内 侧气流通道也是直贯式的, 也必然形成涡流, 造成涡流损失。 在叶轮内侧气 流通道内设置同步导流增压器, 对由专用叶轮进风口和负压间隙直贯进叶轮 内侧气流通道的气流一直给以导流, 就可以避免产生涡流, 避免造成涡流损 失。
如果一个离心后流风机叶轮上既设专用叶轮进风口又设叶轮负压间隙,
工作时, 从专用叶轮进风口沿径向进入叶轮内侧气流通道内的径向气流, 跟 从叶轮负压间隙沿轴向进入叶轮内侧气流通道的轴向气流交相碰撞, 必然会 产生更激烈的涡流, 造成更大的涡流损失。 而设置同步导流增压器, 借助同 步导流增压器给以隔离和导流, 就可以避免这两股径向轴向气流交叉接触碰
5 撞, 因而就可以避免造成更大的涡流损失。
同步导流增压器置于叶轮内侧气流通道内, 对叶轮内侧气流通道内的气 流自始至终给以导流, 在导流过程中自然会对气流传递能量。 该同步导流增 压器纵向侧面跟叶轮轴向侧面倾斜角度越大, 其对气流传递的能量就越多。 需要倾斜多大角度, 根据实际使用需要而定。
0 同步后流风机叶轮上的同步导流增压器可以直接利用叶轮内侧离心力的 作用从叶轮轴向侧面随处抽吸气体物质, 并且将抽吸的气体物质直接导入叶 轮内侧气流通道内, 再导出叶轮出口。 同时在导流过程中, 又可以直接对气 体物质传递能量而使气体加速增压。
同步后流风机叶轮的气动特点是气体由叶轮一轴向侧面或两轴向侧面随'
5 处被抽吸而导入叶轮内侧气流通道内流动, 最后又是从叶轮径向末端叶轮出 : 口沿轴向方向被排出叶轮; 实际应用一般都是采用由叶轮轴向前侧轴向吸进 气体, 最后又是从叶轮出口轴向后侧沿轴向方向排出气体。 正是根据这样的 气动特点和使用需要, 该叶轮取名为同步后流风机叶轮, 由该叶轮装配的风 机取名为同步后流风机。
0 同步后流风机叶轮跟一般后流风机叶轮一样, 都是从叶轮轴向侧面抽吸 外界物质, 在抽吸外界物质过程中, 一方面对被吸进叶轮内侧气流通道的气 流传递能量, 一方面又通过该气流对叶轮轴向外侧的气流传递能量 (因为叶 轮内侧气流和叶轮外侧气流是连为一体的),被风机加工的气体不必全部由叶 轮叶片带动其运转, 因而它同样可以节省能源, 只是由于有同步导流增压器
•5 的作用, 它的效率更高些。
构成该叶轮内侧气流通道的叶轮叶片轴向一侧或两侧沿叶轮径向由前而 后, 可以是逐渐轴向扩张加宽的, 可以是平直而不逐渐扩张加宽的, 甚至还 可以是逐渐轴向收縮变窄的。 构成该叶轮内侧气流通道的叶轮叶盘可以是锥 形筒状的, 可以是平圆盘状的。 该叶轮叶盘直径可大可小, 构成该叶轮两侧
气流通道的叶轮叶片可以是平直板状, 可以是弧形板状的, 可以是机翼形的 等等, 其出口可以是前向的, 可以是后向的, 也可以是径向的。 构成该叶轮 内侧气流通道的叶轮叶片轴向边缘跟其相对应的叶轮叶盘可以全相连接, 也 可以全不互相连接, 叶轮叶片轴向一侧边缘可以部分部位跟其相对应的叶轮 叶盘相互连接。 叶轮叶片轴向一侧边缘跟其相对应的叶轮叶盘全不相连接或 部分部位不相连接, 则该叶轮叶片轴向一侧边缘跟其相对应的叶轮叶盘之间 构成叶轮内侧轴向无叶扩压通道。 该叶轮内侧轴向无叶扩压通道, 可以随时 随地将叶轮叶片加工的气流给以充分低减速扩压, 然后将该气流沿叶轮径向 轴向倾斜排于叶轮轴向一侧外侧。 由于该气流在叶轮内侧轴向无叶扩压通道 内已经被充分减速扩压, 其叶轮出口压力会相当大。
构成该叶轮内侧气流通道的叶轮叶盘外圆直径可以和叶轮叶片外圆直径 相等, 也可以小于叶轮叶片外圆直径。
本发明同步后流风机叶轮, 如果采用多壁叶片, 叶片轴向侧面设有负压 隔离壁 (负压隔离壁相当于叶轮叶盘作用, 本发明所述的叶盘有时也指负压 隔离壁),这种结构形式的叶轮内侧气流通道是由叶轮叶片推力壁和叶轮叶片 轴向侧面的负压隔离壁构成的。 如果该结构形式的叶轮内侧气流通道轴向一 侧或两侧沿叶轮径向由前而后逐渐轴向扩张加宽, 则该结构形式的叶轮叶片 推力壁轴向一侧或两侧沿叶轮径向由前而后必须逐渐轴向扩张加宽。
多壁叶轮叶片构成的轴向一侧或两侧沿叶轮径向由前而后逐渐轴向扩张 加宽的叶轮内侧气流通道所产生的效应跟单壁叶轮叶片与叶轮叶盘构成的叶 轮内侧气流通道所产生的效应一样。 由于叶轮不用设专用的叶轮叶盘, 叶轮 重量更轻, 更省材料, 机械效率会更高些。
为了叙述方便, 表达清楚准确, 在此先解释几个名词术语:
1、叶轮内侧气流通道——叶轮叶片和叶轮叶盘、叶轮叶片推力壁和负压 隔离壁之间所形成的气流通道。
2、 叶轮内侧气流通道前方和后方, 叶轮内侧气流通道前和后, 叶轮内侧 气流通道前部和后部——沿叶轮转向, 叶轮内侧气流通道顺向叶轮转向一侧 为后侧, 背向叶轮转向一侧为前侧; 离叶轮内侧气流通道前侧近的为前, 离 叶轮内侧气流通道前侧远的为后(任意两点相比); 靠近叶轮内侧气流通道前
侧部位为叶轮内侧气流通道前部, 靠近叶轮内侧气流通道后侧部位为叶轮内 侧气流通道后部。
3、 同步导流增压器前方与后方、前与后、前部与后部等部位方向指称跟 叶轮内侧气流通道部位方向指称一样。
4、叶轮叶片前侧与后侧——沿叶轮转向, 叶轮叶片顺向叶轮转向一侧为 前侧, 背向叶轮转向一侧为后侧。
5、 叶轮叶片、 叶轮内侧气流通道、 同步导流增压器纵向与横向——它们 的径向称为纵向, 它们随叶轮转向为横向。
6、 本发明所述的叶盘包括多壁叶片的负压隔离壁。
同步导流增压器设于叶轮内侧气流通道是指同步导流增压器横跨于叶轮 叶片(叶轮叶片是指一般离心风机叶轮叶片和离心后流风机叶轮叶片推力壁) 之间的气流通道。 这种横跨可以是全横跨的, 也可以是半横跨的。 全横跨是 指同步导流增压器横跨于两个叶轮叶片之间的气流通道, 同步导流增压器纵 向两侧边缘跟叶轮内侧气流通道之间的两个叶轮叶片纵向侧面都连接。 半横 跨是指同步导流增压器比全横跨式的同步导流增压器狭窄, 其纵向一侧边缘. 跟叶轮内侧气流通道内的一个叶轮叶片的一个纵向侧面连接。
同步导流增压器全横跨叶轮内侧气流通道的包括四种结构形式:
1、 同步导流增压器沿叶轮径向由前而后、 由表及里倾斜置于叶轮内侧气 流通道内, 其纵向两侧边缘跟叶轮内侧气流通道之间的两个叶轮叶片纵向侧 面都连接。 该同步导流增压器称为全横跨径向倾斜式同步导流增压器。 一个 叶轮内侧气流通道内可以沿叶轮径向前后顺流只设一个或设两个以上几个这 样的同步导流增压器。
2、同步导流增压器沿叶轮径向由前而后、沿叶轮转向由前而后置于叶轮 内侧气流通道内, 其纵向两侧边缘跟叶轮内侧气流通道两侧之间的两个叶轮 叶片纵向侧面都连接。该同步导流增压器称为全横跨全置式同步导流增压器。 一个叶轮内侧气流通道内可以沿叶轮径向前后顺流只设一个或设两个以上几 个这样的同步导流增压器。
3、同步导流增压器顺叶轮转向由前而后、 由表及里倾斜置于叶轮内侧气 流通道内, 其纵向两侧边缘跟叶轮内恻气流通道两侧的两个叶轮叶片纵向侧
面都连接。 该同步导流增压器称为全横跨前后倾斜式同步导流增压器。 一个 叶轮内侧气流通道内可以沿叶轮径向前后顺流只设一个或设两个以上几个这 样的同步导流增压器。
4、同步导流增压器顺叶轮转向由后而前、 由表及里倾斜置于叶轮内侧气 流通道内, 其纵向两侧边缘跟叶轮内侧气流通道纵向两侧的两个叶轮叶片纵 向两侧面都连接。该同步导流增压器称为全横跨后前倾斜式同步导流增压器。 一个叶轮内侧气流通道内可以沿叶轮径向前后顺流只设一个或设两个以上几 个这样的同步导流增压器。
同步导流增压器半横跨于叶轮内侧气流通道的包括 12 种不同的结构形· 式:
1、 同步导流增压器沿叶轮径向由前而后、 由表及里倾斜置于叶轮内侧气 流通道前部, 其纵向前侧边缘跟叶轮内侧气流通道前侧叶轮叶片纵向后侧表 面连接, 同步导流增压器纵向后侧边缘跟叶轮内侧气流通道后侧的另一个叶 轮叶片之间设有无阻挡气流通道 (通道内没有任何部件干扰气流, 无阻挡气 流通道属于叶轮内侧气流通道的一部分)。该同步导流增压器称为前部半横跨 径向倾斜式同步导流增压器。 一个叶轮内侧气流通道前部可以沿叶轮径向前 后顺流只设一个这样的同步导流增压器, 也可以设置两个以上几个这样的同 步导流增压器。
2、 同步导流增压器沿叶轮径向由前而后、 由表及里置于叶轮内侧气流通 道后部, 其纵向后侧边缘跟叶轮内侧气流通道后侧叶轮叶片纵向前侧表面连 接, 该同步导流增压器纵向前侧边缘跟叶轮内侧气流通道前侧的另一个叶轮 叶片之间设有无阻挡气流通道。 该同步导流增压器称为后部半横跨径向倾斜 式同步导流增压器。 一个叶轮内侧气流通道后部可以沿叶轮径向前后顺流只 设一个这样的同步导流增压器, 也可以设置两个以上几个这样的同步导流增 压器。
3、 同步导流增压器顺叶轮转向由前而后、 由表及里设在叶轮内侧气流通 道前部, 其纵向前侧边缘跟叶轮内侧气流通道前侧的叶轮叶片纵向后侧表面 边缘连接, 该同步导流增压器纵向后侧边缘跟叶轮内侧气流通道后侧的另一 个叶轮叶片之间设有无阻挡气流通道。 该同步导流增压器称为前部半横跨前
后倾斜式同步导流增压器。 一个叶轮内侧气流通道前部可以沿叶轮径向前后 顺流只设一个这样的同步导流增压器, 也可以设置两个以上这样的同步导流 增压器。
4、 同步导流增压器顺叶轮转向由后而前、 由表及里倾斜置于叶轮内侧气 流通道后部, 其纵向后侧边缘跟叶轮内侧气流通道后侧的叶轮叶片纵向前侧 表面边缘连接, 该同步导流增压器纵向前侧边缘跟叶轮内侧气流通道前侧的 另一个叶轮叶片之间设有无阻挡气流通道。 该同步导流增压器称为后部半横 跨后前倾斜式同步导流增压器。 一个叶轮内侧气流通道后部可以沿叶轮径向 前后顺流只设一个这样的同步导流增压器, 也可以设置两个以上几个这样的 同步导流增压器。
5、 同步导流增压器沿叶轮径向由前而后、沿叶轮转向由前而后置于叶轮 内侧气流通道前部, 其纵向前侧边缘跟叶轮内侧气流通道前侧叶轮叶片纵向 后侧表面连接, 该同步导流增压器纵向后侧边缘跟叶轮内侧气流通道后侧的 另一个叶轮叶片之间设有无阻挡气流通道。 该同步导流增压器称为前部半横 跨全置式同步导流增压器。 一个叶轮内侧气流通道前部可以沿叶轮径向前后 顺流只设一个这样的同步导流增压器, 也可以设置两个以上几个这样的同步 导流增压器。
6、同步导流增压器沿叶轮径向由前而后、沿叶轮转向由后而前置于叶轮 内侧气流通道后部, 其纵向后侧边缘跟叶轮内侧气流通道后侧叶轮叶片纵向 前侧表面连接, 该同步导流增压器纵向前侧边缘跟叶轮内侧气流通道前侧的 另一个叶轮叶片之间设有无阻挡气流通道。 该同步导流增压器称为后部半横 跨全置式同步导流增压器。 一个叶轮内侧气流通道后部可以沿叶轮径向前后 顺流只设一个这样的同步导流增压器, 也可以设置两个以上几个这样的同步 导流增压器。
7、一个叶轮内侧气流通道内, 既设置后部半横跨径向倾斜式同步导流增 压器, 又设前部半横跨径向倾斜式同步导流增压器, 该前部半横跨径向倾斜 式同步导流增压器跟其对应的后部半横跨径向倾斜式同步导流增压器不相连 接, 它们之间设有中间无阻挡气流通道 (中间无阻挡气流通道属于叶轮内侧 气流通道的一部分)。
8、一个叶轮内侧气流通道内, 既设置后部半横跨后前倾斜式同步导流增 压器, 又设前部半横跨前后倾斜式同步导流增压器, 该前部半横跨前后倾斜 式同步导流增压器跟其对应的后部半横跨后前倾斜式同步导流增压器不相连 接, 它们之间设有中间无阻挡气流通道。
5 9、一个叶轮内侧气流通道内既设置后部半横跨全置式同步导流器,又设 前部半横跨全置式同步导流器, 该前部半横跨全置式同步导流器与其对应的 后部半横跨全置式同步导流器不相连接, 它们之间设有无阻挡气流通道。
10、 一个叶轮内侧气流通道内, 前部后部分别设置前部半横跨径向倾斜 式与后部半横跨后前倾斜式同步导流增压器, 或者分别设置前部半横跨前后
L0 倾斜式与后部半横跨径向倾斜式同步导流增压器, 该前部后部两种半横跨式 同步导流增压器不相连接, 它们之间设有中间无阻挡气流通道。
11、 一个叶轮内侧气流通道前部和后部分别设置前部半横跨全置式同步 导流增压器与后部半横跨径向倾斜式同步导流增压器或后部半横跨后前倾斜 式同步导流增压器, 该前部后部两种半横跨式同步导流增压器不相连接, 它 ί 5 们之间设有中间无阻挡气流通道。
12、 一个叶轮内侧气流通道后部和前部分别设置后部半横跨全置式同步 导流增压器与前部半横跨径向倾斜式同步导流增压器, 或者前部半横跨前后 倾斜式同步导流增压器,该后部前部两种半横跨式同步导流增压盔不相连接, 它们之间设有中间无阻挡气流通道。
0 同步导流增压器纵向一侧或两侧边缘跟叶轮叶片纵向侧面可以垂直相 交, 也可以倾斜相交, 跟叶轮叶片倾斜相交的角度越小, 其对气体产生的推 力就越大, 对气体传递的能量就越多。
同步导流增压器, 跟普通后流风机叶轮的负压隔离壁不同。 负压隔离壁 设在叶轮叶片推力壁轴向边缘上, 也就是设在叶轮内侧气流通道外侧, 同步
>5 导流增压器则是设在叶轮内侧气流通道内侧; 负压隔离壁的功能是阻挡叶轮 内侧气流通道里的气体物质轴向溢出叶轮内侧气流通道, 阻止外界物质由它 而进入叶轮内侧 (外界部分物质通过负压间隙进入叶轮内侧, 而不能经过负 压隔离壁进入叶轮), 同步导流增压器的功能是直接将外界物质引进叶轮内 侧, 又在叶轮内侧气流通道里给以导流, 以防产生涡流; 连接于一个叶轮叶
片 (多壁叶片推力壁) 的负压隔离壁只能设一个, 而连接于一个叶轮叶片的 同步导流增压器却可以设置一个或两个以上几个。
这里应该指出的是, 前部和后部半横跨前后倾斜式和后前倾斜式同步导 流增压器跟普通后流风机叶轮的多壁叶片的负压隔离壁一样, 都是跟叶轮叶 片 (叶轮叶片推力壁) 轴向边缘连接, 但是, 负压隔离壁跟叶轮叶片只能是 垂直或略微倾斜相交, 而前部后部半横跨前后倾斜式和后前倾斜式同步导流 增压器跟叶轮叶片只能是倾斜相交, 倾斜得越大(但不能接近平行), 越能将 外界物质引进叶轮内侧, 倾斜太小了, 则不能将外界物质引进叶轮内侧。 一 个叶轮叶片上只能设置一个负压隔离壁, 连接一个叶轮叶片的同步导流增压 器可以设置一个或两个以上几个; 即使连接于一个叶轮叶片的前部或后部半 横跨前后倾斜式和后前倾斜式同步导流增压器, 沿叶轮径向其前后连接角度 也可以不相同, 或者是径向前部的交接角度大于径向后部的交接角度, 或者 是径向后部的交接角度大于径向前部的交接角度。
一个风机叶轮上, 可以既设置负压隔离壁, 又设置同步导流增压器; 叶 轮上的一个叶轮内侧气流通道两侧可以同时分别设置负压隔离壁和同步导流 增压器, 一个叶轮上的一个叶轮内侧气流通道一侧也可以同时既设负压隔离 壁又设同步导流增压器。
由于不同风机叶轮叶片形状不一样, 其叶轮内侧气流通道的形状也不一 样, 与之相应的同步导流增压器结构形状也不一样, 就是说, 同步导流增压 器可以设计成多种不同的形状, 如直板形、 弧形板形、 弯曲板形、 机翼形等 等。
一个风机叶轮可以从叶轮一轴向侧面向叶轮内侧气流通道内设置同步导 流增压器, 也可以从叶轮两轴向侧面向叶轮内侧气流通道内设置同步导流增 压器。
为了保证叶轮内侧气流通道能充分容纳气流流量, 充分减速扩压, 叶轮 内侧气流通道应做成一轴向或两轴向扩张式, 这就要求风机叶轮叶片由径向 前部至径向后部末端沿轴向方向逐渐扩张加大尺寸。
同步后流风机叶轮一轴向侧面设满同步顺流进风口, 通过同步导流增压 器借助离心力的抽吸作用, 可以使叶轮整个轴向侧面都能抽吸外界物质。
如果两轴向侧面都设满同步顺流进风口, 则可以使风机叶轮从两整个轴 向侧面都抽吸外界物质。 可见, 同步后流风机叶轮流量大, 可以和轴流式风 机叶轮相比, 但它的风压比一般轴流风机风压高。
一般离心通风机, 有些规格型号的风机叶轮, 为了增大气体流量, 而在 叶轮一轴向侧面或两轴向侧面中间设置大直径的专用叶轮进风口, 但是专用 叶轮进风口直径越大, 叶轮叶片径向长度就越小, 叶轮叶片径向长度小, 吸 力就差, 对气体传递的能量就少, 因而整个风机抽吸效果差, 而且风压也很 低。 同步后流风机的叶轮, 由于叶轮进口设在整个叶轮轴向侧面, 叶轮叶片 径向长度大, 同步导流增压器径向长度也大, 又是直接借助离心力的作用抽 吸外界物质, 并且, 同步导流增压器和叶轮叶片可以同时都对气体传递能量, 因而同步后流风机叶轮吸力强, 流量大, 风压高, 比一般离心风机叶轮和普 通的后流风机叶轮优越得多。
同步后流风机叶轮, 不设双叶盘, 或只设单叶盘, 或仅设叶片负压隔离 壁, 其摩擦损失小得多, 更为重要的是, 由于同步导流增压器的导流和隔离 作用, 可以避免叶轮内侧产生涡流, 避免涡流损失, 显而易见, 同步后流风 机叶轮效率高, 噪音低。
同一般的旧式离心风机相比, 本发明中小型同步后流风机节能 15%, 大 型同步后流风机节能 20%。
同步后流风机叶轮同普通后流风机叶轮一样, 都是从轴向侧面轴向抽吸 气体, 又从其径向末端叶轮出口轴向排出气体, 而同步后流风机, 由于有同 步导流增压器的作用, 其径向末端叶轮出口轴向排泄气体效果更好。 因而同 步后流风机叶轮更适合多级串联装配高压特高压气体压缩机使用。 由该叶轮 串联装配的高压特高压气体压縮机,由于其气流通道弯转曲折少绝对长度小, 气流流程短, 故而其压縮效果更好, 效率更高, 更加节省能源, 同步后流风 机叶轮尤其适合多级串联使用。
本发明的机壳内侧气流扩压通道里还可以设置分隔导流器, 分隔导流器 设在叶轮出口外围, 顺叶轮转向, 由其靠近叶轮外圆出口的前端分隔导流器 进口到其后部末端分隔导流器出口逐渐远离叶轮外圆, 分隔导流器纵向边缘 跟机壳轴向侧壁连接。分隔导流器可以是多种不同的结构形式,如弧形板形、
曲线板形、 机翼形等等。 由于有分隔导流器的作用, 可以使机壳内侧气流扩 压通道里减少涡流, 降低涡流损失, 故而可以进一步提高风机内效率, 降低 风机噪音。 下面结合附图及实施例对本发明做详细地解释说明。
附图的简要说明
图 1-本发明实施例 1的叶轮结构示意图;
图 2-本发明实施例 1叶轮同步导流增压器结构示意图;
图 3-本发明实施例 1机壳叶轮装配使用示意图;
图 4-本发明实施例 2的叶轮结构示意图;
图 5-本发明实施例 2叶轮同步导流增压器结构示意图;
图 6-本发明实施例 3叶轮同步导流增压器结构示意图;
图 7-本发明实施例 4叶轮同步导流增压器结构示意图;
图 8-本发明实施例 4机壳叶轮装配使用示意图;
图 9-本发明实施例 5叶轮同步导流增压器结构示意图;
图 10-本发明实施例 6叶轮同步导流增压器结构示意图;
图 11-本发明实施例 7叶轮同步导流增压器结构示意图;
图 12-本发明实施例 8叶轮同步导流增压器结构示意图;
图 13-本发明实施例 9叶轮同步导流增压器结构示意图;
图 14-本发明实施例 10的叶轮结构 (横剖) 示意图;
图 15-本发明实施例 11的叶轮结构示意图;
图 16-本发明实施例 11机壳叶轮装配使用示意图;
图 17-本发明实施例 12的机壳内侧气流扩压通道内分隔导流器结构示 意图。
其中图号:
1风机机壳, 2机壳内侧气流扩压通道, 3叶轮, 4叶轮轴套, 5叶轮叶 盘, 6叶轮叶片, 7叶轮内侧气流通道, 8同步导流增压器, 9同步导流增压 进口, 10同步导流增压出口, 11无阻挡气流通道, 12叶轮外圆出口, 13负 压隔离壁, 14电机, 15风机进风口, 16风机出风口, 17中间加固隔离叶盘,
18前轴向气流通道, 19后轴向气流通道, 20风机后侧进风口, 21中间无阻 挡气流通道, 22轴向无叶扩压通道, 23专用叶轮进风口, 24加固叶盘, 25 分隔导流器, 26分隔导流器进口, 27分隔导流器出口。 实现本发明的最佳方式
实施例 1, 同步后流风机(参考图 1、 图 2、 图 3 ), 其结构包括风机机壳 1、机壳内侧气流扩压通道 2、 叶轮 3、 叶轮轴套 4、 叶轮叶盘 5、 叶轮叶片 6、 叶轮叶片同叶轮叶盘构成的叶轮内侧气流通道 7 (机体设有跟电机分设在两 侧的风机进风口一侧为机体前侧或称轴向前侧, 与之相对应的一侧为机体后 侧或称轴向后侧,机体其他部件部位称谓依次类推), 叶轮上的每个叶轮内侧 气流通道 7 内沿径向前后设有两个全横跨式同步导流增压器 8, 第一个同步 导流增压器 8由叶轮轴向前侧靠近叶轮轴套 4处沿叶轮径向向叶轮内侧气流 通道 7内自前而后、 由表及里斜向置于叶轮内侧气流通道 7内, 其前端设有 同步导流增压进口 9, 其深入叶轮内侧气流通道 7的后部末端设有同步导流 增压出口 10, 该同步导流增压器 8纵向两侧边缘跟其左右 (前后)两个叶轮 叶片 6纵向侧面焊接在一起, 该同步导流增压器 8的同步导流增压出口末端 跟叶轮叶盘 5之间留有一定的间隙。 第二个同步导流增压器 8设于第一个同 步导流增压器径向后面, 其径向前部同步导流增压进口端跟第一个同步导流 增压器前部同步导流增压进口端留有一定的间距, 该同步导流增压器 8跟第 一个同步导流增压器平行而沿径向由前而后、 由表及里地置于叶轮内侧气流 通道 7径向后部, 它跟叶轮叶片的连接方式、 进出口形式跟第一个同步导流 增压器的一样。 由径向前后两个同步导流增压进口端跟其左右两侧的叶轮叶 片轴向前侧边缘构成叶轮径向前部同步顺流进风口, 由第二个同步导流增压 进口端跟第二个同步导流增压器连接的两侧叶轮叶片轴向前侧边缘至叶轮出 口处构成叶轮径向后部同步顺流进风口。 该叶轮叶片 6自叶轮径向前部至叶 轮径向后端轴向尺寸逐渐加大而成轴向扩张式, 与之相应的叶轮内侧气流通 道也是沿叶轮径向由前而后成轴向扩张式。 该叶轮轴向前侧除了轴套部位, 余者均为同步顺流进风口部位, 整个叶轮轴向前侧面都可以对外抽吸物质。 该叶轮所有的叶轮叶片靠同步导流增压器支撑连接作用而形成一个牢固的整
体, 整个叶轮强度大, 刚性好。
本实施例的叶轮装配在风机机壳 1内,跟电机 14电机轴连接,依靠电机 带动旋转, 风机机壳 1设有风机进风口 15和风机出风口 16, 风机进风口 15 设于机壳轴向前侧, 风机叶轮轴向前侧跟风机进风口正相对。
5 工作时, 叶轮轴向前侧的同步导流增压器直接借助旋转离心力的作用通 过同步导流增压进口、 同步顺流进风口, 促使整个叶轮轴向前侧都可以通过 风机进风口强力抽吸外界气体。 抽吸进入叶轮内侧的气体再通过叶轮叶片、 同步导流增压器吸收能量而加速加压。 由于叶轮整个前轴向侧面不设叶盘, 故而没有叶盘摩擦损失。 很明显, 本例风量大, 风压高, 效率高, 噪音低。
10 本例适应装配通风换气、 鼓风送风风机使用。
实施例 2, 同步后流风机 (参考图 4、 图 5 ), 本例叶轮基本结构跟例 1 叶轮一样, 所不同的是本例叶轮上的同步导流增压器 8是半横跨径向倾斜式 的, 设在叶轮内侧气流通道后部, 而位于后侧的叶轮叶片 6的前方, 其纵向 后侧边缘跟该叶轮叶片纵向前侧表面焊接在一起, 同步导流增压器 8前侧边
L5 缘跟相邻的另一个叶轮叶片 6后侧之间设有无阻挡气流通道 11 (通道内没有 任何部件干扰气流)。 无阻挡气流通道 11依靠旋转离心力和气流形成的负压 作用抽吸外界物质。
工作时, 叶轮前轴向侧面由同步导流增压进口和无阻挡气流通道进口共 同抽吸外界气体物质, 即叶轮整个前轴向侧面都对外抽吸气体物质, 与之相 0 对应的风机进风口口径也比较大, 因此, 整个风机流量就比较大。 由于同步 导流增压器是半横跨式的,仅占叶轮内侧气流通道部分位置,本身结构狭窄, 尺寸小, 重量轻, 因而该叶轮摩擦损失更小, 机械效率会更高。
同例 1一样, 本例适应装配通风换气、 鼓风送风风机使用。
实施例 3, 同步后流风机 (参考图 6), 本例跟例 2基本一样, 所不同的 5 是本例叶轮轴向后侧不设后叶盘, 叶轮叶片为多壁结构式, 其轴向后侧设有 负压隔离壁 13。
本例叶轮重量更轻, 摩擦损失更小, 噪音更低, 更加高效节能, 更有利 于环保。
本例用途跟例 2—样。
19
-15- 实施例 4, 同步后流风机 (参考图 7、 图 8 ), 本例跟例 1基本一样, 本 例整个风机叶轮成轴向扩张式, 风机叶轮后轴向侧面不设叶盘, 叶轮前轴向 侧面和后轴向侧面都没有叶盘, 但叶轮前后轴向侧面中间设有中间加固隔离 叶盘 17, 中间加固隔离叶盘 17前后两轴向侧面上分别连接固定 6个叶轮叶 片, 即整个叶轮前后两个轴向侧面分别单独设置叶轮叶片, 中间加固隔离叶 盘 17将叶轮内侧气流通道分成前轴向气流通道 18和后轴向气流通道 19两部 分, 每个前轴向气流通道 18和每个后轴向气流通道 19内都分别设置两个全 横跨式同步导流增压器 8 (为了清楚起见, 附图 7上仅画出一个前轴向气流 通道和一个后轴向气流通道, 每个气流通道内只画出一个全横跨式同步导流 增压器 8), 风机叶轮靠前后两个轴向侧面吸风。 本例叶轮两轴向侧面径向前 部都设有专用叶轮进风口 23。相对应的是本例的风机机壳设有风机后侧进风 口 20, 整个风机由前后两个风机进风口进风。
工作时, 风机叶轮前后两轴向侧面的同步导流增压器借助旋转离心力作 用分别从前后两个风机进风口吸进气体, 给以加工, 使之加速增压。 由专用 叶轮进风口直贯而入的气流经同步导流增压器隔离和导流, 由专用叶轮进风 口进入的气流都被导入叶轮内内侧气流通道 (同步导流增压器内侧一侧的气 流通道) 里流动, 而由同步导流增压器从叶轮轴向外侧抽吸的物流则在叶轮 外内侧气流通道 (同步导流增压器外侧一侧的气流通道) 里流动, 这样就避 免了由专用叶轮进风口对叶轮内侧气流通道直贯而入的气流跟由同步导流增 压器从轴向方向引进的气流相碰撞产生激烈的涡流。 因而本例高效节能, 噪 音低。
本例流量大, 风压高, 可以代替大流量轴流风机使用, 而代替大流量轴 流风机使用, 其体积会小得多, 其风压却会大得多。
实施例 5, 同步后流风机 (参考图 9), 本例叶轮基本结构跟例 1的叶轮 一样, 所不同的是本例叶轮内侧气流通道内的同步导流增压器 8是全横跨全 置式, 每个叶轮内侧气流通道内沿径向由前而后设置两个这样的同步导流增 压器, 该两个同步导流增压器 8都是沿叶轮径向由前而后、 沿叶轮转向由前 而后顺叶轮径向由前而后倾斜置于叶轮内侧气流通道内, 其纵向两侧边缘跟 叶轮内侧气流通道两侧之间的两个叶轮叶片纵向侧面都连接。
本例工作时, 叶轮上的同步导流增压器的作用、 性能、 产生的效应跟例
1叶轮上的同步导流增压器的 样, 用途跟例 1也一样。
实施例 6, 同步后流风机(参考图 10), 本例叶轮基本结构跟例 2的叶轮 一样, 所不同的是本例的同步导流增压器为后部半横跨全置式, 每个叶轮内 侧气流通道内沿叶轮径向由前而后设置两个这样的同步导流增压器, 每个同 步导流增压器都是沿叶轮径向由前而后而倾斜置于叶轮内侧气流通道后部, 其纵向后侧边缘跟叶轮内侧气流通道后侧的叶轮叶片纵向前侧表面相连接。 该同步导流增压器纵向前侧边缘跟叶轮内侧气流通道前侧的另一个叶轮叶片 之间设有无阻挡气流通道 11。
本例叶轮上的同步导流增压器产生的作用、 性能、 效应跟例 2叶轮上的 同步导流增压器一样, 用途跟例 2也一样。
实施例 7, 同步后流风机(参考图 11 ), 本例叶轮基本结构跟例 1的叶轮 一样, 所不同的是本例的同步导流增压器是全横跨后前倾斜式。 每个叶轮内 侧气流通道内只设一个这样的同步导流增压器, 该同步导流增压器 8顺叶轮 转向由后而前、 由表及里倾斜置于叶轮内侧气流通道内, 其纵向两侧边缘跟 叶轮内侧气流通道纵向两侧的两个叶轮叶片纵向两侧面都连接。 本例跟例 1 的第二个不同点是其叶轮前轴向侧面设专用叶轮进风口 23。
工作时,由专用叶轮进风口 23直贯而入的气流经同步导流增压器 8导入 叶轮内侧气流通道再被导出叶轮外圆出口, 这样可以极大地减缓气流的涡旋 流动, 同时, 由于同步导流增压器的分流隔离作用, 被导入叶轮内侧气流通 道内的气流大部分在叶轮内侧气流通道的内内侧 (同步导流增压器内侧一侧 的气流通道) 流动, 一小部分在叶轮内侧气流通道的外内侧 (同步导流增压 器外侧一侧的气流通道) 流动, 这样, 由于同步导流增压器的隔离和导流作 用, 由叶轮前轴向侧面直贯而入的气流, 就不会和叶轮内侧气流通道内内侧 气流通道的径向流动气流相碰撞, 从而避免产生激烈的涡流, 所有这些, 自 然就可以保证整个风机能提高效率, 节省能源。
实施例 8, 同步后流风机(参考图 12), 本例叶轮基本结构跟例 2叶轮一 样, 所不同的是本例的同步导流增压器 8为后部半横跨后前倾斜式, 每个叶 轮内侧气流通道内沿叶轮径向前后设置两个这样的同步导流增压器, 每个同
步导流增压器 8都是顺叶轮转向由后而前、 由表及里倾斜置于叶轮内侧气流 通道后部, 其纵向后侧边缘跟叶轮叶片纵向前侧表面边缘连接, 该同步导流 增压器纵向前侧边缘跟叶轮内侧气流通道前侧的另一个叶轮叶片之间设无阻 挡气流通道 11。每个叶轮内侧气流通道径向前部的第一个同步导流增压器顺 叶轮转向由后而前、 由表及里向叶轮内侧倾斜角度大于其径向后一个同步导 流增压器顺叶轮转向由后而前、 由表及里向叶轮内侧的倾斜角度。
工作时, 叶轮内侧气流通道内径向前部的第一个后部半横跨后前倾斜式 同步导流增压器抽吸引导于叶轮内侧的气流沿径向流于径向后部第二个同步 导流增压器, 再经第二个同步导流增压器导流引出叶轮, 这样基本上可以避 免叶轮内侧气流通道内产生涡流, 因而就可以提高效率, 节省能源, 降低噪 音
实施例 9, 同步后流风机(参考图 13 ), 本例叶轮内侧气流通道内的同步 导流增压器也是半横跨式的, 所不同的是本例叶轮内侧气流通道前部和后部 分别设置半横跨式同步导流增压器, 即在叶轮内侧气流通道前部设置两个前 部半横跨径向倾斜式同步导流增压器, 在叶轮内侧气流通道后部设置一个后 部半横跨后前倾斜式同步导流增压器, 该前部后部两种半横跨式同步导流增 压器不相连接, 它们之间设有中间无阻挡气流通道 21。 其中前部半横跨径向 倾斜式同步导流增压器沿叶轮径向由前而后、 由表及里倾斜置于叶轮内侧气 流通道前部, 其纵向前侧边缘跟叶轮内侧气流通道前侧的叶轮叶片纵向后侧 表面连接;其中后部半横跨后前倾斜式同步导流增压器顺叶轮转向由后而前、 由表及里倾斜置于叶轮内侧气流通道内, 其纵向后侧边缘跟叶轮叶片纵向前 侧表面边缘连接。
工作时, 前部半横跨径向倾斜式同步导流增压器沿叶轮径向往叶轮内侧 气流通道内抽吸导流气体, 后部半横跨后前倾斜式同步导流增压器顺叶轮转 向由后而前往叶轮内侧气流通道内抽吸导流气体, 抽吸导流的气体流经中间 无阻挡气流通道再由叶轮外圆出口流出叶轮, 整个工作过程中依靠前部后部 两列同步导流增压器向叶轮内侧气流通道内抽吸导流气体, 整个叶轮抽力会 更强, 促使整台风机流量大, 风压高, 效率高, 节省能源。
实施例 10, 同步后流风机 (参考图 14, 叶轮横剖示意图), 本例叶轮基
本结构跟例 1 的叶轮基本一样, 同步导流增压器也是全横跨径向倾斜式的。 所不同的是本例的后叶轮叶盘 5为扩张端朝后的锥形筒状, 叶轮叶片 6径向 前部跟后叶轮叶盘 5、 叶轮轴套 4悍接在一起, 其径向后半部直至叶片出口 轴向后侧边缘跟叶轮叶盘 5不相连接, 整个叶轮叶片后半段轴向后侧边缘跟
5 其相对应的叶轮叶盘部位之间设有轴向无叶扩压通道 22。 .
, 工作时, 由同步导流增压器 8随时从叶轮轴向抽吸导流入叶轮内侧气流 通道的气流, 随时被倾斜导入叶轮径向后部的轴向无叶扩压通道给以充分减 速扩压, 然后将该气流沿叶轮径向轴向倾斜排于叶轮后轴向外侧, 由于该气 流在叶轮内侧轴向无叶扩压通道内已经被充分减速扩压, 其叶轮出口压力会
0 相当高。 十分明显。 本例可以取得高效节能的积极效果。
实施例 11, 同步后流风机 (参考图 15、 图 16), 本例叶轮基本结构和例 2 的叶轮一样, 所不同的是本例叶轮的每一个叶轮内侧气流通道后部沿径向 由前而后、 由表及里只设一个半横跨径向倾斜式同步导流增压器 8, 叶轮前 轴向侧面径向前部设有加固叶盘 24,加固叶盘 24跟叶轮轴套 4和叶轮叶片 6
5 径向前端、 同步导流增压器 8径向前端都连接。
工作时, 由同步导流增压器 8抽吸导流的物质可以顺利流过叶轮内侧气 流通道, 不会造成任何堵塞, 尤其抽吸体积和面积较大的固体物质, 可以顺 利通过叶轮内侧气流通道。 本例适应制作各种物料吸排机, 用以抽吸输送各 种垃圾废料和生产物料, 如抽吸输送各种废布片、 废纸片、 木块、 木片、 瓜
:0 皮、 菜叶等废物, 以及工农业生产中的多种固体原材料。
本例装配的物质吸排机抽吸固体物料既不堵塞叶轮, 又能高效节能, 可 以节能 15%以上。
实施例 12, 同步后流风机 (参考图 17), 本例叶轮结构跟例 1的叶轮一 样, 所不同的是本例的机壳为蜗壳结构形式, 机壳内侧气流扩压通道 2里中 5 间偏后部位设有圆弧板形的分隔导流器 25, 分隔导流器 25设在叶轮外圆出 口夕卜围,顺叶轮转向, 由分隔导流器靠近叶轮外圆出口 12的前端分隔导流器 进口 26到其后部末端分隔导流器出口 27逐渐远离叶轮外圆, 分隔导流器后 轴向边缘跟机壳轴向后侧壁连接在一起。
工作时, 由于有分隔导流器的分隔导流作用, 可以避免叶轮后排出的部
分高速气流直接跟机壳内侧气流扩压通道里叶轮先排出的气流相碰撞而产生 激烈的涡流, 从而可以降低涡流损失, 提高风机内效率, 同时也降低了风机 噪音。
Claims
权利要求
1、 同步后流风机, 包括风机机壳(1 )、 机壳内侧气流扩压通道(2)、 叶轮 (3 )、 叶轮轴套 (4)、 叶轮叶盘 (5 )、 叶轮叶片 (6)、 叶轮叶片 (6)跟叶
5 轮叶盘(5 )之间形成的叶轮内侧气流通道(7), 其特征在于叶轮内侧气流 通道 (7) 内设有同步导流增压器 (8), 同步导流增压器 (8) 前端设有同 步导流增压进口 (9), 其后部末端设有同步导流增压出口 (10), 同步导流 增压器 (8) 纵向边缘跟叶轮叶片纵向侧面连接, 同步导流增压器 (8) 跟 叶轮叶片 (6) 构成同步顺流进风口。
0 2、根据权利要求 1所述的同步后流风机,其特征在于所述的同步导流 增压器 (8) 为全横跨式, 该同步导流增压器 (8) 沿叶轮径向由前而后、 由表及里倾斜置于叶轮内侧气流通道 (7) 内, 同步导流增压器 (8) 纵向 两侧边缘跟叶轮内侧气流通道(7)纵向两侧的两个叶轮叶片纵向侧面都连 接。
5 3、根据权利要求 1所述的同步后流风机,其特征在于所述的同步导流 增压器 (8) 为全横跨式, 该同步导流增压器 (8) 沿叶轮径向由前而后、 沿叶轮转向由前而后置于叶轮内侧气流通道(7) 内, 同步导流增压器(8 ) 纵向两侧边缘跟叶轮内侧气流通道(7)纵向两侧的两个叶轮叶片纵向侧面 都连接。
:0 4、根据权利要求 1所述的同步后流风机,其特征在于所述的同步导流 增压器 (8 ) 为全横跨式, 该同步导流增压器 (8) 顺叶轮转向由后而前、 由表及里倾斜置于叶轮内侧气流通道 (7) 内, 同步导流增压器 (8) 纵向 两侧边缘跟叶轮内侧气流通道(7)纵向两侧的两个叶轮叶片纵向侧面都连 接。
:5 5、根据权利要求 1所述的同步后流风机, 其特征在于所述的同步导流 增压器 (8) 为全横跨式, 该同步导流增压器 (8) 顺叶轮转向由前而后、
由表及里倾斜置于叶轮内侧气流通道 (7 ) 内, 同步导流增压器 (8 ) 纵向 两侧边缘跟叶轮内侧气流通道(7)纵向两侧的两个叶轮叶片纵向侧面都连 接。
6、根据权利要求 1所述的同步后流风机,其特征在于所述的同步导流 增压器 (8 ) 为半横跨式, 该同步导流增压器 (8 ) 设在叶轮内侧气流通道 前部, 其纵向前侧边缘跟叶轮内侧气流通道(7)前侧的叶轮叶片纵向后侧 表面连接, 同步导流增压器 (8 ) 纵向后侧边缘跟叶轮内侧气流通道 (7) 后侧的另一个叶轮叶片前侧之间设有无阻挡气流通道 (11 )。
7、根据权利要求 1所述的同步后流风机,其特征在于所述的同步导流 增压器 (8 ) 为半横跨式, 该同步导流增压器 (8 ) 设在叶轮内侧气流通道 后部, 其纵向后侧边缘跟叶轮内侧气流通道(7)后侧的叶轮叶片纵向前侧 表面连接, 同步导流增压器 (8 ) 纵向前侧边缘跟叶轮内侧气流通道 (7) 前侧的另一个叶轮叶片后侧之间设有无阻挡气流通道 (11 )。
8、根据权利要求 1所述的同步后流风机,其特征在于一个叶轮内侧气 流通道(7) 的前部和后部分别设置半横跨式同步导流增压器(8), 该前部 半横跨式同步导流增压器跟其对应的后部半横跨式同步导流增压器不相连 接, 它们之间设有中间无阻挡气流通道 (21 )。
9、 根据权利要求 1所述的同步后流风机, 其特征在于叶轮叶片 (6) 轴向边缘跟其相应的叶轮叶盘(5 )不相连接, 该叶轮叶片轴向边缘跟其对 应的叶轮叶盘之间设有轴向无叶扩压通道 (22)。
10、 根据权利要求 1所述的同步后流风机, 其特征在于风机机壳内侧 气流扩压通道 (2) 内设有分隔导流器 (25 ), 分隔导流器 (25 ) 设在叶轮 出口外围, 顺叶轮转向, 由其靠近叶轮外圆出口 (12) 的前端分隔导流器 进口 (26) 到其后部末端分隔导流器出口 (27) 逐渐远离叶轮外圆, 分隔 导流器 (25 ) 纵向边缘跟机壳轴向侧壁连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200820188264.4 | 2008-09-13 | ||
CN200820188264 | 2008-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010028546A1 true WO2010028546A1 (zh) | 2010-03-18 |
Family
ID=42004780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/001019 WO2010028546A1 (zh) | 2008-09-13 | 2009-09-09 | 同步后流风机 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010028546A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108355405A (zh) * | 2018-04-13 | 2018-08-03 | 苏州中新动力科技股份有限公司 | 耐高温腐蚀动力除雾装置 |
CN113959104A (zh) * | 2021-12-10 | 2022-01-21 | 烟台通天达风机制造有限公司 | 气动碰撞生热高温热风机 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4521154A (en) * | 1982-01-13 | 1985-06-04 | Corbett Reg D | Centrifugal fans |
CN2476669Y (zh) * | 2001-04-20 | 2002-02-13 | 升联科技股份有限公司 | 散热风扇的改进结构 |
US20020159885A1 (en) * | 2001-04-27 | 2002-10-31 | Te Liang | Heat dissipating fan |
CN2535590Y (zh) * | 2001-12-30 | 2003-02-12 | 王基晨 | 低噪音离心风机 |
CN1135339C (zh) * | 1999-01-18 | 2004-01-21 | 三菱电机株式会社 | 空气调节机 |
CN2670642Y (zh) * | 2003-06-20 | 2005-01-12 | 林钧浩 | 多功能强力抽吸后流风机 |
CN2742201Y (zh) * | 2004-04-08 | 2005-11-23 | 林钧浩 | 多壁叶片增压后流风机 |
CN1952408A (zh) * | 2005-10-20 | 2007-04-25 | 宣伯民 | 蜗壳的螺旋室设分流道的离心风机 |
CN101033755A (zh) * | 2007-04-04 | 2007-09-12 | 林钧浩 | 增压式离心后流风机叶轮 |
CN101382150A (zh) * | 2008-04-23 | 2009-03-11 | 林钧浩 | 同步后流风机 |
-
2009
- 2009-09-09 WO PCT/CN2009/001019 patent/WO2010028546A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4521154A (en) * | 1982-01-13 | 1985-06-04 | Corbett Reg D | Centrifugal fans |
CN1135339C (zh) * | 1999-01-18 | 2004-01-21 | 三菱电机株式会社 | 空气调节机 |
CN2476669Y (zh) * | 2001-04-20 | 2002-02-13 | 升联科技股份有限公司 | 散热风扇的改进结构 |
US20020159885A1 (en) * | 2001-04-27 | 2002-10-31 | Te Liang | Heat dissipating fan |
CN2535590Y (zh) * | 2001-12-30 | 2003-02-12 | 王基晨 | 低噪音离心风机 |
CN2670642Y (zh) * | 2003-06-20 | 2005-01-12 | 林钧浩 | 多功能强力抽吸后流风机 |
CN2742201Y (zh) * | 2004-04-08 | 2005-11-23 | 林钧浩 | 多壁叶片增压后流风机 |
CN1952408A (zh) * | 2005-10-20 | 2007-04-25 | 宣伯民 | 蜗壳的螺旋室设分流道的离心风机 |
CN101033755A (zh) * | 2007-04-04 | 2007-09-12 | 林钧浩 | 增压式离心后流风机叶轮 |
CN101382150A (zh) * | 2008-04-23 | 2009-03-11 | 林钧浩 | 同步后流风机 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108355405A (zh) * | 2018-04-13 | 2018-08-03 | 苏州中新动力科技股份有限公司 | 耐高温腐蚀动力除雾装置 |
CN108355405B (zh) * | 2018-04-13 | 2023-12-26 | 苏州中新动力科技股份有限公司 | 耐高温腐蚀动力除雾装置 |
CN113959104A (zh) * | 2021-12-10 | 2022-01-21 | 烟台通天达风机制造有限公司 | 气动碰撞生热高温热风机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101382150B (zh) | 同步后流风机 | |
US10458432B2 (en) | Turbocharger compressor assembly with vaned divider | |
US8939732B2 (en) | Multi-stage compressor | |
CN106704260B (zh) | 多级级联涡轮 | |
WO2012139265A1 (zh) | 向心增压生热高温高压通风压缩机 | |
CN105156346B (zh) | 一种轴向离心式风机 | |
CN104653496B (zh) | 一种单双吸可调式离心通风机 | |
CN100460691C (zh) | 增压式离心后流风机叶轮 | |
CN110529410B (zh) | 一种混流风机 | |
WO2018045606A1 (zh) | 低噪音自吸复合泵 | |
CN100494694C (zh) | 带有非全高小叶片的大小叶片叶轮及压气机 | |
CN209180085U (zh) | 一种导流式进风离心风机 | |
CN101985897A (zh) | 可变截面复合涡轮装置 | |
EP2140130A1 (en) | Method of pumping gaseous matter via a supersonic centrifugal pump | |
CN101566165A (zh) | 同步后流通风压缩机 | |
WO1997032132A1 (en) | Streamlined annular volute for centrifugal blower | |
CN107989804A (zh) | 双转子对转冲压压气机 | |
WO2007019796A1 (fr) | Soufflante axiale pressurisee | |
CN100478572C (zh) | 增压式离心风机叶轮 | |
WO2010028546A1 (zh) | 同步后流风机 | |
WO2010130146A1 (zh) | 多功能同步后流通风压缩机 | |
CN110374925A (zh) | 一种双层集流器及装配双层集流器的混流风机 | |
CN105673559B (zh) | 带机匣的高效子午加速轴流风机 | |
CN208565061U (zh) | 斜流风机和家电设备 | |
CN103939391B (zh) | 支叶片加固增压通风机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09812613 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09812613 Country of ref document: EP Kind code of ref document: A1 |