WO2010024573A2 - 면상 스위칭 모드 액정 표시 장치 - Google Patents

면상 스위칭 모드 액정 표시 장치 Download PDF

Info

Publication number
WO2010024573A2
WO2010024573A2 PCT/KR2009/004731 KR2009004731W WO2010024573A2 WO 2010024573 A2 WO2010024573 A2 WO 2010024573A2 KR 2009004731 W KR2009004731 W KR 2009004731W WO 2010024573 A2 WO2010024573 A2 WO 2010024573A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
crystal display
mode liquid
refractive index
Prior art date
Application number
PCT/KR2009/004731
Other languages
English (en)
French (fr)
Other versions
WO2010024573A9 (ko
WO2010024573A3 (ko
Inventor
최정민
이민희
조새한
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2011524897A priority Critical patent/JP5376473B2/ja
Priority to CN2009801334435A priority patent/CN102132199B/zh
Priority to EP09810178A priority patent/EP2322980B1/en
Publication of WO2010024573A2 publication Critical patent/WO2010024573A2/ko
Publication of WO2010024573A3 publication Critical patent/WO2010024573A3/ko
Publication of WO2010024573A9 publication Critical patent/WO2010024573A9/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/07All plates on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/12Biaxial compensators

Definitions

  • the present invention relates to an in-plane switching (IPS) mode liquid crystal display device.
  • IPS in-plane switching
  • various polymer films are used for polarizing films, retardation films, plastic substrates, light guide plates, and the like.
  • TN twisted nematic
  • STN super twisted nematic
  • VA vertical alignment
  • IPS in-plane switching
  • Such a retardation film is produced through a method such as longitudinal uniaxial stretching, step biaxial stretching, simultaneous biaxial stretching, and the like after producing various polymer films.
  • the retardation film produced through the stretching process has a positive in-plane retardation value and a negative thickness direction retardation value, and these films can be applied to VA (Vertical Alignment) mode of the liquid crystal mode.
  • an in-plane switching (IPS) mode requires a retardation film having a positive in-plane retardation value and a positive thickness retardation value, but most polymer films have molecules arranged in a stretching direction during stretching. It has a positive in-plane retardation value and a negative thickness direction retardation value.
  • the compensation film for IPS mode uniaxially stretches a cyclic olefin polymer (COP), and then compensates for viewing angle by coating a nematic liquid crystal, which is a + C plate.
  • COP cyclic olefin polymer
  • the birefringence of the liquid crystal is very high, and even if the orientation and coating thickness of the liquid crystal are slightly changed, the phase difference of the entire compensation film is greatly changed, so that the phase difference control is difficult in the case of a thin film.
  • due to the high cost of liquid crystals there is a disadvantage in that it is difficult to be commercialized in general due to an increase in manufacturing cost.
  • An object of the present invention is to improve the viewing angle characteristics of an in-plane switching (IPS) mode liquid crystal display device, in-plane switching including a retardation film capable of appropriately adjusting the surface direction retardation value and the thickness direction retardation value It is to provide a mode liquid crystal display device.
  • IPS in-plane switching
  • a retardation film comprising 1) a first polarizing plate, 2) a liquid crystal cell, 3) a positive biaxial acrylic film and a negative C plate, and 4) an in-plane switching mode liquid crystal comprising a second polarizing plate
  • a display device Provided is a display device.
  • the contrast characteristics can be improved at the front and inclination angles of the liquid crystal display device in the in-plane switching (IPS) mode. Clear picture quality can be achieved.
  • IPS in-plane switching
  • FIG. 1 is a diagram illustrating a basic structure of an IPS mode liquid crystal display device for O-Mode according to the present invention.
  • FIG. 2 is a diagram illustrating a basic structure of an IPS mode liquid crystal display device for an E-Mode according to the present invention.
  • the liquid crystal panel of the present invention may be in O mode or may be in E mode.
  • the liquid crystal panel of the O mode refers to a mode in which the absorption axis direction of the polarizer disposed on the backlight side of the liquid crystal cell and the alignment direction of the liquid crystal cell are parallel to each other.
  • the liquid crystal panel of E mode means the mode in which the absorption axis direction of the polarizer arrange
  • the second polarizing plate 3 in the case of the liquid crystal panel of the O mode, the second polarizing plate 3, the positive biaxial film A and the negative C plate are preferably the observer side of the liquid crystal cell 2.
  • the first polarizing plate 1 is disposed on the backlight side of the liquid crystal cell.
  • the second polarizing plate 3 in the case of the liquid crystal panel of the E mode, it is preferable that the second polarizing plate 3 is disposed on the viewing side of the liquid crystal cell 2, and the first polarizing plate 1, the positive biaxial film (A) and the negative C plate are arranged on the backlight side of the liquid crystal cell 2.
  • the first polarizing plate is disposed on the backlight side of the liquid crystal cell, and the second polarizing plate and the positive biaxial acrylic film and the negative C plate are formed. It is characterized in that the retardation film containing is disposed on the observer side of the liquid crystal cell.
  • the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate are perpendicular, and the optical axis of the liquid crystal in the liquid crystal cell is parallel to the absorption axis of the first polarizing plate, and the positive biaxial axis.
  • the optical axis of the acrylic acrylic film is preferably parallel to the absorption axis of the second polarizing plate, but is not limited thereto.
  • a phase difference film including the first polarizing plate and the positive biaxial acrylic film and a negative C plate is disposed on the backlight side of the liquid crystal cell,
  • the second polarizing plate is characterized in that disposed on the observer side of the liquid crystal cell.
  • the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate are perpendicular, and the optical axis of the liquid crystal in the liquid crystal cell is parallel to the absorption axis of the second polarizing plate, and the positive biaxial
  • the optical axis of the acrylic acrylic film is preferably parallel to the absorption axis of the first polarizing plate, but is not limited thereto.
  • the positive biaxial acrylic film of 3) is prepared by melt extrusion or solution casting using an acrylic polymer, followed by a TD (transverse direction) stretching process. Can be prepared.
  • the stretching process performed during the production of the biaxial acrylic film in the amount of 3) may not only perform TD stretching after longitudinal uniaxial stretching, but may also perform only TD stretching. Since the TD stretching is performed by holding the widths of both films by the grip during the stretching process, the TD stretching may exhibit biaxial stretching characteristics, thereby manufacturing a biaxial stretching film.
  • the TD stretching process is an extension to increase the width of the film by the clip in the stretching section, which can be carried out each of the preheating step, the stretching step and the heat treatment step, it can be carried out continuously.
  • the stretching step in consideration of the glass transition temperature (Tg) of the acrylic non-stretched film, in the temperature range of (Tg-10 ° C) to (Tg + 10 ° C), it is possible to perform the reverse direction of the film direction, that is, TD stretching process Can be.
  • stretching temperature in the said extending process changes with kinds of resin to be used, Usually, 80-250 degreeC, 100-200 degreeC is preferable, and 110-160 degreeC is more preferable.
  • the draw ratio in the stretching step can be set by the expression of the thickness of the unstretched film and the appropriate retardation value, but usually 1.1 to 4 times is preferred.
  • the acrylic polymer preferably includes an acrylic copolymer including an acrylic monomer, an aromatic vinyl monomer, a maleic anhydride monomer, and a vinyl cyan monomer.
  • the acryl-based monomers are meant to include acrylate derivatives as well as acrylates, and should be understood as concepts including alkyl acrylates, alkyl methacrylates, alkyl butacrylates, and the like.
  • examples of the acrylic monomer include a compound represented by Formula 1 below:
  • R 1 , R 2, and R 3 each independently represent a hydrogen or a monovalent hydrocarbon group having 1 to 30 carbon atoms, including or without a hetero atom, and at least one of R 1 , R 2, and R 3 may be an epoxy group; ; R 4 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • acrylic monomer examples include methyl methacrylate (methyl methacrylate), methacrylate (ethyl methacrylate), methacrylate (propyl methacrylate), n - butyl methacrylate (n -butyl methacrylate), t - T -butyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate ), Butoxymethyl methacrylate (butoxymethyl methacrylate), oligomers thereof and the like can be used, but is not limited thereto.
  • the content of the acrylic monomer in the acrylic copolymer is preferably 40 to 99% by weight.
  • the content of the acrylic monomer is less than 40% by weight, the high heat resistance and high transparency of the acrylic polymer may not be sufficiently expressed, and when the content of the acrylic monomer exceeds 99% by weight, there may be a problem that the mechanical strength falls.
  • aromatic vinyl monomer of the acrylic copolymer examples include styrene, ⁇ -methyl styrene, 4-methyl styrene, and the like, but are preferably styrene, but are not limited thereto.
  • the content of the aromatic vinyl monomer in the acrylic copolymer is preferably 1 to 60% by weight.
  • the content of the maleic anhydride monomer in the acrylic copolymer according to the present invention is preferably 5 to 30% by weight.
  • the content of the maleic anhydride-based monomer is more than 30% by weight there may be a problem that the breakage of the film is increased to easily break the film.
  • maleic anhydride monomer of the acrylic copolymer examples include maleic anhydride and the like, and the vinyl cyanic monomer may include acrylonitrile, methacrylonitrile, etaacrylonitrile, and the like. It is not.
  • the content of the vinyl cyan monomer in the acrylic copolymer is preferably 0.1 to 10% by weight.
  • the positive biaxial acrylic film of 3) may further include a rubber component.
  • the positive biaxial film is a refractive index (n x ) in the direction having the largest refractive index in the plane direction of the film, a refractive index (n y ) in the vertical direction in the n x direction in the plane direction of the film, and thickness Meaning that the directional refractive index (n z ) satisfies the relationship nz>nx> ny, respectively.
  • the rubber component is preferably an acrylic rubber, a rubber-acrylic graft core-shell polymer, or a mixture thereof, but is not limited thereto.
  • the acrylic rubber is not particularly limited as long as the acrylic rubber having a refractive index of 1.480 to 1.550 having a similar refractive index with the acrylic resin can be obtained when the refractive index of the acrylic resin and the rubber component is similar.
  • alkyl acrylates such as butyl acrylate and 2-ethylhexyl acrylate, etc. are mentioned.
  • the rubber-acrylic graft core-shell polymer is not particularly limited as long as the rubber-acrylic graft core-shell polymer has a refractive index of 1.480 to 1.550.
  • particles having a size of 50 to 400 nm using a butadiene, butyl acrylate or butyl acrylate-styrene copolymer-based rubber as a core, and polymethyl methacrylate or polystyrene as a shell can be used.
  • the content of the rubber component is preferably 1 to 50 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the acrylic copolymer. If the content of the rubber component is less than 1 part by weight, it may not be possible to express the excellent mechanical strength of the film, the film is brittle, there is a problem in the processing process, there is a problem that the optical performance is not sufficiently expressed. In addition, when the content exceeds 30 parts by weight, there is a problem in that the high heat resistance and high transparency of the acryl-based copolymer are not sufficiently expressed, and processing problems may occur such as haze in the stretching process.
  • the plane direction retardation value represented by the following equation (1) is 60 to 150 nm
  • the thickness direction retardation value represented by the following equation (2) is preferably 100 to 200 nm.
  • n x is a refractive index of the direction of the largest refractive index in the plane direction of the film
  • n y is a refractive index in the vertical direction in the n x direction in the plane direction of the film
  • n z is the refractive index in the thickness direction
  • d is the thickness of the film.
  • the glass transition temperature (Tg) of the positive biaxial acrylic film of said 3) is 100-250 degreeC.
  • the film having a glass transition temperature (Tg) of 100 to 250 ° C. may have excellent durability.
  • the positive biaxial acrylic film of 3) has a surface direction retardation value represented by Equation 1 and a thickness direction retardation value represented by Equation 2 being R th > R in .
  • the positive biaxial acrylic film used in the present invention is R when stretched. Since the value of th / R in is larger than 1, it is necessary to lower the value of R th .
  • the present invention can adjust the R th / R in value of the entire retardation film by introducing a negative C plate to the positive biaxial acrylic film.
  • the negative C plate is a refractive index (n x ) in the direction having the largest refractive index in the plane direction of the film, a refractive index (n y ) in the vertical direction in the n x direction in the plane direction of the film, and a thickness direction refractive index ( n z ) means satisfying the relationship of n x ⁇ n y > n z .
  • the negative C plate has a negative birefringence value in the thickness direction and uses a material having a high birefringence, and prepares a polymer solution of 10 to 30 wt% or less, and then forms a thin film on the positive biaxial acrylic film. It can manufacture by a coating method.
  • the material having a negative retardation value in the thickness direction and having a high birefringence may include a compound including an aromatic ring or a cycloolefin-based polymer in the polymer main chain, and more specific examples thereof include polyarylate and polynorbornene ( polynorbornene, polycarbonate, polysulfone, polyimide, cellulose and derivatives thereof, and the like, but are preferably polyarylate and cellulose derivatives, but are not limited thereto.
  • the polyarylate may include a compound represented by the following Formula 2.
  • n is an integer of 1 or more.
  • the plane retardation value represented by Equation 1 is preferably 0 to 10 nm, more preferably 0 to 5 nm, and most preferably 0 to 3 nm.
  • the thickness direction retardation value represented by the above formula (2) is preferably -40 ⁇ -150nm.
  • the IPS mode liquid crystal display according to the present invention can realize a wider viewing angle characteristic by using a positive biaxial acrylic film and a negative C plate in combination as a retardation film. That is, since the positive biaxial acrylic film is R th / R in > 1 and the thickness direction retardation value is negative C negative plate can be adjusted to R th / R in ⁇ 1, the polarizing plate And light leakage generated in the IPS mode liquid crystal panel can be minimized.
  • the R th / R in value of the 3) acrylic retardation film is more preferable when it is 1.1 to 6.
  • the acrylic retardation film has a positive plane direction retardation value and a positive thickness direction retardation value at the time of stretching, but the ratio of the two values is more easily developed than 1, and the IPS mode liquid crystal display using the IPS mode does not use a viewing angle compensation film. As compared with the mode liquid crystal display, there may be a problem in that there is no light leakage at an inclination angle but a relatively low contrast ratio value.
  • the plane direction retardation value represented by Equation (1) of the total retardation film including 3) the positive biaxial acrylic film and the negative C plate is 60 ⁇ 150nm. It is preferable that it is more preferable that the thickness direction retardation value represented by said Formula (2) is 30-120 nm.
  • the negative C plate has a thickness of 0.5 to 30 ⁇ m, and the thickness of the total retardation film including a positive biaxial acrylic film and a negative C plate is preferably 20 to 100 ⁇ m, but not limited thereto. It doesn't happen.
  • the 3) retardation film may further include a buffer layer between the positive biaxial acrylic film and the negative C plate.
  • the buffer layer may serve to enhance adhesion between the positive biaxial acrylic film and the negative C plate and to suppress solvent erosion to the substrate.
  • the buffer layer may include a compound selected from the group consisting of an acrylate polymer, a methacrylate polymer, and an acrylate / methacrylate copolymer capable of UV curing or heat curing, but is not limited thereto.
  • materials composed of uncured pure polymers are also possible, and examples of these materials include cellulose derivatives, styrene-based and anhydride-based copolymers, and the like.
  • the buffer layer may be formed in a good thickness range of coating processability without eroding the solvent, more specifically, the thickness of the buffer layer may be formed of 0.2 ⁇ 3 ⁇ m.
  • the 3) retardation film may further include an adhesive layer between the positive biaxial acrylic film and the negative C plate.
  • the adhesive layer may be implemented by coating on the negative C plate layer, or may be attached to the acrylic film through transfer.
  • the adhesive layer may be selected from natural rubber, synthetic rubber or elastomer, vinyl chloride / vinyl acetate copolymer, polyvinyl alkyl ether, polyacrylate, modified polyolefin-based compound, and the like, and a compound including a curing agent such as isocyanate. It is not limited.
  • the optical axis of the said positive biaxial acrylic film has the characteristic parallel to the absorption axis of the said 4) 2nd polarizing plate.
  • the optical axis of the positive biaxial acrylic film and the absorption axis of the second polarizing plate are not parallel to each other, light leakage may occur due to light leakage between the first polarizing plate and the second polarizing plate at an inclination angle on the optical path. have.
  • the 1) absorption axis of the first polarizing plate and 4) the absorption axis of the second polarizing plate have a perpendicular characteristic to each other.
  • the 1) first polarizing plate and 4) the second polarizing plate include a polarizing element.
  • the polarizer may be a film made of polyvinyl alcohol (PVA) containing iodine or dichroic dye.
  • PVA polyvinyl alcohol
  • the polarizer may be prepared by dyeing iodine or dichroic dye on a PVA film, but a method of manufacturing the same is not particularly limited.
  • the 1) first polarizing plate and 4) the second polarizing plate may include a protective film on one or both sides of the polarizer.
  • the protective film may include a triacetate cellulose (TAC) film, a polynorbornene-based film made of ring opening metathesis polymerization (ROMP), and a HROMP (ring) obtained by hydrogenating a ring-opened polymerized cyclic olefin-based polymer.
  • TAC triacetate cellulose
  • ROMP ring opening metathesis polymerization
  • HROMP ring obtained by hydrogenating a ring-opened polymerized cyclic olefin-based polymer.
  • opening metathesis polymerization followed by hydrogenation may be a polymer film, a polyester film, or a polynorbornene-based film made by addition polymerization.
  • a film made of a transparent polymer material may be used as the protective film, but is not limited thereto.
  • the 3) retardation film may be disposed between the 4) the second polarizing plate and 2) the liquid crystal cell, and 3) the negative C plate of the retardation film is 2) may be disposed in contact with the liquid crystal cell.
  • FIG. 1 shows the basic structure of an IPS mode liquid crystal display.
  • the IPS mode liquid crystal display device includes a first polarizing plate 1, a second polarizing plate 3, and a liquid crystal cell 2, and an absorption axis of the first polarizing plate 1 and an absorption axis of the second polarizing plate 3 are formed. It is disposed perpendicular to each other, the absorption axis of the second polarizing plate 3 and the optical axis of the positive biaxial acrylic film (A) is arranged in parallel, between the positive biaxial acrylic film (A) and the liquid crystal cell (2)
  • the negative C plate layer is arranged to be located.
  • a buffer layer having no surface direction and thickness direction retardation values may be disposed between the positive biaxial acrylic film A and the negative C plate layer, and may further include an adhesive layer.
  • polyarylate U-100, Unitica Co., Ltd.
  • dichloroethane 7.5 wt%
  • coated on a uniaxially stretched acrylic copolymer film using a bar-coater.
  • the polarizing plates were laminated as in the procedure of FIG. 1, and then laminated on the IPS mode liquid crystal display panel, and contrast ratios were measured at an inclination angle of 60 ° with an Eldim, and the sharpness of image quality was compared.
  • the second polarizing plate was affixed in the same manner in both Examples and Comparative Examples polarized plate laminated in the order of zero retardation TAC (ORT) / PVA / TAC.
  • Comparative Example 1 the first polarizing plate and the second polarizing plate were compared with the polarizing plates laminated in the order of ORT / PVA / TAC.
  • the contrast ratio value is an index indicating the sharpness of the screen.
  • Example 1 Positive biaxial film Negative C Plate Tilt angle 60 ° contrast ratio Rin (nm) Rth (nm) Rth (nm) Thickness ( ⁇ m)
  • Example 1 100 130 -40 1.7 50: 1
  • Example 2 110 150 -60 2.7 70: 1
  • Example 3 120 160 -80 4.0 100: 1
  • Example 4 120 160 -100 6.2
  • Example 5 120 160 -120 10.4 180: 1 Comparative Example 1 120 125 - - 20: 1
  • the inclination angle 60 ° contrast ratio is a contrast ratio value at 45 degrees upward.
  • the contrast ratio values of Examples 1 to 5 according to the present invention are 50 to 180: 1, which is much better than 20: 1, which is the contrast ratio value of Comparative Example 1. Since the contrast ratio value is an indicator for displaying the sharpness of the screen, the liquid crystal display according to the present invention can implement a clearer picture quality.
  • the IPS mode liquid crystal display according to the present invention can improve contrast characteristics at the front and the inclination angles, thereby realizing a clear image quality of the liquid crystal display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명은 면상 스위칭(in-plane switching, IPS) 모드 액정 표시 장치에 관한 것이다. 보다 구체적으로, 본 발명에 따른 IPS 모드 액정 표시 장치는 1) 제1 편광판, 2) 액정 셀, 3) 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트를 포함하는 위상차 필름, 및 4) 제2 편광판을 포함함으로써, IPS 모드의 액정 표시 장치의 정면과 경사각에서 콘트라스트 특성을 향상시킬 수 있다.

Description

면상 스위칭 모드 액정 표시 장치
본 발명은 면상 스위칭(in-plane switching, IPS) 모드 액정 표시 장치에 관한 것이다.
본 출원은 2008년 8월 27일에 한국 특허청에 제출된 한국특허출원 제10-2008-0083830호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
근래 광학 기술의 발전을 발판으로 종래의 브라운관을 대체하는 플라즈마 디스플레이 패널(plasma display panel, PDP), 액정 디스플레이(liquid crystal display, LCD) 등 여러 가지의 방식을 이용한 디스플레이 기술이 제안, 시판되고 있으며, 이러한 디스플레이를 위한 폴리머 소재는 그 요구 특성이 한층 더 고도화되고 있다. 예를 들면, 액정 디스플레이의 경우 박막화, 경량화, 화면 면적의 대형화가 추진되면서 광시야각화, 고콘트라스트화, 시야각에 따른 화상 색조 변화의 억제 및 화면 표시의 균일화가 특히 중요한 문제가 되었다.
이에 따라 편광 필름, 위상차 필름, 플라스틱 기판, 도광판 등에 여러 가지의 폴리머 필름이 사용되고 있다.
근래에는 트위스티드 네메틱(twisted nematic, TN), 슈퍼 트위스티드 네메틱(super twisted nematic, STN), VA(vertical alignment), IPS(in-plane switching) 액정 셀 등을 이용한 다양한 모드의 액정 표시 장치가 개발되고 있다. 이들 액정 셀은 모두 고유한 액정 배열을 하고 있어, 고유한 광학 이방성을 갖고 있으며, 이러한 광학 이방성을 보상하기 위하여 다양한 종류의 폴리머를 연장하여 위상차 기능을 부여한 필름이 제안되어 왔다.
이러한 위상차 필름은 다양한 폴리머 필름을 제조한 후, 세로 1축 연신, 단계 2축 연신, 동시 2축 연신 등의 방법을 통해 제조되고 있다. 연신 공정을 통해 제조된 위상차 필름은 양의 면 내 위상차 값과 음의 두께 방향 위상차 값을 가지며, 이들 필름은 액정 모드 중 VA(Vertical Alignment) 모드에 적용이 가능하다.
특히, 액정 모드 중 IPS(In-Plane Switching) 모드에는 양의 면 내 위상차 값과 양의 두께 방향 위상차 값을 가지는 위상차 필름이 요구되나, 대부분의 폴리머 필름은 연신시 연신 방향으로 분자들이 배열되며, 양의 면 내 위상차 값과 음의 두께 방향 위상차 값을 가지게 된다.
일반적으로 IPS 모드용 보상 필름은 COP(cyclic olefin polymer)를 일축 연신한 다음, +C 플레이트인 네마틱(nematic) 액정을 코팅하여 시야각 보상을 한다. 그러나, 이러한 경우에는 액정의 복굴절이 매우 높아 액정의 배향과 코팅 두께가 조금만 변해도 전체 보상 필름의 위상차가 크게 변해, 박막인 경우 위상차 조절이 어려운 문제점이 있다. 또한, 비싼 액정 단가로 인해 결국 제조원가가 올라가서 일반적으로 상용화되기는 어려운 단점이 있다.
본 발명의 목적은 IPS(in-plane switching) 모드 액정 표시 장치의 시야각 특성을 개선하기 위해, 면 방향 위상차 값 및 두께 방향 위상차 값을 적절하게 조절할 수 있는 위상차 필름을 포함하는 IPS(in-plane switching) 모드 액정 표시 장치를 제공하는 것이다.
이에 본 발명은,
1) 제1 편광판, 2) 액정 셀, 3) 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트를 포함하는 위상차 필름, 및 4) 제2 편광판을 포함하는 IPS(in-plane switching) 모드 액정 표시 장치를 제공한다.
본 발명은 위상차 필름으로서 양의 이축성 아크릴계 필름과 네가티브 C 플레이트를 이용함으로써, IPS(in-plane switching) 모드의 액정 표시 장치의 정면과 경사각에서 콘트라스트 특성을 향상시킬 수 있고, 이에 따라 액정 표시 장치의 선명한 화질을 구현할 수 있다.
도 1은 본 발명에 따른 O-Mode용 IPS 모드 액정 표시 장치의 기본 구조를 나타낸 도이다.
도 2는 본 발명에 따른 E-Mode용 IPS 모드 액정 표시 장치의 기본 구조를 나타낸 도이다.
이하 본 발명에 대해서 자세히 설명한다.
본 발명의 액정 패널은 O 모드일 수 있고, 또는 E 모드일 수 있다. O 모드의 액정 패널이란 액정 셀의 백 라이트 측에 배치되는 편광자의 흡수축 방향과 액정 셀의 배향 방향이 서로 평행인 모드를 말한다. E 모드의 액정 패널이란 액정 셀의 백 라이트 측에 배치되는 편광자의 흡수축 방향과 액정 셀의 배향 방향이 서로 직교한 모드를 말한다.
도면 1(a)를 참고하면, O 모드의 액정 패널의 경우, 바람직한 것은 제 2 편광판(3), 양의 이축성 film(A) 및 네거티브 C 플레이트는 액정 셀(2)의 시인(observer)측에 배치되고, 제 1 편광판(1)은 액정 셀의 백라이트 측에 배치된다. 그림 1(b)를 참조한다면, E 모드의 액정 패널의 경우, 바람직한 것은 제 2 편광판(3)은 액정 셀(2)의 시인측에 배치되고, 제 1 편광판(1), 양의 이축성 film(A) 및 네거티브 C 플레이트는 액정 셀(2)의 백라이트 측에 배치된다.
따라서, 본 발명에 따른 O 모드용 IPS 모드 액정 표시 장치는 상기 제1 편광판이 상기 액정 셀의 백라이트 측에 배치되고, 상기 제2 편광판 및 상기 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트를 포함하는 위상차 필름이 상기 액정 셀의 시인(observer) 측에 배치되는 것을 특징으로 한다.
상기 O 모드용 IPS 모드 액정 표시 장치에서, 상기 제1 편광판의 흡수축과 제2 편광판의 흡수축은 수직이며, 상기 액정 셀 내 액정의 광축은 제1 편광판의 흡수축과 평행하고, 상기 양의 이축성 아크릴계 필름의 광축은 상기 제2 편광판의 흡수축과 평행한 것이 바람직하나, 이에 한정되는 것은 아니다.
또한, 본 발명에 따른 E 모드용 IPS 모드 액정 표시 장치는 상기 제1 편광판 및 상기 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트를 포함하는 위상차 필름이 상기 액정 셀의 백라이트 측에 배치되고, 상기 제2 편광판이 상기 액정 셀의 시인(observer) 측에 배치되는 것을 특징으로 한다.
상기 E 모드용 IPS 모드 액정 표시 장치에서, 상기 제1 편광판의 흡수축과 제2 편광판의 흡수축은 수직이고, 상기 액정 셀 내 액정의 광축은 제 2 편광판의 흡수축과 평행하며, 상기 양의 이축성 아크릴계 필름의 광축은 상기 제 1 편광판의 흡수축과 평행한 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에 따른 IPS 모드 액정 표시 장치에 있어서, 상기 3)의 양의 이축성 아크릴계 필름은 아크릴계 고분자를 이용하여 용융 압출법 또는 용액 캐스팅법으로 필름을 제조한 후, TD(transverse direction) 연신 공정을 수행하여 제조될 수 있다.
상기 3)의 양의 이축성 아크릴계 필름 제조시 수행되는 연신 공정은 세로 1축 연신 후 TD 연신을 수행할 수 있을 뿐만 아니라, TD 연신만을 수행할 수도 있다. 상기 TD 연신은 연신 공정시 양쪽 필름의 폭을 그립으로 잡고 연신되므로, 이축성 연신 특성을 나타낼 수 있고, 이에 따라 이축성 연신 필름을 제조할 수 있다.
보다 구체적으로, 상기 TD 연신 공정은 연신 구간에서 클립에 의해 필름의 폭을 늘리는 연장이며, 이는 예열 단계, 연신 단계 및 열처리 단계를 각각 수행할 수 있고, 이들을 연속하여 수행할 수 있다. 연신 단계에서는 아크릴계 무연신 필름의 유리 전이 온도(Tg)를 고려하여, (Tg - 10℃) ~ (Tg + 10℃)의 온도범위에서, 필름의 진행 방향의 역방향, 즉 TD 연신 공정을 수행할 수 있다. 상기 연신 공정에서의 연신 온도는 이용하는 수지의 종류에 따라서 다르지만, 보통 80 ~ 250℃, 바람직한 것은 100 ~ 200℃, 더욱 바람직한 것은 110 ~ 160℃ 이다. 연신 단계에서의 연신 배율은 무연신 필름의 두께 및 적절한 위상차 값의 발현에 의해 설정될 수 있지만, 통상 1.1 ~ 4배가 바람직하다.
상기 아크릴계 고분자는 아크릴계 단량체, 방향족 비닐 단량체, 무수 말레산계 단량체 및 비닐시안계 단량체를 포함하는 아크릴계 공중합체를 포함하는 것이 바람직하다.
본 명세서에 기재되는 아크릴계 단량체는 아크릴레이트 뿐만 아니라 아크릴레이트 유도체를 포함하는 것을 의미하는 것으로서, 알킬아크릴레이트, 알킬메타크릴레이트, 알킬부타크릴레이트 등을 포함하는 개념으로 이해되어야 한다. 예컨대, 상기 아크릴계 단량체의 예로는 하기 화학식 1로 표시되는 화합물이 포함된다:
[화학식 1]
Figure PCTKR2009004731-appb-I000001
상기 화학식 1에서,
R1, R2 및 R3은 각각 독립적으로 수소, 또는 헤테로 원자를 포함하거나 포함하지 않는 탄소수 1 내지 30의 1가 탄화수소기를 나타내고, R1, R2 및 R3 중 적어도 하나는 에폭시기일 수 있으며; R4는 수소 원자 또는 탄소수 1 내지 6의 알킬기를 나타낸다.
구체적으로, 상기 아크릴계 단량체로는 메틸 메타크릴레이트(methyl methacrylate), 에틸 메타크릴레이트(ethyl methacrylate), 프로필 메타크릴레이트(propyl methacrylate), n-부틸 메타크릴레이트(n-butyl methacrylate), t-부틸 메타크릴레이트(t-butyl methacrylate), 시클로헥실 메타크릴레이트(cyclohexyl methacrylate), 벤질 메타크릴레이트(benzyl methacrylate), 메톡시에틸 메타크릴레이트(methoxyethyl methacrylate), 에톡시에틸 메타크릴레이트(ethoxyethyl methacrylate), 부톡시메틸 메타크릴레이트(butoxymethyl methacrylate), 이들의 올리고머 등을 사용할 수 있으나, 이에만 한정되는 것은 아니다.
상기 아크릴계 공중합체 내 아크릴계 단량체의 함량은 40 ~ 99 중량%인 것이 바람직하다. 상기 아크릴계 단량체의 함량이 40 중량% 미만인 경우에는 아크릴계 고분자가 본래 가지는 고내열성, 고투명성이 충분히 발현되지 않을 수 있고, 99 중량%를 초과하는 경우에는 기계적 강도가 떨어지는 문제가 있을 수 있다.
상기 아크릴계 공중합체의 방향족 비닐 단량체로는 스티렌, α-메틸 스티렌, 4-메틸 스티렌 등을 들 수 있고, 스티렌인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 아크릴계 공중합체 내 방향족 비닐 단량체의 함량은 1 ~ 60 중량%인 것이 바람직하다.
본 발명에 따른 아크릴계 공중합체 내 무수말레산계 단량체의 함량은 5 ~ 30 중량%인 것이 바람직하다. 상기 무수 말레산계 단량체의 함량이 30 중량%를 초과하는 경우에는 필름의 부서짐성이 증가하여 필름이 쉽게 파단되는 문제점이 있을 수 있다.
상기 아크릴계 공중합체의 무수 말레산계 단량체로는 무수 말레산 등을 들 수 있고, 상기 비닐시안계 단량체로는 아크릴로니트릴, 메타아크릴로니트릴, 에타아크릴로니트릴 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 아크릴계 공중합체 내 비닐시안계 단량체의 함량은 0.1 ~ 10 중량%인 것이 바람직하다.
상기 3)의 양의 이축성 아크릴계 필름은 고무 성분을 추가로 포함할 수 있다.
본 발명에 있어서, 양의 이축성 필름이란, 필름의 면 방향에 있어서 가장 굴절율이 큰 방향의 굴절율(nx), 필름의 면 방향에 있어서 nx 방향의 수직 방향의 굴절율(ny), 두께 방향 굴절율(nz)이 각각 nz>nx>ny인 관계를 만족시키는 것을 의미한다.
상기 고무 성분은 아크릴 고무, 고무-아크릴계 그래프트형 코어-쉘 폴리머, 또는 이들의 혼합물인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 아크릴 고무는 아크릴계 수지와 고무 성분의 굴절율이 유사한 경우에는 투명성이 우수한 열가소성 수지 조성물을 얻을 수 있기 때문에 아크릴계 수지와 굴절율이 유사한 1.480 ~ 1.550인 아크릴 고무라면 특별히 한정되지 않는다. 예를 들면, 부틸 아크릴레이트, 2-에틸헥실 아크릴레이트와 같은 알킬 아크릴레이트 등을 들 수 있다. 상기 고무-아크릴계 그래프트형 코어-쉘 폴리머는 굴절율이 1.480 ~ 1.550인 고무-아크릴계 그래프트형 코어-쉘 폴리머라면 특별히 한정되지 않는다. 예를 들면, 부타디엔, 부틸 아크릴레이트 또는 부틸 아크릴레이트-스티렌 공중합체 기반의 고무를 코어로 하고, 폴리 메틸 메타크릴레이트 또는 폴리스티렌을 쉘로 하는 크기 50 ~ 400nm의 입자 등을 사용할 수 있다.
상기 고무 성분의 함량은 아크릴계 공중합체 100 중량부에 대해 1 ~ 50 중량부인 것이 바람직하며, 10 ~ 30 중량부인 것이 더욱 바람직하다. 상기 고무 성분의 함량이 1 중량부 미만인 경우에는 필름의 우수한 기계적 강도의 발현이 불가능할 수 있고, 필름이 부서지기 쉬워서 가공 공정상의 문제점이 발생하며, 광학 성능이 충분히 발현되지 못하게 되는 문제가 있다. 또한, 상기 함량이 30 중량부를 초과하는 경우에는 아크릴계 공중합체가 본래 가지는 고내열성, 고투명성이 충분히 발현되지 못하는 문제가 있으며, 연신 공정에서 헤이즈가 발생하는 등 가공상의 문제가 발생할 수 있다.
상기 3)의 양의 이축성 아크릴계 필름에 있어서, 하기 수학식 1로 표시되는 면 방향 위상차 값은 60 ~ 150nm 이고, 하기 수학식 2로 표시되는 두께 방향 위상차 값은 100 ~ 200nm 인 것이 바람직하다.
[수학식 1]
Rin = (nx - ny) × d
[수학식 2]
Rth = (nz - ny) × d
상기 수학식 1 및 수학식 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
상기 3)의 양의 이축성 아크릴계 필름의 유리 전이 온도(Tg)는 100 ~ 250℃인 것이 바람직하다. 상기 유리 전이 온도(Tg)가 100 ~ 250℃인 필름은 우수한 내구성을 가질 수 있다.
또한, 상기 3)의 양의 이축성 아크릴계 필름은 상기 수학식 1로 표시되는 면 방향 위상차 값과 상기 수학식 2로 표시되는 두께 방향 위상차 값이 Rth > Rin인 것이 바람직하다.
본 발명에 따른 IPS 모드 액정 표시 장치에 있어서, 편광판의 암 상태에서 투과되는 빛을 최소화 시켜주기 위해서 양의 두께 방향 위상차 값이 필요하고, 본 발명에 사용되는 양의 이축성 아크릴계 필름은 연신시 Rth/Rin 의 값이 1 보다 크기 때문에, Rth 값을 저하시킬 필요가 있다.
이에 본 발명은 양의 이축성 아크릴계 필름에 네가티브(negative) C 플레이트를 도입하여 전체 위상차 필름의 Rth/Rin 값을 조정할 수 있다.
본 발명에 있어서 네가티브 C 플레이트란, 필름의 면 방향에 있어서 가장 굴절율이 큰 방향의 굴절율(nx), 필름의 면 방향에 있어서 nx 방향의 수직 방향의 굴절율(ny), 두께 방향 굴절율(nz)이 nx ≒ ny > nz인 관계를 만족시키는 것을 의미한다.
상기 네가티브(negative) C 플레이트는 두께 방향으로 음의 위상차 값을 가지고 높은 복굴절을 가지는 물질을 이용하고, 10 ~ 30 중량% 이하의 고분자 용액을 제조한 후, 상기 양의 이축성 아크릴계 필름에 박막으로 코팅하는 방법에 의하여 제조할 수 있다. 상기 두께 방향으로 음의 위상차 값을 가지고 높은 복굴절을 가지는 물질로는 고분자 주쇄에 방향족 고리 또는 시클로올레핀계를 포함하는 화합물을 들 수 있고, 보다 구체적인 예로는 폴리아릴레이트(polyarylate), 폴리노보넨(polynorbornene), 폴리카보네이트(polycarbonate), 폴리설폰(polysulfone), 폴리이미드(polyimide), 셀룰로오즈 및 그 유도체 등을 들 수 있으며, 폴리아릴레이트 및 셀룰로오즈 유도체인 것이 바람직하나, 이에만 한정되는 것은 아니다.
특히, 상기 폴리아릴레이트는 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
[화학식 2]
Figure PCTKR2009004731-appb-I000002
상기 화학식 2에서, n은 1 이상의 정수이다.
상기 네가티브(negative) C 플레이트는 상기 수학식 1로 표시되는 면 방향 위상차 값이 0 ~ 10 nm인 것이 바람직하고, 0 ~ 5nm인 것이 더욱 바람직하며, 0 ~ 3 nm인 것이 가장 바람직하다. 또한, 상기 수학식 2로 표시되는 두께 방향 위상차 값이 -40 ~ -150nm 인 것이 바람직하다.
본 발명에 따른 IPS 모드 액정 표시 장치는, 위상차 필름으로서 양의 이축성 아크릴계 필름과 네가티브(negative) C 플레이트를 조합하여 사용함으로써, 보다 넓은 시야각 특성을 구현할 수 있다. 즉, 상기 양의 이축성 아크릴계 필름은 Rth/Rin > 1 이고, 두께 방향 위상차 값이 음의 값을 갖는 네가티브(negative) C 플레이트에 의해 Rth/Rin < 1로 조절할 수 있으므로, 편광판과 IPS 모드 액정 패널에서 발생되는 빛 누설을 최소화시킬 수 있다.
특히, 본 발명에 따른 IPS 모드 액정 표시 장치에 있어서, 상기 3) 아크릴계 위상차 필름의 Rth/Rin 값은 1.1 ~ 6일 때 더욱 바람직하다.
아크릴계 위상차 필름은 연신시 양의 면 방향 위상차 값과 양의 두께 방향 위상차 값을 가지나, 두 값의 비율이 1보다 크게 발달되기 쉬워, 이를 사용한 IPS 모드 액정 표시 장치는 시야각 보상 필름이 사용되지 않은 IPS 모드 액정 표시 장치와 대비하였을 때, 경사각에서의 빛 누설은 없으나 비교적 낮은 콘트라스트 비 값을 나타내는 문제점이 있을 수 있다.
본 발명에 따른 IPS 모드 액정 표시 장치에 있어서, 상기 3) 양의 이축성 아크릴계 필름과 네가티브(negative) C 플레이트를 포함하는 전체 위상차 필름의 상기 수학식 1로 표시되는 면 방향 위상차 값은 60 ~ 150nm인 것이 바람직하고, 상기 수학식 2로 표시되는 두께 방향 위상차 값은 30 ~ 120nm 인 것이 더욱 바람직하다.
상기 네가티브(negative) C 플레이트의 두께는 0.5 ~ 30㎛ 이고, 양의 이축성 아크릴계 필름과 네가티브(negative) C 플레이트를 포함하는 전체 위상차 필름의 두께는 20 ~ 100㎛ 인 것이 바람직하나, 이에만 한정되는 것은 아니다.
본 발명에 따른 IPS 모드 액정 표시 장치에 있어서, 상기 3) 위상차 필름은 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트 사이에 버퍼층을 추가로 포함할 수 있다.
상기 버퍼층은 양의 이축성 아크릴계 필름과 네가티브(negative) C 플레이트 간의 접착력을 향상시키고, 기재에 대한 용제 침식을 억제하는 역할을 할 수 있다. 상기 버퍼층은 UV 경화 또는 열 경화가 가능한 아크릴레이트 중합체, 메타크릴레이트 중합체, 및 아크릴레이트/메타크릴레이트 공중합체로 이루어진 군에서 선택되는 화합물을 포함할 수 있으나, 이에만 한정되는 것은 아니다. 또한, 경화되지 않는 순수 고분자로 구성된 물질도 가능하며, 이들 물질로는 셀룰로오즈 유도체, 스타이렌계, 무수물계 및 이들을 포함한 공중합체 등을 예로 들 수 있다.
상기 버퍼층은 용매가 침식되지 않으면서 코팅 가공성이 좋은 두께 범위에서 형성될 수 있으며, 좀더 구체적으로 버퍼층의 두께는 0.2 ~ 3㎛로 형성될 수 있다.
또한, 상기 3) 위상차 필름은 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트 사이에 접착층을 추가로 포함할 수 있다.
상기 접착층은 네가티브 C 플레이트 층 위에 코팅을 통해 구현할 수 있고, 전사를 통해 아크릴계 필름에 붙일 수도 있다. 상기 접착층은 천연고무, 합성고무 또는 엘라스토머, 염화비닐/초산비닐 공중합체, 폴리비닐알킬에테르, 폴리아크릴레이트, 변성 폴리올레핀계 화합물 등과 여기에 이소시아네이트 등의 경화제가 포함된 화합물에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 양의 이축성 아크릴계 필름의 광축은 상기 4) 제2 편광판의 흡수축과 평행인 특성을 갖는다. 상기 양의 이축성 아크릴계 필름의 광축과 상기 4) 제2 편광판의 흡수축이 서로 평행하지 않은 경우에는 광 경로상 경사각에서의 제1 편광판 및 제2 편광판 사이의 광 누설에 의한 빛샘 현상이 발생할 수 있다.
본 발명에 따른 IPS 모드 액정 표시 장치에 있어서, 상기 1) 제1 편광판의 흡수축과 4) 제2 편광판의 흡수축은 서로 수직인 특성을 갖는다.
상기 1) 제1 편광판 및 4) 제2 편광판은 편광소자를 포함한다. 상기 편광소자는 요오드 또는 이색성 염료를 포함하는 폴리비닐알콜(PVA)로 이루어진 필름을 사용할 수 있다. 상기 편광소자는 PVA 필름에 요오드 또는 이색성 염료를 염착시켜서 제조될 수 있으나, 이의 제조방법은 특별히 한정되지 않는다.
상기 1) 제1 편광판 및 4) 제2 편광판은 편광소자의 어느 한 면 또는 양면에 보호필름을 포함할 수 있다.
상기 보호 필름으로는 트리아세테이트 셀룰로오스(TAC) 필름, 개환 상호교환 중합(ring opening metathesis polymerization; ROMP)으로 제조된 폴리노보넨계 필름, 개환 중합된 고리형 올레핀계 중합체를 다시 수소 첨가하여 얻어진 HROMP(ring opening metathesis polymerization followed by hydrogenation) 중합체 필름, 폴리에스터 필름, 또는 부가중합(addition polymerization)으로 제조된 폴리노보넨계 필름 등일 수 있다. 이외에도 투명한 고분자 재료로 제조된 필름이 보호 필름으로 사용될 수 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 따른 IPS 모드 액정 표시 장치에 있어서, 상기 3) 위상차 필름은 상기 4) 제2 편광판 및 2) 액정 셀 사이에 배치될 수 있고, 상기 3) 위상차 필름의 네가티브(negative) C 플레이트는 상기 2) 액정 셀에 접하도록 배치될 수 있다.
이하에서는 도면을 참고하여 본 발명에 대해서 더욱 상세히 설명하기로 한다.
도 1에 IPS 모드 액정 표시 장치의 기본 구조를 나타내었다.
IPS 모드 액정 표시 장치는 제1 편광판(1), 제2 편광판(3), 및 액정 셀(2)로 구성되고, 제1 편광판(1)의 흡수축과 제2 편광판(3)의 흡수축이 서로 수직으로 배치되며, 제2 편광판(3)의 흡수축과 양의 이축성 아크릴계 필름(A)의 광축이 평행하게 배치되고, 양의 이축성 아크릴계 필름(A)과 액정 셀(2) 사이에 네가티브(negative) C 플레이트 층이 위치하도록 배치된다. 양의 이축성 아크릴계 필름(A)과 네가티브 C 플레이트 층 사이에는 면 방향 및 두께 방향 위상차 값이 없는 버퍼층이 배치될 수도 있으며, 접착층을 더 포함할 수도 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<실시예 1 ~ 5>
실시예 1 ~ 5에서 사용된 IPS 모드 액정 표시 장치는 2.9 ㎛의 셀 갭, 프리틸트 각은 3°, 유전율 이방성 △ε = 7, 복굴절 △n = 0.1인 액정으로 채워진 IPS 액정 셀로 구성하였다.
양의 이축성 아크릴계 필름으로서, 성분 함량비(중량%)가 메틸메타크릴레이트:스티렌:무수말레산:아크릴로니트릴(MMA:SM:MAH:AN) = 65:24:10:1이며, 압출기 직경이 60Φ, L/D = 32인 압출기로 두께 약 200 ㎛의 필름을 제막하였다. 제막된 필름을 120℃에서 TD 연신기로 250 ~ 350% 연신 후 면 방향 위상차 값(Rin)이 90 ~ 130 nm, 두께 방향 위상차 값(Rth)이 130 ~ 160 nm인 연신 필름을 제조하였다.
네가티브 C 플레이트로는 폴리아릴레이트(Unitica 사, U-100)를 7.5 wt%로 디클로로에탄(dichloroethane)에 용해하였고, 일축 연신된 아크릴계 공중합체 필름 위에 바-코터(bar-coater)를 이용하여 코팅하고, 80℃ 컨벡션 오븐(convection oven)에서 3분간 건조하였다.
각 위상차 값의 조합별로 도 1의 순서와 같이 편광판을 합지하고, IPS 모드 액정 표시 장치 패널에 합지 후, 엘딤(Eldim)으로 경사각 60°에서의 콘트라스트 비를 측정하여, 화질의 선명도를 비교하였다. 제2 편광판은 실시예 및 비교예에서 모두 동일하게 ORT(zero retardation TAC)/PVA/TAC 순으로 합지된 편광판을 부착하였다.
<비교예 1>
비교예 1은 제1 편광판 및 제2 편광판 모두 ORT/PVA/TAC순으로 합지된 편광판을 부착하여 비교하였다.
콘트라스트 비 값은 화면의 선명도를 표시하는 지표로서 콘트라스트 비 값이 클수록 선명한 화질 구현이 가능하다. 따라서, 본 발명에서는 경사각 60°에서의 콘트라스트 특성을 이용하여 화질의 선명도를 비교하였다.
실시예 1 ~ 5 및 비교예 1의 실험결과 값은 하기 표 1에 나타내었다.
표 1
양의 이축성 필름 네가티브 C 플레이트 경사각 60°콘트라스트비
Rin (nm) Rth (nm) Rth (nm) 두께 (㎛)
실시예 1 100 130 -40 1.7 50:1
실시예 2 110 150 -60 2.7 70:1
실시예 3 120 160 -80 4.0 100:1
실시예 4 120 160 -100 6.2 140:1
실시예 5 120 160 -120 10.4 180:1
비교예 1 120 125 - - 20:1
상기 경사각 60° 콘트라스트 비는 상방 45도에서의 콘트라스트 비 값이다.
상기 표 1의 결과로부터, 본 발명에 따른 실시예 1 ~ 5의 콘트라스트 비 값은 50~180:1로서, 비교예 1의 콘트라스트 비 값인 20:1 보다 매우 우수한 값을 가짐을 알 수 있다. 상기 콘트라스트 비 값은 화면의 선명도를 표시하는 지표이므로, 본 발명에 따른 액정 표시 장치는 보다 선명한 화질을 구현할 수 있다.
본 발명에 따른 IPS 모드 액정 표시 장치는, 정면과 경사각에서 콘트라스트 특성을 향상시킬 수 있고, 이에 따라 액정 표시 장치의 선명한 화질을 구현할 수 있다.

Claims (22)

1) 제1 편광판, 2) 액정 셀, 3) 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트를 포함하는 위상차 필름, 및 4) 제2 편광판을 포함하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 제1 편광판은 상기 액정 셀의 백라이트 측에 배치되고, 상기 제2 편광판 및 상기 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트를 포함하는 위상차 필름은 상기 액정 셀의 시인(observer) 측에 배치되는 것을 특징으로 하는, IPS(in-plane switching) 모드 액정 표시 장치.
청구항 2에 있어서, 상기 제1 편광판의 흡수축과 제2 편광판의 흡수축은 수직이고, 상기 액정 셀 내 액정의 광축은 제1 편광판의 흡수축과 평행하며, 상기 양의 이축성 아크릴계 필름의 광축은 상기 제2 편광판의 흡수축과 평행한 것을 특징으로 하는, IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 제1 편광판 및 상기 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트를 포함하는 위상차 필름은 상기 액정 셀의 백라이트 측에 배치되고, 상기 제2 편광판은 상기 액정 셀의 시인(observer) 측에 배치되는 것을 특징으로 하는, IPS(in-plane switching) 모드 액정 표시 장치.
청구항 4에 있어서, 상기 제1 편광판의 흡수축과 제2 편광판의 흡수축은 수직이고, 상기 액정 셀 내 액정의 광축은 제 2 편광판의 흡수축과 평행하며, 상기 양의 이축성 아크릴계 필름의 광축은 상기 제 1 편광판의 흡수축과 평행한 것을 특징으로 하는, IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3)의 양의 이축성 아크릴계 필름은 아크릴계 고분자를 이용하여 용융 압출법 또는 용액 캐스팅법으로 필름을 제조한 후, TD(transverse direction) 연신 공정을 수행하여 제조되는 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3)의 양의 이축성 아크릴계 필름은 아크릴계 단량체, 방향족 비닐 단량체, 무수 말레산계 단량체 및 비닐시안계 단량체를 포함하는 아크릴계 공중합체를 포함하는 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3)의 양의 이축성 아크릴계 필름은 고무 성분을 포함하는 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3)의 양의 이축성 아크릴계 필름은 하기 수학식 1로 표시되는 면 방향 위상차 값이 60 ~ 150nm 이고, 하기 수학식 2로 표시되는 두께 방향 위상차 값이 100 ~ 200nm 인 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치:
[수학식 1]
Rin = (nx - ny) × d
[수학식 2]
Rth = (nz - ny) × d
상기 수학식 1 및 수학식 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
청구항 1에 있어서, 상기 3)의 양의 이축성 아크릴계 필름은 하기 수학식 1로 표시되는 면 방향 위상차 값과 하기 수학식 2로 표시되는 두께 방향 위상차 값이 Rth > Rin인 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치:
[수학식 1]
Rin = (nx - ny) × d
[수학식 2]
Rth = (nz - ny) × d
상기 수학식 1 및 수학식 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
청구항 1에 있어서, 상기 3)의 네가티브(negative) C 플레이트는 폴리아릴레이트(polyarylate), 폴리노보넨(polynorbornene), 폴리카보네이트(polycarbonate), 폴리설폰(polysulfone), 및 폴리이미드(polyimide), 셀룰로오스 및 그 유도체로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3)의 네가티브(negative) C 플레이트는 하기 수학식 1로 표시되는 면 방향 위상차 값이 0 ~ 10 nm 이고, 하기 수학식 2로 표시되는 두께 방향 위상차 값이 -40 ~ -150 nm 인 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치:
[수학식 1]
Rin = (nx - ny) × d
[수학식 2]
Rth = (nz - ny) × d
상기 수학식 1 및 수학식 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
청구항 1에 있어서, 상기 3)의 네가티브(negative) C 플레이트의 두께는 1 ~ 30 ㎛ 인 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3) 위상차 필름의 두께는 20 ~ 100 ㎛ 인 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3) 양의 이축성 아크릴계 필름과 네가티브(negative) C 플레이트를 포함하는 전체 위상차 필름은 하기 수학식 1로 표시되는 면 방향 위상차 값이 60 ~ 150 nm 이고, 하기 수학식 2로 표시되는 두께 방향 위상차 값이 30 ~ 120 nm 인 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치:
[수학식 1]
Rin = (nx - ny) × d
[수학식 2]
Rth = (nz - ny) × d
상기 수학식 1 및 수학식 2에서,
nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,
ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,
nz는 두께 방향의 굴절율이고,
d는 필름의 두께이다.
청구항 1에 있어서, 상기 3) 위상차 필름의 Rth/Rin 값은 1.1 ~ 6 인 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3) 위상차 필름은 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트 사이에 버퍼층을 추가로 포함하는 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3) 위상차 필름은 양의 이축성 아크릴계 필름 및 네가티브(negative) C 플레이트 사이에 접착층을 추가로 포함하는 것을 특징으로 하는, IPS(in-plane switching) 모드 액정 표시 장치.
청구항 18에 있어서, 상기 접착층은 상기 네가티브 C 플레이트 층 위에 코팅되거나 아크릴계 필름에 전사되는 것을 특징으로 하는, IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 3) 위상차 필름은 상기 4) 제2 편광판 및 2) 액정 셀 사이에 배치되고, 상기 3) 위상차 필름의 네가티브(negative) C 플레이트는 상기 2) 액정 셀에 접하도록 배치되는 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 4) 제2 편광판은 편광 소자를 포함하고, 상기 편광 소자와 상기 양의 이축성 아크릴계 필름 사이에 보호 필름을 추가로 포함하는 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
청구항 1에 있어서, 상기 2) 액정 셀은 양의 유전율 이방성(△ε > 0)을 갖는 액정을 포함하고, 수평 배향되는 것을 특징으로 하는 IPS(in-plane switching) 모드 액정 표시 장치.
PCT/KR2009/004731 2008-08-27 2009-08-25 면상 스위칭 모드 액정 표시 장치 WO2010024573A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011524897A JP5376473B2 (ja) 2008-08-27 2009-08-25 面内スイッチングモードの液晶表示装置
CN2009801334435A CN102132199B (zh) 2008-08-27 2009-08-25 面内转换模式液晶显示器
EP09810178A EP2322980B1 (en) 2008-08-27 2009-08-25 In-plane switching mode liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0083830 2008-08-27
KR1020080083830A KR101197162B1 (ko) 2008-08-27 2008-08-27 면상 스위칭 모드 액정 표시 장치

Publications (3)

Publication Number Publication Date
WO2010024573A2 true WO2010024573A2 (ko) 2010-03-04
WO2010024573A3 WO2010024573A3 (ko) 2010-07-08
WO2010024573A9 WO2010024573A9 (ko) 2010-09-10

Family

ID=41722097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004731 WO2010024573A2 (ko) 2008-08-27 2009-08-25 면상 스위칭 모드 액정 표시 장치

Country Status (7)

Country Link
US (1) US8243239B2 (ko)
EP (1) EP2322980B1 (ko)
JP (1) JP5376473B2 (ko)
KR (1) KR101197162B1 (ko)
CN (1) CN102132199B (ko)
TW (1) TWI395018B (ko)
WO (1) WO2010024573A2 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314480B1 (ko) * 2008-12-26 2013-10-07 주식회사 엘지화학 면상 스위치 모드 lcd용 편광판 및 이를 포함하는 면상 스위치 모드 lcd
TWI498207B (zh) * 2010-07-12 2015-09-01 Dexerials Corp Manufacturing method of mother board, manufacturing method of alignment film, manufacturing method of phase difference plate, and manufacturing method of display device
JP5576238B2 (ja) * 2010-10-25 2014-08-20 京セラディスプレイ株式会社 液晶表示装置
KR101304591B1 (ko) * 2011-07-06 2013-09-05 주식회사 엘지화학 위상차 필름, 이의 제조방법, 및 이를 포함하는 액정 표시 장치
US9315412B2 (en) * 2011-07-07 2016-04-19 Corning Incorporated Surface flaw modification for strengthening of glass articles
CN102636920A (zh) * 2011-07-19 2012-08-15 京东方科技集团股份有限公司 一种硬屏液晶显示的装置和实现方法及其应用
TWI516537B (zh) * 2011-10-04 2016-01-11 Lg化學股份有限公司 樹脂組成物及使用其形成之光學補償膜
KR101418755B1 (ko) 2011-10-05 2014-07-11 주식회사 엘지화학 광학 필름용 수지 조성물 및 이를 이용한 보상필름
CN102681248A (zh) * 2012-05-10 2012-09-19 京东方科技集团股份有限公司 液晶显示器
TWI530717B (zh) 2012-12-17 2016-04-21 第一毛織股份有限公司 偏振板及其製備方法和包括它的液晶顯示器
KR102078021B1 (ko) * 2012-12-31 2020-02-17 엘지디스플레이 주식회사 편광판과 그 제조 방법 및 이를 포함하는 액정표시장치
KR102101794B1 (ko) 2013-07-17 2020-04-20 삼성디스플레이 주식회사 액정 표시 장치
KR101640970B1 (ko) * 2013-09-30 2016-07-19 주식회사 엘지화학 위상차 필름 및 그 제조 방법
KR101708967B1 (ko) * 2013-09-30 2017-02-21 주식회사 엘지화학 위상차 필름 및 그 제조 방법
KR101727361B1 (ko) * 2014-05-21 2017-04-14 주식회사 엘지화학 위상차 필름 및 그 제조 방법
KR101725592B1 (ko) * 2014-08-14 2017-04-10 주식회사 엘지화학 위상차 필름 및 그 제조 방법
KR101724797B1 (ko) * 2014-08-14 2017-04-07 주식회사 엘지화학 위상차 필름 및 그 제조 방법
KR101725593B1 (ko) * 2014-08-14 2017-04-10 주식회사 엘지화학 위상차 필름 및 그 제조 방법
KR101725591B1 (ko) * 2014-08-14 2017-04-10 주식회사 엘지화학 위상차 필름 및 그 제조 방법
KR101725590B1 (ko) * 2014-08-14 2017-04-10 주식회사 엘지화학 위상차 필름 및 그 제조 방법
JP2017198774A (ja) * 2016-04-26 2017-11-02 スタンレー電気株式会社 液晶表示装置
CN106154639B (zh) 2016-09-29 2020-01-10 厦门天马微电子有限公司 一种液晶显示面板及液晶显示装置
KR102134948B1 (ko) * 2017-12-21 2020-07-16 주식회사 엘지화학 광학 필름 및 이를 포함하는 편광판
EP3805852A4 (en) * 2018-06-01 2021-07-21 Lg Chem, Ltd. LIQUID CRYSTAL DISPLAY DEVICE
KR102143271B1 (ko) * 2018-06-05 2020-08-10 주식회사 엘지화학 적층체 및 이를 포함하는 액정 표시 장치
KR102625542B1 (ko) * 2018-11-20 2024-01-15 엘지디스플레이 주식회사 전계발광 표시장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100223601B1 (ko) * 1997-05-29 1999-10-15 윤종용 액정 표시 장치
TWI242083B (en) * 2003-08-11 2005-10-21 Sony Corp Liquid crystal display device
KR100601916B1 (ko) * 2003-11-21 2006-07-14 주식회사 엘지화학 양의 이축성 위상차 필름을 이용한 시야각 보상필름을포함하는 면상 스위칭 액정 표시장치
KR100601920B1 (ko) * 2004-01-09 2006-07-14 주식회사 엘지화학 음의 이축성 위상차 필름과 +c-플레이트를 이용한 시야각보상필름을 포함하는 면상 스위칭 액정 표시장치
US7400371B2 (en) * 2004-02-03 2008-07-15 Sumitomo Chemical Company, Limited Liquid crystal display having particular retardation plate
JP2005321528A (ja) * 2004-05-07 2005-11-17 Fuji Photo Film Co Ltd 液晶表示装置
JP3851919B2 (ja) * 2004-12-20 2006-11-29 日東電工株式会社 液晶パネルおよび液晶表示装置
JP3883134B2 (ja) * 2005-01-25 2007-02-21 日東電工株式会社 液晶表示装置
WO2006085454A1 (ja) * 2005-02-08 2006-08-17 Nippon Oil Corporation ホメオトロピック配向液晶フィルム、それを用いた光学フィルムおよび画像表示装置
US7605895B2 (en) * 2005-06-14 2009-10-20 Lg Chem, Ltd. IPS mode liquid crystal display using two sheets of biaxial negative retardation film and a plate
US7671945B2 (en) * 2005-09-30 2010-03-02 Teledyne Scientific & Imaging, Llc UV curable alignment material for fabrication of monolithic compensators for liquid crystal displays
JP2007279127A (ja) * 2006-04-03 2007-10-25 Nitto Denko Corp 液晶パネル、液晶テレビ、および液晶表示装置
US7751006B2 (en) * 2006-09-29 2010-07-06 Dai Nippon Printing Co., Ltd. Optical element, liquid crystal display device member with the optical element, liquid crystal display device with the liquid crystal display device member, method of producing the optical element and method of evaluating birefringence functional layer
KR100964786B1 (ko) * 2006-10-23 2010-06-21 주식회사 엘지화학 광학필름, 위상차 필름, 및 이들을 포함하는 액정 표시장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2322980A4

Also Published As

Publication number Publication date
JP5376473B2 (ja) 2013-12-25
TWI395018B (zh) 2013-05-01
US20100053508A1 (en) 2010-03-04
EP2322980B1 (en) 2012-12-26
CN102132199A (zh) 2011-07-20
TW201015160A (en) 2010-04-16
EP2322980A4 (en) 2011-08-24
WO2010024573A9 (ko) 2010-09-10
CN102132199B (zh) 2013-11-13
WO2010024573A3 (ko) 2010-07-08
EP2322980A2 (en) 2011-05-18
JP2012501464A (ja) 2012-01-19
KR101197162B1 (ko) 2012-11-09
KR20100025171A (ko) 2010-03-09
US8243239B2 (en) 2012-08-14

Similar Documents

Publication Publication Date Title
WO2010024573A2 (ko) 면상 스위칭 모드 액정 표시 장치
WO2010095870A2 (ko) 아크릴계 수지 조성물 및 이를 포함하는 광학 필름
WO2009134098A2 (ko) 광학 필름 및 이를 포함하는 정보전자 장치
WO2009134097A2 (ko) 수지 조성물 및 이를 이용하여 형성된 광학 필름
WO2010079920A2 (ko) 광학 필름 및 이를 포함하는 액정 표시 장치
WO2009088239A2 (ko) 광학 필름 및 이를 포함하는 정보전자 장치
WO2015012483A1 (ko) 반사 방지용 편광판 및 이를 포함하는 화상표시장치
WO2010151065A2 (ko) 위상차 필름, 이의 제조방법, 및 이를 포함하는 액정 표시 장치
WO2012002634A1 (en) Acryl-based copolymers and optical film including the same
WO2013005964A2 (ko) 위상차 필름, 이의 제조방법, 및 이를 포함하는 액정 표시 장치
WO2009088237A2 (ko) 투명한 수지 조성물
WO2010098594A2 (en) Optical compensation film with hybrid arrangement of nematic liquid crystals consisting of connected mesogens with an angle and the method of manufacturing the same
KR20070113749A (ko) 투명성 및 내열성이 우수한 광학 이방성 필름 및 이를포함하는 액정 디스플레이 장치
KR20090029537A (ko) 내열성이 우수한 광학 이방성 필름 및 이를 포함하는 액정디스플레이 장치
WO2010062133A2 (ko) 위상차 필름 및 이를 포함하는 액정 표시 장치
WO2019168345A1 (ko) 시야각 보상필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
KR20080004720A (ko) 내열성이 우수한 광학 이방성 필름 제조방법 및 그에 의해제조된 필름, 및 그 필름을 포함하는 액정 디스플레이 장치
KR101188755B1 (ko) 면상 스위칭 모드 액정 표시 장치
KR20100081918A (ko) 위상차 필름 및 이를 포함하는 액정 표시 장치
US9670352B2 (en) Retardation film and a liquid-crystal display device comprising the same
WO2018080018A1 (ko) 액정표시장치용 광원측 편광판 및 이를 포함하는 액정표시장치
WO2020159138A1 (ko) 시야각 보상필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2012165918A2 (ko) 광학 필름용 수지 조성물 및 이를 이용한 광학 필름
KR101211602B1 (ko) 평면내-스위칭(ips) 모드 액정표시장치용 위상차보상필름 및 이를 구비한 평면내-스위칭(ips) 모드액정표시장치
GB2272779A (en) Optically anisotropic element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133443.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810178

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009810178

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011524897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE