WO2010025692A1 - Utilisation de soufre modifié de faible viscosité comme liquide caloporteur et accumulateur de chaleur - Google Patents

Utilisation de soufre modifié de faible viscosité comme liquide caloporteur et accumulateur de chaleur Download PDF

Info

Publication number
WO2010025692A1
WO2010025692A1 PCT/DE2009/000956 DE2009000956W WO2010025692A1 WO 2010025692 A1 WO2010025692 A1 WO 2010025692A1 DE 2009000956 W DE2009000956 W DE 2009000956W WO 2010025692 A1 WO2010025692 A1 WO 2010025692A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
heat transfer
hydrogen sulfide
heat
viscosity
Prior art date
Application number
PCT/DE2009/000956
Other languages
German (de)
English (en)
Inventor
Christoph Henrik Sterzel
Original Assignee
Sterzel, Hans-Josef
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200810046071 external-priority patent/DE102008046071A1/de
Priority claimed from DE200910020922 external-priority patent/DE102009020922A1/de
Application filed by Sterzel, Hans-Josef filed Critical Sterzel, Hans-Josef
Priority to CN200980140550.0A priority Critical patent/CN102177216A/zh
Priority to EP09775944A priority patent/EP2350224A1/fr
Priority to US13/062,363 priority patent/US20110259552A1/en
Publication of WO2010025692A1 publication Critical patent/WO2010025692A1/fr
Priority to MA33739A priority patent/MA32761B1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • Liquids for transferring heat energy are used in various fields of technology.
  • Irf combustion engines carry mixtures of water and ethylene glycol to remove waste heat from combustion in the radiator. Similar mixtures transport the heat from solar roof reflectors in heat storage. In the chemical industry, they move the heat from electric or fossil heated heating systems to chemical reactors or out of them to cooling devices.
  • liquids According to their requirement profile, a variety of liquids is used.
  • the liquids should be liquid at room temperature or even lower temperatures and, above all, have low viscosities. For higher operating temperatures, water is out of the question, its vapor pressure would be too high. That's why you set up. to 250 0 C hydrocarbons, which usually consist of aromatic and aliphatic molecular proportions. In many cases, oligomeric siloxanes are used.
  • a new challenge for heat transfer fluids is solar thermal power plants, which generate large-scale electrical energy. So far, such power plants were built with a total installed capacity of about 400 megawatts.
  • the solar radiation is focused via parabolic shaped troughs in the focal line of the mirror.
  • the metal tube is flowed through by a heat transfer fluid.
  • a mixture of diphenyl ether and diphenyl is used here.
  • the heat carrier is heated to a maximum of 400 0 C and thus operates a steam generator in which water is evaporated. This steam drives a turbine, which in turn drives the generator like in a conventional power plant. Total efficiencies are achieved by 20 to 23 percent, based on the energy content of solar radiation.
  • Both components of the heat carrier boil under normal pressure at 256 ° C.
  • the melting point of the diphenyl is 70 0 C, that of the diphenyl ether at 28 ° C. By mixing both substances, the melting point is lowered to about 10 0 C.
  • the mixture of the two components can be used up to a maximum of 400 0 C, decomposition occurs at higher temperatures.
  • the vapor pressure at this temperature is about 10 bar, a pressure that is still easy to control in the art.
  • inorganic salt melts as the heat transfer fluid.
  • Such molten salts are state of the art in processes that operate at high temperatures. With mixtures of potassium nitrate, potassium nitrite and the corresponding sodium salts to reach working temperatures up to 500 0 C. The fertilizer industry is able to produce large quantities.
  • two significant drawbacks of the salt melts are that they are not used in solar thermal power plants. As nitrates and nitrites, they have a strong oxidizing effect on the metallic materials, preferably steels, at elevated temperatures, which raises their upper application temperature to approximately 500 degrees is limited. Because of its crystalline melting point, its lowest application temperature is about 160 ° C.
  • the sulfur melting point of just under 120 ° C. is advantageously lower than the eutectic melting points of the nitrate / nitrite mixtures currently used.
  • the boiling point of sulfur is 444 ° C in the right range, decomposition is excluded.
  • the vapor pressures are 2.1 bar at 500 ° C., 3.9 bar at 550 ° C., and 6.6 bar at 600 ° C.
  • the vapor pressure is around ten bar, a pressure which is technically still light is controllable.
  • the equilibrium vapor pressure of sulfur rises relatively sharply; it is 16.7 bar at 700 ° C.
  • the density of the liquid sulfur is on average 1.6 kg / liter in wide temperature ranges, the specific heat around 1.000 Joule per kg and degree or around 1.600 Joule per liter and degree. It is thus below that of water at around 4,000 joules per liter and degree, but above the specific heat of most common organic heat carriers.
  • elemental sulfur shows a serious disadvantage for use as a heat transfer fluid: In the temperature range of about 160 to 230 0 C, the annular sulfur molecules polymerize ring-opening to very long chains.
  • Heat transfer and heat storage liquids according to the invention thus contain in addition to the sulfur
  • the hydrogen sulfide causes the formation of truncated, low-viscosity sulfur chains with SH end groups or Sulfanend phenomenon.
  • the chain length is determined by the concentration of breakers used (Topics In Current Chemistry, Vol. 230, “Elemental Sulfur and Sulfur-Rich Compounds", Springer, Heidelberg 2003, pages 92, 93).
  • a relatively small increase in viscosity occurs in the temperature range of 250 to 350 0 C, but this is much less large than the unmodified sulfur.
  • the melting point is only slightly lowered to temperatures between 113 to 115 0 C.
  • the hydrogen sulfide is introduced there under normal pressure or elevated pressure in the temperature range from 150 0 C to 37O 0 C over a period of 1 to 5 hours in a stirred melt.
  • the reaction of the hydrogen sulfide with the sulfur chains is due to the low solubility apparently slow, which requires the comparatively long reaction times under the usual laboratory conditions.
  • the hydrogen sulfide vapor pressure above the sulfur melt is According to the invention at 130 0 C 0.1 to 10 bar, preferably 1 to 3 bar. During temperature increase in this pressure rises only slightly or even falls off because as temperatures rise more hydrogen sulfide to Sulfanend groups implements.
  • the liquid of the invention is prepared by hydrogen sulfide is introduced to saturation in a sulfur melt in the temperature range of 250 to 350 0 C, wherein the final vapor pressure of the hydrogen sulfide 0.1 to 10 bar, preferably 1 to 3 bar.
  • the technical implementation can be used to the known in chemical engineering apparatuses, such as gassing or reaction mixing pumps in which the melt is brought under intense shear at high surface with gaseous hydrogen sulfide in contact to the time to saturation of the sulfur melt as short as possible much shorter than described in the scientific literature.
  • Both discontinuous processes such as stirred tanks and preferably continuous, such as stirred tank cascades, flow tubes or the combination of reaction mixing pumps with flow tubes or post-reaction vessels, can be used to prepare the liquids according to the invention.
  • the hydrogen sulfide thus formed reduces the length of sulfur chains by sulfone formation.
  • the formed alkali metal sulfide reacts with the excess sulfur, in the case of sodium, to form sodium pentasulfide, which is not soluble in the sulfur melt according to known phase diagrams (Lindberg, D. Backman, M. Hupa, P. Chartrand, "Thermodynamic evolution and Optimization of the Na-KS System”, J. Chem. Therm. 38, p. 900-915 (2006)).
  • the alkali metal polysulfides formed are insoluble in the sulfur melt, above their melting point they form droplets in the melt, below the melting point, when Na 2 S 5 at about 260 0 C, they form black-brown FHT- ter, which at low temperatures and viscosities, For example, in the temperature range from 130 to 200 0 C are easy to remove by filtration from the sulfur melt.
  • the hydrogen sulfide-containing sulfur melts produced according to the various variants are to be stored above their melting point in order to avoid outgassing of the hydrogen sulfide caused by the crystallization of sulfur.
  • the sulfane end groups are stable especially in the liquid state. They would disturb the crystal lattice during the phase transition from liquid to solid, so the system deviates so that it splits off hydrogen sulfide during crystallization.
  • Halogens preferably chlorine
  • sulfur halides preferably disulphur dichloride.
  • Dischwefeldichlorid boils under normal pressure at 138 ° C. It is mixed without pressure at 130 0 C in the low-viscosity melt, then the temperature is increased under the forming vapor pressure within one to two hours at 250 0 C.
  • the melting point of the sulfur can be lowered by the addition of phosphorus. It is apparent from the binary phase diagrams (Robert Fairman and Boris Ushkov, "Semiconducting Chalcogenide Glass", Elsevier Academic Press 2004, ISBN 01275 21879, 9780 1275 21879) that a sulfur melt containing 7 to 10 percent by weight (about 7 to 10 % by weight) phosphorus, crystallized at 80 0 C.
  • Phosphorus can be incorporated as an element in the sulfur melt, but also in the form of sulfides, preferably as P 4 S io.
  • the phosphorus In the molten sulfur, the phosphorus is always philninf section because of the sulfur surplus.
  • the phosphorus acts crosslinking on the sulfur melt and therefore can disadvantageously increase the viscosity. Therefore, it will be decided in the application whether the lower melting point or the lower viscosity is more important for the intended use.
  • the variant of the generation of the hydrogen sulfide via the alkali metal hydrogen sulfides can not be used if the sulfur is phosphorus-containing. In this case, the melt reacts to form considerable amounts of solid substances, presumably alkali metal salts of a thiophosphoric acid.
  • arsenic and silicon also lower the sulfur melting point. If the phase diagrams are checked experimentally, it is found that molar fractions of arsenic, introduced into the melt as arsenic trisulfide, increase the viscosity of the sulfur melt considerably more than phosphorus of equal molar proportions. For this reason, and because of its toxicity, arsenic is not considered an additive for lowering the sulfur melting point. Silicon disulfide dissolves under economic conditions not at all in a molten sulfur, whereby silicon is also not considered for lowering the sulfur melting point.
  • the most effective alloy component is aluminum, which forms a dense, passivating oxide layer on the surface of the material.
  • Such older materials contain 22% by weight chromium and 6% by weight (11% by weight) aluminum. They became known as Kanthal. For purposes of stabilization against sulfidation, it has been found that a high aluminum content is more important than a high chromium content.
  • Niobium, boron or titanium serve to precipitate a fine-grained iron aluminide (Fe 3 Al) and bind carbon as carbides, thus providing increased toughness with strains above 3% and improved processability.
  • Iron alloys with even higher aluminum contents are even more stable than sulfur, but can no longer be cold worked. They are extruded, extruded or rolled at elevated temperatures.
  • Such alloys which are Fe 3 Al base alloys, contain 21 at.% Aluminum, 2 .times.% Chromium and 0.5 at.% Niobium or 26 at.% Aluminum, 4 at.% Titanium and 2 at .-% vanadium or 26 ⁇ 't>% aluminum and 4 At .-% niobium, or 28 At .-% aluminum, 5 at .-% Cr, 0.5 at .-% niobium and 0.2 at. -% carbon (EP 0455 752).
  • molybdenum is preferable because it counteracts thermal decomposition of the dissolved hydrogen sulfide or sulfane end groups to aluminum sulfide and hydrogen. Molybdenum catalyzes the conversion of hydrogen with sulfur to hydrogen sulphide.
  • the mechanical strength of iron alloys with a high aluminum content is up to temperatures of 700 0 C sufficiently large for use with the heat transfer fluids of the invention.
  • oxidation-resistant iron-based materials with aluminum vapor or liquid aluminum, whereupon high-aluminum-containing iron aluminides with aluminum contents greater than 20 atomic percent form on the surface, which have excellent protection against sulfidation.
  • Such coatings are already used in the process industry and produced on a commercial basis.
  • Liquid sulfur is usually delivered by ship. If, for example, 0.5% of hydrogen sulphide is continuously mixed into 100,000 tonnes of sulfur, that is 500 tonnes of hydrogen sulphide. The hydrogen sulphide does not need to be transported, it is also produced continuously on site.
  • the chemical industry has developed elegant non-pressurized processes that produce just as much hydrogen sulfide from molten sulfur and hydrogen under the action of catalysts becomes as currently needed (eg, WO 2008/087086). In a subsequent stage, the hydrogen sulphide is compressed to the pressure necessary for mixing into the sulfur melt. There is no need to store a large amount of hydrogen sulphide.
  • the hydrogen is also produced on site by the electrolysis of water also continuously as needed;
  • the required electrical power is obtained from neighboring power plants.
  • the emptying of the cooling part of the piping system is particularly simple without constructional gradient, by the sulfur from the cooling over the sulfur vapor pressure from the high-temperature part Pipes briefly in the buffer tank presses. Excess sulfur sulfur condenses there and in the cooling pipeline parts.
  • This process can be accomplished, for example, by the temporary opening of a bypass via the pump which pumps the liquid against the vapor pressure and corresponding pressure-retaining valves in the low-temperature part.
  • the tanks for storing the hot liquid must have a correspondingly large volume and they are also still below the vapor pressure of the liquid, it is advantageous not to install the tanks above ground, but to install in the terrain surface.
  • the liquid and vapor pressure can be absorbed by the earth masses surrounding the tank and its thermal insulation.
  • heat transfer fluid according to the invention is also suitable for all other fields of application of heat transport and heat storage in the

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L’invention concerne l’utilisation d’un soufre de faible viscosité, comme liquide caloporteur et accumulateur de chaleur d’un coût avantageux, dont la viscosité diminue fortement par saturation par l’hydrogène sulfuré. L’abaissement de la viscosité peut être obtenu, en variante, par addition de chlorure de soufre. La température de fusion peut être abaissée par addition de phosphore. La plage de température d’utilisation s’étend de 130°C à 700°C. Le liquide est approprié en particulier pour les centrales thermosolaires.
PCT/DE2009/000956 2008-09-05 2009-07-08 Utilisation de soufre modifié de faible viscosité comme liquide caloporteur et accumulateur de chaleur WO2010025692A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980140550.0A CN102177216A (zh) 2008-09-05 2009-07-08 改进的、低粘度硫作为导热和储热液体的应用
EP09775944A EP2350224A1 (fr) 2008-09-05 2009-07-08 Utilisation de soufre modifié de faible viscosité comme liquide caloporteur et accumulateur de chaleur
US13/062,363 US20110259552A1 (en) 2008-09-05 2009-07-08 Use of modified, low-viscosity sulfur as heat transfer and heat storage fluid
MA33739A MA32761B1 (fr) 2008-09-05 2011-04-01 Utilisation de soufre modifié de faible viscosité comme liquide caloporteur et accumulateur de chaleur

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008046071.0 2008-09-05
DE200810046071 DE102008046071A1 (de) 2008-09-05 2008-09-05 Die Anwendung von modifiziertem Schwefel als Wärmeträgerflüssigkeit
DE200910020922 DE102009020922A1 (de) 2009-05-12 2009-05-12 Die Anwendung von niedrigviskosem Schwefel als Wärmeträger- und Wärmespeicherflüssigkeit
DE102009020922.0 2009-05-12

Publications (1)

Publication Number Publication Date
WO2010025692A1 true WO2010025692A1 (fr) 2010-03-11

Family

ID=41228597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000956 WO2010025692A1 (fr) 2008-09-05 2009-07-08 Utilisation de soufre modifié de faible viscosité comme liquide caloporteur et accumulateur de chaleur

Country Status (5)

Country Link
US (1) US20110259552A1 (fr)
EP (1) EP2350224A1 (fr)
CN (1) CN102177216A (fr)
MA (1) MA32761B1 (fr)
WO (1) WO2010025692A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083053A1 (fr) * 2010-01-05 2011-07-14 Basf Se Liquides caloporteurs et accumulateurs thermiques à base de polysulfures pour des températures extrêmement élevées
WO2011124510A1 (fr) * 2010-04-09 2011-10-13 Basf Se Soufre liquide à viscosité améliorée, utilisé comme caloporteur
DE102010015632A1 (de) * 2010-04-20 2011-10-20 Siemens Aktiengesellschaft Wärmeträger-Medium auf Schwefel-Basis und Verwendung des Wärmeträger-Mediums

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110247606A1 (en) * 2010-04-09 2011-10-13 Basf Se Fluid sulfur with improved viscosity as a heat carrier
FR2991313B1 (fr) * 2012-06-01 2015-10-16 Arkema France Soufre liquide de faible viscosite
US10876765B2 (en) 2018-11-28 2020-12-29 Element 16 Technologies, Inc. Systems and methods of thermal energy storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335578A (en) * 1980-05-30 1982-06-22 Ford Aerospace & Communications Corporation Solar power converter with pool boiling receiver and integral heat exchanger
WO2005071037A1 (fr) * 2004-01-26 2005-08-04 Solar Technológia Procede de gain d'energie thermique a l'aide d'un capteur solaire et substances absorbant l'energie thermique utilisables dans ce procede
WO2008087086A1 (fr) * 2007-01-16 2008-07-24 Basf Se Réacteur et procédé de préparation de sulfure d'hydrogène

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335578A (en) * 1980-05-30 1982-06-22 Ford Aerospace & Communications Corporation Solar power converter with pool boiling receiver and integral heat exchanger
WO2005071037A1 (fr) * 2004-01-26 2005-08-04 Solar Technológia Procede de gain d'energie thermique a l'aide d'un capteur solaire et substances absorbant l'energie thermique utilisables dans ce procede
WO2008087086A1 (fr) * 2007-01-16 2008-07-24 Basf Se Réacteur et procédé de préparation de sulfure d'hydrogène

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. FANELLI: "Solubility of hydrogen sulfide in sulfur", INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 41, no. 9, September 1949 (1949-09-01), pages 2031 - 2033, XP002563093 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083053A1 (fr) * 2010-01-05 2011-07-14 Basf Se Liquides caloporteurs et accumulateurs thermiques à base de polysulfures pour des températures extrêmement élevées
WO2011124510A1 (fr) * 2010-04-09 2011-10-13 Basf Se Soufre liquide à viscosité améliorée, utilisé comme caloporteur
DE102010015632A1 (de) * 2010-04-20 2011-10-20 Siemens Aktiengesellschaft Wärmeträger-Medium auf Schwefel-Basis und Verwendung des Wärmeträger-Mediums
WO2011131610A1 (fr) * 2010-04-20 2011-10-27 Siemens Aktiengesellschaft Fluide caloporteur à base de soufre et utilisation dudit fluide caloporteur

Also Published As

Publication number Publication date
CN102177216A (zh) 2011-09-07
MA32761B1 (fr) 2011-11-01
EP2350224A1 (fr) 2011-08-03
US20110259552A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
WO2010025692A1 (fr) Utilisation de soufre modifié de faible viscosité comme liquide caloporteur et accumulateur de chaleur
EP2521693A1 (fr) Liquides caloporteurs et accumulateurs thermiques à base de polysulfures pour des températures extrêmement élevées
EP2836564B1 (fr) Compositions de sels de nitrate contenant du carbonate de métal alcalin et leur utilisation comme fluide caloporteur ou fluide accumulateur de chaleur
WO2013045317A1 (fr) Mélange de sels utilisés comme agent de transfert thermique et/ou de stockage pour des centrales solaires thermiques, et procédé de production dudit mélange
EP2521692A1 (fr) Mélanges de polysulfures alcalins
WO2017093030A1 (fr) Matériau de stockage thermique pour le domaine des hautes températures et son procédé de fabrication
EP2885369A1 (fr) Procédé d'amélioration de compositions de sels de nitrates lors de leur utilisation comme milieux caloporteurs ou milieux accumulateurs de chaleur
EP2556129B1 (fr) Soufre liquide à viscosité améliorée, utilisé comme caloporteur
EP2885368A1 (fr) Procédé d'amélioration de compositions de sels de nitrates lors de leur utilisation comme milieu caloporteur ou accumulateur de chaleur
DE102008046071A1 (de) Die Anwendung von modifiziertem Schwefel als Wärmeträgerflüssigkeit
EP3027783B1 (fr) Corps tubulaire en acier austénitique et récepteur solaire
DE102009020922A1 (de) Die Anwendung von niedrigviskosem Schwefel als Wärmeträger- und Wärmespeicherflüssigkeit
EP2948518A1 (fr) Procédé destiné à améliorer des compositions de sels de nitrate, au moyen d'acide nitrique, au cours de leur utilisation en tant que milieu caloporteur ou milieu accumulateur de chaleur
EP2622300A2 (fr) Dispositif d'accumulation de liquides chauds et corrosifs, et utilisation de ce dispositif
DE102007016738A1 (de) Neuer Wärmeträger für Solaranlagen
DE873997C (de) Verfahren zur Gewinnung von elementarem Schwefel aus Schwefel-wasserstoff neben Stickstoffverbindungen enthaltenden Gasen
DE102010004062A1 (de) Modifiziertes Claus-Verfahren zur Herstellung von polysulfanreichem Schwefel
EP3030625A1 (fr) Mélange de sels en tant que substance d'accumulation pour une centrale héliothermique fonctionnant à l'huile
DE102020003440A1 (de) Verfahren zur thermochemischen Herstellung von Titan
DE4042268A1 (de) Speichersalz-mischungen
DE2438381A1 (de) Verwendung eines knetbaren nickelwerkstoffs
DE2365763B2 (de) Brennstoffzusammensetzung fuer gasturbinen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140550.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09775944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009775944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2304/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13062363

Country of ref document: US