WO2010024221A1 - 血管新生抑制剤のスクリーニング方法、及び血管新生抑制シグナル遺伝子のスクリーニング方法 - Google Patents

血管新生抑制剤のスクリーニング方法、及び血管新生抑制シグナル遺伝子のスクリーニング方法 Download PDF

Info

Publication number
WO2010024221A1
WO2010024221A1 PCT/JP2009/064733 JP2009064733W WO2010024221A1 WO 2010024221 A1 WO2010024221 A1 WO 2010024221A1 JP 2009064733 W JP2009064733 W JP 2009064733W WO 2010024221 A1 WO2010024221 A1 WO 2010024221A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorylation
screening
gene
angiogenesis
vascular endothelial
Prior art date
Application number
PCT/JP2009/064733
Other languages
English (en)
French (fr)
Inventor
七里 眞義
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Priority to JP2010526698A priority Critical patent/JP5414072B2/ja
Priority to US13/060,753 priority patent/US20110151485A1/en
Priority to EP09809872A priority patent/EP2333546A4/en
Publication of WO2010024221A1 publication Critical patent/WO2010024221A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5064Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a method for screening an angiogenesis inhibitor and a method for screening an angiogenesis inhibitory signal gene.
  • Angiogenesis is a phenomenon in which new blood vessels are formed from existing blood vessels, and their onset and progress in inflammatory diseases such as malignant (solid) tumors, diabetic retinopathy, age-related macular degeneration, rheumatoid arthritis, etc. It is known to be deeply involved in For example, in order for a solid tumor to grow, it is essential to secure a way of supplying nutrients and oxygen and removing waste products by angiogenesis. In addition, angiogenesis is an important step in the sense of securing the path in metastasis, which is an important problem in cancer treatment. Regarding diabetic retinopathy and age-related macular degeneration, angiogenesis itself is a pathological condition, and if left untreated, it leads to blindness. Therefore, suppression of angiogenesis is thought to lead to the prevention and treatment of both diseases, and the development of such preventive and therapeutic agents is underway.
  • angiogenesis is observed in various lesions and promotes the development of each disease state. Therefore, suppression of this angiogenesis has attracted attention from the viewpoint of prevention and treatment of these disease states, and substances that inhibit angiogenesis. Research has been conducted to search for. As a result, many angiogenesis-inhibiting substances have been developed at present, and some of them are being examined for clinical effectiveness.
  • anti-angiogenic factors such as endostatin and angiostatin are regarded as the most useful tumor dormancy therapy drugs, and even if solid administration of a test animal is remarkably regressed (non-patent document 1) and repeated administration is performed, Since it does not exhibit drug resistance like that of anticancer agents (Non-patent Document 2), it has been pointed out that it may be an ideal anticancer agent with few side effects.
  • Non-patent Document 2 Non-patent Document 2
  • angiostatin having a molecular weight of 50,000 is clinically
  • Endostatin suppresses the proliferation of vascular endothelial cells and induces apoptosis in low serum culture (Non-patent Document 3), but its degree is slight. Tumor cells not only have gene mutations but also increase their ability to proliferate not only through gene expression regulation, but also actively produce and secrete many growth factors and angiogenesis-promoting factors to promote their own growth as autocrine / paracrine In addition, because the newly born blood vessels supply abundant blood flow, the effect of regressing the primary and metastatic lesions of cancer can be explained only by suppressing the proliferation of such minor vascular endothelial cells. It was difficult to do. In order to suppress tumor angiogenesis as currently reported, endostatin must elicit strong cellular signals that act specifically on endothelial cells, even under these circumstances.
  • Patent Document 1 discloses an expression suppression signal of various genes caused by endostatin. According to this expression suppression signal, administration of endostatin at a concentration exhibiting a tumor regression effect in experimental animals revealed various early response genes expressed in cultured vascular endothelial cells stimulated with serum, growth factors, and angiogenic factors. Expression of genes related to cell cycle / cell migration is remarkably suppressed.
  • Patent Document 1 discloses a method for screening an angiogenesis inhibitory factor by detecting that endostatin suppresses the expression of various angiogenesis-related genes. Since it is necessary to accurately quantify and detect the decrease in the expression level, it takes a relatively long time, and it is unsuitable for efficient screening of various compounds. Similarly, in order to detect a gene whose expression is suppressed by endostatin, a screening method capable of easily detecting the signal in a short time has been demanded.
  • the present invention has been made in view of the above problems, and elucidates an upstream signal transduction pathway of an angiogenesis-related gene expression-inhibiting action, and uses this to provide a conventional screening method within a short time. It is an object of the present invention to provide a screening method for an angiogenesis inhibitor capable of causing the same action as that described above, and a screening method for an angiogenesis inhibitor gene.
  • the present inventors when endostatin is administered to vascular endothelial cells, phosphorylation of a specific protein is caused, and the expression of various genes involved in angiogenesis is suppressed through this phosphorylation, And, by detecting phosphorylation of this specific protein, it was found that an angiogenesis inhibitory signal can be detected by a simple method within a short time, and the present invention has been completed. Specifically, the present invention provides the following.
  • a method for screening an angiogenesis inhibitor comprising: a cell retention step to detect, and a signal detection step to detect phosphorylation of a protein phosphorylated by administering endostatin.
  • angiogenesis inhibitors are screened by detecting phosphorylation of a protein that is phosphorylated by administering endostatin. Protein phosphorylation occurs within a short period of time after administration of a candidate compound for an angiogenesis inhibitor to vascular endothelial cells or cultured cells derived therefrom. For this reason, even if it is a case where it screens about various candidate compounds, it can screen efficiently.
  • angiogenesis inhibitor according to (1) wherein the protein that is phosphorylated by administering endostatin is a double-stranded RNA-dependent protein kinase PKR and / or a eukaryotic translation initiation factor eIF2 ⁇ . Screening method.
  • the invention described in (2) is a method for screening an angiogenesis inhibitor, which specifies a protein that is a target for detecting phosphorylation that occurs by administering endostatin. These proteins are phosphorylated by the administration of an anti-angiogenic agent, and an anti-angiogenic signal is thought to be transmitted. Therefore, by making these proteins phosphorylation detection targets, an anti-angiogenic agent is highly accurate. ⁇ Can be screened with accuracy.
  • a candidate compound administration step in which a candidate compound for an angiogenesis inhibitor is administered to vascular endothelial cells or cultured cells derived therefrom, and the vascular endothelial cells to which the candidate compounds have been administered or cultured cells derived therefrom are retained.
  • the invention described in (3) it is not limited to a protein that is phosphorylated by administering endostatin, and is a double-stranded RNA that is expected to be phosphorylated by administration of another angiogenesis inhibitory factor.
  • a protein that is phosphorylated by administering endostatin and is a double-stranded RNA that is expected to be phosphorylated by administration of another angiogenesis inhibitory factor.
  • phosphorylation of Thr451 of human double-stranded RNA-dependent protein kinase PKR or the amino acid residue of double-stranded RNA-dependent protein kinase PKR corresponding thereto, and / or human eukaryote The method for screening an angiogenesis inhibitor according to (2) or (3), wherein phosphorylation of Ser51 of translation initiation factor eIF2 ⁇ or a corresponding amino acid residue of eukaryotic translation initiation factor eIF2 ⁇ is detected.
  • corresponding amino acid residue of double-stranded RNA-dependent protein kinase PKR refers to another organism having homology with human double-stranded RNA-dependent protein kinase PKR and having the same function as this.
  • corresponding amino acid residue of eukaryotic translation initiation factor eIF2 ⁇ is a eukaryotic organism of another organism having homology with human eukaryotic translation initiation factor eIF2 ⁇ and having the same function.
  • translation initiation factor eIF2 ⁇ it refers to an amino acid residue serving as a phosphorylation site corresponding to Ser51.
  • human double-stranded RNA-dependent protein kinase PKR and “human eukaryotic translation initiation factor eIF2 ⁇ ” are respectively double-stranded RNA-dependent protein kinase PKR and eukaryote in humans. Refers to translation initiation factor eIF2 ⁇ .
  • the invention described in (4) is a method for screening an angiogenesis inhibitor, which specifies an amino acid residue of a protein to be detected for phosphorylation caused by administering an angiogenesis inhibitor such as endostatin. It is. Since the amino acid residues of these proteins are phosphorylated by the administration of an angiogenesis inhibitor and an angiogenesis inhibitory signal is thought to be transmitted, the amino acid residues of these proteins are subject to phosphorylation detection. An angiogenesis inhibitor can be screened with high accuracy and accuracy.
  • the vascular endothelial cell or the cultured cell derived therefrom is at least one selected from the group consisting of capillary-derived endothelial cells, large blood vessels / umbilical vein endothelial cells, and retinal blood vessel-derived endothelial cells (1) (4) The method for screening an angiogenesis inhibitor according to any one of (4).
  • the invention described in (5) limits the types of cells used in the screening method for angiogenesis inhibitors. Since these cells are easy to obtain and handle and have high sensitivity to endostatin, it is possible to easily detect phosphorylation of a specific protein associated with an angiogenesis inhibitory signal, and a method for screening an angiogenesis inhibitor Can be performed efficiently.
  • an immunoblotting method using a phosphorylation specific antibody a 32 P autoradiography method, an immunostaining method using a phosphorylation specific antibody, a gel shift method, and a specific antibody and phosphorylation
  • the method for screening an angiogenesis inhibitor according to any one of (1) to (5), wherein phosphorylation of the protein is detected using at least one selected from the group consisting of immunoprecipitation methods using specific antibodies.
  • the “specific antibody” refers to an antibody that can specifically bind to a specific protein to be detected in the signal detection step regardless of phosphorylation / non-phosphorylation.
  • a “specific antibody” refers to an antibody that can specifically bind to the specific protein phosphorylated.
  • the invention described in (6) defines a specific method for detecting phosphorylation of a specific protein in a screening method for an angiogenesis inhibitor. Since these methods can detect protein phosphorylation efficiently and with high accuracy and accuracy, screening methods for angiogenesis inhibitors can be detected efficiently and with high accuracy and accuracy.
  • angiogenesis inhibitory signal gene is a gene encoding endostatin and a downstream factor of angiogenesis inhibitory factor having homology thereto, and endostatin and angiogenesis inhibitory factor having homology thereto.
  • an expression level changing step of changing the expression level of a candidate gene for an angiogenesis inhibitory signal gene, and the vascular endothelial cell or A cell holding step for holding cultured cells derived therefrom, and a signal detection step for detecting protein phosphorylation, wherein the protein for which phosphorylation is detected in the signal detection step is dependent on double-stranded RNA A method for screening an angiogenesis inhibitor that is sex protein kinase PKR and / or eukaryotic translation initiation factor eIF2 ⁇ .
  • the vascular endothelial cell or cultured cell derived therefrom is at least one selected from the group consisting of capillary-derived endothelial cells, large blood vessels / umbilical vein-derived endothelial cells, and retinal vascular-derived endothelial cells (7)
  • the screening method for an angiogenesis inhibitory signal gene according to any one of (11) to (11)
  • an immunoblotting method using a phosphorylation-specific antibody In the signal detection step, an immunoblotting method using a phosphorylation-specific antibody, a 32 P autoradiography method, an immunostaining method using a phosphorylation-specific antibody, a gel shift method, and a specific antibody and phosphorylation
  • the invention described in (7) to (13) is based on the invention described in (1) to (6) as an invention of a method for screening an angiogenesis inhibitory signal gene. Therefore, according to the invention described in (7) to (13), the same effect as that of the invention described in (1) to (6) can be obtained.
  • an angiogenesis suppression signal that can occur in the signal detection step is detected by overexpression or suppression of expression of a candidate gene for an angiogenesis suppression signal gene in the expression level changing step.
  • a gene having a function of promoting an angiogenesis-inhibiting signal or a gene having a function of suppressing can be screened.
  • an angiogenesis inhibitor is screened by detecting phosphorylation of a protein that is phosphorylated by administering endostatin. Even when screening is performed, screening can be performed efficiently.
  • angiogenesis inhibitor of the present invention it is not limited to a protein that is phosphorylated by administering endostatin, but is expected to be phosphorylated by administration of another angiogenesis inhibitor. Screening for angiogenesis inhibitors by detecting phosphorylation of the double-stranded RNA-dependent protein kinase PKR and / or eukaryotic translation initiation factor eIF2 ⁇ . It can be carried out.
  • an angiogenesis inhibitory signal gene of the present invention by detecting phosphorylation of a protein that is phosphorylated by administering endostatin, an angiogenesis inhibitory signal gene is screened. Even when screening is performed for various candidate genes, screening can be performed efficiently.
  • angiogenesis inhibitor of the present invention it is not limited to a protein that is phosphorylated by administering endostatin, but is expected to be phosphorylated by administration of another angiogenesis inhibitor. Screening for angiogenesis inhibitors by detecting phosphorylation of the double-stranded RNA-dependent protein kinase PKR and / or eukaryotic translation initiation factor eIF2 ⁇ . It can be carried out.
  • the method for screening an angiogenesis inhibitor of the present invention comprises a candidate compound administration step in which a candidate compound for an angiogenesis inhibitor is administered to vascular endothelial cells or cultured cells derived therefrom, and the vascular endothelial cells to which the candidate compound is administered. Or it has the cell holding process which hold
  • the screening method for an angiogenesis inhibitor of the present invention includes a candidate compound administration step of administering a candidate compound for an angiogenesis inhibitor to vascular endothelial cells or cultured cells derived therefrom, and the blood vessel to which the candidate compound is administered.
  • the angiogenesis inhibitor candidate compound is administered to vascular endothelial cells or cultured cells derived therefrom.
  • Candidate compounds may be administered alone or in combination of two or more.
  • the candidate compound is not particularly limited, and may be a low molecular compound or a high molecular compound.
  • the low molecular weight compound include a large number of compounds produced in the process of drug discovery, and these compounds can be used as a compound library of angiogenesis inhibitors for screening for angiogenesis inhibitors.
  • the polymer compound include proteins.
  • a secretory protein library obtained by expressing a specific cDNA in cells highly relevant to the inhibition of angiogenesis, and the inhibition of angiogenesis.
  • a library of secreted proteins having the property of increasing the expression level in response to a specific signal related to the expression can be used for screening an angiogenesis inhibitor.
  • angiogenesis inhibitor when a use as an angiogenesis inhibitor is found, it is preferable to use a low molecular compound from the viewpoint of easy mass synthesis and administration to a patient.
  • vascular endothelial cells or cultured cells derived therefrom The vascular endothelial cells or cultured cells derived therefrom that can be used for screening for angiogenesis inhibitors are not particularly limited, and any may be used. Specifically, human vascular endothelial cells or cultured cells derived therefrom, skin capillary-derived endothelial cells, umbilical vein endothelial cells, vascular endothelial cells isolated from tumor tissue, and retinal vascular endothelial cells, and derived from these Cell lines derived from mouse; vascular endothelial cells derived from mouse or cultured cells derived therefrom, kidney-derived vascular endothelial cell lines, lymph node-derived endothelial cell lines, islet-derived vascular endothelial cell lines, and ES cell-derived vascular endothelial cells; rat blood vessels Endothelial cells or cultured cells derived therefrom can be used pulmonary artery-derived primary cultured endothelial cells or
  • the administration method for administering the candidate compound is not particularly limited, and conventionally known methods can be employed. Specifically, a solution in which a candidate compound is dissolved may be added to a culture solution for culturing vascular endothelial cells or cultured cells derived therefrom, and the cells may be continuously retained in the presence of the candidate compound. Then, a relatively high concentration of the candidate compound may be added to the culture solution, and the culture solution to which the candidate substance has been added may be removed within a short time. These administration methods may be appropriately selected depending on the assumed properties of the compound intended to be obtained by the screening method for angiogenesis inhibitors.
  • Cell retention process In the cell holding step, vascular endothelial cells to which the candidate compound is administered or cultured cells derived therefrom are held. By holding the cells that have received the candidate compound, the expected angiogenesis-inhibiting signal is signaled, resulting in phosphorylation of proteins phosphorylated by endostatin administration and double-stranded RNA-dependent proteins The phosphorylation of the kinase PKR and / or the eukaryotic translation initiation factor eIF2 ⁇ can be promoted, and the detection sensitivity of the phosphorylated protein in the signal detection step described later can be improved.
  • the conditions for holding the cells are not particularly limited, and normal conditions for culturing the cells may be used. Specifically, it can be maintained under conditions of 33 ° C. or more and 38 ° C. or less in the presence of 2% or more and 17% or less of carbon dioxide.
  • the medium for holding can be appropriately selected depending on the type of cells to be used, and examples thereof include DMEM medium, MEM medium, RPMI medium, and HAM medium.
  • the cell holding time is preferably 1 minute or more and 8 hours or less, more preferably 3 minutes or more and 6 hours or less, and further preferably 10 minutes or more and 60 minutes or less. . If it is less than 1 minute, the phosphorylation of the target protein in the cell may not proceed sufficiently, and the sensitivity of the signal detected in the signal detection step may be reduced. If the time exceeds 8 hours, the time required for the screening method for the angiogenesis inhibitor may be prolonged, which may reduce the efficiency of the screening, and may be caused by desensitization of receptors and other factors. This is not preferable because the degree of phosphorylation of the protein may decrease.
  • Signal detection process In the signal detection step, phosphorylation of a protein that is phosphorylated by administering endostatin is detected. By passing through the signal detection step, among the candidate compounds for angiogenesis inhibitors, compounds that cause angiogenesis inhibition signals can be identified.
  • phosphorylation of double-stranded RNA-dependent protein kinase PKR and / or eukaryotic translation initiation factor eIF2 ⁇ is detected without being limited to proteins phosphorylated by administering endostatin. To do.
  • PKR RNA-dependent protein kinase
  • eIF2 ⁇ eukaryotic translation initiation factor
  • activation of an angiogenesis inhibitory signal is detected by detecting phosphorylation of a protein that is phosphorylated by administering endostatin.
  • the protein phosphorylated by administration of endostatin is not particularly limited, and any angiogenesis inhibitory signal factor involved in the regulation of angiogenesis-related gene expression should be used downstream of endostatin. Can do.
  • angiogenesis-inhibiting signal factor examples include a double-stranded RNA-dependent protein kinase PKR and / or a eukaryotic translation initiation factor eIF2 ⁇ .
  • amino acid residues corresponding to the respective phosphorylation sites in human proteins can be mentioned.
  • Thr451 is preferable, and among the phosphorylation sites ⁇ in the eukaryotic translation initiation factor eIF2, Ser51 is preferable.
  • Angiogenesis inhibitors can be screened with high accuracy and accuracy by detecting phosphorylation of an angiogenesis inhibitory signal factor at such phosphorylation sites.
  • the signal detection step is not limited to proteins phosphorylated by endostatin, but also by detecting phosphorylation of double-stranded RNA-dependent protein kinase PKR and / or eukaryotic translation initiation factor eIF2 ⁇ . Activation of the neoplastic signal can be detected.
  • angiogenesis inhibitors can be screened with high accuracy and accuracy.
  • Thr451 is preferable among the phosphorylation sites in the double-stranded RNA-dependent protein kinase PKR, and Ser51 is preferable among the phosphorylation sites in the eukaryotic translation initiation factor eIF2 ⁇ .
  • the method of looking at the change in the expression level of various genes involved in angiogenesis has many non-specific changes and often gives erroneous results.
  • the present inventors pay attention to the change in the phosphorylation amount of the protein amount as an index reflecting the specific change in the expression level of these genes, and are phosphorylated using the “phosphorylated antibody microarray” technology. Proteins were exhaustively searched and the degree of phosphorylation of phosphorylated proteins was examined. By using the “phosphorylated antibody microarray” technology, it is possible to accurately capture changes in the amount of important phosphorylated proteins involved in angiogenesis.
  • RNA-dependent protein kinase PKR and / or eukaryotic translation initiation factor eIF2 ⁇ are phosphorylated
  • the present inventors have found that the expression of genes related to angiogenesis is also suppressed in human vascular endothelial cells.
  • rifampicin, endostatin, angiostatin, etc. can be mentioned as an angiogenesis inhibitor which raise
  • the inventor of the present invention increases the amount of mRNA encoding the double-stranded RNA-dependent protein kinase PKR by inhibiting the angiogenesis signal generated by endostatin and the like. , Has the effect of increasing the expression level of PKR. For this reason, when detecting the phosphorylation of PKR in the signal detection step, not only the phosphorylation of PKR is enhanced by the angiogenesis suppression signal, but also the amount of PKR protein to be phosphorylated itself is increased. Therefore, phosphorylated PKR can be easily detected in the signal detection step.
  • the method for detecting phosphorylation in the above protein phosphorylated by administration of endostatin, double-stranded RNA-dependent protein kinase PKR and phosphorylation of eukaryotic translation initiation factor eIF2 is not particularly limited.
  • a method for detecting protein phosphorylation a conventionally known method can be employed. Specifically, immunoblotting method using phosphorylation specific antibody, 32 P autoradiography method, immunostaining method using phosphorylation specific antibody, gel shift method, and specific antibody and phosphorylation specific antibody The immunoprecipitation method using can be mentioned. Among these, the immunoblotting method and the immunostaining method are particularly preferable because of the ease of operation and the ease of detection.
  • the above detection method is preferably performed by a conventionally known method.
  • a candidate compound is administered, a whole cell extract of cells retained under the above conditions is obtained, denatured in the presence of a surfactant as necessary, and then subjected to protein electrophoresis.
  • the transferred protein is transferred to a protein adsorption membrane such as a nylon membrane.
  • Phosphorylated PKR can be detected by allowing an anti-phosphorylated PKR antibody to act as a primary antibody on this protein adsorption membrane.
  • ⁇ - 32 P-ATP is administered to cells and then a candidate compound is administered to produce phosphorylated PKR labeled with 32 P in the cells. Thereafter, this cell is subjected to protein electrophoresis and transfer to a protein adsorption membrane by a method similar to the immunoblotting method, and phosphorylated PKR labeled with 32 P is detected by adsorption onto the protein adsorption membrane.
  • cells treated with a candidate compound are fixed with formaldehyde or the like, treated with a surfactant as necessary, and then anti-phosphorylated PKR antibody is treated with a primary antibody.
  • phosphorylated PKR can be detected under a microscope by allowing a fluorescently labeled antibody against the primary antibody to act on the cell as a secondary antibody.
  • PKR protein adsorption membrane
  • a protein adsorption membrane such as a nylon membrane.
  • PKR can be detected by allowing an anti-PKR antibody to act as a primary antibody on this protein adsorption membrane. By detecting PKR, the shift of the phosphorylated protein band can be visualized, so that protein phosphorylation can be detected.
  • the protein contained in the whole cell extract obtained from the cells to which the candidate compound has been administered is expressed as a specific antibody or phosphorylation specific. React with antibody. Thereafter, the precipitated reaction product is subjected to protein electrophoresis and transfer to a protein adsorption membrane, and the phosphorylated protein can be detected by allowing the phosphorylated specific antibody or the specific antibody to act as a primary antibody.
  • an angiogenesis inhibitor of the present invention phosphorylation of a protein phosphorylated by administration of endostatin, double-stranded RNA-dependent protein kinase PKR and / or eukaryotic translation initiation factor eIF2 Is detected, and an angiogenesis inhibitor is screened.
  • the target protein is phosphorylated in a short time after the candidate compound for angiogenesis inhibitor is administered to vascular endothelial cells or cultured cells derived therefrom. For this reason, even if it is a case where it screens about various candidate compounds, it can screen efficiently.
  • the method for screening an angiogenesis inhibitory signal gene of the present invention includes an expression level changing step for changing an expression level of a candidate gene for an angiogenesis inhibitory signal gene in a vascular endothelial cell or a cultured cell derived therefrom, and expression of the candidate gene A cell holding step for holding the vascular endothelial cells or the cultured cells derived therefrom, the amount of which is changed, and a signal detection step for detecting phosphorylation of a protein phosphorylated by administering endostatin.
  • the screening method for an angiogenesis inhibitory signal gene of the present invention includes an expression level changing step for changing an expression level of a candidate gene for an angiogenesis inhibitory signal gene in a vascular endothelial cell or a cultured cell derived therefrom, and the candidate gene
  • a cell holding step for holding the vascular endothelial cells or the cultured cells derived from the vascular endothelial cells, the expression level of which is changed, and a signal detection step for detecting protein phosphorylation.
  • the protein to be detected is also a double-stranded RNA-dependent protein kinase PKR and / or a eukaryotic translation initiation factor eIF2 ⁇ .
  • the expression level of an angiogenesis suppression signal gene candidate gene is changed.
  • the candidate gene whose expression level is changed is an angiogenesis inhibitory signal gene that encodes a factor that promotes / suppresses angiogenesis inhibition signal
  • the angiogenesis inhibition signal is enhanced and phosphorylated by administration of endostatin Phosphorylation of protein, double-stranded RNA-dependent protein kinase PKR, and / or eukaryotic translation initiation factor eIF2 ⁇ is promoted.
  • phosphorylation of proteins phosphorylated by administration of endostatin, double-stranded RNA-dependent protein kinase PKR, and / or eukaryotic translation initiation factor eIF2 ⁇ in a state where the expression level of the candidate gene is changed Can be screened for an angiogenesis inhibitory signal gene.
  • the gene expressed in the vascular endothelial cell can be mentioned.
  • Such a gene can be obtained in the form of a library as a cDNA library in various vascular endothelial cells.
  • a method for producing a cDNA library in vascular endothelial cells a conventionally known method can be used. For example, mRNA is extracted from vascular endothelial cells, converted into cDNA by using reverse transcriptase, and then if necessary.
  • An example is a method in which a restriction enzyme treatment is performed and introduced into a predetermined vector.
  • the expression level changing step may be an overexpression step of overexpressing an angiogenesis suppression signal gene candidate gene.
  • the expression level changing step is an overexpression step and the angiogenesis inhibitory signal gene screening method of the present invention is performed, the resulting angiogenesis inhibitory signal gene is a gene having an action of enhancing an angiogenesis inhibitory signal. It is.
  • a technique for overexpressing a candidate gene for an angiogenesis inhibitory signal gene in vascular endothelial cells or cultured cells derived therefrom is not particularly limited, and a conventionally known technique can be employed. Specifically, a method of introducing a candidate gene into a vector such as a plasmid, a cosmid, and a virus and then transfecting the gene into a cell can be mentioned.
  • the expression level changing step may be an expression suppression step of suppressing the expression of a candidate gene for an angiogenesis suppression signal gene.
  • the expression level changing step is an expression suppression step and the angiogenesis inhibitory signal gene screening method of the present invention is performed, the resulting angiogenesis inhibitory signal gene is a gene having an action of suppressing an angiogenesis inhibitory signal. It is.
  • a method for suppressing the expression of a candidate gene for an angiogenesis inhibitory signal gene in a vascular endothelial cell or a cultured cell derived therefrom is not particularly limited, and examples thereof include an RNA interference method.
  • angiogenesis inhibitory signal gene is screened by detecting phosphorylation of a protein that is phosphorylated by administering endostatin.
  • the target protein is phosphorylated in a short time after changing the expression level of the angiogenesis inhibitory signal gene in vascular endothelial cells or cultured cells derived therefrom. For this reason, even when screening for various candidate genes, screening can be performed efficiently.
  • the method is not limited to phosphorylation of a protein that is phosphorylated by administering endostatin, but is phosphorylated by administration of another angiogenesis inhibitor.
  • a protein that is phosphorylated by administering endostatin but is phosphorylated by administration of another angiogenesis inhibitor.
  • PKR double-stranded RNA-dependent protein kinase
  • eIF2 ⁇ eukaryotic translation initiation factor
  • Rifampicin is known to have endostatin-like angiogenesis-inhibiting effects, and endostatin is administered to vascular endothelial cells by searching for proteins that are phosphorylated by administering rifampicin to vascular endothelial cells. It is considered that a candidate protein for a protein phosphorylated by can be obtained.
  • FIG. 1 shows the results of the protein in which phosphorylation is particularly enhanced by administration of rifampicin and the amount of the enhancement.
  • FIG. 1 indicates that phosphorylation of various proteins including Bad, eIF2 ⁇ , and PKR1 is enhanced by treating rat aorta-derived endothelial cells with rifampicin.
  • Example 2 In antibody microarray technology, it is known that false positives are generated by blocking the interaction between an epitope and an antibody accompanying the cross-reaction of antibodies or the formation of a protein complex. The plurality of proteins confirmed to be phosphorylated in Example 1 were quantitatively subjected to Western blotting to confirm the fact that these phosphorylations were enhanced.
  • Rat aorta-derived endothelial cells were maintained at 37 ° C. for 10 minutes in the presence or absence of 40 ⁇ g / ml rifampicin in DMEM medium supplemented with 10% fetal bovine serum, then ATF2, eIF2 ⁇ , PKC ⁇ , STAT1, and The amount of phosphorylated protein in the whole cell extract was examined by quantitative western blotting using an anti-phosphoprotein antibody against STAT5A. The results are shown in FIG.
  • FIG. 2 shows that among the proteins whose phosphorylation was enhanced in the antibody microarray of Test Example 1, at least ATF2, eIF2 ⁇ , PKC ⁇ , and STAT5A were also detected by quantitative Western blotting. It can be seen that phosphorylation is enhanced. On the other hand, for STAT1, the quantitative Western blotting method did not show an increase in phosphorylation, and it was found that the results of the antibody microarray of Test Example 1 for STAT1 were not reproducible.
  • hREC Human retinal vascular endothelial cells
  • hUVEC human umbilical vein endothelial cells
  • 40 ⁇ g / ml rifampicin or 1.0 ⁇ 10 ⁇ 9 M endostatin in 10% fetal calf serum / growth factor-added HamF12K medium And maintained at 37 ° C. for 10 to 240 minutes.
  • the whole cell extract after holding was subjected to Western blotting using an anti-phosphorylated PKR antibody, and the change with time in phosphorylation of PKR was examined. The results are shown in FIG.
  • mouse aorta-derived endothelial cells were treated with salubrinal (20 ⁇ M); systems treated with rifampicin (40 ⁇ g / ml); systems treated with endostatin (1.0 ⁇ 10 ⁇ 9 M); System treated with PKR inhibitor A (2-aminopurine, 10 mM) followed by endostatin (1.0 ⁇ 10 ⁇ 9 M); PKR inhibitor B (8- (imidazol-4-ylmethylene) -6H— Azolidino [5,4-g] benzodiazol-7-one, 0.3 ⁇ M) followed by rifampicin (40 ⁇ g / ml); and after treatment with PKR inhibitor B (same as above, 0.3 ⁇ M)
  • the treated cells were kept at 37 ° C. for 4 hours or 8 hours.
  • Each whole cell extract was subjected to Western blotting using an anti-phosphorylated
  • PKR was found to be phosphorylated in human retinal vascular endothelial cells and human umbilical vein endothelial cells by treatment with rifampicin or endostatin. Therefore, it can be seen that phosphorylation of PKR by rifampicin treatment confirmed in Test Example 1 is specific. As shown in FIG. 3 (a), PKR was found to be phosphorylated in human retinal vascular endothelial cells and human umbilical vein endothelial cells by treatment with rifampicin or endostatin. Therefore, it can be seen that phosphorylation of PKR by rifampicin treatment confirmed in Test Example 1 is specific. As shown in FIG.
  • ⁇ Test Example 4 Human umbilical vein endothelial cells were treated with 40 ⁇ g / ml rifampicin or 1.0 ⁇ 10 ⁇ 9 M endostatin in HamF12K medium and kept at 37 ° C. for 30 minutes. The retained cells were subjected to immunostaining using an anti-phosphorylated PKR antibody as a primary antibody, and the presence of phosphorylated PKR in the cells was examined.
  • FIG. 4 shows that when human umbilical vein endothelial cells are treated with rifampicin or endostatin, phosphorylation of PKR is enhanced in the cells. This phosphorylation of PKR was not observed when human umbilical vein endothelial cells previously treated with specific PKR inhibitors were treated with rifampicin or endostatin.
  • ⁇ Test Example 5 Human umbilical vein endothelial cells were treated with 40 ⁇ g / ml rifampicin or 1.0 ⁇ 10 ⁇ 8 M endostatin in HamF12K medium and kept at 37 ° C. for 4-8 hours. After the retention, the whole cell extract was subjected to real-time quantitative RT-PCR using a TaqMan probe to quantify PKR mRNA. Similar procedures were performed on human umbilical vein endothelial cells transfected with PKR siRNA prior to treatment with rifampicin or endostatin. The results are shown in FIG.
  • FIG. 5 shows that the expression level of PKR is increased in human umbilical vein endothelial cells treated with rifampicin or endostatin.
  • ID 1 gene ID 3 gene
  • integrin ⁇ v gene Flt gene
  • Ephrin A1 gene is decreased by rifampicin treatment or endostatin treatment.
  • PKR siRNA When PKR was knocked out by PKR siRNA, there was no reduction in gene expression associated with rifampicin or endostatin treatment, so the reduction in gene expression associated with rifampicin or endostatin treatment was dependent on PKR.
  • ⁇ Test Example 7> The effect of salivinal, known as an inhibitor of dephosphorylation of eIF2 ⁇ , on the expression level of the gene group whose expression is suppressed by endostatin was examined using a real-time quantitative RT-PCR method.
  • Human umbilical vein endothelial cells were treated with 20 ⁇ M salivinal in HamF12K medium and maintained at 37 ° C. for 4-8 hours. After the retention, a quantitative system by real-time quantitative RT-PCR method using TaqMan probe is established for ID 1 gene, ID 3 gene, integrin ⁇ v gene, Flt gene, and Ephrin A1 gene in the whole cell extract. The expression levels of these mRNAs were examined. The results are shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 血管新生抑制シグナルを短時間のうちに簡易な手段で検知することによる血管新生抑制剤のスクリーニング方法、及び血管新生抑制遺伝子のスクリーニング方法を提供する。  本発明に係る血管新生抑制剤のスクリーニング方法は、血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与する候補化合物投与工程と、前記候補化合物を投与された前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出するシグナル検出工程と、を有する。

Description

血管新生抑制剤のスクリーニング方法、及び血管新生抑制シグナル遺伝子のスクリーニング方法
 本発明は、血管新生抑制剤のスクリーニング方法、及び血管新生抑制シグナル遺伝子のスクリーニング方法に関する。
 血管新生とは、既存の血管から新しい血管が形成される現象であり、悪性(固形)腫瘍、糖尿病性網膜症、加齢黄斑変性症、関節リウマチ等の炎症性疾患等において、その発症や進展に深く関与していることが知られている。例えば、固形腫瘍が増殖するには、血管新生によって栄養や酸素の供給と、老廃物の除去の道を確保することが必須である。また、癌治療上、重要な問題となっている転移において、その道を確保するという意味で血管新生が重要なステップとなっている。糖尿病性網膜症や加齢黄斑変性症に関しては、血管新生そのものが病態であり、放置すると失明に至る。従って、血管新生を抑制することが両疾患の予防・治療に結びつくと考えられ、その予防薬・治療薬の開発が行われている。
 このように、血管新生は、種々の病変において観察され、それぞれの病態の進展を助長するので、この血管新生の抑制がこれらの病態の予防・治療の観点から注目され、血管新生を阻害する物質を検索すべく鋭意研究がなされている。その結果、現在では、多くの血管新生抑制物質が開発され、その中のいくつかの物質については、臨床上での有効性が検討されている。
 例えば、エンドスタチンやアンジオスタチン等の血管新生抑制因子は、最も有用な腫瘍休眠療法薬と位置づけられ、実験動物の固形腫瘍を顕著に退縮させ(非特許文献1)、反復投与を行っても従来の抗がん剤のような薬剤耐性を示さないため(非特許文献2)、副作用の少ない理想的な抗癌剤となる可能性が指摘されていた。しかし、これらの因子は実用化されても抗腫瘍効果を示すのに有効な投与量を合成することは容易ではなく、且つ製造コストも高くなることから、分子量50,000に及ぶアンジオスタチンの臨床開発に断念した企業もある。
 そこで、アンジオスタチンよりも低分子量(分子量約20,000)のエンドスタチンが期待を集め、米国において末期悪性腫瘍患者に対する臨床治験が行われたが、細胞内情報伝達メカニズムは不明であった。
 エンドスタチンは、低血清培養下において血管内皮細胞の増殖を抑制し、アポトーシスを引き起こすが(非特許文献3)、その程度は軽微である。腫瘍細胞は、遺伝子変異のみならず遺伝子発現調節制御によっても増殖能が亢進する上、多くの増殖因子や血管新生促進因子を盛んに産生・分泌し、オートクライン/パラクラインとして自己の増殖を促進させることに加え、更に、新生された血管が豊富な血流を供給しているため、このような軽微な血管内皮細胞の増殖抑制のみで、癌の原発巣・転移巣を退縮させる効果を説明することは困難であった。エンドスタチンがこうした環境下にあっても、現在報告されているような腫瘍血管新生を抑制するためには、内皮細胞に特異的に作用する、強力な細胞シグナルを惹起しなければならない。
 このような細胞シグナルとしては、例えば、特許文献1に、エンドスタチンにより惹起される、各種遺伝子の発現抑制シグナルが開示されている。この発現抑制シグナルによれば、実験動物において腫瘍退縮効果を示す濃度のエンドスタチンを投与すると、血清・増殖因子・血管新生因子刺激下の培養血管内皮細胞に発現する種々の初期応答遺伝子、アポトーシス・細胞周期・細胞遊走関連遺伝子の発現が顕著に抑制される。
特開2004-075665号公報
Cell,88,p.277-285,1997 Nature,390,p.404-407,1997 J.Biol.Chem.,274,p.11721-11726,1999
 しかしながら、培養血管内皮細胞へのエンドスタチンの投与によって、如何にしてこの発現抑制シグナルが惹起されるかについては、依然として明らかにされていなかった。特に、特許文献1には、エンドスタチンによって各種の血管新生関連遺伝子の発現が抑制されることを検知することにより血管新生抑制因子をスクリーニングする方法が開示されているが、このような方法は遺伝子発現量の低下を正確に定量して検出する必要があるため、比較的長時間の時間を要し、多種の化合物について効率よくスクリーニングするには不適であった。同様に、エンドスタチンにより発現抑制される遺伝子を検出するためにも、短時間で容易に当該シグナルを検出できる、スクリーニング方法が求められていた。
 本発明は、以上の課題に鑑みてなされたものであり、血管新生関連遺伝子の発現抑制作用の上流の情報伝達経路を解明し、これを利用することにより、短時間のうちに従来のスクリーニング方法と同様の作用を惹起できる血管新生抑制剤のスクリーニング方法、及び血管新生抑制遺伝子のスクリーニング方法を提供することを目的とする。
 本発明者らは、血管内皮細胞にエンドスタチンを投与した場合、特定のタンパク質のリン酸化が引き起こされ、このリン酸化を介して血管新生に関与する種々の遺伝子の発現が抑制されていること、及びこの特定のタンパク質のリン酸化を検出することにより、血管新生抑制シグナルを短時間のうちに簡易な方法で検出できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。
 (1) 血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与する候補化合物投与工程と、前記候補化合物を投与された前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出するシグナル検出工程と、を有する血管新生抑制剤のスクリーニング方法。
 (1)に記載の発明によれば、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出することにより、血管新生抑制剤のスクリーニングを行う。タンパク質のリン酸化は、血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与した後、短時間のうちに生起する。このため、多種の候補化合物についてスクリーニングを行う場合であっても、効率よくスクリーニングを行うことができる。
 (2) エンドスタチンを投与することによりリン酸化される前記タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αである(1)に記載の血管新生抑制剤のスクリーニング方法。
 (2)に記載の発明は、血管新生抑制剤のスクリーニング方法で、エンドスタチンを投与することによって生起するリン酸化を検出する対象となるタンパク質を特定したものである。これらのタンパク質は、血管新生抑制剤の投与によりリン酸化され、血管新生抑制シグナルが伝達されると考えられるので、これらのタンパク質をリン酸化検出の対象とすることにより、血管新生抑制剤を高い精度・確度をもってスクリーニングすることができる。
 (3) 血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与する候補化合物投与工程と、前記候補化合物を投与された前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、タンパク質のリン酸化を検出するシグナル検出工程と、を有し、前記シグナル検出工程においてリン酸化が検出される前記タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αである血管新生抑制剤のスクリーニング方法。
 (3)に記載の発明によれば、エンドスタチンを投与することによりリン酸化されるタンパク質に限定されず、他の血管新生抑制因子の投与によってリン酸化されることが予想される二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を検出することにより、血管新生抑制剤のスクリーニングを行うため、幅広い種類の候補化合物について効率よくスクリーニングを行うことができる。
 (4) 前記シグナル検出工程において、ヒト二本鎖RNA依存性タンパク質キナーゼPKRのThr451又はこれに対応する二本鎖RNA依存性タンパク質キナーゼPKRのアミノ酸残基のリン酸化、及び/又はヒト真核生物翻訳開始因子eIF2αのSer51又はこれに対応する真核生物翻訳開始因子eIF2αのアミノ酸残基のリン酸化を検出する(2)又は(3)に記載の血管新生抑制剤のスクリーニング方法。
 ここで、「これに対応する二本鎖RNA依存性タンパク質キナーゼPKRのアミノ酸残基」とは、ヒト二本鎖RNA依存性タンパク質キナーゼPKRと相同性を持ち、これと同等の機能を有する他生物の二本鎖RNA依存性タンパク質キナーゼPKRにおいて、Thr451と対応するリン酸化部位となるアミノ酸残基を指す。同様に、「これに対応する真核生物翻訳開始因子eIF2αのアミノ酸残基」とは、ヒト真核生物翻訳開始因子eIF2αと相同性を持ち、これと同等の機能を有する他生物の真核生物翻訳開始因子eIF2αにおいて、Ser51と対応するリン酸化部位となるアミノ酸残基を指す。
 また、ここで、「ヒト二本鎖RNA依存性タンパク質キナーゼPKR」、及び「ヒト真核生物翻訳開始因子eIF2α」とは、それぞれ、ヒトにおける二本鎖RNA依存性タンパク質キナーゼPKR、及び真核生物翻訳開始因子eIF2αを指す。
 (4)に記載の発明は、血管新生抑制剤のスクリーニング方法で、エンドスタチン等の血管新生抑制因子を投与することによって生起するリン酸化を検出する対象となるタンパク質のアミノ酸残基を特定したものである。これらのタンパク質のアミノ酸残基は、血管新生抑制剤の投与によりリン酸化され、血管新生抑制シグナルが伝達されると考えられるので、これらのタンパク質のアミノ酸残基をリン酸化検出の対象とすることにより、血管新生抑制剤を高い精度・確度をもってスクリーニングすることができる。
 (5) 前記血管内皮細胞又はこれに由来する培養細胞が、毛細血管由来内皮細胞、大血管・臍帯静脈内皮細胞、及び網膜血管由来内皮細胞からなる群から選ばれる少なくとも一種である(1)から(4)のいずれかに記載の血管新生抑制剤のスクリーニング方法。
 (5)に記載の発明は、血管新生抑制剤のスクリーニング方法に用いられる細胞の種類を限定したものである。これらの細胞は、入手・取り扱いが容易であり、且つエンドスタチンに対する感受性が高いので、血管新生抑制シグナルに伴う特定のタンパク質のリン酸化を容易に検出することができ、血管新生抑制剤のスクリーニング方法を効率的に行うことができる。
 (6) 前記シグナル検出工程において、リン酸化特異的抗体を用いたイムノブロッティング法、32Pオートラジオグラフィー法、リン酸化特異的抗体を用いた免疫染色法、ゲルシフト法、及び特異的抗体とリン酸化特異的抗体とを用いた免疫沈降法からなる群から選ばれる少なくとも一種を用いて前記タンパク質のリン酸化を検出する(1)から(5)のいずれかに記載の血管新生抑制剤のスクリーニング方法。
 ここで、「特異的抗体」とは、シグナル検出工程において検出の目的となる特定のタンパク質に対し、リン酸化/非リン酸化を問わず特異的に結合することができる抗体を指し、「リン酸化特異的抗体」とは、リン酸化された当該特定のタンパク質に対し、特異的に結合することができる抗体を指す。
 (6)に記載の発明は、血管新生抑制剤のスクリーニング方法において、特定のタンパク質のリン酸化を検出するための具体的手法について規定したものである。これらの手法は、タンパク質のリン酸化を効率よく、且つ高い精度・確度をもって検出することができるので、血管新生抑制剤のスクリーニング方法を、効率よく、且つ高い精度・確度をもって検出することができる。
 (7) 血管内皮細胞又はこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現量を変化させる発現量変更工程と、前記候補遺伝子の発現量を変化させた前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を、前記細胞において検出するシグナル検出工程と、を有する血管新生抑制シグナル遺伝子のスクリーニング方法。
 ここで、「血管新生抑制シグナル遺伝子」とは、エンドスタチン及びこれと相同性を有する血管新生抑制因子の下流因子をコードする遺伝子であって、エンドスタチン及びこれと相同性を有する血管新生抑制因子の投与により活性化又は不活性化される、血管新生関連遺伝子の発現抑制シグナルのシグナル経路を構成する因子をコードする遺伝子を指す。
 
 (8) エンドスタチンを投与することによりリン酸化される前記タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αである(7)に記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
 (9) 血管内皮細胞又はこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現量を変化させる発現量変更工程と、前記候補遺伝子の発現量を変化させた前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、タンパク質のリン酸化を検出するシグナル検出工程と、を有し、前記シグナル検出工程においてリン酸化が検出される前記タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αである、血管新生抑制剤のスクリーニング方法。
 (10) 前記シグナル検出工程において、ヒト二本鎖RNA依存性タンパク質キナーゼPKRのThr451又はこれに対応する二本鎖RNA依存性タンパク質キナーゼPKRのアミノ酸残基のリン酸化、及び/又はヒト真核生物翻訳開始因子eIF2αのSer51又はこれに対応する真核生物翻訳開始因子eIF2αのアミノ酸残基のリン酸化を検出する(8)又は(9)に記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
 (11) 前記発現量変更工程が、血管内皮細胞若しくはこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子を過剰発現する過剰発現工程、又は血管内皮細胞若しくはこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現を抑圧する発現抑圧工程である、(7)から(10)のいずれかに記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
 (12) 前記血管内皮細胞又はこれに由来する培養細胞が、毛細血管由来内皮細胞、大血管・臍帯静脈由来内皮細胞、及び網膜血管由来内皮細胞からなる群から選ばれる少なくとも一種である(7)から(11)のいずれかに記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
 (13) 前記シグナル検出工程において、リン酸化特異的抗体を用いたイムノブロッティング法、32Pオートラジオグラフィー法、リン酸化特異的抗体を用いた免疫染色法、ゲルシフト法、及び特異的抗体とリン酸化特異的抗体とを用いた免疫沈降法からなる群から選ばれる少なくとも一種を用いて前記タンパク質のリン酸化を検出する(7)から(12)のいずれかに記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
 (7)から(13)に記載の発明は、(1)から(6)に記載の発明を血管新生抑制シグナル遺伝子のスクリーニング方法の発明として捉えたものである。従って、(7)から(13)に記載の発明によれば、(1)から(6)に記載の発明と同等の効果を得ることができる。
 特に、(11)に記載の発明においては、発現量変更工程において血管新生抑制シグナル遺伝子の候補遺伝子の過剰発現又は発現抑制を行うことにより、シグナル検出工程において生起しうる血管新生抑制シグナルを検出する。この手法を採用することにより、血管新生抑制シグナルを促進する機能を有する遺伝子又は抑制する機能を有する遺伝子をスクリーニングすることができる。
 本発明の血管新生抑制剤のスクリーニング方法によれば、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出することにより、血管新生抑制剤のスクリーニングを行うため、多種の候補化合物についてスクリーニングを行う場合であっても、効率よくスクリーニングを行うことができる。
 また、本発明の血管新生抑制剤のスクリーニング方法によれば、エンドスタチンを投与することによりリン酸化されるタンパク質に限定されず、他の血管新生抑制因子の投与によってリン酸化されることが予想される二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を検出することにより、血管新生抑制剤のスクリーニングを行うため、幅広い種類の候補化合物について効率よくスクリーニングを行うことができる。
 同様に、本発明の血管新生抑制シグナル遺伝子のスクリーニング方法によれば、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出することにより、血管新生抑制シグナル遺伝子のスクリーニングを行うため、多種の候補遺伝子についてスクリーニングを行う場合であっても、効率よくスクリーニングを行うことができる。
 また、本発明の血管新生抑制剤のスクリーニング方法によれば、エンドスタチンを投与することによりリン酸化されるタンパク質に限定されず、他の血管新生抑制因子の投与によってリン酸化されることが予想される二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を検出することにより、血管新生抑制剤のスクリーニングを行うため、幅広い種類の候補化合物について効率よくスクリーニングを行うことができる。
本発明の試験例1に係る抗体マイクロアレイの結果を示す図面である。 本発明の試験例2に係る定量的ウェスタンブロッティング法の結果を示す図面である。 本発明の試験例3に係るウェスタンブロッティング法の結果を示す図面である。 本発明の試験例4に係る蛍光抗体法の結果を示す図面である。 PKR遺伝子の発現量を示す図面である。 ID遺伝子の発現量を示す図面である。 ID遺伝子の発現量を示す図面である。 integrin αv遺伝子の発現量を示す図面である。 Flt遺伝子の発現量を示す図面である。 EphrinA1遺伝子の発現量を示す図面である。 本発明の試験例7に係るリアルタイム定量的RT-PCR法の結果を示す図面である。
 以下、本発明の実施形態について詳細に説明する。
 <血管新生抑制剤のスクリーニング方法>
 以下、本発明の血管新生抑制剤のスクリーニング方法について説明する。
 本発明の血管新生抑止剤のスクリーニング方法は、血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与する候補化合物投与工程と、当該候補化合物を投与された当該血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出するシグナル検出工程と、を有する。
 また、本発明の血管新生抑止剤のスクリーニング方法は、血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与する候補化合物投与工程と、当該候補化合物を投与された当該血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を検出するシグナル検出工程と、を有するものでもある。
 [候補化合物投与工程]
 候補化合物投与工程においては、血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与する。候補化合物は、一種のみ単独で投与してもよいし、二種以上を併用して投与してもよい。
 (候補化合物)
 候補化合物としては、特に限定されるものではなく、低分子化合物であってもよいし、高分子化合物であってもよい。低分子化合物としては、創薬の過程において製造された多数の化合物を挙げることができ、これらの化合物を血管新生抑制剤の化合物ライブラリーとして、血管新生抑制剤のスクリーニングに用いることができる。また、高分子化合物としては、タンパク質を例示することができ、例えば、血管新生の抑制と関連性の高い細胞における特異的cDNAを発現することにより得られる分泌タンパク質のライブラリーや、血管新生の抑制と関連する特定のシグナルを受けて、発現量が亢進する性質を有する分泌タンパク質のライブラリー等を血管新生抑制剤のスクリーニングに用いることができる。
 これらの中でも、血管新生抑制剤としての用途が見出された場合に、大量合成や患者への投与が容易であるという観点から、低分子化合物を用いることが好ましい。
 (血管内皮細胞又はこれに由来する培養細胞)
 血管新生抑制剤のスクリーニングに用いることができる、血管内皮細胞又はこれに由来する培養細胞としては、特に限定されるものではなく、どのようなものを用いてもよい。具体的には、ヒト血管内皮細胞又はこれに由来する培養細胞である、皮膚毛細血管由来内皮細胞、臍帯静脈内皮細胞、腫瘍組織より分離した血管内皮細胞、及び網膜血管内皮細胞、並びにこれらに由来する株化細胞;マウス血管内皮細胞又はこれに由来する培養細胞である、腎由来血管内皮細胞株、リンパ節由来内皮細胞株、膵島由来血管内皮細胞株、及びES細胞由来血管内皮細胞;ラット血管内皮細胞又はこれに由来する培養細胞である、肺動脈由来初代培養内皮細胞又はこれに由来する培養細胞株、大動脈由来初代培養内皮細胞、及び腫瘍組織より分離した血管内皮細胞を用いることができる。これらの細胞の中でも、入手・取り扱いの容易であること、腫瘍血管新生や網膜血管新生等の病態をより正確に反映すること、及びエンドスタチンに対する感受性が高いことから、ヒト毛細血管由来内皮細胞、腫瘍組織より分離した血管内皮細胞、臍帯静脈内皮細胞、及び網膜血管内皮細胞が好ましい。
 (投与方法)
 血管新生抑制剤のスクリーニングにおいて、候補化合物を投与するための投与方法としては、特に限定されるものではなく、従来公知の方法を採用することができる。具体的には、候補化合物を溶解した溶液を、血管内皮細胞又はこれに由来する培養細胞を培養するための培養液に添加し、候補化合物の存在下で継続的に細胞を保持してもよいし、比較的高濃度の候補化合物を培養液に添加し、短時間のうちに候補物質を添加した培養液を除去してもよい。これらの投与方法は、血管新生抑制剤のスクリーニング方法での取得を目的とする化合物の想定される性質によって、適宜選択すればよい。
 [細胞保持工程]
 細胞保持工程においては、候補化合物を投与された血管内皮細胞又はこれに由来する培養細胞を保持する。候補化合物を投与された細胞を保持することで、予想される血管新生抑制シグナルのシグナル伝達がなされる結果、エンドスタチンの投与によりリン酸化されるタンパク質のリン酸化や、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を促進することができ、後述するシグナル検出工程におけるリン酸化タンパク質の検出感度を向上させることができる。
 細胞を保持する際の条件としては、特に限定されるものではなく、当該細胞を培養するための通常の条件を用いればよい。具体的には、2%以上17%以下の二酸化炭素の存在下において、33℃以上38℃以下の条件で保持することができる。また、保持する際の培地は、使用する細胞の種類に応じて、適宜選択することができるが、例えば、DMEM培地、MEM培地、RPMI培地、及びHAM培地を挙げることができる。
 細胞保持工程において、細胞を保持する時間としては、1分以上8時間以下であることが好ましく、3分以上6時間以下であることがより好ましく、10分以上60分以下であることが更に好ましい。1分未満である場合には、細胞内における目的とするタンパク質のリン酸化が十分に進行しないおそれがあり、シグナル検出工程において検出するシグナルの感度が低下するおそれがある。8時間を超える場合には、血管新生抑制剤のスクリーニング方法に要する時間が長時間化することにより、スクリーニングの効率が低下するおそれがあるほか、受容体及びその他の因子の脱感作により目的とするタンパク質のリン酸化の程度が低下するおそれがあり、好ましくない。
 [シグナル検出工程]
 シグナル検出工程においては、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出する。シグナル検出工程を経ることにより、血管新生抑制剤の候補化合物のうちで、血管新生抑制シグナルを生起する化合物を特定することができる。
 また、シグナル検出工程においては、エンドスタチンを投与することによりリン酸化されるタンパク質に限定されず、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を検出する。シグナル検出工程を経ることにより、幅広い種類の血管新生抑制剤の候補化合物について効率よくスクリーニングを行うことができる。
 (エンドスタチンを投与することによりリン酸化されるタンパク質)
 本発明においては、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出することにより、血管新生抑制シグナルの活性化を検出する。エンドスタチンを投与することによりリン酸化されるタンパク質としては、特に限定されるものではなく、エンドスタチンの下流において、血管新生関連遺伝子の発現制御に関与する任意の血管新生抑制シグナル因子を利用することができる。
 このような血管新生抑制シグナル因子としては、例えば、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αを挙げることができ、そのリン酸化部位としては、ヒト二本鎖RNA依存性タンパク質キナーゼPKRのThr451又はThr446、及び/若しくはヒト真核生物翻訳開始因子eIF2αのSer51、又は、これらのヒトのタンパク質と相同性を有し、これらのヒトのタンパク質と同等の機能を有する他生物の二本鎖RNA依存性タンパク質キナーゼPKR若しくは真核生物翻訳開始因子eIF2αにおいて、ヒトのタンパク質におけるそれぞれのリン酸化部位と対応するアミノ酸残基を挙げることができる。なお、二本鎖RNA依存性タンパク質キナーゼPKRにおけるリン酸化部位の中でもThr451が好ましく、真核生物翻訳開始因子eIF2におけるリン酸化部位αの中でもSer51が好ましい。
 このようなリン酸化部位における血管新生抑制シグナル因子のリン酸化を検出の対象とすることにより、血管新生抑制剤を高い精度・確度をもってスクリーニングすることができる。
 (二本鎖RNA依存性タンパク質キナーゼPKR、及び真核生物翻訳開始因子eIF2α)
 シグナル検出工程においては、エンドスタチンによりリン酸化されるタンパク質に限定されず、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を検出することによっても、血管新生抑制シグナルの活性化を検出することができる。二本鎖RNA依存性タンパク質キナーゼPKR及び/又は真核生物翻訳開始因子eIFのリン酸化を検出することにより、血管新生抑制剤を高い精度・確度をもってスクリーニングすることができる。ここで、二本鎖RNA依存性タンパク質キナーゼPKRにおけるリン酸化部位の中でもThr451が好ましく、真核生物翻訳開始因子eIF2αにおけるリン酸化部位の中でもSer51が好ましい。
 従来、血管新生に関与する種々の遺伝子について、その発現量の変化を見る方法では、非特異的な変化が多く、誤った結果になることが多かった。本発明者らは、これらの遺伝子の発現量の特異的な変化を反映する指標として、タンパク質量のリン酸化量の変化に着目し、「リン酸化抗体マイクロアレイ」技術を用いて、リン酸化されるタンパク質を網羅的に検索し、リン酸化されるタンパク質のリン酸化の度合を検討した。なお、当該「リン酸化抗体マイクロアレイ」技術を用いることで、血管新生に関与する重要なリン酸化タンパク質量の変化を正確に捉えることができる。そして、本発明者らは、このようなタンパク質のリン酸化の度合を指標として検討した結果、二本鎖RNA依存性タンパク質キナーゼPKR及び/又は真核生物翻訳開始因子eIF2αがリン酸化されるならば、ヒトの血管内皮細胞においても血管新生に関係する遺伝子の発現が抑制されることを見出した。
 なお、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を生起する血管新生抑制剤としては、リファンピシン、エンドスタチン、アンジオスタチン等を挙げることができる。
 なお、本発明の発明者が、以下に示す実施例において示すとおり、エンドスタチン等により生起される血管新生抑制シグナルは、二本鎖RNA依存性タンパク質キナーゼPKRをコードするmRNA量を増加させることにより、PKRの発現量を増加させる作用を有する。このため、シグナル検出工程においてこのPKRのリン酸化を検出する場合には、血管新生抑制シグナルによってPKRのリン酸化が亢進されるのみならず、リン酸化されるべきPKRのタンパク質量自体も増加されるため、シグナル検出工程において、リン酸化PKRを容易に検出することが可能となる。
 (リン酸化の検出方法)
 エンドスタチンを投与することによりリン酸化される上記タンパク質におけるリン酸化、二本鎖RNA依存性タンパク質キナーゼPKR及び真核生物翻訳開始因子eIF2のリン酸化の検出方法としては、特に限定されるものではなく、タンパク質のリン酸化の検出方法として従来公知の手法を採用することができる。具体的には、リン酸化特異的抗体を用いたイムノブロッティング法、32Pオートラジオグラフィー法、リン酸化特異的抗体を用いた免疫染色法、ゲルシフト法、及び特異的抗体とリン酸化特異的抗体とを用いた免疫沈降法を挙げることができる。これらの中でも、操作の簡便性・検出の容易性から、イムノブロッティング法及び免疫染色法が特に好ましい。
 上記の検出方法は、従来公知の手法で行うことが好ましい。例えば、イムノブロッティング法であれば、候補化合物を投与し、上述の条件で保持した細胞の全細胞抽出液を取得し、必要に応じて界面活性剤の存在下で変性させた後、タンパク質電気泳動を行い、分離したタンパク質をナイロンメンブレン等のタンパク質吸着膜に転写する。このタンパク質吸着膜に対して、抗リン酸化PKR抗体を一次抗体として作用させることによりリン酸化PKRを検出することができる。
 32Pオートラジオグラフィー法においては、γ-32P-ATPを細胞に投与した後に候補化合物を投与し、32Pにより標識されたリン酸化PKRを細胞内で生成させる。その後、この細胞についてイムノブロッティング法と同様の方法で、タンパク質電気泳動及びタンパク質吸着膜への転写を行い、タンパク質吸着膜に吸着され、32Pにより標識されたリン酸化PKRを検出する。
 リン酸化特異的抗体を用いた免疫染色法においては、候補化合物で処理を行った細胞をホルムアルデヒド等を用いて固定し、必要に応じて界面活性剤により処理した後、抗リン酸化PKR抗体を一次抗体として、一次抗体に対する蛍光標識抗体を二次抗体として細胞に作用させることにより、顕微鏡下でリン酸化PKRが検出可能となる。
 ゲルシフト法においては、候補化合物で処理した細胞について、イムノブロッティング法と同様の方法で、タンパク質電気泳動及びタンパク質吸着膜への転写を行い、分離したタンパク質をナイロンメンブレン等のタンパク質吸着膜へ転写する。このタンパク質吸着膜に対して、抗PKR抗体を一次抗体として作用させることによりPKRを検出することができる。PKRを検出することにより、リン酸化されたタンパク質のバンドのシフトを可視化することができるため、タンパク質のリン酸化を検出できる。
 特異的抗体とリン酸化特異的抗体とを用いた免疫沈降法においては、候補化合物を投与された細胞から得られた全細胞抽出液について、これに含まれるタンパク質を特異的抗体又はリン酸化特異的抗体と反応させる。その後、沈降した反応物をタンパク質電気泳動及びタンパク質吸着膜への転写を行い、リン酸化特異的抗体又は特異的抗体を一次抗体として作用させることにより、リン酸化タンパク質を検出することができる。
 本発明の血管新生抑制剤のスクリーニング方法によれば、エンドスタチンを投与することによりリン酸化されるタンパク質や、二本鎖RNA依存性タンパク質キナーゼPKR及び/又は真核生物翻訳開始因子eIF2のリン酸化を検出することにより、血管新生抑制剤のスクリーニングを行う。上述したとおり、標的タンパク質は、血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与した後、短時間のうちにリン酸化される。このため、多種の候補化合物についてスクリーニングを行う場合であっても、効率よくスクリーニングを行うことができる。
 <血管新生抑制シグナル遺伝子のスクリーニング方法>
 以下、本発明の血管新生抑制シグナル遺伝子のスクリーニング方法について説明する。なお、血管新生抑制シグナル遺伝子のスクリーニング方法についての説明においては、血管新生抑制剤のスクリーニング方法と同様の事項については、説明を省略することがある。
 本発明の血管新生抑制シグナル遺伝子のスクリーニング方法は、血管内皮細胞又はこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現量を変化させる発現量変更工程と、当該候補遺伝子の発現量を変化させた当該血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出するシグナル検出工程と、を有する。
 また、本発明の血管新生抑制シグナル遺伝子のスクリーニング方法は、血管内皮細胞又はこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現量を変化させる発現量変更工程と、当該候補遺伝子の発現量を変化させた当該血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、タンパク質のリン酸化を検出するシグナル検出工程と、を有し、当該シグナル検出工程においてリン酸化が検出される当該タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αであるものでもある。
 [発現量変更工程]
 発現量変更工程においては、血管新生抑制シグナル遺伝子の候補遺伝子の発現量を変化させる。発現量を変化させた候補遺伝子が、血管新生抑制シグナルを促進/抑制する因子をコードする血管新生抑制シグナル遺伝子であった場合、血管新生抑制シグナルが増強され、エンドスタチンの投与によりリン酸化されるタンパク質や、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化が促進される。このため、候補遺伝子の発現量を変化させた状態で、エンドスタチンの投与によりリン酸化されるタンパク質や、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を検出することにより、血管新生抑制シグナル遺伝子をスクリーニングすることができる。
 (候補遺伝子)
 血管新生抑制シグナル遺伝子の候補遺伝子としては、特に限定されるものではないが、例えば、血管内皮細胞において発現している遺伝子を挙げることができる。このような遺伝子は、種々の血管内皮細胞におけるcDNAライブラリーとして、ライブラリーの形態で取得することができる。血管内皮細胞におけるcDNAライブラリーの製造方法としては、従来公知の方法を用いることができ、例えば、血管内皮細胞からmRNAを抽出し、逆転写酵素を用いることによりcDNAに変換後、必要に応じて制限酵素処理を施し、所定のベクターに導入する手法を挙げることができる。
 (過剰発現工程)
 発現量変更工程は、血管新生抑制シグナル遺伝子の候補遺伝子を過剰発現する過剰発現工程であってもよい。発現量変更工程を過剰発現工程とした場合において、本発明の血管新生抑制シグナル遺伝子のスクリーニング方法を行った場合、得られうる血管新生抑制シグナル遺伝子は、血管新生抑制シグナルを増強する作用を持つ遺伝子である。
 血管内皮細胞又はこれに由来する培養細胞に血管新生抑制シグナル遺伝子の候補遺伝子を過剰発現する手法としては、特に限定されるものではなく、従来公知の手法を採用することができる。具体的には、プラスミド、コスミド、及びウイルス等のベクターに候補遺伝子を導入し、これを細胞にトランスフェクションさせる方法を挙げることができる。
 (発現抑圧工程)
 発現量変更工程は、血管新生抑制シグナル遺伝子の候補遺伝子の発現を抑圧する発現抑圧工程であってもよい。発現量変更工程を発現抑圧工程とした場合において、本発明の血管新生抑制シグナル遺伝子のスクリーニング方法を行った場合、得られうる血管新生抑制シグナル遺伝子は、血管新生抑制シグナルを抑制する作用を持つ遺伝子である。
 血管内皮細胞又はこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現を抑圧する方法としては、特に限定されるものではないが、例えば、RNA干渉法等を挙げることができる。
 本発明の血管新生抑制シグナル遺伝子のスクリーニング方法によれば、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出することにより、血管新生抑制シグナル遺伝子のスクリーニングを行う。標的タンパク質は、血管内皮細胞又はこれに由来する培養細胞において血管新生抑制シグナル遺伝子の発現量を変化させた後、短時間のうちにリン酸化される。このため、多種の候補遺伝子についてスクリーニングを行う場合であっても、効率よくスクリーニングを行うことができる。
 更に、本発明の血管新生抑制剤のスクリーニング方法によれば、エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化に限定されず、他の血管新生抑制因子の投与によってリン酸化されることが予想される二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αのリン酸化を検出することにより、血管新生抑制剤のスクリーニングを行うため、多種の候補化合物についてスクリーニングを行う場合であっても、効率よくスクリーニングを行うことができる。
 以下、本発明の実施例について、図面を参照して詳細に説明する。なお、本発明は、以下に示す実施例に何ら限定されるものではない。
 <試験例1>
 リファンピシンはエンドスタチン類似の血管新生抑制作用を有することが知られており、リファンピシンを血管内皮細胞に投与することによってリン酸化されるタンパク質を検索することにより、エンドスタチンを血管内皮細胞に投与することによってリン酸化されるタンパク質の候補タンパク質を得ることができると考えられる。
 リファンピシンの投与によりリン酸化が誘導されるタンパク質を検索するため、抗体マイクロアレイ技術を用いて、リファンピシン処理により特異的にリン酸化されたタンパク質を検出した。ラット大動脈由来内皮細胞(rAEC)を10%ウシ胎児血清添加DMEM培地中の40μg/mlのリファンピシンの存在下又は非存在下、37℃で10分間保持した後、全細胞抽出液を、特徴づけが行われている630種のシグナルタンパク質に対する抗体を固定した「Kinex(登録商標)抗体マイクロアレイ」(Kinexus Bioinformatics社製)を用いて解析した。得られた結果において、リファンピシンの投与によりリン酸化が特に亢進したタンパク質とその亢進量を示す結果を図1に示す。
 図1より、ラット大動脈由来内皮細胞をリファンピシンで処理することにより、Bad、eIF2α、PKR1を始めとする種々のタンパク質のリン酸化が亢進していることが分かる。
 <試験例2>
 抗体マイクロアレイ技術においては、抗体の交差反応や、タンパク質複合体の形成等に伴うエピトープと抗体との相互作用の遮断により、擬陽性が生じることが知られている。実施例1でリン酸化が確認された複数のタンパク質につき、定量的にウェスタンブロッティング法を行うことにより、これらのリン酸化の亢進の事実を確かめた。
 ラット大動脈由来内皮細胞(rAEC)を10%ウシ胎児血清添加DMEM培地中の40μg/mlのリファンピシンの存在下又は非存在下、37℃で10分間保持した後、ATF2、eIF2α、PKCδ、STAT1、及びSTAT5Aに対する抗リン酸化タンパク質抗体を用い、定量的ウェスタンブロッティング法により、全細胞抽出液中のリン酸化タンパク質の存在量を調べた。結果を図2に示す。
 図2より、試験例1の抗体マイクロアレイでリン酸化が亢進していることが示されたタンパク質のうち、少なくとも、ATF2、eIF2α、PKCδ、及びSTAT5Aについては、定量的ウェスタンブロッティング法によっても、タンパク質のリン酸化が亢進していることが分かる。一方、STAT1については、定量的ウェスタンブロッティング法ではリン酸化の亢進が示されず、STAT1についての試験例1の抗体マイクロアレイでの結果が再現性の無いものであることが分かった。
 <試験例3>
 ヒト網膜血管内皮細胞(hREC)又はヒト臍帯静脈内皮細胞(hUVEC)を、10%ウシ胎児血清/増殖因子添加HamF12K培地中の40μg/mlリファンピシン又は1.0×10-9Mエンドスタチンで処理し、37℃で10分間から240分間保持した。保持後の全細胞抽出液について、抗リン酸化PKR抗体を用いてウェスタンブロッティング法を行い、PKRのリン酸化の経時変化を調べた。結果を図3(a)に示す。
 同様に、マウス大動脈由来内皮細胞(rAEC)を、サルブリナル(20μM)で処理した系;リファンピシン(40μg/ml)で処理した系;エンドスタチン(1.0×10-9M)で処理した系;PKR阻害剤A(2-アミノプリン、10mM)で処理した後エンドスタチン(1.0×10-9M)で処理した系;PKR阻害剤B(8-(イミダゾール-4-イルメチレン)-6H-アゾリジノ[5,4-g]ベンゾジアゾール-7-オン、0.3μM)処理した後リファンピシン(40μg/ml)で処理した系;及びPKR阻害剤B(同上、0.3μM)で処理した後エンドスタチン(1.0×10-9M)で処理した系において、処理後の細胞を37℃で4時間又は8時間保持した。それぞれの全細胞抽出液について、抗リン酸化PKR抗体を用いてウェスタンブロッティング法を行い、PKRのリン酸化の程度を調べた。結果を図3(b)に示す。
 図3(a)に示すとおり、PKRはヒト網膜血管内皮細胞及びヒト臍帯静脈内皮細胞において、リファンピシン又はエンドスタチンでの処理により、リン酸化が亢進していることが分かった。従って、試験例1で確認されたリファンピシン処理によるPKRのリン酸化は、特異的なものであることが分かる。なお、図3(b)に示すとおり、ラット大動脈由来初代培養血管内皮細胞においても、リファンピシン又はエンドスタチンはPKRをリン酸化したが、同細胞を特定のPKR阻害剤(8-(イミダゾール-4-イルメチレン)-6H-アゾリジノ[5,4-g]ベンゾジアゾール-7-オン)で処理した後、リファンピシン又はエンドスタチンで処理した場合においては、PKRのリン酸化の亢進が認められなかった。
 <試験例4>
 ヒト臍帯静脈内皮細胞を、HamF12K培地中の40μg/mlリファンピシン又は1.0×10-9Mエンドスタチンで処理し、37℃で30分間保持した。保持後の細胞について、抗リン酸化PKR抗体を一次抗体として用いた免疫染色を行い、リン酸化PKRの細胞内における存在を調べた。
 同様の実験は、PKR阻害薬の構造類似体を添加したヒト臍帯静脈内皮細胞(PKR negative)を40μg/mlのリファンピシンで処理した系、PKR阻害剤B(8-(イミダゾール-4-イルメチレン)-6H-アゾリジノ[5,4-g]ベンゾジアゾール-7-オン、0.3μM)で前処理後のヒト臍帯静脈内皮細胞を40μg/mlリファンピシン又は1.0×10-9Mエンドスタチンで処理した系においても行った。以上の結果を図4に示す。
 図4より、リファンピシン又はエンドスタチンでヒト臍帯静脈内皮細胞を処理した場合、細胞内において、PKRのリン酸化が亢進していることが分かる。このPKRのリン酸化は、特異的PKR阻害剤で予め処理したヒト臍帯静脈内皮細胞を、リファンピシン又はエンドスタチンで処理した場合には、認められなかった。
 <試験例5>
 ヒト臍帯静脈内皮細胞を、HamF12K培地中の40μg/mlリファンピシン又は1.0×10-8Mエンドスタチンにより処理し、37℃で4時間から8時間保持した。保持後、全細胞抽出液について、PKR mRNAをTaqManプローブを用いたリアルタイム定量的RT-PCR法を行い、PKR mRNAを定量した。同様の操作は、リファンピシン又はエンドスタチンの処理に先立って、PKR siRNAをトランスフェクトしたヒト臍帯静脈内皮細胞についても行った。結果を図5に示す。
 図5より、リファンピシン又はエンドスタチンにより処理されたヒト臍帯静脈内皮細胞においては、PKRの発現量が増加していることが分かる。
 このような結果は、リファンピシン又はエンドスタチンの投与による、タンパク質としてのPKRの発現量の増加を示唆するものである。血管新生抑制シグナルにより、このようにタンパク質としてのPKRの発現量が増大することにより、リン酸化されるべきPKRの量も増大し、結果的により多くのリン酸化PKRが生成するものと考えられる。このため、実際に血管新生抑制剤のスクリーニング方法や、血管新生抑制シグナル遺伝子のスクリーニング方法を実施する際には、シグナル検出工程においてPKRのリン酸化を検出することにより、感度よくスクリーニングを実施できるものと考えられる。
 <試験例6>
 ヒト臍帯静脈内皮細胞を、HamF12K培地中の40μg/mlリファンピシン又は1.0×10-8Mエンドスタチンにより処理し、37℃で4時間から8時間保持した。保持後、全細胞抽出液において、エンドスタチンにより発現抑制されることが知られているID遺伝子、ID遺伝子、integrinαv遺伝子、Flt遺伝子、及びEphrin A1遺伝子について、それぞれTaqManプローブを用いたリアルタイム定量的RT-PCR法による定量系を確立して、これらのmRNAの発現量を調べた。同様の操作は、リファンピシン又はエンドスタチンの処理に先立って、PKR siRNAをトランスフェクトしたヒト臍帯静脈内皮細胞についても行った。結果を図6から図10に示す。
 図6から図10より、ID遺伝子、ID遺伝子、integrinαv遺伝子、Flt遺伝子、及びEphrin A1遺伝子の発現は、リファンピシン処理又はエンドスタチン処理により低下していることが分かる。PKR siRNAによってPKRをノックアウトした場合においては、リファンピシン又はエンドスタチンの処理に伴うこれらの遺伝子発現の低下が起こっていないことから、リファンピシン又はエンドスタチンの処理に伴うこれらの遺伝子発現の低下は、PKR依存的であることが分かった。
 <試験例7>
 eIF2αの脱リン酸化の阻害剤として知られるサルブリナルが、エンドスタチンにより発現抑制される遺伝子群の発現量のどのような影響を与えるかについて、リアルタイム定量的RT-PCR法を用いて調べた。ヒト臍帯静脈内皮細胞を、HamF12K培地中の20μMサルブリナルで処理し、37℃で4時間から8時間保持した。保持後、全細胞抽出液において、ID遺伝子、ID遺伝子、integrinαv遺伝子、Flt遺伝子、及びEphrin A1遺伝子について、それぞれTaqManプローブを用いたリアルタイム定量的RT-PCR法による定量系を確立して、これらのmRNAの発現量を調べた。結果を図11に示す。
 図11より、サルブリナルによりeIF2αの脱リン酸化を阻害して、eIF2αの活性を亢進させた場合、ID遺伝子、ID遺伝子、integrinαv遺伝子、Flt遺伝子、及びEphrin A1遺伝子のmRNAの発現は低下することが分かる。この事実より、リファンピシン又はエンドスタチンの処理により生じるこれらの遺伝子の発現低下は、eIF2αの脱リン酸化阻害によっても再現可能であることが分かる。

Claims (13)

  1.  血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与する候補化合物投与工程と、
     前記候補化合物を投与された前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、
     エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出するシグナル検出工程と、を有する血管新生抑制剤のスクリーニング方法。
  2.  エンドスタチンを投与することによりリン酸化される前記タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αである請求項1に記載の血管新生抑制剤のスクリーニング方法。
  3.  血管新生抑制剤の候補化合物を血管内皮細胞又はこれに由来する培養細胞に投与する候補化合物投与工程と、
     前記候補化合物を投与された前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、
     タンパク質のリン酸化を検出するシグナル検出工程と、を有し、
     前記シグナル検出工程においてリン酸化が検出される前記タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αである血管新生抑制剤のスクリーニング方法。
  4.  前記シグナル検出工程において、ヒト二本鎖RNA依存性タンパク質キナーゼPKRのThr451又はこれに対応する二本鎖RNA依存性タンパク質キナーゼPKRのアミノ酸残基のリン酸化、及び/又はヒト真核生物翻訳開始因子eIF2αのSer51又はこれに対応する真核生物翻訳開始因子eIF2αのアミノ酸残基のリン酸化を検出する請求項2又は3に記載の血管新生抑制剤のスクリーニング方法。
  5.  前記血管内皮細胞又はこれに由来する培養細胞が、毛細血管由来内皮細胞、大血管・臍帯静脈由来内皮細胞、及び網膜血管由来内皮細胞からなる群から選ばれる少なくとも一種である請求項1から4のいずれかに記載の血管新生抑制剤のスクリーニング方法。
  6.  前記シグナル検出工程において、リン酸化特異的抗体を用いたイムノブロッティング法、32Pオートラジオグラフィー法、リン酸化特異的抗体を用いた免疫染色法、ゲルシフト法、及び特異的抗体とリン酸化特異的抗体とを用いた免疫沈降法からなる群から選ばれる少なくとも一種を用いて前記タンパク質のリン酸化を検出する請求項1から5のいずれかに記載の血管新生抑制剤のスクリーニング方法。
  7.  血管内皮細胞又はこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現量を変化させる発現量変更工程と、
     前記候補遺伝子の発現量を変化させた前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、
     エンドスタチンを投与することによりリン酸化されるタンパク質のリン酸化を検出するシグナル検出工程と、を有する血管新生抑制シグナル遺伝子のスクリーニング方法。
  8.  エンドスタチンを投与することによりリン酸化される前記タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αである請求項7に記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
  9.  血管内皮細胞又はこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現量を変化させる発現量変更工程と、
     前記候補遺伝子の発現量を変化させた前記血管内皮細胞又はこれに由来する培養細胞を保持する細胞保持工程と、
     タンパク質のリン酸化を検出するシグナル検出工程と、を有し、
     前記シグナル検出工程においてリン酸化が検出される前記タンパク質が、二本鎖RNA依存性タンパク質キナーゼPKR、及び/又は真核生物翻訳開始因子eIF2αである、血管新生抑制剤のスクリーニング方法。
  10.  前記シグナル検出工程において、ヒト二本鎖RNA依存性タンパク質キナーゼPKRのThr451又はこれに対応する二本鎖RNA依存性タンパク質キナーゼPKRのアミノ酸残基のリン酸化、及び/又はヒト真核生物翻訳開始因子eIF2αのSer51又はこれに対応する真核生物翻訳開始因子eIF2αのアミノ酸残基のリン酸化を検出する請求項8又は9に記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
  11.  前記発現量変更工程が、血管内皮細胞若しくはこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子を過剰発現する過剰発現工程、又は血管内皮細胞若しくはこれに由来する培養細胞において、血管新生抑制シグナル遺伝子の候補遺伝子の発現を抑圧する発現抑圧工程である、請求項7から10のいずれかに記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
  12.  前記血管内皮細胞又はこれに由来する培養細胞が、毛細血管由来内皮細胞、大血管・臍帯静脈由来内皮細胞、及び網膜血管由来内皮細胞からなる群から選ばれる少なくとも一種である請求項7から11のいずれかに記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
  13.  前記シグナル検出工程において、リン酸化特異的抗体を用いたイムノブロッティング法、32Pオートラジオグラフィー法、リン酸化特異的抗体を用いた免疫染色法、ゲルシフト法、及び特異的抗体とリン酸化特異的抗体とを用いた免疫沈降法からなる群から選ばれる少なくとも一種を用いて前記タンパク質のリン酸化を検出する請求項7から12のいずれかに記載の血管新生抑制シグナル遺伝子のスクリーニング方法。
PCT/JP2009/064733 2008-08-28 2009-08-24 血管新生抑制剤のスクリーニング方法、及び血管新生抑制シグナル遺伝子のスクリーニング方法 WO2010024221A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010526698A JP5414072B2 (ja) 2008-08-28 2009-08-24 血管新生抑制剤のスクリーニング方法、及び血管新生抑制シグナル遺伝子のスクリーニング方法
US13/060,753 US20110151485A1 (en) 2008-08-28 2009-08-24 Method for screening for antiangiogenic agent, and method for screening for antiangiogenic signal gene
EP09809872A EP2333546A4 (en) 2008-08-28 2009-08-24 METHOD OF SCREENING AN ANTIANGIOGENIC AGENT AND METHOD OF SCREENING THE GENE ASSOCIATED WITH THE ANTIANGIOGENIC SIGNAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-220518 2008-08-28
JP2008220518 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010024221A1 true WO2010024221A1 (ja) 2010-03-04

Family

ID=41721389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064733 WO2010024221A1 (ja) 2008-08-28 2009-08-24 血管新生抑制剤のスクリーニング方法、及び血管新生抑制シグナル遺伝子のスクリーニング方法

Country Status (5)

Country Link
US (1) US20110151485A1 (ja)
EP (1) EP2333546A4 (ja)
JP (1) JP5414072B2 (ja)
KR (1) KR20110057139A (ja)
WO (1) WO2010024221A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045493A (ja) * 2017-08-30 2019-03-22 大正製薬株式会社 植物エキスの皮膚感作性インビトロ評価法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101916801B1 (ko) * 2016-08-12 2018-11-08 경북대학교 산학협력단 3차원 생체 모사 시스템을 이용한 맥락막 혈관신생을 수반하는 질환의 치료제 스크리닝 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038096A1 (fr) * 2001-10-30 2003-05-08 Shunichiro Kubota Recepteur pour inhibiteur de l'angiogenese et procede de criblage dudit inhibiteur
JP2004075665A (ja) 2002-06-21 2004-03-11 Japan Science & Technology Corp アンサマイシン系抗生物質の新規用途及び新規血管新生抑制物質のスクリーニング方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075952A1 (en) * 2002-03-05 2003-09-18 Board Of Regents, The University Of Texas System Methods of enhancing immune induction involving mda-7

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038096A1 (fr) * 2001-10-30 2003-05-08 Shunichiro Kubota Recepteur pour inhibiteur de l'angiogenese et procede de criblage dudit inhibiteur
JP2004075665A (ja) 2002-06-21 2004-03-11 Japan Science & Technology Corp アンサマイシン系抗生物質の新規用途及び新規血管新生抑制物質のスクリーニング方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CELL, vol. 88, 1997, pages 277 - 285
J.BIOL.CHEM., vol. 274, 1999, pages 11721 - 11726
JIANG, H. ET AL.: "Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells", BIOCHEM. BIOPHYS.RES.COMMUN., vol. 368, no. 1, 2008, pages 1 - 5, XP027016403 *
KIM, Y.M. ET AL.: "Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-l", J.BIOL.CHEM., vol. 277, no. 31, 2002, pages 27872 - 9, XP002959880 *
LING, Y. ET AL.: "Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells", BIOCHEM. BIOPHYS.RES.COMMUN., vol. 361, no. L, 2007, pages 79 - 84, XP022176150 *
MASAYOSHI SHICHIRI ET AL.: "Antiangiogenesis signals by endostatin", FASEB JOURNAL, vol. 15, April 2001 (2001-04-01), pages 1044 - 1053, XP002971164 *
NATURE, vol. 390, 1997, pages 404 - 407
NONY, P.A. ET AL.: "15S-Lipoxygenase-2 mediates arachidonic acid-stimulated adhesion of human breast carcinoma cells through the activation of TAKl, MKK6, and p38 MAPK", J.BIOL.CHEM., vol. 280, no. 36, 2005, pages 31413 - 9, XP008145030 *
PRADERVAND, S. ET AL.: "Small proline-rich protein 1A is a gp130 pathway- and stress- inducible cardioprotective protein", EMBO J, vol. 23, no. 22, 2004, pages 4517 - 25, XP008145031 *
See also references of EP2333546A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045493A (ja) * 2017-08-30 2019-03-22 大正製薬株式会社 植物エキスの皮膚感作性インビトロ評価法
JP7110825B2 (ja) 2017-08-30 2022-08-02 大正製薬株式会社 植物エキスの皮膚感作性インビトロ評価法

Also Published As

Publication number Publication date
US20110151485A1 (en) 2011-06-23
EP2333546A1 (en) 2011-06-15
EP2333546A4 (en) 2011-12-21
KR20110057139A (ko) 2011-05-31
JPWO2010024221A1 (ja) 2012-01-26
JP5414072B2 (ja) 2014-02-12

Similar Documents

Publication Publication Date Title
Micheletti et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling
Zhang et al. mTORC1 inhibits NF‐κB/NFATc1 signaling and prevents osteoclast precursor differentiation, in vitro and in mice
Turnham et al. The PTEN conundrum: how to target PTEN-deficient prostate cancer
Li et al. DNA damage activates TGF-β signaling via ATM-c-Cbl-mediated stabilization of the type II receptor TβRII
US20160313349A1 (en) Method of diagnosis and treatment
Lai et al. Endothelial J apanese encephalitis virus infection enhances migration and adhesion of leukocytes to brain microvascular endothelia via MEK‐dependent expression of ICAM 1 and the CINC and RANTES chemokines
Kim et al. Regulation of breast cancer-induced osteoclastogenesis by MacroH2A1. 2 involving EZH2-mediated H3K27me3
Li et al. Macrophages promote anti-androgen resistance in prostate cancer bone disease
JP2011506274A (ja) ファスチンを阻害するための方法
Kim et al. Identification of novel synergistic targets for rational drug combinations with PI3 kinase inhibitors using siRNA synthetic lethality screening against GBM
Wang et al. SP1‐SYNE1‐AS1‐miR‐525‐5p feedback loop regulates Ang‐II‐induced cardiac hypertrophy
Yang et al. mmu_circ_0000790 is involved in pulmonary vascular remodeling in mice with HPH via microRNA-374c-mediated FOXC1
Yeh et al. Knockdown of cyclin-dependent kinase 10 (cdk10) gene impairs neural progenitor survival via modulation of raf1a gene expression
Zhou et al. EZH2 upregulates the expression of MAPK1 to promote intervertebral disc degeneration via suppression of miR‐129‐5p
Tiwari Apoptosis, angiogenesis and cancer therapies
WO2008024902A2 (en) Targeting of fructokinase as therapy for cardiovascular disease, metabolic syndrome, and renal disease
JP5414072B2 (ja) 血管新生抑制剤のスクリーニング方法、及び血管新生抑制シグナル遺伝子のスクリーニング方法
JP2010502640A (ja) mTORシグナル伝達を調節する組成物および方法
CN111617247B (zh) 表皮生长因子受体激酶底物8类蛋白3在增强多靶点激酶抑制剂疗效中的用途
Pfeiffer et al. AMPK‐regulated miRNA‐210‐3p is activated during ischaemic neuronal injury and modulates PI3K‐p70S6K signalling
KR101863710B1 (ko) 비알코올성 지방간 질환 진단용 조성물 및 진단방법
US20230375528A1 (en) Screening method for the identification of novel therapeutic compounds
Wang et al. Loss of WNK1 suppressed the malignant behaviors of hepatocellular carcinoma cells by promoting autophagy and activating AMPK pathway
Wei et al. SMEK1 ablation promotes glucose uptake and improves obesity-related metabolic dysfunction via AMPK signaling pathway
US20090142335A1 (en) Methods of diagnosis and treatment of metabolic disorders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526698

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117004340

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13060753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809872

Country of ref document: EP