WO2010024729A3 - Micromechanical gyroscope and method for tuning thereof based on using of amplitude modulated quadrature - Google Patents

Micromechanical gyroscope and method for tuning thereof based on using of amplitude modulated quadrature Download PDF

Info

Publication number
WO2010024729A3
WO2010024729A3 PCT/RU2009/000447 RU2009000447W WO2010024729A3 WO 2010024729 A3 WO2010024729 A3 WO 2010024729A3 RU 2009000447 W RU2009000447 W RU 2009000447W WO 2010024729 A3 WO2010024729 A3 WO 2010024729A3
Authority
WO
WIPO (PCT)
Prior art keywords
mmg
signal
sin
oscillations
parameters
Prior art date
Application number
PCT/RU2009/000447
Other languages
French (fr)
Other versions
WO2010024729A2 (en
Inventor
Iakov Anatolevich Nekrasov
Original Assignee
Otkrytoe Aktsionernoe Obschestvo "Kontsern "Tsentralny Nauchno-Issledovatelsky Institut "Elektropribor"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otkrytoe Aktsionernoe Obschestvo "Kontsern "Tsentralny Nauchno-Issledovatelsky Institut "Elektropribor" filed Critical Otkrytoe Aktsionernoe Obschestvo "Kontsern "Tsentralny Nauchno-Issledovatelsky Institut "Elektropribor"
Publication of WO2010024729A2 publication Critical patent/WO2010024729A2/en
Publication of WO2010024729A3 publication Critical patent/WO2010024729A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Abstract

The invention relates to the field of micromechanics, in particular to vibratory micromechanical gyroscopes (MMG), wherein the movable mass (MM) displacement along the primary oscillations γ(t) axis changes according to the equation γ(t)≡sin (ω1t). In order to adjust the parameters of suspension oscillating loops and parameters of electronic units of these gyroscopes, as well as to test their correct operation, a test action B(t)sin(ω1t) is generated for the movable mass (MM) of the MMG. This action is generated by modifying the voltage at electrodes arranged above the lateral sides of the MM, or by connecting the signal source to the electrodes of the secondary oscillations channel of the MMG, said source being proportional to B(t)sin(ω1t). The signal source may be formed by means of a modulator connected to the primary oscillations axis MM displacement transducers and voltage source B(t). The control signal for the systems for automatic adjustment of the MMG parameters is extracted by sequential demodulation of the signal of the secondary oscillations axis MM displacement transducer by means of demodulators with sin(ω1t) and B(t) reference signals. To adjust the resonant frequency of the MMG suspension, the control signal passes to the electrodes of the secondary oscillations channel, while in case of adjusting the phase shift of the secondary oscillations channel signal said signal passes to the control input of the phase shifting circuit. For modification of scale factor of the MMG comprising a system for automatic adjustment of the resonant frequency, a device with the variable transmission coefficient is connected sequentially with the differentiating element. Continuous testing of correct operation of the MMG is performed by comparing the signals produced in the MMG under the effect of the test signal with reference signals.
PCT/RU2009/000447 2008-09-01 2009-08-31 Micromechanical gyroscope and method for tuning thereof based on using of amplitude modulated quadrature WO2010024729A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2008135886 2008-09-01
RU2008135886/28A RU2388999C1 (en) 2008-09-01 2008-09-01 Micromechanical gyroscope (versions) and adjustment methods thereof, based on using amplitude-modulated quadrature testing effect

Publications (2)

Publication Number Publication Date
WO2010024729A2 WO2010024729A2 (en) 2010-03-04
WO2010024729A3 true WO2010024729A3 (en) 2010-08-05

Family

ID=41585929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2009/000447 WO2010024729A2 (en) 2008-09-01 2009-08-31 Micromechanical gyroscope and method for tuning thereof based on using of amplitude modulated quadrature

Country Status (2)

Country Link
RU (1) RU2388999C1 (en)
WO (1) WO2010024729A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485444C2 (en) * 2010-05-21 2013-06-20 Сергей Феодосьевич Коновалов Micromechanical vibration gyroscope
RU2471149C2 (en) * 2010-12-07 2012-12-27 Яков Анатольевич Некрасов Compensation-type micromechanical gyroscope
RU2447402C1 (en) * 2010-12-07 2012-04-10 Яков Анатольевич Некрасов Compensation-type micromechanical gyroscope
US9958271B2 (en) * 2014-01-21 2018-05-01 Invensense, Inc. Configuration to reduce non-linear motion
US9702697B2 (en) * 2015-02-10 2017-07-11 Northrop Grumman Systems Corporation Bias and scale-factor error mitigation in a Coriolis vibratory gyroscope system
RU2626570C1 (en) * 2016-11-03 2017-07-28 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Micromechanical gyroscope rr-type
RU2708907C1 (en) * 2019-05-21 2019-12-12 Акционерное общество "Научно-исследовательский институт физических измерений" Solid-state wave gyroscope
RU2714955C1 (en) * 2019-05-24 2020-02-21 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Method for compensation of in-phase interference in micromechanical gyroscope
IT201900009582A1 (en) * 2019-06-20 2020-12-20 St Microelectronics Srl MEMS GYRO WITH REAL-TIME SCALE FACTOR CALIBRATION AND RELATED CALIBRATION METHOD
CN111578923B (en) * 2020-05-15 2021-10-12 中国人民解放军国防科技大学 Closed-loop control method and system for resonant gyroscope
CN113532406B (en) * 2021-07-15 2022-11-22 中南大学 Silicon gyroscope mass increasing type tuning method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060010999A1 (en) * 2002-10-18 2006-01-19 Werner Schroeder Method for electronically tuning the readout vibration of a coriolis gyroscope
US20060020409A1 (en) * 2002-10-18 2006-01-26 Werner Schroeder Method for electronically adjusting the selective oscillation frequency of a coriolis gyro
US7159461B2 (en) * 2002-12-20 2007-01-09 Thales Vibrating rate gyro with slaving of detection frequency to excitation frequency
WO2007105211A2 (en) * 2006-03-13 2007-09-20 Yishay Sensors Ltd. Dual-axis resonator gyroscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060010999A1 (en) * 2002-10-18 2006-01-19 Werner Schroeder Method for electronically tuning the readout vibration of a coriolis gyroscope
US20060020409A1 (en) * 2002-10-18 2006-01-26 Werner Schroeder Method for electronically adjusting the selective oscillation frequency of a coriolis gyro
US7159461B2 (en) * 2002-12-20 2007-01-09 Thales Vibrating rate gyro with slaving of detection frequency to excitation frequency
WO2007105211A2 (en) * 2006-03-13 2007-09-20 Yishay Sensors Ltd. Dual-axis resonator gyroscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINWUBA DAVID EZEKWE: "Readout Techniques for High-Q Micromachined Vibratory Rate Gyroscopes", INTERNET CITATION, 21 December 2007 (2007-12-21), pages COMPLETE, XP007911506, Retrieved from the Internet <URL:http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-176.pdf> [retrieved on 20100204] *

Also Published As

Publication number Publication date
RU2388999C1 (en) 2010-05-10
WO2010024729A2 (en) 2010-03-04
RU2008135886A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
WO2010024729A3 (en) Micromechanical gyroscope and method for tuning thereof based on using of amplitude modulated quadrature
US8156805B2 (en) MEMS inertial sensor with frequency control and method
CN108253952B (en) Zero-bias self-calibration MEMS gyroscope and zero-bias self-calibration method thereof
EP3056859B1 (en) Bias and scale-factor error mitigation in a coriolis vibratory gyroscope system
Prikhodko et al. Mode-matched MEMS Coriolis vibratory gyroscopes: Myth or reality?
Prikhodko et al. Half-a-month stable 0.2 degree-per-hour mode-matched MEMS gyroscope
CN106052667B (en) Resonator and the system of Coriolis axis control, device, method in vibratory gyroscope
EP2778609B1 (en) Method for calibrating the scale factor of an axisymmetric vibratory gyroscope
US7980134B2 (en) Measuring device and measured quantity sensor having coupled processing and excitation frequencies
WO2014172487A1 (en) Continuous mode reversal for rejecting drift in gyroscopes
US10663386B2 (en) Controlling a vibration of a vibratory sensor based on a phase error
Sonmezoglu et al. A high performance automatic mode-matched MEMS gyroscope with an improved thermal stability of the scale factor
JP6219545B1 (en) Vibration type angular velocity sensor
CA2502338C (en) Method for electronically adjusting the selective oscillation frequency of a coriolis gyro
CA2502326C (en) Method for electronically tuning the readout vibration frequency of a coriolis gyroscope
KR101120732B1 (en) Method for aligning a rotation rate sensor
AU2004227053A1 (en) Method for determining a zero-point error in a vibratory gyroscope
KR102527109B1 (en) gyroscope loop filter
CN109690263A (en) The compensation of the phase shift of at least one component of the electronic system of electronic vibration sensor
KR102100233B1 (en) Method for generating composite time period output signal
Ragot et al. A new control mode greatly improving performance of axisymmetrical vibrating gyroscopes
US7278312B2 (en) Method for electronic tuning of the read oscillation frequency of a coriolis gyro
JP2018531373A6 (en) Method for generating a composite period output signal
EP3913327B1 (en) Gyroscope with self-test
Taheri-Tehrani et al. Epitaxially-encapsulated quad mass resonator with shaped comb fingers for frequency tuning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749208

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09749208

Country of ref document: EP

Kind code of ref document: A2