WO2010022606A1 - 多业务适配和承载的方法及设备 - Google Patents

多业务适配和承载的方法及设备 Download PDF

Info

Publication number
WO2010022606A1
WO2010022606A1 PCT/CN2009/071924 CN2009071924W WO2010022606A1 WO 2010022606 A1 WO2010022606 A1 WO 2010022606A1 CN 2009071924 W CN2009071924 W CN 2009071924W WO 2010022606 A1 WO2010022606 A1 WO 2010022606A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
frame
identifier
cont
channel
Prior art date
Application number
PCT/CN2009/071924
Other languages
English (en)
French (fr)
Inventor
周建林
曹旸
胡幸
邹世敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09809191.1A priority Critical patent/EP2315397B1/en
Publication of WO2010022606A1 publication Critical patent/WO2010022606A1/zh
Priority to US13/037,139 priority patent/US8462656B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2863Arrangements for combining access network resources elements, e.g. channel bonding
    • H04L12/2865Logical combinations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2878Access multiplexer, e.g. DSLAM
    • H04L12/2879Access multiplexer, e.g. DSLAM characterised by the network type on the uplink side, i.e. towards the service provider network
    • H04L12/2885Arrangements interfacing with optical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2491Mapping quality of service [QoS] requirements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2212/00Encapsulation of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • H04L47/2433Allocation of priorities to traffic types
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects

Definitions

  • the present invention relates to data communication technologies, and in particular, to a method and device for multi-service adaptation and bearer. Background technique
  • GPON Gigabit-Passive Optical Network
  • FTTx Fiber To The Building/Cabinet/Curb/Home
  • FTTx Fiber To The Building/Cabinet/Curb/Home
  • FTTx Fiber To The Building/Cabinet/Curb/Home
  • FTTx Fiber To The Building/Cabinet/Curb/Home
  • FTTx Fiber To The Building/Cabinet/Curb/Home
  • the metropolitan area network is required to have the capability of interfacing with GPON to support the development of the future FTTx.
  • the current metropolitan area network includes NG-SDH (Next Generation Synchronous Digital Hierarchy), Metro-WDM (Metro Wavelength Division Multiplexing), and Layer 2 Ethernet.
  • NG-SDH Next Generation Synchronous Digital Hierarchy
  • Metro-WDM Micro Wavelength Division Multiplexing
  • Layer 2 Ethernet There are many types of process technologies for implementing the present invention, and the business transparency is poor; no real-time dynamic control protocol, maintenance and management difficulties; no real-time dynamic bandwidth adjustment mechanism, low network bandwidth utilization, no strict QoS guarantee, large bandwidth BOD (Bandwidth) On Demand, bandwidth on demand) Business is difficult to meet.
  • BOD Bandwidth
  • Bandwidth bandwidth on Demand
  • the embodiments of the present invention provide a method and a device for multi-service adaptation and bearer, which can easily implement uniform adaptation of multiple services to meet the requirements of various types of service QoS.
  • E-GEM frames encapsulating the same type of service are combined into the same type of transmission frame T-CONT at the channel layer;
  • a service adaptation unit configured to perform uniform encapsulation and decapsulation on different types of services at the service adaptation layer, where the encapsulation includes mapping different types of services into different E-GEM frames; E-GEM frames for encapsulating the same type of service at the channel layer to form the same type of transport frame T-CONT;
  • a priority setting unit for setting a priority level for each type of T-CONT
  • the sending unit is used to provide bandwidth guarantee for the high priority T-CONT and send it preferentially.
  • the multi-service adaptation and bearer method and device in the embodiment of the present invention map different types of services to a unified form of enhanced gigabit in the service adaptation layer.
  • the E-GEM frames encapsulating the same type of services are formed into the same type of transmission frame T-CONT at the channel layer, and the priority level is set for each type of T-CONT.
  • the priority T-CONT provides guaranteed bandwidth and priority transmission, so that multiple services can be easily integrated in a single format to meet the requirements of various types of service QoS.
  • FIG. 1 is a schematic diagram of a format of a service adaptation layer E-GEM frame in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a channel layer T-CONT frame format according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for multi-service adaptation and bearer according to an embodiment of the present invention
  • FIG. 4 is an E-GEM for improving GEM frame of a GPON system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of mapping a TDM service to an E-GEM frame according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of mapping an Ethernet service to an E-GEM frame in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of mapping a GEM frame of a GPON system to an E-GEM frame according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a device for multi-service adaptation and channel bearer according to an embodiment of the present invention.
  • the multi-service adaptation and bearer method is to adapt different types of services in a unified manner, and according to different QoS requirements of the service, the service can be carried by using a channel whose granularity can be adjusted.
  • different types of services are mapped to different enhanced gigabit passive optical network encapsulation E-GEM frames in the service adaptation layer; at the channel layer, the same type of E-GEM frames are combined into one transmission frame T -CONT; Sets the priority level for each T-CONT; provides guaranteed bandwidth for high-priority T-CONTs and prioritizes transmission.
  • the E-GEM frame format includes a frame header, an address identifier, and payload data.
  • the frame header includes four fields: payload length, service identifier, frame type, and header check.
  • the address identifier is divided into a destination identifier and a source identifier.
  • Frame header includes four fields: payload length, service identifier, frame type, and header check. To facilitate determining the starting position of the frame, the length of each field in the frame header can be fixed, for example, fixed to 5byte in length. Among them, the meaning of each field is as follows:
  • the payload length is the length of the payload data, in bytes
  • a service identifier is an identifier of a service in a network node, for example, a specific service type, a physical port, or the like;
  • the frame type is a data packet that is too long for some data lengths.
  • multiple frame fragmentation encapsulation bearers are required, it is used to indicate an intermediate frame or a tail frame.
  • the header check is a cyclic redundancy check on the data of each field in the frame header.
  • Address identifier including the destination identifier and the source identifier, where the destination identifier indicates that the service is on the network
  • the source identifier indicates the starting point of the service in the network.
  • the length of the address identifier field may also be fixed. For example, the destination identifier and the source identifier are fixed to 2 bytes.
  • a method for identifying a single ticket may employ a network node identifier, and the network node identifier and the service identifier together uniquely identify a service within the network. For example, there are 16 nodes in a network, and the range of identification is between 0 and 15.
  • the service identifier of the frame header may be further extended in the address identifier.
  • the first-level service identifier is such that the network node identifier and the service identifier extended in the address identifier together with the service identifier in the frame header uniquely identify a service in the network.
  • the address identification field is divided into two identification domains: a network node identifier (Node-ID) domain and a branch port identifier (TI-ID) domain, plus a service identifier (Port-ID) in the frame header, such that The three IDs of Node-ID+TI-ID+Port-ID are combined to uniquely specify each service in the network hierarchically.
  • Node-ID network node identifier
  • TI-ID branch port identifier
  • Port-ID service identifier
  • each service has a unique identifier in the network to facilitate network management or host configuration, tracking and management.
  • Payload data The length of this field can vary depending on the value range of the payload length in the frame header.
  • the address identification segment may not be set to ensure that the idle frame has a minimum length, so that there is more flexibility to fill the empty time slot between valid frames.
  • the maximum value of the payload length cannot be satisfied, it can be fragmented into multiple frames for assembly, which is indicated by the frame type in the frame header.
  • the destination identifier of the service is added to the E-GEM frame format of the embodiment of the present invention compared with the GEM (G-PON Encapsulation Method) format in the GPON system.
  • the source identifier, and the service identifier of the frame header is not present between the OLT (Optical Line Terminals) in the GPON system.
  • the service identifier in the E-GEM frame format has been extended to a larger networking scope. For example, it can exist between any nodes in the network. It is combined with the destination identifier and the source identifier to give a service in the entire network.
  • the unique identifier makes it easy to schedule services on the entire network, breaking through the traditional GPON system and using GEM frames only. Restrictions on the access layer, point-to-multipoint structure.
  • TDM Time Division Multiplexer
  • SDH Serial Digital Hierarchy
  • SONET Serial Optical NETwork
  • ATM Asynchronous Transfer Mode
  • Ethernet data services are adapted to E-GEM frames.
  • the data service can be sent to the service adaptation layer after Layer 2 switching, and mapped to an E-GEM frame.
  • T-MPLS Transport Multi-Protocol Label Switching
  • PBB-TE Provision Backbone Bridge-Traffic Engineering
  • GEM frame of the GPON system adapted to the E-GEM frame.
  • Different service types are mapped to the unified E-GEM frame, and the service is identified by the service identification field industry in the frame header. This will be explained later by way of example.
  • FIG. 2 it is a channel layer T-CONT frame format in the embodiment of the present invention:
  • the T-CONT frame format includes a frame header, a channel overhead, and payload data.
  • Frame header Includes three fields: payload length, other extension fields, and header check.
  • the length of each field in the frame header can be set to be fixed. Among them, the meaning of each field is as follows:
  • the payload length is the length of the payload data, in bytes
  • the extended field can select more important information, add the check of the header, such as the channel identifier, etc.
  • the header check is to perform cyclic redundancy check on the data of each field in the frame header. Several bytes are checked to capture and synchronize the frame header. On the other hand, some important information, such as payload length and channel identification, can be checked and corrected, thus improving the reliability of service transmission. .
  • Channel overhead Includes channel identification, data checksum, and monitoring fields. among them:
  • the channel identifier is a unique serial number assigned to the T-CONT frame generated by all nodes in the network.
  • the serial number is uniformly allocated by the host to facilitate positioning, cross-connection, monitoring, and management during subsequent transmission.
  • the data check is used to detect the data transmission quality of the channel layer, and is represented by a bit error rate. According to a preset threshold of the bit error rate, signal degradation or signal failure can be judged. For example, you can use BIP ( Bit Interleaved Parity, bit cross-parity check, BIP check for T-CONT frames, and error rate is expressed by error block ratio to facilitate monitoring of data transmission channels consisting of T-CONT frames with the same identification The quality and performance of the data transmission.
  • BIP Bit Interleaved Parity, bit cross-parity check, BIP check for T-CONT frames
  • error rate is expressed by error block ratio to facilitate monitoring of data transmission channels consisting of T-CONT frames with the same identification The quality and performance of the data transmission.
  • the monitoring field can be used to deliver alarms and performance generated within the channel, as well as bandwidth request escalation or other information, enabling end-to-end alarm and performance monitoring for the channel.
  • the monitoring field can include a far end error indication REI, a remote defect indication RDI, and a dynamic broadband report DBR.
  • Payload data The data area of the T-CONT channel layer is used to carry E-GEM frames and consists of multiple E-GEM frames.
  • the length of the data area may vary depending on the range of the payload length in the T-CONT frame header, and the payload length is required to be greater than or equal to the sum of the lengths of the multiple E-GEM frames carried.
  • the payload length When the payload length is 0, it indicates that this is an idle frame (IDLE frame) and does not carry any E-GEM frames.
  • the channel overhead field may not be set to ensure that the idle frames have a minimum length, which allows for greater flexibility to fill empty slots between valid frames.
  • the payload length is greater than the sum of the lengths of the multiple E-GEM frames carried, it can be filled with an idle byte.
  • the T-CONT frame format in the embodiment of the present invention is not limited to the above manner, and may have other formats.
  • the more important channel identifier can be placed in the frame header, such as in the extension field, so that the channel identifier can also participate in the header check of the frame header, and even error detection and error correction.
  • the channel overhead will include the data checksum monitoring field.
  • dynamic bandwidth reporting can also be included in the channel overhead.
  • each node first collects bandwidth requests of all services in the node, and then sends a bandwidth demand report of the node to the host.
  • the host calculates and judges the bandwidth resources of the current network, the bandwidth requirements of each node, the service priority, and the service level. Finally, the bandwidth allocation information is sent to each node.
  • the dynamic bandwidth here is that DBR is used to send real-time dynamic bandwidth demand reports to the host.
  • the T-CONT frame can be divided into FB (Fixed Bandwidth),
  • BE Good Bandwidth + Best Effort, guaranteed bandwidth and best effort to send services
  • BE best to send business
  • other few types the same type of E-GEM frames are combined into one T-CONT frame according to the service type, priority, and destination address.
  • the E-GEM frame of the TDM service or the dedicated line service can form the FB class.
  • Type T-CONT IPTV (Internet Protocol Television, Internet-based TV with connection and bandwidth allocation), VoD (Video on Demand, video-on-demand) or E-GEM frames for leased line services, can form AB+BE type T-CONT; and E-GEM frames for web browsing and downloading file-type services can form a BE-type T-CONT.
  • the high-priority T-CONT can be guaranteed bandwidth and sent according to the bandwidth resources of the network, the requested bandwidth of each node, and the service priority.
  • the low-priority T-CONT can be in the remaining bandwidth. Redistribution, thus achieving the fairness of bandwidth allocation.
  • FIG. 3 shows a flow of a method for multi-service adaptation and bearer according to an embodiment of the present invention, which mainly includes the following steps:
  • Step 301 Map different types of services to a unified E-GEM frame in the service adaptation layer.
  • Step 302 the E-GEM frame encapsulating the same type of service is formed into the same type of transmission frame T-CONT at the channel layer;
  • Step 303 setting a priority level for each type of T-CONT
  • Step 304 providing bandwidth guarantee for the high priority T-CONT and sending it preferentially.
  • the E-GEM frame in the embodiment of the present invention may also be implemented by improving the GEM frame of the GPON system.
  • an E-GEM frame structure and a T-CONT frame structure are implemented to improve a GEM frame of a GPON system:
  • the definition of the frame header can completely borrow the existing GEM frame header, which is 5 bytes in total.
  • the meanings of the fields corresponding to the E-GEM frame header are as follows:
  • PLI payload length indication
  • 12bit used to indicate the length of the payload data
  • the unit is byte
  • the payload data is allowed to be up to 4095 bytes. If the user data is greater than the maximum length, it must be fragmented to be transmitted under less than 4095.
  • Port-ID (service identifier), 12bit, can provide up to 4096 unique service identifiers;
  • PTI payload type indication
  • 3bit used to indicate the type of payload data and the corresponding processing method, as shown in Table 1 below;
  • HEC Header Error Control
  • OAM data 100 non-user data, OAM data
  • the destination identifier and the source identifier are added, and 16 bits can be considered and divided into two identifier domains: Node-ID (network node identifier) 6bit, TI-ID (branch port identifier) ) 10bit.
  • the former indicates that there are up to 64 nodes in the network, and the latter can be combined with the Port-ID of the frame header to identify a larger range of service types.
  • the three IDs of Node-ID + TI-ID + Port-ID are combined to uniquely specify each service in the network hierarchically.
  • the TI-ID can correspond to a tributary board or port within a network node device:
  • each ODN interface can be assigned a TI-ID, which belongs to the ONU of the same ODN network, and different services continue to allocate different Port-IDs;
  • TI-ID For a TDM service, such as an E1 service, you can assign a TI-ID to different E1 interfaces on the board, and assign a different port ID to the E1 interface on the E1 interface.
  • the TI-ID can be a physical port, and the Port-ID corresponds to a VLAN (Virtual
  • Local Area Network virtual local area network, etc.
  • the length is specified by the PLI and is variable from 0 to 4095.
  • the frame header may also consider other The extension identifier, as shown in the figure T-PLI2. Considering that the bandwidth of a T-CONT channel to transmit data is allowed to reach a 2.5G, 10G or even higher rate range, the length of the T-CONT frame length (including the payload data area) will reach 38,880 bytes, 155,520 bytes or more, and T can be arranged. - The indication range of PLI1 is 20bit. The T-HEC check can draw on the existing 13-bit long cyclic redundancy check.
  • the channel identifier (Alloc-ID) can be considered to be 2 bytes, a total of 16 bits, divided into two identification fields: Node ID (Node-ID) 6bit, channel sequence number (Seq-ID) lObit, this This means that up to 1024 T-CONT frames can be grouped in a single node.
  • Node ID Node-ID 6bit
  • Seq-ID channel sequence number
  • the channel identification is an important indication, it can also be arranged in the frame header area, for example, instead of the extension identifier T-PLI2, participating in the check and error correction of the frame header.
  • Data verification can be performed using the BIP-8 checksum of the cartridge.
  • the monitoring byte M1 includes a 4-bit remote error indication REI, a lbit remote defect indication RDI, and a 2-bit bandwidth request DBR. The meanings of the DBRs of different data are shown in Table 2 below.
  • the length is specified by T-PLI1 and contains multiple E-GEM frames.
  • the channel adaptation layer in the embodiment of the present invention has a large difference from the T-CONT frame in the GPON system.
  • the T-CONT frame is only in the access layer range, and the data is transmitted from multiple points to one point in the uplink direction between the ONU and the OLT.
  • the concept of T-CONT is proposed in the GPON system, mainly for the implementation of QoS requirements of different service types. Its management overhead is in addition to the uplink signaling channel (PLOAMu, Physical Layer OAM upstream, uplink physical layer operation, management and maintenance).
  • the uplink power level sequence ⁇ 'J PLSu, Physical Layer Sequence upstream, uplink power level sequence
  • DBRu Dynamic Bandwidth Report upstream, uplink direction dynamic bandwidth report
  • the channel layer T-CONT frame retains the dynamic bandwidth reporting function, and can initiate a dynamic bandwidth allocation request when the bandwidth of the service type of the bearer changes.
  • the frame header positioning function is added to adapt to a wider range of applications; data verification function, performance and alarm monitoring are added, and end-to-end monitoring and management of the channel layer can be realized, and the channel layer is conditionally implemented. Protection and switching.
  • the improved T-CONT frame has a more complete OAM function, and it can function as a truly independent transmission channel in the time slot it allocates.
  • the virtual container is fixed length and non-adjustable compared to the rigid transport channel VC (Virtual Container) in the SDH system.
  • the length of the T-CONT frame in the embodiment of the present invention may be changed in units of 1 byte.
  • Bandwidth utilization is very high; Moreover, it can also be combined with the DBA mechanism for the whole network to realize dynamic bandwidth adjustment. It is also very suitable for future IPTV, BOD and other services.
  • FIG. 5 shows a schematic diagram of mapping TDM traffic to E-GEM frames:
  • the PLI value can be adjusted once in the range of ⁇ 1 bytes when the data buffer is increased or decreased by one byte.
  • the E1 service 2.048 Mbps signal
  • the frame rate is 8 Khz
  • the value of the PLI is fixed to 32 bytes; when the clocks between the two are not synchronized, that is, when there is a frequency difference
  • the PLI will take values in the three values of 31, 32, and 33.
  • the data buffer since the value of the PLI is in bytes, when the E1 signal is mapped to the data payload area of the E-GEM frame, the data buffer must wait until every 8 bits. That is, one byte is obtained, and the value of PLI is adjusted once within ⁇ 1.
  • Figure 6 shows a schematic diagram of mapping Ethernet traffic to E-GEM frames:
  • Ethernet frame The structure of the Ethernet frame is the same as that of the prior art and will not be described in detail herein.
  • the method of discarding the Ethernet frame interval and the preamble can be used to ensure the integrity of the Ethernet frame data.
  • the length/type field in the Ethernet frame can be used to determine the length of the Ethernet frame data.
  • other fields of the Ethernet frame are fixed lengths, so that the value of the PLI can be determined, and then the Ethernet frame is mapped to the data area of the E-GEM frame.
  • the Ethernet super long frame length is greater than 4095, multiple consecutive E-GEM frames can be used for fragment transmission.
  • FIG. 7 is a schematic diagram of mapping a GEM frame of a GPON system to an E-GEM frame: mapping from a GEM frame to an E-GEM, since the port-ID in the original GEM frame only has GPON After the branch OLT and the ONU are connected, and the E-GEM frame adds the source and destination identifiers of the service, it is applied to a larger network range, such as the metropolitan area, the service identifier Port-ID and the branch port identifier (TI- ID), Network Node Identifier (Node-ID) - identifies a larger range of services in the network, the meaning of the Port-ID has changed, so it needs to be re-assigned, and the corresponding HEC check will need to be recalculated.
  • the values of the PLI and PTI, as well as the payload data, can be directly copied to the corresponding domain of the E-GEM frame.
  • the multi-service adaptation and bearer method of the embodiment of the present invention can implement various forms of services to be uniformly encapsulated into the service adaptation layer E-GEM frame, and various service types only need to be compared with the traditional SDH system.
  • E-GEM frame adaptation and then directly to the channel layer T-CONT frame, no complicated interpolating and multiplexing processes are required, which greatly enlarges the intermediate processing process, realizes the single order, and saves costs;
  • the management overhead of the structure is reasonable and reasonable, and it can reflect the main alarm and performance monitoring.
  • the unit is reliable and easy to implement.
  • the channel layer data length can be adjusted in units of lbyte, the bandwidth utilization is high, and the DBA mechanism can be combined to realize dynamic bandwidth adjustment.
  • the QoS implementation mechanism is flexible and convenient.
  • FIG. 8 is a schematic structural diagram of a device for multi-service adaptation and channel bearer according to an embodiment of the present invention.
  • the device includes: a service adaptation unit 801, a channel processing unit 802, a priority setting unit 803, and a sending unit 804. among them:
  • the service adaptation unit 801 is configured to perform unified encapsulation and decapsulation on different types of services at the service adaptation layer, where the encapsulation includes mapping different types of services into a unified form of E-GEM frames;
  • the 802 is configured to form an E-GEM frame encapsulating the same type of service in the channel layer to form a same type of transmission frame T-CONT;
  • the priority setting unit 803 is configured to set a priority level for each T-CONT; Provide bandwidth protection for high priority T-CONT Certificate and priority to send.
  • the device in the embodiment of the present invention may further include: an optical distribution network interface 805 and a passive optical network transmission aggregation unit. 806, to achieve docking with the GPON branch.
  • the optical distribution network interface 805 is configured to receive a Gigabit passive optical network GPON signal;
  • the passive optical network transmission convergence unit 806 is configured to decapsulate the GPON signal from the GPON transmission convergence layer to the GEM frame, and the GEM frame It is sent to the service adaptation unit 801.
  • the GEM frame is mapped to the E-GEM frame by the service adaptation unit 801.
  • the specific mapping process has been described above and will not be described here.
  • the device in the embodiment of the present invention may further include: a time division multiplexing service interface
  • the time division multiplexing service interface 807 is configured to receive time division multiplexed TDM service signals, such as a relatively common 64 Kbps signal, El (2048 Kbps signal), E3 (34.368 Mbps signal), Tl (1544 Kbps signal), T3 (44.736 Mbps signal). , DS1 (1544Kbps signal), DS3 (44.736Mbps signal), STM-1 (155.52Mbps signal), etc., and send the TDM service signal to the service adaptation unit 801; the Ethernet service interface 808 is used to receive the Ethernet data The packet is discarded, and the frame interval and the preamble in the Ethernet packet are discarded and sent to the service adaptation unit 801.
  • the optical distribution network interface 805, the time division multiplexing service interface 807, and the Ethernet service interface 808 may be selected according to actual network requirements, and only one of the interfaces may be selected.
  • a variety of interfaces are also available.
  • the device in the embodiment of the present invention is not limited to these service interfaces. According to the same principle, interfaces of other services can be easily extended. For example, for T-MPLS and PBB-TE service signals, it can be used as a client of the Ethernet system. The signal is encapsulated into an Ethernet frame, and then selected to be mapped to the E-GEM frame through Layer 2 switching or without Layer 2 switching.
  • the multi-service adaptation and the channel-bearing device of the embodiment of the present invention can uniformly encapsulate various forms of services into the E-GEM frame of the service adaptation layer, and form an E-GEM frame encapsulating the same type of service at the channel layer.
  • the same type of transport frame T-CONT, and according to the priority of the T-CONT type, can easily realize the QoS requirements of different services.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

多业务适配和承载的方法及设备
本申请要求于 2008 年 8 月 26 日提交中国专利局、 申请号为 200810146903.5、 发明名称为"多业务适配和承载的方法及设备"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及数据通信技术, 具体涉及一种多业务适配和承载的方法及设 备。 背景技术
随着网络通信技术的发展,现有的网络可以承载多种业务,如语音、视频、 网络游戏、 网络浏览等。 近几年来, 网络带宽需求以指数规律增长, 虽然营运 商通过不断扩展物理带宽及相关技术,提高了网络承载和传送数据的能力,但 是物理带宽的增加总是落后于用户对于数据传输的要求。在大数据量的冲击下, 如何保证网络承载多种业务传送的可靠性和相应业务的 QoS ( Quality of Service, 服务质量), 已开展了很多的研究工作。 近两年来, 各大电信营运商 大都选择了以 GPON ( Gigabit-Passive Optical Network, 吉比特无源光网络)作 为未来大宽带光纤接入(FTTx, Fiber To The Building/Cabinet/Curb/Home, 光 纤到大楼、 路边机拒、 家庭等多种形式的接入)的解决方案。 一方面, 对城域 网络的带宽提出了更高的要求, 另一方面, 要求城域网络具备和 GPON对接的 能力, 支持未来 FTTx的发展。
目前的城域网络, 有 NG-SDH ( Next Generation Synchronous Digital Hierarchy, 下一代同步数字系统)、 Metro-WDM ( Metro Wavelength Division Multiplexing, 城域波分复用)、 2层以太网等多种形式。 在实现本发明的过程 技术种类多, 业务透明性差; 无实时动态控制协议, 维护管理困难; 没有实时 的动态带宽调整机制,网络带宽利用率低,没有严格的 QoS保证,大带宽的 BOD ( Bandwidth On Demand, 按需带宽) 业务难以满足。 总之, 现有技术中迫切 需要一种相对筒单、 能够承载未来多种业务、 方便和 GPON对接、 容易实现动 态带宽分配的多业务统一适配, 以及根据 QoS特性实现通道承载的技术。 发明内容
本发明实施例提供一种多业务适配和承载的方法及设备, 以筒单、 方便地 实现多种业务统一形式的适配, 满足各种类型业务 QoS的需求。
本发明实施例提供的一种多业务适配和承载的方法, 包括:
在业务适配层将不同类型的业务映射到统一形式的增强型吉比特无源光 网络封装形式 E-GEM帧中;
在通道层将封装有相同类型业务的 E-GEM 帧组成同一种类型的传送帧 T-CONT;
为各种类型的 T-CONT设定优先级别;
为高优先级的 T-CONT提供带宽保证并优先发送。
本发明实施例提供的一种多业务适配和通道承载的设备, 包括:
业务适配单元,用于在业务适配层对各种不同类型的业务进行统一形式的 封装和解封装, 所述封装包括将不同类型的业务映射到不同的 E-GEM帧中; 通道处理单元, 用于在通道层将封装有相同类型业务的 E-GEM帧组成同 一种类型的传送帧 T-CONT;
优先级设定单元, 用于为各种类型的 T-CONT设定优先级别;
发送单元, 用于为高优先级的 T-CONT提供带宽保证并优先发送。
由以上本发明实施例提供的技术方案可以看出,本发明实施例的多业务适 配和承载的方法及设备,通过在业务适配层将不同类型的业务映射到统一形式 的增强型吉比特无源光网络封装 E-GEM帧中, 在通道层将封装有相同类型业 务的 E-GEM帧组成同一种类型的传送帧 T-CONT, 为各类型的 T-CONT设定 优先级别, 为高优先级的 T-CONT提供保证带宽并优先发送, 从而可以筒单、 方便地实现多种业务统一形式的适配, 满足各种类型业务 QoS的需求。 附图说明
图 1是本发明实施例中业务适配层 E-GEM帧格式示意图;
图 2是本发明实施例中通道层 T-CONT帧格式示意图;
图 3是本发明实施例多业务适配和承载的方法的流程图;
图 4是本发明实施例中对 GPON体制的 GEM帧进行改进实现的 E-GEM 帧结构及 T-CONT帧结构示意图;
图 5是本发明实施例中 TDM业务映射到 E-GEM帧的示意图;
图 6是本发明实施例中以太网业务映射到 E-GEM帧的示意图;
图 7是本发明实施例中 GPON体制的 GEM帧映射到 E-GEM帧的示意图; 图 8是发明实施例多业务适配和通道承载的设备的结构示意图。 具体实施方式
本发明实施例多业务适配和承载的方法,将不同类型的业务进行统一形式 的适配, 并才艮据业务不同的 QoS需求, 采用颗粒大小可以调整的通道^载方 式承载所述业务。 具体地, 在业务适配层将不同类型的业务映射到不同的增强 型吉比特无源光网络封装形式 E-GEM帧中;在通道层,将同一类型的 E-GEM 帧组成一个传送帧 T-CONT; 为各 T-CONT设定优先级别; 为高优先级的 T-CONT提供保证带宽并优先发送。
为了使本技术领域的人员更好地理解本发明实施例的方案,下面结合附图 对本发明实施例进行详细说明。
首先, 参照图 1 , 是本发明实施例中业务适配层 E-GEM帧格式: 该 E-GEM帧格式包括帧头部、 地址标识和净荷数据三部分。 帧头部包括 净荷长度、 业务标识、 帧类型、 头校验四个字段; 地址标识分为目的标识和源 标识。 下面对各部分进行详细说明:
( 1 ) 帧头部: 包括净荷长度、 业务标识、 帧类型和头校验这四个字段, 为了方便确定帧的起始位置, 可以使帧头部中各字段的长度固定, 比如固定为 5byte的长度。 其中, 各字段的含义如下:
净荷长度是指净荷数据的长度, 单位为 byte;
业务标识是对网络节点中业务的标识, 比如可以对应到具体的业务类型、 物理端口等;
帧类型是对于某些数据长度超长的数据包, 需要多个帧分片封装承载时, 用来指示中间帧或者尾帧;
头校验是对帧头部各字段的数据进行循环冗余校验。
( 2 )地址标识: 包括目的标识和源标识, 所述目的标识表示业务在网络 中的终止点, 所述源标识表示业务在网络中的起始点。该地址标识字段的长度 也可以是固定的, 比如目的标识和源标识都固定为 2byte。
一种筒单的标识方法可以采用网络节点标识,该网络节点标识和所述业务 标识一起在本网络内唯一标识一条业务。 比如, 一个网络中有 16个节点, 标识 范围就在 0 ~ 15之间。
除此之外, 为了适应更多数量的业务和更大范围的应用, 除了所述网络节 点标识外,还可以在上述帧头部的业务标识的基础上,在所述地址标识中再扩 展增加一级业务标识 ,使所述网络节点标识和在地址标识中扩展的业务标识与 所述帧头部中的业务标识一起在本网络内唯一标识一条业务。 比如,将地址标 识域分成两个标识域: 网络节点标识 ( Node-ID )域和支路端口标识 ( TI-ID ) 域, 加上帧头部中的业务标识(Port-ID ), 这样, Node-ID+TI-ID+Port-ID三个 标识合在一起, 可以分层次地唯一指定网络中的每一条业务。
也就是说, 在网络中对每一条业务有唯一的标识, 以方便网管或主机对业 务配置、 跟踪和管理。
( 3 ) 净荷数据: 该字段的长度可以变化, 取决于帧头部中的净荷长度的 取值范围。
当净荷长度为 0时, 表明这是一个空闲帧 (IDLE帧)。 对于空闲帧, 可以 不设置地址标识段, 以保证空闲帧有最小的长度, 这样可以有更大的灵活性, 来填充有效帧之间的空时隙。
对于大带宽的业务,如果净荷长度的最大值都不能满足时, 可以分片到多 个帧中来组装, 这由帧头部中的帧类型来指示。
由上述 E-GEM帧格式可以看出, 与 GPON体制中的 GEM ( G-PON Encapsulation Method, GPON封装形式 )帧相比, 本发明实施例的 E-GEM帧格 式中增加了业务的目的标识和源标识, 而且帧头部的业务标识也不象 GPON体 制中仅在一个 GPON系统内的 OLT( Optical Line Terminals,光线路终端 W ONU ( Optical Network Unit, 光网络单元 )之间存在。 本发明实施例的 E-GEM帧格 式中的业务标识, 已经拓展到更大的组网范围,如可以在网络中任何节点之间 存在, 它和目的标识、 源标识一起, 给出一条业务在整个网络中唯一的标识, 从而可以方便在整个网络上调度业务,突破了传统的 GPON体制中 GEM帧仅用 于接入层、 点到多点结构的限制。
在实际应用中,可以将 TDM ( Time Division Multiplexer, 时分复用)业务、 SDH ( Synchronous Digital Hierarchy, 同步数字系统) /SONET ( Synchronous Optical NETwork, 同步光纤网络) /ATM ( Asynchronous Transfer Mode, 异步 传输模式) 业务, 以及以太网数据业务, 适配到 E-GEM帧中。 所述数据业务 可经过二层交换后送到业务适配层, 映射为 E-GEM帧。 除此之外, 还可以将 用于分组传输主流技术的 T-MPLS ( Transport Multi-Protocol Label Switching, 传输多协议标签交换) 和 PBB-TE ( Provider Backbone Bridge-Traffic Engineering, 运营商骨干网桥接传输技术), 以及 GPON体制的 GEM帧, 适配 到 E-GEM帧中。 不同的业务类型, 映射到统一形式的 E-GEM帧中, 并由帧头 部中的业务标识字段业标识该业务。 对此后面将会举例进行说明。
参照图 2, 是本发明实施例中通道层 T-CONT帧格式:
该 T-CONT帧格式包括帧头部、 通道开销和净荷数据三部分。 下面对各部 分进行详细说明:
( 1 ) 帧头部: 包括净荷长度、 其它扩展字段和头校验这三个字段。 为了 方便确定帧的起始位置, 可以设定帧头部中各字段的长度固定。 其中, 各字段 的含义如下:
净荷长度是指净荷数据的长度, 单位为 byte;
扩展字段可以选择比较重要的信息, 加入头部的校验, 如通道标识等; 头校验是对帧头部各字段的数据进行循环冗余校验,这种校验一方面可以 通过对少数几个字节进行校验来捕获和同步帧头,另一方面还可以对一些比较 重要的信息, 比如净荷长度、 通道标识等, 进行校验和纠错, 从而提高了业务 传输的可靠性。
( 2 )通道开销: 包括通道标识、 数据校验和监控字段。 其中:
通道标识是对网络中所有节点产生的 T-CONT帧赋予的一个唯一的序列 号, 该序列号由主机统一分配, 以方便后续传送过程中的定位、 交叉连接、 监 控和管理等。
数据校验用于检测通道层的数据传送质量, 用误码率来表示,根据预先设 定的误码率的阈值, 可以判断信号劣化或信号失效。 比如, 可以采用 BIP ( Bit Interleaved Parity, 位交叉奇偶)校验方式, 对 T-CONT帧进行 BIP校验, 误码 率则用误码块比率来表示, 以方便监控由相同标识的 T-CONT帧构成的数据传 输通道中数据的传输质量和性能。
监控字段可以用来传递该通道内产生的告警和性能,以及带宽请求上报或 其它信息,从而可以实现针对该通道端到端的告警和性能监控。 该监控字段可 以包含远端差错指示 REI、 远端缺陷指示 RDI和动态宽带报告 DBR。
( 3 )净荷数据: T-CONT通道层的数据区用来承载 E-GEM 帧, 由多个 E-GEM帧构成。 数据区的长度可以变化, 取决于 T-CONT帧头部中的净荷长 度的取值范围, 要求净荷长度大于或等于承载的多个 E-GEM帧的长度总和。
当净荷长度为 0时,表明这是一个空闲帧( IDLE帧 ),没有承载任何 E-GEM 帧。 对于空闲帧, 可以不设置通道开销字段, 以保证空闲帧有最小的长度, 这 样可以有更大的灵活性, 来填充有效帧之间的空时隙。
当净荷长度大于承载的多个 E-GEM帧的长度总和时, 可以使用空闲 byte 来填充。
需要说明的是,本发明实施例中的 T-CONT帧格式并不仅限于上述这种方 式, 还可以有其他格式。 比如, 可以将比较重要的通道标识放入帧头部中, 如 放入扩展字段中, 这样, 通道标识也可以参与帧头部的头校验, 甚至检错和纠 错。 在这种方式下, 通道开销将包括数据校验和监控字段。
除此之外, 为了方便动态带宽的调整, 在通道开销中还可以包括动态带宽 报告。在基于动态带宽调整的网络中, 首先由各节点收集本节点内所有业务的 带宽请求, 然后向主机发出本节点的带宽需求报告。主机根据当前网络中线路 带宽资源, 以及各节点的带宽需求、 业务优先级、 服务等级等条件进行计算和 判断, 最后下发带宽分配信息给每个节点。 这里的动态带宽 4艮告 DBR就是用 于节点向主机发送实时的动态带宽需求报告。
在通道层,可以将 T-CONT帧分成 FB ( Fixed Bandwidth, 固定带宽业务)、
AB + BE ( Assured Bandwidth + Best Effort,保证带宽和尽力发送业务)、 BE (尽 力发送业务)等少数几个类型。在将不同业务映射的 E-GEM帧承载到 T-CONT 中时, 根据业务类型、 优先级、 目的地址等原则, 把相同类型的 E-GEM帧组 成一个 T-CONT帧。 如 TDM业务或专线业务的 E-GEM帧, 可以组成 FB类 型的 T-CONT; IPTV ( Internet Protocol Television, 使用因特网十办议连接和分 配带宽的电视)、 VoD ( Video on Demand, 视频点播)或专线业务的 E-GEM 帧,可以组成 AB+BE类型的 T-CONT;而网页浏览、下载文件类业务的 E-GEM 帧, 则可以组成 BE类型的 T-CONT。 这样, 就可以根据网络中线路带宽资源、 各节点的请求带宽、业务优先级等信息, 为高优先级的 T-CONT提供保证带宽 并优先发送,低优先级的 T-CONT可以在剩余带宽里再分配,从而实现了带宽 分配的公平性。
图 3示出了本发明实施例多业务适配和承载的方法的流程,主要包括以下 步骤:
步骤 301 , 在业务适配层将不同类型的业务映射到统一形式的 E-GEM帧 中;
步骤 302, 在通道层将封装有相同类型业务的 E-GEM帧组成同一种类型 的传送帧 T-CONT;
步骤 303 , 为各种类型的 T-CONT设定优先级别;
步骤 304, 为高优先级的 T-CONT提供带宽保证并优先发送。
作为一个实施例, 本发明实施例中的 E-GEM帧, 也可以通过对 GPON体 制的 GEM帧进行改进而实现。
如图 4所示,为本发明实施例中对 GPON体制的 GEM帧进行改进实现的 E-GEM帧结构及 T-CONT帧结构:
( 1 )业务适配层
A、 帧头部的定义可以完全借用现有的 GEM 帧头部, 共 5byte, 对应于 E-GEM帧头部的各字段含义如下:
PLI (净荷长度指示), 12bit, 用于指示净荷数据的长度, 单位为 byte, 允 许净荷数据最多 4095个 byte, 如果用户数据大于最大长度, 则必须截成小于 4095的碎片进行传输;
Port-ID (业务标识 ) , 12bit , 可以最多提供 4096个唯一的业务标识;
PTI (净荷类型指示), 3bit, 用于指示净荷数据的类型以及相应的处理方 法, 详见下表 1 ;
HEC (信头差错控制), 提供 13bit的循环冗余校验。 PTI 含义
000 用户数据, 没有拥塞, 非尾帧
001 用户数据, 没有拥塞, 尾帧
010 用户数据, 有拥塞, 非尾帧
Oil 用户数据, 有拥塞, 尾帧
100 非用户数据, OAM数据
101 保留
110 保留
111 保留
B、在 GPON体制的 GEM帧的基础之上, 增加了目的标识和源标识, 可以 考虑安排 16bit, 分成两个标识域: Node-ID (网络节点标识) 6bit、 TI-ID (支 路端口标识)10bit。前者表明网络中最多 64个节点,后者可以和帧头部的 Port-ID 一起, 标识更大范围的业务类型。 这样, Node-ID + TI-ID + Port-ID三个标识合 在一起, 可以分层次地唯一指定网络中的每一条业务。 比如, TI-ID可以对应 为网络节点设备内的支路板或端口:
对于 GPON支路, 有多个 ODN ( Optical Distribution Network, 光分配网) 接口, 每个 ODN接口可以分配一个 TI-ID, 属于同一个 ODN网络的 ONU上, 不 同的业务继续分配不同 Port-ID;
对于 TDM业务, 如 E1业务, 可以先按照不同单板分配 TI-ID, 再给板内 的多个 E1接口分配不同的 Port-ID , 也可以直接为节点内部所有的 E1接口分配 TI-ID;
对于以太网业务, TI-ID可以是物理端口, Port-ID对应为 VLAN ( Virtual
Local Area Network , 虚拟局域网)标识等。
总之, 可以采用多种方法来标识业务。
C、 对于净荷数据区, 长度由 PLI指定, 在 0 ~ 4095之间可变。
( 2 )通道适配层
A、 帧头部除了 T-CONT帧的净荷数据长度 T-PLI1之外, 还可以考虑其它 的扩展标识, 如图中的 T-PLI2。 考虑到一个 T-CONT通道传送数据的带宽允许 达到 2.5G、 10G甚至更大速率范围, T-CONT帧长(包含净荷数据区) 的长度 将达到 38880byte、 155520byte或更大数量,可以安排 T-PLI1的指示范围为 20bit。 T-HEC校验可以借鉴现有的 13bit长循环冗余校验。
B、 在通道开销区, 通道标识( Alloc-ID )可以考虑安排 2byte, 共 16bit, 分为两个标识域: 网络节点标识( Node-ID ) 6bit、 通道序列号( Seq-ID ) lObit, 这意味着在一个节点内最多可以组 1024个 T-CONT帧。 考虑到通道标识是一个 很重要的指示, 也可以安排到帧头部区域, 比如取代扩展标识 T-PLI2, 参与帧 头部的校验和纠错。 数据校验可以采用筒单的 BIP-8校验。 监控字节 Ml包含有 4bit远端差错指示 REI、 lbit远端缺陷指示 RDI、 2bit带宽请求 DBR, 不同数据的 DBR的含义详见下表 2。
Figure imgf000011_0001
C、 对于净荷数据区, 长度由 T-PLI1指定, 包含有多个 E-GEM帧。
需要说明的是,本发明实施例中的通道适配层和 GPON体制中的 T-CONT 帧有^艮大的不同。
在 GPON体制中, T-CONT帧仅在接入层范围,在 ONU和 OLT之间的上 行方向、 由多点到一点发送数据适用。 在 GPON体制中提出 T-CONT的概念, 主要是为了不同业务类型 QoS要求的实现, 它的管理开销除了上行方向信令 通道(PLOAMu, Physical Layer OAM upstream, 上行方向物理层操作、 管理 和维护 )、 上行方向功率电平序歹 'J ( PLSu, Physical Layer Sequence upstream, 上行方向功率电平序列)和上行方向动态带宽报告( DBRu, Dynamic Bandwidth Report upstream, 上行方向动态带宽报告 )之外, 没有定义其它管理开销, 如 数据校验、 性能和告警监控等, 所以它的 OAM ( Operation, Administration, Management, 操作管理和维护) 能力较弱, 难以实现其它的功能, 如交叉连 接、 监控和保护等, 不能扩展到更大范围的网络应用。
在本发明实施例中,通道层 T-CONT帧保留了动态带宽报告功能,可以在 承载的业务类型带宽发生变化时, 发起动态带宽分配请求。 在 OAM方面, 增 加了帧头定位功能, 以适应更广泛的应用场合; 增加了数据校验功能, 以及性 能和告警监控, 可以实现通道层端到端的监控和管理, 并且有条件实现通道层 的保护和倒换。 改进后的 T-CONT帧具备了更完善的 OAM功能, 在它所分配 的时隙内, 可以起到一个真正独立的传送通道的作用。 此外, 相比 SDH体制 中的刚性传送通道 VC ( Virtual Container, 虚容器), 该虚容器是固定长度的, 不可调整, 本发明实施例中的 T-CONT帧长度可以按 lbyte为单位发生变化, 带宽利用率很高; 而且, 还可以结合面向全网的 DBA机制, 实现动态带宽调 整也很方便, 特别适合于未来 IPTV、 BOD等业务。
图 5示出了将 TDM业务映射到 E-GEM帧的示意图:
对于 TDM业务的映射,可以根据 TDM业务本身的速率和 E-GEM帧的速 率之差, 在数据緩存每增加或减少 1个 byte时, 自适应、 在 ±lbyte范围调整 一次 PLI的值即可。 以 E1业务( 2.048Mbps信号 )为例, 在帧频为 8Khz时, 当 E1信号和 E-GEM帧同步时, PLI的值固定为 32byte; 当二者之间时钟不同 步, 即存在频率差异时, PLI将在 31、 32、 33三个值中取值, 由于 PLI的值 是以 byte为单位, 所以在 E1信号映射到 E-GEM帧的数据净荷区时, 数据緩 存必须等到每 8bit, 即凑齐 1个 byte, PLI的值在 ±1范围内调整一次。
图 6示出了将以太网业务映射到 E-GEM帧的示意图:
以太网帧的结构与现有技术相同, 在此不再详细描述。
对于以太网业务的映射, 可以采用丟弃以太网帧间隔和前导码的做法, 只 保证以太网帧数据的完整性, 从以太网帧中的长度 /类型域即可以确定以太网 帧数据的长度, 再加上以太网帧其它字段都是固定长度, 从而可以确定 PLI 的值, 然后将以太网帧映射到 E-GEM帧的数据区即可。 当以太网超长帧长度 大于 4095时, 可以采用多个连续的 E-GEM帧来分片传送。
图 7示出了将 GPON体制的 GEM帧映射到 E-GEM帧的示意图: 从 GEM帧到 E-GEM的映射,由于原来 GEM帧中的 Port-ID只存在 GPON 支路 OLT和 ONU之间, 而 E-GEM帧增加了业务的源和目的标识后, 应用到 了更大的网络范围,如城域范围,业务标识 Port-ID将和支路端口标识( TI-ID )、 网络节点标识(Node-ID )—起标识网络中更大范围的业务, Port-ID的含义已 经发生了变化, 因此需要重新赋值, 相应的 HEC校验也随之需要重新计算, 其它的 PLI和 PTI的值、 以及净荷数据, 都可以直接复制到 E-GEM帧相应的 域中。
由上述实施例可见, 与传统 SDH体制相比, 本发明实施例多业务适配和 承载的方法可以实现各种形式的业务统一封装到业务适配层 E-GEM帧, 各种 业务类型只需通过一层 E-GEM帧适配, 然后直接到通道层 T-CONT帧, 不需 要复杂的间插复用等过程, 大大筒化了中间处理过程, 实现筒单, 节省成本; 而且, 两层结构的管理开销筒洁合理, 能反映主要的告警和性能监控, 筒单可 靠, 实现方便; 通道层数据长度可以按 lbyte为单位调整, 带宽利用率高, 而 且可以结合 DBA机制, 实现动态带宽调整; QoS实现机制灵活方便。
与 GPON体制相比,借鉴了 GPON体制中 T-CONT帧的优势,增强了 OAM 功能, 可以突破在 GPON体制中仅在接入层范围、 在上行方向使用的限制, 可以扩展到更广泛的应用场合, 如城域范围、 支持各种网络组网形式; 除了方 便地承载 TDM业务和以太网业务外, 还可以和 GPON信号自然对接, 更好地 支持未来的 FTTx发展。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读 取存储介质中, 所述的存储介质, 如: ROM/RAM、 磁碟、 光盘等。
参照图 8, 是本发明实施例多业务适配和通道承载的设备的结构示意图: 该设备包括: 业务适配单元 801、通道处理单元 802、优先级设定单元 803 和发送单元 804。 其中:
业务适配单元 801 用于在业务适配层对各种不同类型的业务进行统一形 式的封装和解封装, 所述封装包括将不同类型的业务映射到统一形式的 E-GEM 帧中; 通道处理单元 802 用于在通道层将封装有相同类型业务的 E-GEM帧组成同一种类型的传送帧 T-CONT; 优先级设定单元 803用于为各 T-CONT设定优先级别;发送单元 804用于为高优先级的 T-CONT提供带宽保 证并优先发送。
具体的业务适配和通道承载的实现过程可参照前面本发明方法实施例中 的描述, 在此不再赘述。
为了使本发明实施例的设备可以更好地与不同类型的业务设备对接,如图 8所示, 本发明实施例的设备还可以进一步包括: 光分配网接口 805和无源光 网络传输汇聚单元 806, 以实现与 GPON支路的对接。 其中, 光分配网接口 805用于接收吉比特无源光网络 GPON信号;无源光网络传输汇聚单元 806用 于将所述 GPON信号从 GPON的传输汇聚层解封装到 GEM帧,并将 GEM帧 发送给业务适配单元 801。这样,由业务适配单元 801将 GEM帧映射到 E-GEM 帧中, 具体映射过程在前面已有说明, 在此不再赘述。
除此之外, 本发明实施例的设备还可以进一步包括: 时分复用业务接口
807和 /或以太网业务接口 808。 其中, 时分复用业务接口 807用于接收时分复 用 TDM 业务信号, 如比较常见的 64Kbps信号、 El ( 2048Kbps信号)、 E3 ( 34.368Mbps 信号)、 Tl ( 1544Kbps 信号)、 T3 ( 44.736Mbps 信号)、 DS1 ( 1544Kbps信号)、 DS3 ( 44.736Mbps信号)、 STM-1 ( 155.52Mbps信号 )等, 并将所述 TDM业务信号发送给业务适配单元 801 ; 以太网业务接口 808用于 接收以太网数据包,并将所述以太网数据包中的帧间隔和前导码丟弃后发送给 业务适配单元 801。
需要说明的是, 在实际应用中, 上述光分配网接口 805、 时分复用业务接 口 807、 以太网业务接口 808可以才艮据实际组网需要来选用, 可以只选用其中 一种接口, 也可以同时选用多种接口。 当然, 本发明实施例的设备也不仅限于 这些业务接口, 依照相同的原理, 还可以方便地扩展其他业务的接口, 比如, 对于 T-MPLS和 PBB-TE业务信号, 可以作为以太网体制的客户信号, 封装到 以太网帧中, 再选择可以经过二层交换或者不经过二层交换, 映射到 E-GEM 帧中。
利用本发明实施例的多业务适配和通道承载的设备,可以将各种形式的业 务统一封装到业务适配层 E-GEM 帧, 在通道层将封装有相同类型业务的 E-GEM帧组成同一个类型的传送帧 T-CONT, 并根据 T-CONT类型的优先级, 可以很方便地实现不同业务的 QoS需求。 以上对本发明实施例进行了详细介绍,本文中应用了具体实施例对本发明 进行了阐述,以上实施例的说明只是用于帮助理解本发明的系统及方法;同时, 对于本领域的一般技术人员,依据本发明的思想, 在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种多业务适配和承载的方法, 其特征在于, 包括:
在业务适配层将不同类型的业务映射到统一形式的增强型吉比特无源光 网络封装形式 E-GEM帧中;
在通道层将封装有相同类型业务的 E-GEM 帧组成同一种类型的传送帧
T-CONT;
为各种类型的 T-CONT设定优先级别;
为高优先级的 T-CONT提供带宽保证并优先发送。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 E-GEM帧包括: 帧 头部、 地址标识和净荷数据;
所述帧头部包括业务标识, 所述业务标识用于指明所述 E-GEM帧中的业 务在网络中区别于其他业务的标识;
所述地址标识包括: 目的标识和源标识; 所述目的标识表示业务在网络中 的终止点, 所述源标识表示业务在网络中的起始点。
3、 根据权利要求 2所述的方法, 其特征在于:
所述目的标识和源标识为网络节点标识;
所述业务标识具体为: 业务类型或者物理端口。
4、 根据权利要求 3所述的方法, 其特征在于, 每个业务由所述网络节点 标识和所述帧头部中的业务标识一起在网络内唯一标识。
5、 根据权利要求 3所述的方法, 其特征在于, 所述地址标识还包括: 扩 展的业务标识,每个业务由所述网络节点标识和所述扩展的业务标识和所述帧 头部中的业务标识一起在网络内唯一标识。
6、 根据权利要求 1所述的方法, 其特征在于, 所述 T-CONT包括: 帧头 部、 通道开销和净荷数据;
所述帧头部包括净荷长度和头校验,所述净荷长度表示所述净荷数据的长 度; 所述头校验用于对帧头部数据进行校验, 以搜索和同步帧头;
所述通道开销包括通道标识、数据校验和监控字段, 所述通道标识表示所 述 T-CONT的序列号,所述数据校验用于检测通道层的数据传送质量,所述监 控字段用于传递通道层的告警和性能检测结果。
7、 根据权利要求 1所述的方法, 其特征在于, 所述 T-CONT包括: 帧头 部、 通道开销和净荷数据;
所述帧头部包括净荷长度、通道标识和头校验, 所述净荷长度表示所述净 荷数据的长度,所述通道标识表示所述 T-CONT的序列号; 所述头校验用于对 帧头部数据校验, 以搜索和同步帧头;
所述通道开销包括数据校验和监控字段,所述数据校验用于检测通道层的 数据传送质量, 所述监控字段用于传递通道层的告警和性能检测结果。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述通道开销还包括: 动态带宽报告, 用于动态带宽需求上报。
9、 根据权利要求 1所述的方法, 其特征在于, 所述不同类型的业务包括:
TDM业务、 以太网业务和 GPON业务。
10、 一种多业务适配和通道承载的设备, 其特征在于, 包括:
业务适配单元,用于在业务适配层对各种不同类型的业务进行统一形式的 封装和解封装, 所述封装包括将不同类型的业务映射到不同的 E-GEM帧中; 通道处理单元, 用于在通道层将封装有相同类型业务的 E-GEM帧组成同 一种类型的传送帧 T-CONT;
优先级设定单元, 用于为各种类型的 T-CONT设定优先级别;
发送单元, 用于为高优先级的 T-CONT提供带宽保证并优先发送。
11、 根据权利要求 10所述的设备, 其特征在于, 还包括:
光分配网接口, 用于接收吉比特无源光网络 GPON信号;
无源光网络传输汇聚单元, 用于将所述 GPON信号从 GPON的传输汇聚 层解封装到 GEM帧, 并将 GEM帧发送给所述业务适配单元。
12、 根据权利要求 10或 11所述的设备, 其特征在于, 还包括:
时分复用业务接口, 用于接收时分复用 TDM业务信号, 并将所述 TDM 业务信号发送给所述业务适配单元; 和 /或
以太网业务接口, 用于接收以太网数据包, 并将所述以太网数据包中的帧 间隔和前导码丟弃后发送给所述业务适配单元。
PCT/CN2009/071924 2008-08-26 2009-05-22 多业务适配和承载的方法及设备 WO2010022606A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09809191.1A EP2315397B1 (en) 2008-08-26 2009-05-22 Method and device for adapting and bearing multiple services
US13/037,139 US8462656B2 (en) 2008-08-26 2011-02-28 Method and apparatus for multi-service adaptation and carriage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810146903.5 2008-08-26
CN2008101469035A CN101662417B (zh) 2008-08-26 2008-08-26 多业务适配和承载的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/037,139 Continuation US8462656B2 (en) 2008-08-26 2011-02-28 Method and apparatus for multi-service adaptation and carriage

Publications (1)

Publication Number Publication Date
WO2010022606A1 true WO2010022606A1 (zh) 2010-03-04

Family

ID=41720812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071924 WO2010022606A1 (zh) 2008-08-26 2009-05-22 多业务适配和承载的方法及设备

Country Status (4)

Country Link
US (1) US8462656B2 (zh)
EP (1) EP2315397B1 (zh)
CN (1) CN101662417B (zh)
WO (1) WO2010022606A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395682A1 (en) * 2009-02-25 2011-12-14 Huawei Technologies Co., Ltd. A service adaptation method and service adaptation device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729371B (zh) * 2008-10-31 2012-01-25 华为技术有限公司 一种业务传输的方法、及用于业务传输的装置
CN102065344B (zh) * 2009-11-12 2016-09-07 中兴通讯股份有限公司 数据传输方法及吉比特无源光网络系统
KR101310906B1 (ko) * 2009-11-30 2013-09-25 한국전자통신연구원 동적 대역폭 할당을 위한 장치 및 방법
CN101860481A (zh) * 2010-05-25 2010-10-13 北京邮电大学 一种MPLS-TP over OTN多层网络中区分优先级的业务传送方法及其装置
CN101924702A (zh) * 2010-08-26 2010-12-22 华为技术有限公司 一种业务数据传输方法及装置
US9031408B2 (en) 2011-06-09 2015-05-12 Telefonaktiebolaget L M Ericsson (Publ) Method for fast wavelength division multiplexing (WDM) passive optical network (PON) initialization in heterogeneous networks
US8548328B2 (en) * 2011-09-08 2013-10-01 Telefonaktiebolaget L M Ericsson (Publ) Transparent overhead in a passive optical network that supports enhanced features
KR102105186B1 (ko) * 2013-03-18 2020-04-28 한국전자통신연구원 수동형 광 가입자 망의 광 선로 종단 장치 및 이를 이용한 상향 대역 제어 방법
CN105141401B (zh) * 2014-06-03 2019-04-12 西安中兴新软件有限责任公司 一种帧聚合方法及电子设备
JP2016219882A (ja) * 2015-05-14 2016-12-22 富士通株式会社 伝送装置及び伝送方法
US10177871B2 (en) * 2015-07-10 2019-01-08 Futurewei Technologies, Inc. High data rate extension with bonding
CN108462649B (zh) * 2017-02-20 2020-07-07 深圳市中兴微电子技术有限公司 降低onu中拥塞状态下高优先级数据传输时延的方法和装置
US10372362B2 (en) * 2017-03-30 2019-08-06 Intel Corporation Dynamically composable computing system, a data center, and method for dynamically composing a computing system
CN113055205A (zh) * 2019-12-27 2021-06-29 中国电信股份有限公司 带宽调整方法及装置、计算机可存储介质
CN113676364B (zh) * 2020-05-13 2022-10-18 烽火通信科技股份有限公司 基于ioam报文封装的网络设备智能运维方法及系统
US20210399808A1 (en) * 2020-06-23 2021-12-23 Infinera Corporation Data synchronization in optical networks and devices
CN116709066A (zh) * 2020-11-20 2023-09-05 华为技术有限公司 Pon中的数据传输方法、装置和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1536812A (zh) * 2003-04-10 2004-10-13 三星电子株式会社 千兆无源光网络封装方法帧结构及其数据处理方法
CN1842221A (zh) * 2005-03-31 2006-10-04 华为技术有限公司 光传送网中业务信号调度方法及其装置
CN1859382A (zh) * 2005-12-16 2006-11-08 华为技术有限公司 支持多业务的通信设备及其方法
CN1953353A (zh) * 2006-06-28 2007-04-25 北京邮电大学 基于吉比特无源光网络中多等级服务的动态带宽分配方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355248C (zh) * 2003-09-28 2007-12-12 上海贝尔阿尔卡特股份有限公司 一种基于以太网无源光网络的多业务实现方法
WO2007051488A1 (en) * 2005-10-31 2007-05-10 Telecom Italia S.P.A. Method for transmitting data packets with differrent precedence through a passive optical network
CN1980106A (zh) 2005-12-02 2007-06-13 北京邮电大学 多业务复用方法与光传输系统
CN101102157B (zh) * 2006-07-03 2011-06-22 华为技术有限公司 发送终端和数据发送方法
US7809017B2 (en) * 2006-09-21 2010-10-05 Nortel Networks Limited Multi-rate transparent MUX for optical communications networks
JP4333737B2 (ja) 2006-12-26 2009-09-16 沖電気工業株式会社 ギガビット受動型光加入者ネットワークで用いられる信号処理装置及び信号処理方法
ATE515861T1 (de) * 2007-07-25 2011-07-15 Nokia Siemens Networks Oy Verfahren zur adressierung von ethernetströmen mit strukturierter gpon-gem-port-id
US8351785B2 (en) * 2008-04-21 2013-01-08 Futurewei Technologies, Inc. Gigabit passive optical network transmission convergence extension for next generation access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1536812A (zh) * 2003-04-10 2004-10-13 三星电子株式会社 千兆无源光网络封装方法帧结构及其数据处理方法
CN1842221A (zh) * 2005-03-31 2006-10-04 华为技术有限公司 光传送网中业务信号调度方法及其装置
CN1859382A (zh) * 2005-12-16 2006-11-08 华为技术有限公司 支持多业务的通信设备及其方法
CN1953353A (zh) * 2006-06-28 2007-04-25 北京邮电大学 基于吉比特无源光网络中多等级服务的动态带宽分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2315397A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395682A1 (en) * 2009-02-25 2011-12-14 Huawei Technologies Co., Ltd. A service adaptation method and service adaptation device
EP2395682A4 (en) * 2009-02-25 2011-12-14 Huawei Tech Co Ltd SERVICE ADJUSTMENT METHOD AND SERVICE ADJUSTMENT DEVICE

Also Published As

Publication number Publication date
EP2315397A1 (en) 2011-04-27
CN101662417B (zh) 2011-12-21
US8462656B2 (en) 2013-06-11
US20110150463A1 (en) 2011-06-23
CN101662417A (zh) 2010-03-03
EP2315397B1 (en) 2015-09-02
EP2315397A4 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2010022606A1 (zh) 多业务适配和承载的方法及设备
WO2010096993A1 (zh) 一种业务适配的方法和业务适配装置
US8824504B2 (en) Packet add/drop multiplexer and data transmission method of packet add/drop multiplexer
JP4169595B2 (ja) 可変長パケットを利用するポイントツーマルチポイント受動光ネットワーク
EP2348691B1 (en) Service transmission method and service transmission apparatus
US7289439B2 (en) Method for implementing various functions in gigabit ethernet-passive optical network system and structure of ethernet frame employed in the same
JP3788779B2 (ja) ギガビットイーサネット受動光ネットワークシステム及びその媒体接続制御方法
US7257326B2 (en) Method for allocating bandwidth for voice service in a Gigabit Ethernet passive optical network
WO2008040142A1 (fr) Procédé, système et dispositif de transmission de données
WO2004036836A1 (fr) Procede d'emission de service de donnees sur un reseau numerique synchrone
WO2011057545A1 (zh) 传输多路业务的方法和装置
WO2009039791A1 (fr) Système de communication à diffusion de groupe de réseau optique passif, procédé de gestion de diffusion de groupe et dispositif correspondant
WO2007104230A1 (fr) Procédé et dispositif de transmission sur une couche de liaison de données d'un réseau optique passif (rop)
KR20020095201A (ko) Sonet 링 상에서의 등시성 및 버스트형 데이터의 전송
WO2017177549A1 (zh) 无源光网络架构及其实现数据传输的方法和光网络设备
WO2011075885A1 (zh) 一种光网络单元集成装置
WO2009000194A1 (fr) Procédé d'attribution de bande passante, système et appareil dans un réseau optique
WO2007079649A1 (fr) Procede et dispositif de decouverte automatique pour liaison de couche client
WO2009155832A1 (zh) 一种点到多点光接入系统,及其数据传送方法和设备
KR100566294B1 (ko) 기가비트 이더넷 수동 광 가입자망에서 동적 대역폭할당방법
WO2021073406A1 (zh) 一种业务数据的传输方法、相关设备以及数字处理芯片
US20150195039A1 (en) System and method for interchanging data in a hybrid ethernet-based passive optical network
WO2011150807A1 (zh) 带宽分配方法及实现带宽分配的设备
Radivojević et al. PON evolution
KR100560427B1 (ko) 가상사설망을 지원하는 패킷-시간분할다중화 통합 시스템및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809191

Country of ref document: EP