WO2010021093A1 - Asymmetric organic catalyst - Google Patents

Asymmetric organic catalyst Download PDF

Info

Publication number
WO2010021093A1
WO2010021093A1 PCT/JP2009/003699 JP2009003699W WO2010021093A1 WO 2010021093 A1 WO2010021093 A1 WO 2010021093A1 JP 2009003699 W JP2009003699 W JP 2009003699W WO 2010021093 A1 WO2010021093 A1 WO 2010021093A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
asymmetric
added
compound
Prior art date
Application number
PCT/JP2009/003699
Other languages
French (fr)
Japanese (ja)
Inventor
敬司 中山
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Priority to JP2010525576A priority Critical patent/JP5548129B2/en
Publication of WO2010021093A1 publication Critical patent/WO2010021093A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/09Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton the carbon skeleton being further substituted by at least two halogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/45Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by at least one doubly—bound oxygen atom, not being part of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/56Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and doubly-bound oxygen atoms bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to an asymmetric organic catalyst for addition reaction or condensation reaction and a method for producing an optically active keto alcohol using the same.
  • a compound having an asymmetric carbon atom or the like includes a plurality of optically active substances having different steric configurations.
  • optically active substances there are compounds that are significantly different in physiological activity from other optically active substances, and it is extremely important to selectively produce such useful optically active substances.
  • optical resolution means in the selective production method of optically active substances a method of reacting with a compound having no asymmetric element and selectively synthesizing one enantiomer (enantioselective asymmetric) Synthesis) is useful without waste of raw materials.
  • metal complexes are widely known as such asymmetric catalysts.
  • metal complexes are generated as waste, and the metal at the center is often a rare metal (rare metal), which is problematic when considering earth resources and the like, and has environmental problems.
  • Non-Patent Documents 1 to 5 amino acids such as proline and diamines having a primary amino group, a secondary amino group, and a tertiary amino group have been reported (Non-Patent Documents 1 to 5).
  • these asymmetric organic catalysts have problems such as a large amount of use, an insufficient optical activity yield, and substrate specificity.
  • these catalysts are derived from the opposite optically active forms and require the opposite as an asymmetric source, and the induction is complicated.
  • An object of the present invention is to provide a new asymmetric organic catalyst capable of achieving a high optical activity yield with a small amount of use and an enantioselective asymmetric synthesis method using them.
  • the present inventor examined the asymmetric organic catalyst in the aldol reaction.
  • the aldol reaction was carried out using cyclohexanecarboxylic acids having the following primary amino group and secondary amino group, the enantiomer was obtained in a small amount and in a high yield.
  • the inventors have found that selective asymmetric synthesis is possible, and that the enantiomer of the resulting ketoalcohol compound can be selectively obtained by selecting an optically active form of the catalyst, and the present invention has been completed.
  • the present invention has the formula (1)
  • R 1 and R 2 represents a hydrogen atom and the other represents an acyl group
  • R 3 represents an alkoxy group, an aryloxy group, an aralkyloxy group, an amino group, an alkylamino group, or a dialkylamino group.
  • R 1 HN— and R 2 HN— have the same configuration on the asymmetric carbon atom.
  • An asymmetric organic catalyst for addition reaction or condensation reaction comprising an optically active diaminocyclohexanecarboxylic acid represented by the formula (1) or a Bronsted acid salt thereof is provided.
  • the asymmetric organic catalyst of the present invention is used, an enantiomer having high optical purity can be selectively obtained with a small amount of catalyst.
  • the enantioselectivity of the resulting keto alcohol is high, and the desired keto alcohol enantiomer can be selectively obtained by selecting the asymmetric organic catalyst to be used.
  • the asymmetric organic catalyst of the present invention comprises an optically active diaminocyclohexanecarboxylic acid ester and an amide represented by the formula (1).
  • one of R 1 and R 2 is a hydrogen atom and the other is an acyl group.
  • the acyl group is a group generated by removing one or more hydroxy groups of oxo acid, and examples thereof include a group generated by removing a hydroxy group from carboxylic acid or sulfonic acid.
  • the acyl group include an alkanoyl group, an aroyl group, an alkanesulfonyl group, a halogenoalkanesulfonyl group, and an arylsulfonyl group.
  • the alkanoyl group is preferably an alkanoyl group having 2 to 12 carbon atoms; more preferably an acetyl group, a propionyl group, or a butyryl group.
  • aroyl group a benzoyl group, a benzoyl group having a substituent, and the like are preferable.
  • the alkanesulfonyl group an alkanesulfonyl group having 1 to 6 carbon atoms is preferable; a methanesulfonyl group and an ethanesulfonyl group are more preferable.
  • the halogenoalkanesulfonyl group is preferably an alkanesulfonyl group having 1 to 6 carbon atoms substituted with 1 to 15 halogen atoms; a trifluoromethanesulfonyl group or a pentafluoroethanesulfonyl group is preferred.
  • a benzenesulfonyl group and a paratoluenesulfonyl group are preferable.
  • acyl groups represented by R 1 or R 2 an alkanesulfonyl group or a halogenoalkanesulfonyl group is particularly preferred.
  • R 1 and R 2 are hydrogen atom and the other is an acyl group in order for the compound of the formula (1) to function as an asymmetric organic catalyst. This is considered because the hydrogen atom acts as a Bronsted acid.
  • R 3 represents an alkoxy group, an aryloxy group, an aralkyloxy group, an amino group, an alkylamino group or a dialkylamino group.
  • alkoxy group include linear, branched or cyclic alkoxy groups having 1 to 12 carbon atoms, such as methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, isobutyloxy group, tert-butyloxy group. , Cyclopentyloxy group, cyclohexyloxy group and the like. Of these, alkoxy groups having 1 to 6 carbon atoms are particularly preferable.
  • aryloxy group examples include an aryloxy group having 6 to 14 carbon atoms, such as a phenoxy group, a naphthyloxy group, and an anthracenyloxy group.
  • aralkyloxy group examples include a group in which an alkoxy group having 1 to 6 carbon atoms is bonded to an aryl group having 6 to 14 carbon atoms, such as a phenyl C 1-6 alkoxy group, more specifically, a benzyloxy group, diphenyl A methyloxy group etc. are mentioned.
  • alkylamino group examples include alkylamino groups having 1 to 12 carbon atoms, such as a methylamino group, an ethylamino group, a propylamino group, and an isopropylamino group. Of these, an alkylamino group having 1 to 6 carbon atoms is particularly preferable.
  • dialkylamino group examples include a di (C 1-12 alkyl) amino group, such as a dimethylamino group, a diethylamino group, a dipropylamino group, and a dibutylamino group. Of these, a di (C 1-12 alkyl) amino group is particularly preferred.
  • an alkoxy group, an aralkyloxy group, an alkylamino group, and a dialkylamino group are particularly preferable.
  • asymmetric organic catalysts act as catalysts even in a salt form with Bronsted acid, and depending on the substrate, these salts may give better values.
  • the counter acid include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic carboxylic acids such as acetic acid, benzoic acid and tartaric acid, and organic sulfonic acids such as mesylic acid and paratoluenesulfonic acid. Of these, organic sulfonic acids such as mesylic acid are particularly preferred.
  • the compound of the formula (1) can be produced, for example, according to the following reaction formula.
  • the configuration of the following reaction formula is the case of Formula (1a), the compound of another configuration can be manufactured similarly.
  • R 3a represents an alkyl group, an aryl group or an aralkyl group
  • Boc represents a t-butoxycarbonyl group
  • Z represents a benzyloxycarbonyl group
  • R 1 is the same as above
  • a compound (B) is obtained by an iodolactone reaction using iodination of a readily available cyclohexene carboxylic acid (A).
  • This iodolactonization reaction can be performed by reacting compound (A) with iodine and potassium iodide in the presence of an alkali such as sodium bicarbonate.
  • Compound (C) is obtained by reacting compound (B) with an alkali such as sodium hydroxide to cause lactone ring opening and epoxidation.
  • Compound (D) is obtained by azidating compound (C) with sodium azide or the like.
  • Compound (E) is then obtained by reducing compound (D) in the presence of di-tert-butyl dicarbonate.
  • the reduction reaction is preferably catalytic reduction using palladium carbon or the like as a catalyst.
  • Compound (F) is obtained by azidating the hydroxy group of compound (E).
  • the compound (F) is then reduced, preferably catalytically reduced, to give the compound (G).
  • compound (H) is obtained.
  • Boc is eliminated by hydrolysis to obtain compound (I), which is reacted with acylating agent (R 1 ) to obtain compound (J), and then protecting group ( If Z) is eliminated by hydrogenation, compound (1a) is obtained.
  • the compound (H) is hydrogenated to remove the protecting group (Z) to obtain a compound (K), which is reacted with an acylating agent (R 2 ) to obtain a compound (L), and then protected. If the group (Boc) is eliminated by hydrolysis, the compound (1b) is obtained.
  • Boc and Z which are protecting groups for amino groups
  • the protective group include a combination of a hydrolytic leaving group such as a benzoyl group or 3,4,5-trimethoxyphenylmethyl group and a hydrogenation leaving group such as a benzyl group or a phenylethyl group.
  • a compound in which R 3 is an amino group, an alkylamino group or a dialkylamino group can be obtained by amidating an ester (—COOR 3a ) at any stage of the above reaction step.
  • the amidation reaction can be performed using, for example, ammonia, ammonium salt, alkylamine, or dialkylamine.
  • the compound (1) thus obtained is useful as an asymmetric organic catalyst for addition reaction or condensation reaction. That is, if an addition reaction or a condensation reaction is performed in the presence of the compound (1), an enantiomer can be obtained with high yield and high optical purity, and enantioselective asymmetric synthesis is possible.
  • examples of the addition reaction or condensation reaction include aldol reaction, Mannich reaction, Michael reaction, amination reaction, halogenation reaction and the like.
  • the catalyst of the present invention is particularly preferably applied to the aldol reaction.
  • the aldol reaction using the asymmetric organic catalyst of the present invention is represented by the following reaction formula.
  • R 4 and R 5 represent a hydrogen atom or an organic group
  • R 6 represents an organic group
  • * represents an asymmetric carbon atom, and has a specific configuration
  • the organic group represented by R 4, R 5 and R 6, are not limited to, hydrocarbon group, heterocyclic group, an alcohol, ether and the like.
  • hydrocarbon group both an aromatic hydrocarbon group and an aliphatic hydrocarbon group are included.
  • These hydrocarbon groups and heterocyclic groups, alcohols, ethers and the like may have a substituent such as a halogen atom, a nitro group, an amino group, a cyano group, a carboxyl group, an alkoxycarbonyl group, or a silyl group.
  • R 4 and R 5 may be combined to form a cycloalkane structure.
  • the catalyst of the formula (1) to be used may be used in an amount of 0.5 to 10 mol%, more preferably 1 to 10 mol%, relative to the raw material compound of the formula (2) or the formula (3).
  • the amount of catalyst used is small compared to the amount of conventional asymmetric organic catalysts used.
  • the reaction may be carried out in accordance with a normal aldol reaction, for example, at 0 to 20 ° C. for about 0.5 to 72 hours in the presence or absence of a solvent.
  • the configuration of the enantiomer of the target keto alcohol can be controlled by changing the configuration of the asymmetric organic catalyst of the formula (1) used. That is, the configuration of the enantiomer of the keto alcohol obtained is determined depending on whether the catalyst of the formula (1a) or the catalyst of the formula (1b) is used, so that two catalysts are synthesized from a common asymmetric source. By doing so, the target enantiomer can be selectively obtained.
  • the catalyst of the present invention can be recovered from the reaction mixture and reused.
  • Example 5 0.9 mL cyclohexanone and 45.3 mg p-nitrobenzaldehyde were added to a mixture of 0.9 mL tetrahydrofuran and 0.9 mL water. To this was added 5 mol% of compound (1a-1) or compound (1b-1) with respect to 1 mol of p-nitrobenzaldehyde, and the mixture was stirred at room temperature (25 ° C.) for 3 to 4 days. The reaction mixture was extracted with 3 mL of ethyl acetate, and after liquid separation, the organic layer was concentrated. The residue was purified by silica gel column chromatography to obtain 74.9 mg (yield 99%, diastereo ratio: 7/93 (syn / anti), 97% ee) of an aldol adduct.
  • Table 1 shows the results of the aldol reaction as in Example 5.
  • Example 6 0.9 mL of cyclopentanone and 45.3 mg of p-nitrobenzaldehyde were added to a mixture of 0.9 mL of tetrahydrofuran and 0.9 mL of water. To this was added 5 mol% of compound (1a-1) or compound (1b-1) with respect to 1 mol of p-nitrobenzaldehyde, and the mixture was stirred at room temperature (25 ° C.) for 16 to 22 hours. Thereafter, the same treatment as in Example 5 was performed to obtain 69.9 mg (yield 99%, diastereo ratio 92/8 (syn / anti), 93% ee) of an aldol adduct.
  • Table 2 shows the results of the aldol reaction performed in the same manner as in Example 6.
  • Example 7 The reaction was performed in substantially the same manner as in Example 5 except that 2,2-dimethyl-1,3-dioxa-5-one was used instead of cyclohexanone. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Abstract

Provided are a novel asymmetric organic catalyst with which it is possible to realize a high optically-active yield when said catalyst is used in a small amount, and a method for producing a compound using the same. The asymmetric organic catalyst is for addition reactions or condensation reactions and is formed from an optically active diaminocyclohexanecarboxylic acid represented by formula (1), or Brønsted acid salt thereof. (In the formula, one of R1 and R2 is a hydrogen atom and the other is an acyl group, and R3 is an alkoxy, aryloxy, aralkyloxy, amino, alkylamino, or dialkylamino group.  * is an asymmetric carbon atom, and R1HN- and R2HN- have the same configuration on the asymmetric carbon atom.)

Description

不斉有機触媒Asymmetric organic catalyst
 本発明は、付加反応又は縮合反応用不斉有機触媒及びこれを用いた光学活性ケトアルコールの製造法に関する。 The present invention relates to an asymmetric organic catalyst for addition reaction or condensation reaction and a method for producing an optically active keto alcohol using the same.
 不斉炭素原子等を有する化合物には、立体配置の異なる複数の光学活性体が存在する。このような光学活性な物質の中には、他の光学活性体とは生理活性等が大きく相違する化合物があり、その有用な光学活性体を選択的に製造することは極めて重要である。光学活性体の選択的な製造法には、光学分割手段もあるが、不斉の要素を持たない化合物に対して反応を行い、一方のエナンチオマーを選択的に合成する方法(エナンチオ選択的不斉合成)が原料の無駄がなく有用である。 A compound having an asymmetric carbon atom or the like includes a plurality of optically active substances having different steric configurations. Among such optically active substances, there are compounds that are significantly different in physiological activity from other optically active substances, and it is extremely important to selectively produce such useful optically active substances. Although there are optical resolution means in the selective production method of optically active substances, a method of reacting with a compound having no asymmetric element and selectively synthesizing one enantiomer (enantioselective asymmetric) Synthesis) is useful without waste of raw materials.
 エナンチオ選択的不斉合成にあたっては、選択性の高い不斉触媒が必要であり、そのような不斉触媒としては金属錯体が広く知られている。しかし金属錯体は、金属が廃棄物として発生する他、その中心となる金属が希少金属(レアメタル)であることが多く、地球資源等を考慮した場合に問題があり、環境上問題がある。 In enantioselective asymmetric synthesis, a highly selective asymmetric catalyst is required, and metal complexes are widely known as such asymmetric catalysts. However, metal complexes are generated as waste, and the metal at the center is often a rare metal (rare metal), which is problematic when considering earth resources and the like, and has environmental problems.
 かかる観点から、回収して再利用が可能である不斉有機触媒が注目されている。このような不斉有機触媒としては、プロリン等のアミノ酸及び一級アミノ基、二級アミノ基、及び三級アミノ基を有するジアミン類が報告されている(非特許文献1~5)。しかしながら、これらの不斉有機触媒は、使用量が多い、光学活性収率が十分でない、基質特異性等の問題がある。また、これらの触媒は、異なるエナンチオマーを合成する際には、反対の光学活性体から誘導され、不斉源として反対のものを必要としており、その誘導は煩雑であった。 From this point of view, asymmetric organic catalysts that can be recovered and reused are attracting attention. As such asymmetric organic catalysts, amino acids such as proline and diamines having a primary amino group, a secondary amino group, and a tertiary amino group have been reported (Non-Patent Documents 1 to 5). However, these asymmetric organic catalysts have problems such as a large amount of use, an insufficient optical activity yield, and substrate specificity. In addition, when synthesizing different enantiomers, these catalysts are derived from the opposite optically active forms and require the opposite as an asymmetric source, and the induction is complicated.
 本発明の課題は、少ない使用量で、高い光学活性収率を達成できる新たな不斉有機触媒及びそれらを用いたエナンチオ選択的不斉合成法を提供することにある。 An object of the present invention is to provide a new asymmetric organic catalyst capable of achieving a high optical activity yield with a small amount of use and an enantioselective asymmetric synthesis method using them.
 本発明者は、アルドール反応における不斉有機触媒について検討したところ、下記一級アミノ基及び二級アミノ基を有するシクロヘキサンカルボン酸類を用いてアルドール反応を行えば、少ない使用量で、高収率でエナンチオ選択的不斉合成が可能であること、さらには当該触媒の光学活性体の選択により、得られるケトアルコール化合物のエナンチオマーを選択的に得ることができることを見出し、本発明を完成した。 The present inventor examined the asymmetric organic catalyst in the aldol reaction. When the aldol reaction was carried out using cyclohexanecarboxylic acids having the following primary amino group and secondary amino group, the enantiomer was obtained in a small amount and in a high yield. The inventors have found that selective asymmetric synthesis is possible, and that the enantiomer of the resulting ketoalcohol compound can be selectively obtained by selecting an optically active form of the catalyst, and the present invention has been completed.
 すなわち、本発明は、式(1) That is, the present invention has the formula (1)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、一方が水素原子、他方がアシル基を示し、Rはアルコキシ基、アリールオキシ基、アラルキルオキシ基、アミノ基、アルキルアミノ基又はジアルキルアミノ基を示す。*は不斉炭素原子を示し、RHN-及びRHN-は不斉炭素原子上で同一の立体配置を有する。)
で表される光学活性ジアミノシクロヘキサンカルボン酸類又はそのブレンステッド酸塩からなる付加反応又は縮合反応用不斉有機触媒を提供するものである。
(In the formula, one of R 1 and R 2 represents a hydrogen atom and the other represents an acyl group, and R 3 represents an alkoxy group, an aryloxy group, an aralkyloxy group, an amino group, an alkylamino group, or a dialkylamino group. * Represents an asymmetric carbon atom, and R 1 HN— and R 2 HN— have the same configuration on the asymmetric carbon atom.)
An asymmetric organic catalyst for addition reaction or condensation reaction comprising an optically active diaminocyclohexanecarboxylic acid represented by the formula (1) or a Bronsted acid salt thereof is provided.
 また、本発明は、式(2) Also, the present invention provides the formula (2)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは水素原子又は有機基を示す)
で表されるケトン類と式(3)
(Wherein R 4 and R 5 represent a hydrogen atom or an organic group)
And ketones represented by formula (3)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rは有機基を示す)
で表されるアルデヒド類とを、上記式(1)の不斉有機触媒の存在下に反応させることを特徴とする式(4)
(Wherein R 6 represents an organic group)
In the presence of the asymmetric organic catalyst of the above formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(*は不斉炭素原子を示し、特定の立体配置を有し、R、R及びRは前記と同じ)
で表される光学活性ケトアルコールの製造法を提供するものである。
(* Represents an asymmetric carbon atom, has a specific configuration, and R 4 , R 5 and R 6 are the same as above)
The manufacturing method of optically active keto alcohol represented by these is provided.
 本発明の不斉有機触媒を用いれば、少ない触媒量で、光学純度の高いエナンチオマーが選択的に得られる。特にアルドール反応に適用した場合、得られるケトアルコールのエナンチオ選択性は高く、用いる不斉有機触媒の選択により、目的とするケトアルコールのエナンチオマーを選択的に得ることができる。 If the asymmetric organic catalyst of the present invention is used, an enantiomer having high optical purity can be selectively obtained with a small amount of catalyst. In particular, when applied to the aldol reaction, the enantioselectivity of the resulting keto alcohol is high, and the desired keto alcohol enantiomer can be selectively obtained by selecting the asymmetric organic catalyst to be used.
 本発明の不斉有機触媒は、式(1)で表される光学活性ジアミノシクロヘキサンカルボン酸エステル及びアミド類からなる。式(1)中、R及びRのうち、一方は水素原子、他方はアシル基である。ここでアシル基は、オキソ酸の一個以上のヒドロキシ基の除去により生成される基であり、その例としてはカルボン酸又はスルホン酸からヒドロキシ基の除去により生成される基が挙げられる。アシル基の例としては、アルカノイル基、アロイル基、アルカンスルホニル基、ハロゲノアルカンスルホニル基、アリールスルホニル基等が挙げられる。 The asymmetric organic catalyst of the present invention comprises an optically active diaminocyclohexanecarboxylic acid ester and an amide represented by the formula (1). In formula (1), one of R 1 and R 2 is a hydrogen atom and the other is an acyl group. Here, the acyl group is a group generated by removing one or more hydroxy groups of oxo acid, and examples thereof include a group generated by removing a hydroxy group from carboxylic acid or sulfonic acid. Examples of the acyl group include an alkanoyl group, an aroyl group, an alkanesulfonyl group, a halogenoalkanesulfonyl group, and an arylsulfonyl group.
 ここでアルカノイル基としては、炭素数2~12のアルカノイル基が好ましく;アセチル基、プロピオニル基、ブチリル基がより好ましい。アロイル基としてはベンゾイル基、置換基を有するベンゾイル基等が好ましい。アルカンスルホニル基としては、炭素数1~6のアルカルスルホニル基が好ましく;メタンスルホニル基、エタンスルホニル基がより好ましい。ハロゲノアルカンスルホニル基としては、ハロゲン原子が1~15個置換した炭素数1~6のアルカンスルホニル基が好ましく;トリフルオロメタンスルホニル基、ペンタフルオロエタンスルホニル基が好ましい。アリールスルホニル基としてはベンゼンスルホニル基、パラトルエンスルホニル基が好ましい。 Here, the alkanoyl group is preferably an alkanoyl group having 2 to 12 carbon atoms; more preferably an acetyl group, a propionyl group, or a butyryl group. As the aroyl group, a benzoyl group, a benzoyl group having a substituent, and the like are preferable. As the alkanesulfonyl group, an alkanesulfonyl group having 1 to 6 carbon atoms is preferable; a methanesulfonyl group and an ethanesulfonyl group are more preferable. The halogenoalkanesulfonyl group is preferably an alkanesulfonyl group having 1 to 6 carbon atoms substituted with 1 to 15 halogen atoms; a trifluoromethanesulfonyl group or a pentafluoroethanesulfonyl group is preferred. As the arylsulfonyl group, a benzenesulfonyl group and a paratoluenesulfonyl group are preferable.
 R又はRで示されるアシル基のうち、アルカンスルホニル基又はハロゲノアルカンスルホニル基が特に好ましい。 Of the acyl groups represented by R 1 or R 2 , an alkanesulfonyl group or a halogenoalkanesulfonyl group is particularly preferred.
 ここで、R及びRの一方は水素原子であり、他方はアシル基であることが、式(1)の化合物が不斉有機触媒としての機能を発揮するうえで重要である。これは、水素原子がブレンステッド酸として作用しているためと考えられる。 Here, it is important that one of R 1 and R 2 is a hydrogen atom and the other is an acyl group in order for the compound of the formula (1) to function as an asymmetric organic catalyst. This is considered because the hydrogen atom acts as a Bronsted acid.
 式(1)中、Rはアルコキシ基、アリールオキシ基、アラルキルオキシ基、アミノ基、アルキルアミノ基又はジアルキルアミノ基を示す。アルコキシ基としては、炭素数1~12の直鎖、分岐鎖又は環状のアルコキシ基が挙げられ、例えばメトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。このうち、炭素数1~6のアルコキシ基が特に好ましい。 In formula (1), R 3 represents an alkoxy group, an aryloxy group, an aralkyloxy group, an amino group, an alkylamino group or a dialkylamino group. Examples of the alkoxy group include linear, branched or cyclic alkoxy groups having 1 to 12 carbon atoms, such as methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, isobutyloxy group, tert-butyloxy group. , Cyclopentyloxy group, cyclohexyloxy group and the like. Of these, alkoxy groups having 1 to 6 carbon atoms are particularly preferable.
 アリールオキシ基としては、炭素数6~14のアリールオキシ基、例えばフェノキシ基、ナフチルオキシ基、アントラセニルオキシ基等が挙げられる。アラルキルオキシ基としては、炭素数6~14のアリール基に炭素数1~6のアルコキシ基が結合した基が挙げられ、例えばフェニルC1-6アルコキシ基、より具体的にはベンジルオキシ基、ジフェニルメチルオキシ基等が挙げられる。 Examples of the aryloxy group include an aryloxy group having 6 to 14 carbon atoms, such as a phenoxy group, a naphthyloxy group, and an anthracenyloxy group. Examples of the aralkyloxy group include a group in which an alkoxy group having 1 to 6 carbon atoms is bonded to an aryl group having 6 to 14 carbon atoms, such as a phenyl C 1-6 alkoxy group, more specifically, a benzyloxy group, diphenyl A methyloxy group etc. are mentioned.
 アルキルアミノ基としては、炭素数1~12のアルキルアミノ基が挙げられ、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基等が挙げられる。このうち、炭素数1~6のアルキルアミノ基が特に好ましい。 Examples of the alkylamino group include alkylamino groups having 1 to 12 carbon atoms, such as a methylamino group, an ethylamino group, a propylamino group, and an isopropylamino group. Of these, an alkylamino group having 1 to 6 carbon atoms is particularly preferable.
 ジアルキルアミノ基としては、ジ(C1-12アルキル)アミノ基が挙げられ、例えばジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基等が挙げられる。このうち、ジ(C1-12アルキル)アミノ基が特に好ましい。 Examples of the dialkylamino group include a di (C 1-12 alkyl) amino group, such as a dimethylamino group, a diethylamino group, a dipropylamino group, and a dibutylamino group. Of these, a di (C 1-12 alkyl) amino group is particularly preferred.
 Rで示される基のうち、アルコキシ基、アラルキルオキシ基、アルキルアミノ基、ジアルキルアミノ基が特に好ましい。 Of the groups represented by R 3 , an alkoxy group, an aralkyloxy group, an alkylamino group, and a dialkylamino group are particularly preferable.
 これらの不斉有機触媒は、ブレンステッド酸との塩形体でも触媒として作用し、基質によってはこれらの塩の方が良好な値を与える場合もある。カウンターの酸としては、例えば塩酸、硫酸、りん酸等の無機酸、酢酸、安息香酸、酒石酸等の有機カルボン酸、又はメシル酸、パラトルエンスルホン酸等の有機スルホン酸等が挙げられる。このうち、メシル酸等の有機スルホン酸が特に好ましい。 These asymmetric organic catalysts act as catalysts even in a salt form with Bronsted acid, and depending on the substrate, these salts may give better values. Examples of the counter acid include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic carboxylic acids such as acetic acid, benzoic acid and tartaric acid, and organic sulfonic acids such as mesylic acid and paratoluenesulfonic acid. Of these, organic sulfonic acids such as mesylic acid are particularly preferred.
 式(1)の*は不斉炭素原子を示し、RHN-及びRHN-は不斉炭素原子上で同一の立体配置を有する。-CORの立体配置は制限されない。従って、式(1)の化合物の立体配置は、R又はRを水素原子として示せば、次の4種である。 * In the formula (1) represents an asymmetric carbon atom, and R 1 HN— and R 2 HN— have the same configuration on the asymmetric carbon atom. The configuration of —COR 3 is not limited. Therefore, the configuration of the compound of the formula (1) is the following four types if R 1 or R 2 is shown as a hydrogen atom.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R~Rは前記と同じ) (Wherein R 1 to R 3 are the same as above)
 式(1)の化合物は、例えば次の反応式に従って製造することができる。なお、次の反応式の立体配置は式(1a)の場合であるが、他の立体配置の化合物も同様にして製造することができる。 The compound of the formula (1) can be produced, for example, according to the following reaction formula. In addition, although the configuration of the following reaction formula is the case of Formula (1a), the compound of another configuration can be manufactured similarly.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R3aはアルキル基、アリール基又はアラルキル基を示し、Bocはt-ブトキシカルボニル基を示し、Zはベンジルオキシカルボニル基を示し、Rは前記と同じ) (Wherein R 3a represents an alkyl group, an aryl group or an aralkyl group, Boc represents a t-butoxycarbonyl group, Z represents a benzyloxycarbonyl group, and R 1 is the same as above)
 まず、容易に入手可能なシクロヘキセンカルボン酸(A)をヨウ素化を用いたヨードラクトン化反応で化合物(B)が得られる。このヨードラクトン化反応は、化合物(A)に、ヨウ素及びヨウ化カリウムを炭酸水素ナトリウム等のアルカリの存在下で反応させることにより行うことができる。 First, a compound (B) is obtained by an iodolactone reaction using iodination of a readily available cyclohexene carboxylic acid (A). This iodolactonization reaction can be performed by reacting compound (A) with iodine and potassium iodide in the presence of an alkali such as sodium bicarbonate.
 化合物(B)に水酸化ナトリウム等のアルカリを反応させることにより、ラクトン環の開環と同時にエポキシ化させて化合物(C)を得る。化合物(C)をアジ化ナトリウム等を用いてアジド化することにより化合物(D)を得る。次いで化合物(D)にジ-tert-ブチルジカルボナートの存在下に還元することにより化合物(E)が得られる。ここで還元反応は、パラジウム炭素等を触媒として用いる接触還元が好ましい。化合物(E)のヒドロキシ基をアジド化することにより、化合物(F)が得られる。次いで化合物(F)を還元、好ましくは接触還元すれば化合物(G)が得られる。次に化合物(G)の一級アミノ基にBocとは異なる保護基で保護すれば化合物(H)が得られる。 Compound (C) is obtained by reacting compound (B) with an alkali such as sodium hydroxide to cause lactone ring opening and epoxidation. Compound (D) is obtained by azidating compound (C) with sodium azide or the like. Compound (E) is then obtained by reducing compound (D) in the presence of di-tert-butyl dicarbonate. Here, the reduction reaction is preferably catalytic reduction using palladium carbon or the like as a catalyst. Compound (F) is obtained by azidating the hydroxy group of compound (E). The compound (F) is then reduced, preferably catalytically reduced, to give the compound (G). Next, if the primary amino group of compound (G) is protected with a protecting group different from Boc, compound (H) is obtained.
 化合物(H)の保護基のうち、Bocを加水分解により脱離させて化合物(I)を得、これにアシル化剤(R)を反応させて化合物(J)を得、次いで保護基(Z)を水素添加により脱離すれば、化合物(1a)が得られる。 Of the protecting groups of compound (H), Boc is eliminated by hydrolysis to obtain compound (I), which is reacted with acylating agent (R 1 ) to obtain compound (J), and then protecting group ( If Z) is eliminated by hydrogenation, compound (1a) is obtained.
 一方、化合物(1a)とは、相違するアミノ基がアシル化された化合物(1b)を得るには、次の反応式のようにすればよい。 On the other hand, in order to obtain a compound (1b) in which an amino group different from the compound (1a) is acylated, the following reaction formula may be used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R、R3a、Boc及びZは前記と同じ) (Wherein R 2 , R 3a , Boc and Z are the same as above)
 すなわち、化合物(H)に水素添加して保護基(Z)を脱離させて化合物(K)を得、これにアシル化剤(R)を反応させて化合物(L)を得、次いで保護基(Boc)を加水分解により脱離すれば化合物(1b)が得られる。 That is, the compound (H) is hydrogenated to remove the protecting group (Z) to obtain a compound (K), which is reacted with an acylating agent (R 2 ) to obtain a compound (L), and then protected. If the group (Boc) is eliminated by hydrolysis, the compound (1b) is obtained.
 なお、上記の反応式において、アミノ基の保護基であるBocやZは、2つのアミノ基からそれぞれ相違する反応条件で脱離させることができる保護基であれば、他の保護基に代えることもできる。当該保護基としては、ベンゾイル基、3,4,5-トリメトキシフェニルメチル基等の加水分解脱離性基と、ベンジル基、フェニルエチル基等の水素添加脱離性基との組み合せが挙げられる。 In the above reaction formula, Boc and Z, which are protecting groups for amino groups, can be replaced with other protecting groups as long as they can be removed from the two amino groups under different reaction conditions. You can also. Examples of the protective group include a combination of a hydrolytic leaving group such as a benzoyl group or 3,4,5-trimethoxyphenylmethyl group and a hydrogenation leaving group such as a benzyl group or a phenylethyl group. .
 式(1)の化合物のうち、Rがアミノ基、アルキルアミノ基又はジアルキルアミノ基である化合物は、上記反応工程の任意の段階で、エステル(-COOR3a)をアミド化することにより得られる。アミド化反応は、例えばアンモニア、アンモニウム塩、アルキルアミン、ジアルキルアミンを用いて行うことができる。 Among the compounds of formula (1), a compound in which R 3 is an amino group, an alkylamino group or a dialkylamino group can be obtained by amidating an ester (—COOR 3a ) at any stage of the above reaction step. . The amidation reaction can be performed using, for example, ammonia, ammonium salt, alkylamine, or dialkylamine.
 このようにして得られる化合物(1)は、付加反応又は縮合反応用の不斉有機触媒として有用である。すなわち、化合物(1)の存在下に付加反応又は縮合反応を行えば、高収率かつ高光学純度でエナンチオマーが得られ、エナンチオ選択的不斉合成が可能である。 The compound (1) thus obtained is useful as an asymmetric organic catalyst for addition reaction or condensation reaction. That is, if an addition reaction or a condensation reaction is performed in the presence of the compound (1), an enantiomer can be obtained with high yield and high optical purity, and enantioselective asymmetric synthesis is possible.
 ここで付加反応又は縮合反応としては、アルドール反応、マンニッヒ反応、マイケル反応、アミノ化反応、ハロゲン化反応等が挙げられる。このうち、本発明の触媒はアルドール反応に適用するのが特に好ましい。 Here, examples of the addition reaction or condensation reaction include aldol reaction, Mannich reaction, Michael reaction, amination reaction, halogenation reaction and the like. Of these, the catalyst of the present invention is particularly preferably applied to the aldol reaction.
 本発明の不斉有機触媒を用いたアルドール反応は次の反応式で表される。 The aldol reaction using the asymmetric organic catalyst of the present invention is represented by the following reaction formula.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRは水素原子又は有機基を示し、Rは有機基を示す。*は不斉炭素原子を示し、特定の立体配置を有する) (In the formula, R 4 and R 5 represent a hydrogen atom or an organic group, R 6 represents an organic group, * represents an asymmetric carbon atom, and has a specific configuration)
 すなわち、ケトン類(2)とアルデヒド類(3)とを式(1)の不斉有機触媒の存在下に反応させれば、式(4)の光学活性ケトアルコールが得られる。 That is, when the ketones (2) and the aldehydes (3) are reacted in the presence of the asymmetric organic catalyst of the formula (1), the optically active keto alcohol of the formula (4) is obtained.
 R、R及びRで示される有機基としては、特に限定されないが、炭化水素基、複素環式基、アルコール、エーテル等が挙げられる。炭化水素基としては、芳香族炭化水素基及び脂肪族炭化水素基のいずれも含まれる。またこれらの炭化水素基及び複素環式基、アルコール、エーテル等は、ハロゲン原子、ニトロ基、アミノ基、シアノ基、カルボキシル基、アルコキシカルボニル基、シリル基等の置換基を有していてもよい。またRとRは一緒になってシクロアルカン構造を成形していてもよい。 The organic group represented by R 4, R 5 and R 6, but are not limited to, hydrocarbon group, heterocyclic group, an alcohol, ether and the like. As the hydrocarbon group, both an aromatic hydrocarbon group and an aliphatic hydrocarbon group are included. These hydrocarbon groups and heterocyclic groups, alcohols, ethers and the like may have a substituent such as a halogen atom, a nitro group, an amino group, a cyano group, a carboxyl group, an alkoxycarbonyl group, or a silyl group. . R 4 and R 5 may be combined to form a cycloalkane structure.
 用いる式(1)の触媒は、式(2)又は式(3)の原料化合物に対して0.5~10モル%、さらに1~10モル%用いればよい。この触媒使用量は従来の不斉有機触媒の使用量に比べて少ないものである。 The catalyst of the formula (1) to be used may be used in an amount of 0.5 to 10 mol%, more preferably 1 to 10 mol%, relative to the raw material compound of the formula (2) or the formula (3). The amount of catalyst used is small compared to the amount of conventional asymmetric organic catalysts used.
 反応は通常のアルドール反応に従い、例えば溶媒の存在下又は不存在下、0~20℃で0.5~72時間程度行えばよい。 The reaction may be carried out in accordance with a normal aldol reaction, for example, at 0 to 20 ° C. for about 0.5 to 72 hours in the presence or absence of a solvent.
 本発明においては、用いる式(1)の不斉有機触媒の立体配置を変更することにより、目的とするケトアルコールのエナンチオマーの立体配置をコントロールすることができる。すなわち、式(1a)の触媒を用いる場合と式(1b)の触媒を用いる場合とで、得られるケトアルコールのエナンチオマーの立体配置が決定されるため、共通の不斉源から2つの触媒を合成することにより、目的とするエナンチオマーを選択的に得ることができる。 In the present invention, the configuration of the enantiomer of the target keto alcohol can be controlled by changing the configuration of the asymmetric organic catalyst of the formula (1) used. That is, the configuration of the enantiomer of the keto alcohol obtained is determined depending on whether the catalyst of the formula (1a) or the catalyst of the formula (1b) is used, so that two catalysts are synthesized from a common asymmetric source. By doing so, the target enantiomer can be selectively obtained.
 また、本発明の触媒は、反応混合物から回収し、再利用することができる。 Also, the catalyst of the present invention can be recovered from the reaction mixture and reused.
 次に実施例を挙げて本発明を詳細に説明する。 Next, the present invention will be described in detail with reference to examples.
[参考例1](1R,3R,4S)-3,4-エポキシシクロヘキサン-1-カルボン酸 エチルエステル [Reference Example 1] (1R * , 3R * , 4S * )-3,4-epoxycyclohexane-1-carboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (1R,4R,5R)-4-ヨード-6-オキサビシクロ[3.2.1]オクタン-7-オン(J.Org.Chem.,1996年,61巻,8687頁)(14.3g)をエタノール(130mL)に溶解し、氷冷下2規定水酸化ナトリウム水溶液(34.5mL)を加えたのち、室温で7時間攪拌した。溶媒を減圧下留去し、残さに水を加えてジクロロメタンで抽出したのち、無水硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、残さをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=83:17)で精製し、標題化合物(6.54g)を無色油状物として得た。
H-NMR(CDCl)δ:1.25(3H,t,J=7.1Hz),1.50-1.70(2H,m),1.71-1.82(1H,m),2.08-2.28(4H,m),3.16(2H,s),4.12(2H,q,J=7.1Hz).
(1R * , 4R * , 5R * )-4-iodo-6-oxabicyclo [3.2.1] octane-7-one (J. Org. Chem., 1996, 61, 8687) (14 3 g) was dissolved in ethanol (130 mL), and 2N aqueous sodium hydroxide solution (34.5 mL) was added under ice cooling, followed by stirring at room temperature for 7 hours. The solvent was distilled off under reduced pressure, water was added to the residue, and the mixture was extracted with dichloromethane, and then dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 83: 17) to give the title compound (6.54 g) as a colorless oil.
1 H-NMR (CDCl 3 ) δ: 1.25 (3H, t, J = 7.1 Hz), 1.50-1.70 (2H, m), 1.71-1.82 (1H, m) 2.08-2.28 (4H, m), 3.16 (2H, s), 4.12 (2H, q, J = 7.1 Hz).
[参考例2](1R,3S,4S)-3-アジド-4-ヒドロキシシクロヘキサン-1-カルボン酸 エチルエステル [Reference Example 2] (1R * , 3S * , 4S * )-3-azido-4-hydroxycyclohexane-1-carboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (1R,3R,4S)-3,4-エポキシシクロヘキサン-1-カルボン酸 エチルエステル(13.6g)をN,N-ジメチルホルムアミド(100mL)に溶かし、室温にて塩化アンモニウム(6.45g)、アジ化ナトリウム(7.8g)を順次加えたのち、75℃で12時間攪拌した。溶媒を3分の1程度まで濃縮し、水及び酢酸エチルで希釈し、3分間攪拌した。有機層を水及び飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)で精製し、標題化合物(15.8g)を無色油状物として得た。
H-NMR(CDCl)δ:1.28(3H,t,J=7.1Hz),1.37-1.67(2H,m),1.86-1.95(1H,m),2.04-2.18(2H,m),2.32-2.43(1H,m),2.68-2.78(1H,m),3.40-3.60(2H,m),4.17(2H,q,J=7.1Hz).
(1R * , 3R * , 4S * )-3,4-epoxycyclohexane-1-carboxylic acid ethyl ester (13.6 g) was dissolved in N, N-dimethylformamide (100 mL), and ammonium chloride (6. 45 g) and sodium azide (7.8 g) were sequentially added, followed by stirring at 75 ° C. for 12 hours. The solvent was concentrated to about one third, diluted with water and ethyl acetate, and stirred for 3 minutes. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 4) to obtain the title compound (15.8 g) as a colorless oil.
1 H-NMR (CDCl 3 ) δ: 1.28 (3H, t, J = 7.1 Hz), 1.37-1.67 (2H, m), 1.86-1.95 (1H, m) , 2.04-2.18 (2H, m), 2.32-2.43 (1H, m), 2.68-2.78 (1H, m), 3.40-3.60 (2H, m), 4.17 (2H, q, J = 7.1 Hz).
[参考例3](1R,3S,4S)-3-tert-ブトキシカルボニルアミノ-4-ヒドロキシシクロヘキサン-1-カルボン酸 エチルエステル [Reference Example 3] (1R * , 3S * , 4S * )-3-tert-butoxycarbonylamino-4-hydroxycyclohexane-1-carboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (1R,3S,4S)-3-アジド-4-ヒドロキシシクロヘキサン-1-カルボン酸 エチルエステル(100mg)及びジ-tert-ブチルジカルボナート(133mg)を酢酸エチル(12mL)に溶解し、触媒量の10%パラジウム炭素を加え、水素気流下室温で12時間攪拌した。不溶物をろ過したのち、溶媒を減圧下留去し、残さをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、標題化合物(145mg)を無色固体として得た。
H-NMR(CDCl)δ:1.28(3H,t,J=7.1Hz),1.45(9H,s),1.38-1.57(2H,m),1.86-1.95(1H,m),2.05-2.17(1H,m),2.29-2.39(2H,m),2.61-2.68(1H,m),3.25-3.66(3H,m),4.17(2H,q,J=7.1Hz),4.53(1H,br.s).
(1R * , 3S * , 4S * )-3-Azido-4-hydroxycyclohexane-1-carboxylic acid ethyl ester (100 mg) and di-tert-butyl dicarbonate (133 mg) were dissolved in ethyl acetate (12 mL). Then, a catalytic amount of 10% palladium carbon was added, and the mixture was stirred at room temperature for 12 hours under a hydrogen stream. The insoluble material was filtered off, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to give the title compound (145 mg) as a colorless solid.
1 H-NMR (CDCl 3 ) δ: 1.28 (3H, t, J = 7.1 Hz), 1.45 (9H, s), 1.38-1.57 (2H, m), 1.86 -1.95 (1H, m), 2.05-2.17 (1H, m), 2.29-2.39 (2H, m), 2.61-2.68 (1H, m), 3 .25-3.66 (3H, m), 4.17 (2H, q, J = 7.1 Hz), 4.53 (1H, br.s).
[参考例4](1R,3S,4R)-4-アジド-3-(tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 エチルエステル及び(1R,3S,4S)-4-アジド-3-(tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 エチルエステル [Reference Example 4] (1R * , 3S * , 4R * )-4-azido-3- (tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid ethyl ester and (1R * , 3S * , 4S * )-4 -Azido-3- (tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (1R,3S,4S)-3-tert-ブトキシカルボニルアミノ-4-ヒドロキシシクロヘキサン-1-カルボン酸 エチルエステル(16g)及びトリエチルアミン(38mL)をジクロロメタン(150mL)に溶解し、-78℃に冷却後、同温にてメタンスルホニルクロリド(13mL)を滴下した。同温にて15分間攪拌したのち、0℃まで昇温し30分、さらに室温で2時間攪拌した。0.1規定塩酸を加えジクロロメタンで希釈したのち、有機層を分離し、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、粗製の(1R,3S,4S)-3-tert-ブトキシカルボニルアミノ-4-メタンスルホニルオキシシクロヘキサン-1-カルボン酸 エチルエステルを得た。
 上記生成物をN,N-ジメチルホルムアミド(100mL)に溶解し、室温にてアジ化ナトリウム(18g)を加え、75℃まで昇温して12時間攪拌した。溶媒を3分の1程度まで濃縮し、水及びAcOEtで希釈し3分間攪拌した。有機層を分離し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)で精製し、標題化合物[(1R,3S,4R)-体、6.74g]及び[(1R,3S,4S)-体、1.32g]をそれぞれ無色固体として得た。
(1R,3S,4R)-体:
H-NMR(CDCl)δ:1.26(3H,t,J=7.1Hz),1.45(9H,s),1.38-2.33(6H,m),2.57-2.68(1H,m),3.77-4.20(4H,m),4.63(1H,br.s).
(1R,3S,4S)-体:
H-NMR(CDCl)δ:1.27(3H,t,J=7.1Hz),1.46(9H,s),1.53-2.30(6H,m),2.50-2.65(1H,m),3.42-3.72(2H,m),4.15(2H,q.J=7.1Hz),4.67(1H,br.s).
(1R * , 3S * , 4S * )-3-tert-butoxycarbonylamino-4-hydroxycyclohexane-1-carboxylic acid ethyl ester (16 g) and triethylamine (38 mL) were dissolved in dichloromethane (150 mL) and dissolved at −78 ° C. After cooling, methanesulfonyl chloride (13 mL) was added dropwise at the same temperature. After stirring at the same temperature for 15 minutes, the temperature was raised to 0 ° C., followed by stirring for 30 minutes and further at room temperature for 2 hours. After adding 0.1N hydrochloric acid and diluting with dichloromethane, the organic layer was separated, washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain crude (1R * , 3S * , 4S * )-3-tert-butoxycarbonylamino-4-methanesulfonyloxycyclohexane-1-carboxylic acid ethyl ester.
The above product was dissolved in N, N-dimethylformamide (100 mL), sodium azide (18 g) was added at room temperature, and the mixture was heated to 75 ° C. and stirred for 12 hours. The solvent was concentrated to about one third, diluted with water and AcOEt, and stirred for 3 minutes. The organic layer was separated, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 4) to give the title compound [(1R * , 3S * , 4R * )-isomer, 6.74 g] and [ (1R * , 3S * , 4S * )-isomer, 1.32 g] were obtained as colorless solids.
(1R * , 3S * , 4R * )-body:
1 H-NMR (CDCl 3 ) δ: 1.26 (3H, t, J = 7.1 Hz), 1.45 (9H, s), 1.38-2.33 (6H, m), 2.57 -2.68 (1H, m), 3.77-4.20 (4H, m), 4.63 (1H, br.s).
(1R * , 3S * , 4S * )-body:
1 H-NMR (CDCl 3 ) δ: 1.27 (3H, t, J = 7.1 Hz), 1.46 (9H, s), 1.53-2.30 (6H, m), 2.50 -2.65 (1H, m), 3.42-3.72 (2H, m), 4.15 (2H, q.J = 7.1 Hz), 4.67 (1H, br.s).
[参考例5](1R,2S,4R)-N-tert-ブトキシカルボニル-4-エトキシカルボニル-1,2-シクロヘキサンジアミン [Reference Example 5] (1R * , 2S * , 4R * )-N 2 -tert-butoxycarbonyl-4-ethoxycarbonyl-1,2-cyclohexanediamine
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 (1R,3S,4R)-4-アジド-3-(tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 エチルエステル(5.4g)をエタノール(10mL)及び酢酸エチル(10mL)の混合溶媒に溶解し、触媒量の10%パラジウム炭素を加え、水素気流下室温にて20時間攪拌した。不溶物をろ過したのち、減圧下溶媒を留去し、標題化合物(4.7g)を淡黄色油状物として得た。 (1R * , 3S * , 4R * )-4-azido-3- (tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid ethyl ester (5.4 g) mixed with ethanol (10 mL) and ethyl acetate (10 mL) It melt | dissolved in the solvent, the catalyst amount of 10% palladium carbon was added, and it stirred at room temperature under hydrogen stream for 20 hours. The insoluble material was filtered off, and the solvent was evaporated under reduced pressure to give the title compound (4.7 g) as a pale yellow oil.
[参考例6](1S,3S,4R)-3,4-エポキシシクロヘキサン-1-カルボン酸 エチルエステル
 (1S,4S,5S)-4-ヨード-6-オキサビシクロ[3.2.1]オクタン-7-オン(J.Org.Chem.,1996年,61巻,8687頁)(89.3g)をエタノール(810mL)に溶解し、2規定水酸化ナトリウム水溶液(213mL)を加えたのち、室温で3時間攪拌した。溶媒を減圧下留去し、残さに水を加え、ジクロロメタンで抽出したのち、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残さをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=17:3)で精製し、標題化合物(41.2g)を淡黄褐色油状物として得た。
〔α〕-58°(C=1.0,クロロホルム).
[Reference Example 6] (1S, 3S, 4R) -3,4-epoxycyclohexane-1-carboxylic acid ethyl ester (1S, 4S, 5S) -4-iodo-6-oxabicyclo [3.2.1] octane -7-one (J. Org. Chem., 1996, 61, 8687) (89.3 g) was dissolved in ethanol (810 mL), and 2N aqueous sodium hydroxide solution (213 mL) was added. For 3 hours. The solvent was distilled off under reduced pressure, water was added to the residue, extracted with dichloromethane, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 17: 3) to obtain the title compound (41.2 g) as a pale tan oil.
[Α] D −58 ° (C = 1.0, chloroform).
[参考例7](1S,3R,4R)-3-アジド-4-ヒドロキシシクロヘキサン-1-カルボン酸 エチルエステル
 (1S,3S,4R)-3,4-エポキシシクロヘキサン-1-カルボン酸 エチルエステル(41g)をN,N-ジメチルホルムアミド(300mL)に溶かし、室温にて塩化アンモニウム(19.3g)、アジ化ナトリウム(23.5g)を順次加えたのち、75℃で13時間攪拌した。反応液をろ過し、ろ液を濃縮して400mLの溶媒を留去し、残さに先のろ取物を入れ、水を加え溶解させた。酢酸エチルで抽出し、有機層を水及び飽和食塩水で洗浄したのち、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標題化合物(51.5g)を油状物として得た。
〔α〕+8°(C=1.0,クロロホルム)
[Reference Example 7] (1S, 3R, 4R) -3-Azido-4-hydroxycyclohexane-1-carboxylic acid ethyl ester (1S, 3S, 4R) -3,4-epoxycyclohexane-1-carboxylic acid ethyl ester ( 41 g) was dissolved in N, N-dimethylformamide (300 mL), ammonium chloride (19.3 g) and sodium azide (23.5 g) were successively added at room temperature, and the mixture was stirred at 75 ° C. for 13 hours. The reaction solution was filtered, the filtrate was concentrated, 400 mL of the solvent was distilled off, the previous filtrate was put into the residue, and water was added to dissolve it. The mixture was extracted with ethyl acetate, and the organic layer was washed with water and saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain the title compound (51.5 g) as an oil.
[Α] D + 8 ° (C = 1.0, chloroform)
[参考例8](1S,3R,4R)-3-(tert-ブトキシカルボニルアミノ)-4-ヒドロキシシクロヘキサン-1-カルボン酸 エチルエステル
 (1S,3R,4R)-3-アジド-4-ヒドロキシシクロヘキサン-1-カルボン酸 エチルエステル(51.2g)及びジ-tert-ブチルジカルボナート(68.1g)を酢酸エチル(1000mL)に溶解し、5%パラジウム炭素を加え、室温下水素圧5kg/cmで16時間攪拌した。不溶物をろ過したのち、溶媒を減圧下濃縮し、残さをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製し、ヘキサンを加え固化し、標題化合物(53.6g)を無色結晶として得た。
〔α〕+25°(C=1.0,クロロホルム).
[Reference Example 8] (1S, 3R, 4R) -3- (tert-butoxycarbonylamino) -4-hydroxycyclohexane-1-carboxylic acid ethyl ester (1S, 3R, 4R) -3-azido-4-hydroxycyclohexane 1-carboxylic acid ethyl ester (51.2 g) and di-tert-butyl dicarbonate (68.1 g) were dissolved in ethyl acetate (1000 mL), 5% palladium carbon was added, and hydrogen pressure at room temperature was 5 kg / cm. For 16 hours. The insoluble material was filtered off, and the solvent was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) and solidified by adding hexane to give the title compound (53.6 g) as colorless crystals. Got as.
[Α] D + 25 ° (C = 1.0, chloroform).
[参考例9](±)-3-シクロヘキセン-1-カルボン酸 ベンジルエステル [Reference Example 9] (±) -3-Cyclohexene-1-carboxylic acid benzyl ester
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 (±)-3-シクロヘキセン-1-カルボン酸(50g)をN,N-ジメチルホルムアミド(550mL)に溶解し、氷冷下トリエチルアミン(170mL)、ベンジルブロミド(61mL)を加え室温で12時間攪拌した。水を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄したのち、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残さをシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、標題化合物(70.8g)を赤褐色油状物として得た。
H-NMR(CDCl)δ:1.66-1.76(1H,m),2.00-2.13(3H,m),2.27-2.29(2H,m),2.58-2.65(1H,m),5.13(2H,s),5.66(2H,br.s),7.29-7.38(5H,m).
(±) -3-Cyclohexene-1-carboxylic acid (50 g) was dissolved in N, N-dimethylformamide (550 mL), triethylamine (170 mL) and benzyl bromide (61 mL) were added under ice cooling, and the mixture was stirred at room temperature for 12 hours. . Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (hexane: ethyl acetate = 3: 1) to obtain the title compound (70.8 g) as a reddish brown oil.
1 H-NMR (CDCl 3 ) δ: 1.66-1.76 (1H, m), 2.00-2.13 (3H, m), 2.27-2.29 (2H, m), 2 58-2.65 (1H, m), 5.13 (2H, s), 5.66 (2H, br.s), 7.29-7.38 (5H, m).
[参考例10](1R,3S,4R)-3,4-エポキシシクロヘキサン-1-カルボン酸 ベンジルエステル [Reference Example 10] (1R * , 3S * , 4R * )-3,4-epoxycyclohexane-1-carboxylic acid benzyl ester
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 (±)-3-シクロヘキセン-1-カルボン酸 ベンジルエステル(40g)をジクロロメタン(500mL)に溶解し、氷冷下4-クロロ過安息香酸(86g)を加え2時間攪拌した。10%チオ硫酸ナトリウム水溶液を加え20分攪拌したのち、有機層を分離し、飽和炭酸水素ナトリウム溶液及び飽和食塩水で洗浄したのち、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残さをシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:9)にて精製し、標題化合物(23.4g)と(1R,3R,4S)-3,4-エポキシシクロヘキサン-1-カルボン酸 ベンジルエステル(12.1g)を無色油状物として得た。
H-NMR(CDCl)δ:1.39-1.49(1H,m),1.75-1.82(1H,m),1.90-2.04(3H,m),2.30(1H,dd,J=14.9,4.9Hz),2.54-2.61(1H,m),3.12-3.14(1H,m),3.22-3.24(1H,m),5.12(2H,s),7.30-7.39(5H,m).
MS(FAB)m/z:233(M+H)
(±) -3-Cyclohexene-1-carboxylic acid benzyl ester (40 g) was dissolved in dichloromethane (500 mL), and 4-chloroperbenzoic acid (86 g) was added under ice cooling, followed by stirring for 2 hours. After adding 10% aqueous sodium thiosulfate solution and stirring for 20 minutes, the organic layer was separated, washed with saturated sodium bicarbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 9) to give the title compound (23.4 g) and (1R * , 3R * , 4S * )-3, 4-Epoxycyclohexane-1-carboxylic acid benzyl ester (12.1 g) was obtained as a colorless oil.
1 H-NMR (CDCl 3 ) δ: 1.39-1.49 (1H, m), 1.75-1.82 (1H, m), 1.90-2.04 (3H, m), 2 .30 (1H, dd, J = 14.9, 4.9 Hz), 2.54-2.61 (1H, m), 3.12-3.14 (1H, m), 3.22-3. 24 (1H, m), 5.12 (2H, s), 7.30-7.39 (5H, m).
MS (FAB) m / z: 233 (M + H) <+> .
[参考例11](1R,3S,4S)-4-アジド-3-ヒドロキシシクロヘキサン-1-カルボン酸 ベンジルエステル [Reference Example 11] (1R * , 3S * , 4S * )-4-azido-3-hydroxycyclohexane-1-carboxylic acid benzyl ester
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 (1R,3S,4R)-3,4-エポキシシクロヘキサン-1-カルボン酸 ベンジルエステル(52.3g)をN,N-ジメチルホルムアミド(1000mL)に溶解し、塩化アンモニウム(21.9g)、アジ化ナトリウム(18.1g)を加え70℃に加熱して24時間攪拌した。溶媒を減圧下留去し、残さに水を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄したのち、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、標題化合物(61.8g)を無色油状物として得た。
H-NMR(CDCl)δ:1.51-1.66(2H,m),1.91-1.98(1H,m),2.07-2.10(1H,m),2.27-2.32(1H,m),2.51-2.52(1H,m),2.81-2.86(1H,m),3.30-3.36(1H,m),3.70-3.75(1H,m),5.13(2H,s),7.30-7.39(5H,m).
(1R * , 3S * , 4R * )-3,4-epoxycyclohexane-1-carboxylic acid benzyl ester (52.3 g) was dissolved in N, N-dimethylformamide (1000 mL) and ammonium chloride (21.9 g) Sodium azide (18.1 g) was added and heated to 70 ° C. and stirred for 24 hours. The solvent was evaporated under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (61.8 g) as a colorless oil.
1 H-NMR (CDCl 3 ) δ: 1.51-1.66 (2H, m), 1.91-1.98 (1H, m), 2.07-2.10 (1H, m), 2 .27-2.32 (1H, m), 2.51-2.52 (1H, m), 2.81-2.86 (1H, m), 3.30-3.36 (1H, m) 3.70-3.75 (1H, m), 5.13 (2H, s), 7.30-7.39 (5H, m).
[参考例12](1R,3S,4S)-4-(N-tert-ブトキシカルボニルアミノ)-3-ヒドロキシシクロヘキサン-1-カルボン酸 ベンジルエステル [Reference Example 12] (1R * , 3S * , 4S * )-4- (N-tert-butoxycarbonylamino) -3-hydroxycyclohexane-1-carboxylic acid benzyl ester
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (1R,3S,4S)-4-アジド-3-ヒドロキシシクロヘキサン-1-カルボン酸 ベンジルエステル(5.27g)をテトラヒドロフラン(25mL)に溶解し、トリフェニルホスフィン(5.53g)及び水(0.55mL)を加え室温で20時間攪拌した。反応液に、ジ-tert-ブチルジカーボナート(4.82g)を加え、さらに2時間攪拌を続けた。溶媒を減圧下留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製し、標題化合物(6.22g)を無色油状物として得た。
H-NMR(CDCl)δ:1.44(9H,s),1.59-1.66(2H,m),1.88-2.00(2H,m),2.29-2.32(1H,m),2.80-2.85(1H,m),3.02(1H,br.s),3.42(1H,br.s),3.59-3.65(1H,m),4.56(1H,br.s),5.12(2H,q,J=12.5Hz),7.30-7.38(5H,m).
MS(FAB)m/z:350(M+H)
(1R * , 3S * , 4S * )-4-azido-3-hydroxycyclohexane-1-carboxylic acid benzyl ester (5.27 g) was dissolved in tetrahydrofuran (25 mL), triphenylphosphine (5.53 g) and water. (0.55 mL) was added and stirred at room temperature for 20 hours. Di-tert-butyl dicarbonate (4.82 g) was added to the reaction solution, and stirring was continued for another 2 hours. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to give the title compound (6.22 g) as a colorless oil.
1 H-NMR (CDCl 3 ) δ: 1.44 (9H, s), 1.59-1.66 (2H, m), 1.88-2.00 (2H, m), 2.29-2 .32 (1H, m), 2.80-2.85 (1H, m), 3.02 (1H, br.s), 3.42 (1H, br.s), 3.59-3.65 (1H, m), 4.56 (1H, br.s), 5.12 (2H, q, J = 12.5 Hz), 7.30-7.38 (5H, m).
MS (FAB) m / z: 350 (M + H) <+> .
[参考例13](1R,3S,4S)-4-N-(tert-ブトキシカルボニルアミノ)-3-ヒドロキシシクロヘキサン-1-カルボン酸 メチルエステル [Reference Example 13] (1R * , 3S * , 4S * )-4-N- (tert-butoxycarbonylamino) -3-hydroxycyclohexane-1-carboxylic acid methyl ester
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (1R,3S,4S)-4-N-(tert-ブトキシカルボニルアミノ)-3-ヒドロキシシクロヘキサン-1-カルボン酸 ベンジルエステル(2.54g)を酢酸エチル(15mL)に溶解し、触媒量の10%パラジウム炭素を加え水素気流下室温で20時間攪拌した。触媒をろ去し、ろ液を減圧下濃縮し、(1R,3S,4S)-4-N-(tert-ブトキシカルボニルアミノ)-3-ヒドロキシシクロヘキサン-1-カルボン酸を無色油状物として得た。これをメタノール(8mL)とトルエン(15mL)の混合溶液に溶解し、氷冷下トリメチルシリルジアゾメタン2規定溶液(10mL)を加え室温にて30分攪拌した。溶媒を減圧下留去し、シリカゲルカラムクロマトフラフィー(ヘキサン:酢酸エチル=1:1)で精製し、標題化合物(1.82g)を無色油状物として得た。
H-NMR(CDCl)δ:1.44(9H,s),1.36-2.32(7H,m),2.74-2.82(1H,m),3.04(1H,br.s),3.33-3.47(1H,m),3.55-3.65(1H,m),3.68(3H,s),4.56(1H,br.s).
MS(FAB)m/z:274(M+H)
(1R * , 3S * , 4S * )-4-N- (tert-butoxycarbonylamino) -3-hydroxycyclohexane-1-carboxylic acid benzyl ester (2.54 g) was dissolved in ethyl acetate (15 mL) to prepare a catalyst. An amount of 10% palladium carbon was added and stirred at room temperature for 20 hours under a hydrogen stream. The catalyst was removed by filtration, and the filtrate was concentrated under reduced pressure to give (1R * , 3S * , 4S * )-4-N- (tert-butoxycarbonylamino) -3-hydroxycyclohexane-1-carboxylic acid as a colorless oil. Got as. This was dissolved in a mixed solution of methanol (8 mL) and toluene (15 mL), trimethylsilyldiazomethane 2N solution (10 mL) was added under ice cooling, and the mixture was stirred at room temperature for 30 min. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to obtain the title compound (1.82 g) as a colorless oil.
1 H-NMR (CDCl 3 ) δ: 1.44 (9H, s), 1.36-2.32 (7H, m), 2.74-2.82 (1H, m), 3.04 (1H , Br.s), 3.33-3.47 (1H, m), 3.55-3.65 (1H, m), 3.68 (3H, s), 4.56 (1H, br. S). ).
MS (FAB) m / z: 274 (M + H) <+> .
[参考例14](1R,3R,4S)-3-アジド-4-N-(tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 メチルエステル及び(1R,3R,4R)-3-アジド-4-N-(tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 メチルエステル [Reference Example 14] (1R * , 3R * , 4S * )-3-azido-4-N- (tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid methyl ester and (1R * , 3R * , 4R * ) -3-Azido-4-N- (tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid methyl ester
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (1R,3S,4S)-4-N-(tert-ブトキシカルボニルアミノ)-3-ヒドロキシシクロヘキサン-1-カルボン酸 メチルエステル(1.81g)をジクロロメタン(36mL)に溶解し、-78℃にてトリエチルアミン(4.6mL)、メタンスルホニルクロリド(1.63mL)を加え、30分後0℃まで昇温し、さらに30分攪拌した。1規定塩酸を加え、ジクロロメタンで抽出し、有機層を飽和食塩水で洗浄したのち、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、粗製の(1R,3S,4S)-4-N-(tert-ブトキシカルボニルアミノ)-3-(メタンスルホニルオキシ)シクロヘキサン-1-カルボン酸メチルエステルを得た。
 粗製の(1R,3S,4S)-4-N-(tert-ブトキシカルボニルアミノ)-3-(メタンスルホニルオキシ)シクロヘキサン-1-カルボン酸 メチルエステルをN,N-ジメチルホルムアミド(23mL)に溶解し、アジ化ナトリウム(1.29g)を加え、70℃に加熱して12時間攪拌した。反応液に水を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄したのち、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残さをフラシュカラムクロマトグラフィー(酢酸エチル:ヘキサン=3:17)で精製し、(1R,3R,4R)-3-アジド-4-(N-tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 メチルエステル(85mg)と(1R,3R,4S)-3-アジド-4-(N-tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 メチルエステル(590mg)を無色油状物として得た。
(1R,3R,4S)-体:H-NMR(CDCl)δ:1.45(9H,s),1.35-2.35(7H,m),2.45-2.55(1H,m),3.73(3H,s),3.67-3.84(2H,m),4.70(1H,br.s).
MS(FAB)m/z:299(M+H)
(1R,3R,4R)-体:H-NMR(CDCl)δ:1.45(9H,s),1.56-2.25(7H,m),2.68-2.80(1H,m),3.70(3H,s),3.48-3.68(2H,m),4.56(1H,br.s).
MS(FAB)m/z:299(M+H)
(1R * , 3S * , 4S * )-4-N- (tert-butoxycarbonylamino) -3-hydroxycyclohexane-1-carboxylic acid methyl ester (1.81 g) was dissolved in dichloromethane (36 mL) and -78 Triethylamine (4.6 mL) and methanesulfonyl chloride (1.63 mL) were added at 0 ° C., 30 minutes later, the temperature was raised to 0 ° C., and the mixture was further stirred for 30 minutes. 1N Hydrochloric acid was added, and the mixture was extracted with dichloromethane. The organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain crude (1R * , 3S * , 4S * )-4-N- (tert-butoxycarbonylamino) -3- (methanesulfonyloxy) cyclohexane-1-carboxylic acid methyl ester. It was.
Crude (1R * , 3S * , 4S * )-4-N- (tert-butoxycarbonylamino) -3- (methanesulfonyloxy) cyclohexane-1-carboxylic acid methyl ester was converted to N, N-dimethylformamide (23 mL). The mixture was dissolved in sodium azide (1.29 g), heated to 70 ° C. and stirred for 12 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by flash column chromatography (ethyl acetate: hexane = 3: 17), and (1R * , 3R * , 4R * )-3-azido-4- (N-tert- Butoxycarbonylamino) cyclohexane-1-carboxylic acid methyl ester (85 mg) and (1R * , 3R * , 4S * )-3-azido-4- (N-tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid methyl ester (590 mg) was obtained as a colorless oil.
(1R * , 3R * , 4S * )-isomer: 1 H-NMR (CDCl 3 ) δ: 1.45 (9H, s), 1.35-2.35 (7H, m), 2.45-2 .55 (1H, m), 3.73 (3H, s), 3.67-3.84 (2H, m), 4.70 (1H, br.s).
MS (FAB) m / z: 299 (M + H) <+> .
(1R * , 3R * , 4R * )-isomer: 1 H-NMR (CDCl 3 ) δ: 1.45 (9H, s), 1.56-2.25 (7H, m), 2.68-2 .80 (1H, m), 3.70 (3H, s), 3.48-3.68 (2H, m), 4.56 (1H, br.s).
MS (FAB) m / z: 299 (M + H) <+> .
[参考例15](1R,2S,4S)-N-(tert-ブトキシカルボニル)-4-メトキシカルボニル-1,2-シクロヘキサンジアミン [Reference Example 15] (1R * , 2S * , 4S * )-N 1- (tert-butoxycarbonyl) -4-methoxycarbonyl-1,2-cyclohexanediamine
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(1R,3R,4S)-3-アジド-4-(N-tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 メチルエステル(230mg)を酢酸エチル(8mL)に溶解し、触媒量の10%パラジウム炭素を加え、水素気流下20時間攪拌した。不溶物をろ去し、ろ液を減圧下濃縮し、標題化合物(220mg)を淡黄色油状物として得た。 (1R * , 3R * , 4S * )-3-azido-4- (N-tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid methyl ester (230 mg) was dissolved in ethyl acetate (8 mL) 10% palladium carbon was added and stirred for 20 hours under a hydrogen stream. The insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure to give the title compound (220 mg) as a pale yellow oil.
[参考例16](1R,3S,4R)-3,4-エポキシシクロヘキサン-1-カルボン酸 ベンジルエステル
1)参考例9と同様の方法で、(1R)-3-シクロヘキセン-1-カルボン酸(J.Am.Chem.Soc,1978年,100巻,5199頁)から、(1R)-3-シクロヘキセン-1-カルボン酸 ベンジルエステルを得た。
2)参考例10と同様の方法で、上記の生成物から標題化合物を得た。
MS(FAB)m/z:233(M+H)
[Reference Example 16] (1R, 3S, 4R) -3,4-epoxycyclohexane-1-carboxylic acid benzyl ester 1) In the same manner as in Reference Example 9, (1R) -3-cyclohexene-1-carboxylic acid ( J. Am. Chem. Soc, 1978, 100, 5199), (1R) -3-cyclohexene-1-carboxylic acid benzyl ester was obtained.
2) In the same manner as in Reference Example 10, the title compound was obtained from the above product.
MS (FAB) m / z: 233 (M + H) <+> .
[参考例17](1R,3S,4S)-4-(N-tert-ブトキシカルボニルアミノ)-3-ヒドロキシシクロヘキサン-1-カルボン酸 ベンジルエステル
1)参考例13と同様の方法で、(1R,3S,4R)-3,4-エポキシシクロヘキサン-1-カルボン酸 ベンジルエステルから、(1R,3S,4S)-4-アジド-3-ヒドロキシシクロヘキサン-1-カルボン酸 ベンジルエステルを得た。
2)参考例12と同様の方法で、上記の生成物から標題化合物を得た。
MS(FAB)m/z:350(M+H)
[Reference Example 17] (1R, 3S, 4S) -4- (N-tert-butoxycarbonylamino) -3-hydroxycyclohexane-1-carboxylic acid benzyl ester 1) In the same manner as in Reference Example 13, (1R, (1R, 3S, 4S) -4-azido-3-hydroxycyclohexane-1-carboxylic acid benzyl ester was obtained from 3S, 4R) -3,4-epoxycyclohexane-1-carboxylic acid benzyl ester.
2) In the same manner as in Reference Example 12, the title compound was obtained from the above product.
MS (FAB) m / z: 350 (M + H) <+> .
[参考例18](1R,3R,4S)-3-アジド-4-(N-tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 ベンジルエステル [Reference Example 18] (1R, 3R, 4S) -3-Azido-4- (N-tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid benzyl ester
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 参考例14と同様の方法で、(1R,3S,4S)-4-(N-tert-ブトキシカルボニルアミノ)-3-ヒドロキシシクロヘキサン-1-カルボン酸 ベンジルエステルから標題化合物を得た。
H-NMR(CDCl)δ:1.45(9H,s),1.52-1.66(2H,m),1.83-2.01(3H,m),2.20-2.28(1H,m),2.51-2.54(1H,m),3.77(2H,br.s),4.70(1H,br.s),5.15(2H,ABq,J=12.2Hz),7.33-7.38(5H,m).
MS(FAB)m/z:375(M+H)
In the same manner as in Reference Example 14, the title compound was obtained from (1R, 3S, 4S) -4- (N-tert-butoxycarbonylamino) -3-hydroxycyclohexane-1-carboxylic acid benzyl ester.
1 H-NMR (CDCl 3 ) δ: 1.45 (9H, s), 1.52-1.66 (2H, m), 1.83 to 2.01 (3H, m), 2.20-2 .28 (1H, m), 2.51-2.54 (1H, m), 3.77 (2H, br.s), 4.70 (1H, br.s), 5.15 (2H, ABq) , J = 12.2 Hz), 7.33-7.38 (5H, m).
MS (FAB) m / z: 375 (M + H) <+> .
[参考例19](1R,3R,4S)-3-アジド-4-(N-tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 メチルエステル [Reference Example 19] (1R, 3R, 4S) -3-Azido-4- (N-tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid methyl ester
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 (1R,3R,4S)-3-アジド-4-(N-tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸 ベンジルエステル(3.5g)をテトラヒドロフラン(130mL)、水(16mL)に溶解し、氷冷下水酸化リチウム(291mg)を加え、10分後室温に戻し攪拌を続けた。20時間後反応を停止し、溶媒を減圧下留去後得られた残渣をシリカゲルを用いるカラムクロマトグラフィー(メタノール:ジクロロメタン=1:20)に付し、(1R,3R,4S)-3-アジド-4-(N-tert-ブトキシカルボニルアミノ)シクロヘキサン-1-カルボン酸(3.34g)を淡黄色油状物として得た。これをメタノール(18mL)、トルエン(64mL)に溶解し、氷冷下トリメチルシリルジアゾメタン(2M溶液,6.1mL)を加え、10分後室温に戻して攪拌した。2時間後反応を停止し、溶媒を減圧下留去したのち、残さをシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)で精製し、標題化合物(3.35g)を無色油状物として得た。
H-NMR(CDCl)δ:1.45(9H,s),1.57-1.63(2H,m),1.82-1.85(1H,m),1.95-1.99(2H,m),2.20-2.28(1H,m),2.48-2.51(1H,m),3.73(3H,s),3.78(2H,br.s),4.70-4.72(1H,m).
MS(FAB)m/z:299(M+H)
(1R, 3R, 4S) -3-Azido-4- (N-tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid benzyl ester (3.5 g) was dissolved in tetrahydrofuran (130 mL) and water (16 mL). Under ice-cooling, lithium hydroxide (291 mg) was added, and after 10 minutes, the temperature was returned to room temperature and stirring was continued. After 20 hours, the reaction was stopped, the solvent was distilled off under reduced pressure, and the resulting residue was subjected to column chromatography using silica gel (methanol: dichloromethane = 1: 20) to give (1R, 3R, 4S) -3-azido. -4- (N-tert-butoxycarbonylamino) cyclohexane-1-carboxylic acid (3.34 g) was obtained as a pale yellow oil. This was dissolved in methanol (18 mL) and toluene (64 mL), trimethylsilyldiazomethane (2M solution, 6.1 mL) was added under ice cooling, and after 10 minutes, the mixture was returned to room temperature and stirred. After 2 hours, the reaction was stopped, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 4) to obtain the title compound (3.35 g) as a colorless oil. It was.
1 H-NMR (CDCl 3 ) δ: 1.45 (9H, s), 1.57-1.63 (2H, m), 1.82-1.85 (1H, m), 1.95-1 .99 (2H, m), 2.20-2.28 (1H, m), 2.48-2.51 (1H, m), 3.73 (3H, s), 3.78 (2H, br S), 4.70-4.72 (1H, m).
MS (FAB) m / z: 299 (M + H) <+> .
[参考例20](1S,3R,4S)-3-アミノ-4-ベンジルオキシカルボニルアミノ-シクロヘキシルカルボン酸 エチルエステル [Reference Example 20] (1S, 3R, 4S) -3-Amino-4-benzyloxycarbonylamino-cyclohexylcarboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(1S,3R,4S)-3-tert-ブトキシカルボニルアミノ-4-ベンジルオキシカルボニルアミノーシクロヘキシルカルボン酸 エチルエステル(1.26g)をアセトニトリル(20mL)中に溶解させ、メタンスルホン酸(0.97mL)を添加し、室温で6時間攪拌した。溶媒留去後、重曹水で中和、ジクロロメタンで抽出後、酢酸エチル10mLで3時間スラリー精製を行った。結晶をろ過後、乾燥し、標題化合物1.64gを得た。
H-NMR(400MHz,CDCl)δ:7.29-7.52(5H,m,ArH),5.30(1H,brs,NH),5.08(1H,brs,OCHAr),4.12(2H,q,J=7.3Hz,OCHCH),3.59(1H,brs),2.48-2.55(1H,m,CH),1.89-1.96(2H,m,CH),1.79-1.81(2H,m,CH),1.40-1.59(2H,m,CH),1.26(3H,t,J=7.3Hz,OCHCH),1.17-1.29(1H,m,CH).
HRMS(ESI)exact mass calcd.for C1724 m/z 321.1813([M+H]),found:m/z 321.1814([M+H]).
(1S, 3R, 4S) -3-tert-Butoxycarbonylamino-4-benzyloxycarbonylamino-cyclohexylcarboxylic acid ethyl ester (1.26 g) was dissolved in acetonitrile (20 mL) and methanesulfonic acid (0.97 mL) was dissolved. ) And stirred at room temperature for 6 hours. After the solvent was distilled off, the residue was neutralized with aqueous sodium hydrogen carbonate, extracted with dichloromethane, and then purified by slurry with 10 mL of ethyl acetate for 3 hours. The crystals were filtered and dried to give 1.64 g of the title compound.
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.29-7.52 (5H, m, ArH), 5.30 (1H, brs, NH), 5.08 (1H, brs, OCH 2 Ar) , 4.12 (2H, q, J = 7.3Hz, OCH 2 CH 3), 3.59 (1H, brs), 2.48-2.55 (1H, m, CH), 1.89-1 .96 (2H, m, CH 2 ), 1.79-1.81 (2H, m, CH 2 ), 1.40-1.59 (2H, m, CH 2 ), 1.26 (3H, t , J = 7.3 Hz, OCH 2 CH 3 ), 1.17-1.29 (1H, m, CH).
HRMS (ESI) exact mass calcd. for C 17 H 24 N 2 O 4 m / z 321.1813 ([M + H] +), found: m / z 321.1814 ([M + H] +).
[参考例21]ベンジル tert-ブチル {(1S,2R,4S)-4-[(ジメチルアミノ)カルボニル]シクロヘキサン-1,2-ジイル}ビスカルバメート [Reference Example 21] Benzyl tert-butyl {(1S, 2R, 4S) -4-[(dimethylamino) carbonyl] cyclohexane-1,2-diyl} biscarbamate
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 エチル (1S,3R,4S)-4-{[(ベンジロキシ)カルボニル]アミノ}-3-[(tert-ブトキシカルボニル)アミノ]シクロヘキサンカルボキシレート(3.2g)をエタノール32mLに溶解した後、室温にて反応液に2M水酸化リチウム水溶液(11.4mL)を加え、3時間攪拌した。反応液に6N塩酸(2.6mL)を加えpH7に調整し、反応液をそのまま留去した。得られた残渣をDMF(32mL)を加え、ジメチルアミン・塩酸塩(2.48g)及び1-ヒドロキシベンゾトリアゾール(1.54g)を加えた攪拌した。溶解後、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(2.19g)を加え、室温にて16時間攪拌した。反応液に酢酸エチルエステル及び水を加えて抽出し、水層に酢酸エチルエステルを加え抽出した。有機層をあわせ、水にて洗浄後、無水硫酸マグネシウムにて乾燥した。溶媒を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーに付し、標題化合物2.94gを得た。
H-NMR(CDCl)δ:1.20-1.50(2H,m),1.44(9H,s),1.50-2.10(4H,m),2.60(1H,br.t,J=11.6Hz),2.93(3H,s),3.02(3H,s),3.70(1H,br.s),4.14(1H,br.s),4.65(1H,br.s),5.00-5.30(3H,m),7.26-7.40(5H,m).
Ethyl (1S, 3R, 4S) -4-{[(benzyloxy) carbonyl] amino} -3-[(tert-butoxycarbonyl) amino] cyclohexanecarboxylate (3.2 g) was dissolved in 32 mL of ethanol and then brought to room temperature. Then, 2M lithium hydroxide aqueous solution (11.4 mL) was added to the reaction solution, and the mixture was stirred for 3 hours. 6N hydrochloric acid (2.6 mL) was added to the reaction solution to adjust to pH 7, and the reaction solution was distilled off as it was. DMF (32 mL) was added to the resulting residue, and dimethylamine hydrochloride (2.48 g) and 1-hydroxybenzotriazole (1.54 g) were added and stirred. After dissolution, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (2.19 g) was added and stirred at room temperature for 16 hours. The reaction mixture was extracted with ethyl acetate and water, and the aqueous layer was extracted with ethyl acetate. The organic layers were combined, washed with water, and dried over anhydrous magnesium sulfate. The solvent was concentrated under reduced pressure, and the resulting residue was subjected to silica gel column chromatography to obtain 2.94 g of the title compound.
1 H-NMR (CDCl 3 ) δ: 1.20-1.50 (2H, m), 1.44 (9H, s), 1.50-2.10 (4H, m), 2.60 (1H , Br.t, J = 11.6 Hz), 2.93 (3H, s), 3.02 (3H, s), 3.70 (1H, br.s), 4.14 (1H, br.s). ), 4.65 (1H, br.s), 5.00-5.30 (3H, m), 7.26-7.40 (5H, m).
[参考例22]tert-ブチル {(1R,2S,5S)-2-アミノ-5-[(ジメチルアミノ)カルボニル]シクロヘキシル}カルバメート シュウ酸塩 [Reference Example 22] tert-butyl {(1R, 2S, 5S) -2-amino-5-[(dimethylamino) carbonyl] cyclohexyl} carbamate oxalate
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
<A法>
 (1R,2R,4S)-2-[(tert-ブトキシカルボニル)アミノ]-4-[(ジメチルアミノ)カルボニル]シクロヘキシル メタンスルホネート(20.0g)のトルエン溶液(100mL)に室温にて、アジ化ナトリウム(7.14g)及びドデシルピリジニウム クロリド(7.80g)を加えた。60℃にて、72時間攪拌後、反応液に水を加え、有機層を飽和重層水、水にて洗浄後、有機層にメタノールを加え、7.5%Pd-C及びギ酸アンモニウムを加えて40℃で1時間攪拌した。Pd-Cをろ過除去後、溶媒を減圧濃縮し、これに含水アセトニトリル(200mL)及び無水シュウ酸(4.94g)を加え、室温下17時間攪拌し、結晶をろ取した。得られた結晶をアセトニトリル(200mL)に加えて、40℃にて24時間攪拌した。得られた結晶をろ取・乾燥し、標題化合物12.7gを得た。
H-NMR(DO)δ:1.30(9H,s),1.37-1.49(2H,m),1.63(1H,t,J=2.7Hz),1.72-1.83(3H,m),2.77(3H,s),2.80(1H,t,J=12.4Hz),2.96(3H,m),3.32(1H,d,J=12.2Hz),4.10(1H,br).
元素分析:Calc.C;50.70%、H;7.75%、N;10.96%
Obsd.C;51.19%、H;7.79%、N;11.19%.
<B法>
<Method A>
(1R, 2R, 4S) -2-[(tert-Butoxycarbonyl) amino] -4-[(dimethylamino) carbonyl] cyclohexyl Methanesulfonate (20.0 g) in toluene solution (100 mL) at room temperature Sodium (7.14 g) and dodecylpyridinium chloride (7.80 g) were added. After stirring at 60 ° C. for 72 hours, water was added to the reaction solution, the organic layer was washed with saturated multistory water and water, methanol was added to the organic layer, and 7.5% Pd—C and ammonium formate were added. Stir at 40 ° C. for 1 hour. After removing Pd—C by filtration, the solvent was concentrated under reduced pressure, water-containing acetonitrile (200 mL) and oxalic anhydride (4.94 g) were added thereto, and the mixture was stirred at room temperature for 17 hours, and the crystals were collected by filtration. The obtained crystals were added to acetonitrile (200 mL) and stirred at 40 ° C. for 24 hours. The obtained crystals were collected by filtration and dried to obtain 12.7 g of the title compound.
1 H-NMR (D 2 O) δ: 1.30 (9H, s), 1.37-1.49 (2H, m), 1.63 (1H, t, J = 2.7 Hz), 1. 72-1.83 (3H, m), 2.77 (3H, s), 2.80 (1H, t, J = 12.4 Hz), 2.96 (3H, m), 3.32 (1H, d, J = 12.2 Hz), 4.10 (1H, br).
Elemental analysis: Calc. C; 50.70%, H; 7.75%, N; 10.96%
Obsd. C; 51.19%, H; 7.79%, N; 11.19%.
<Method B>
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 ベンジル tert-ブチル{(1S,2R,4S)-4-[(ジメチルアミノ)カルボニル]シクロヘキサン-1,2-ジイル}ビスカルバメート(2.3g)のエタノール溶液(35mL)に、7.5%Pd-C(230mg)を加え、水素雰囲気下、16時間攪拌した。Pd-Cを濾去後、得られたろ液を減圧下濃縮した。得られた残渣に酢酸エチルエステル(20mL)及び無水シュウ酸(493.6mg)を加え、室温下17時間攪拌した後、結晶をろ取し、標題化合物1.93gを得た。各種スペクトルデータは上記<A法>で得たものと完全に一致した。 7.5% Pd in ethanol solution (35 mL) of benzyl tert-butyl {(1S, 2R, 4S) -4-[(dimethylamino) carbonyl] cyclohexane-1,2-diyl} biscarbamate (2.3 g) -C (230 mg) was added, and the mixture was stirred under a hydrogen atmosphere for 16 hours. After removing Pd—C by filtration, the obtained filtrate was concentrated under reduced pressure. Acetic acid ethyl ester (20 mL) and oxalic anhydride (493.6 mg) were added to the obtained residue, and the mixture was stirred at room temperature for 17 hr. The crystals were collected by filtration to give 1.93 g of the title compound. Various spectrum data completely matched with those obtained by the above <Method A>.
実施例1(1S,3R,4S)-4-ベンジルオキシカルボニルアミノ-3-トリフルオロメタンスルホニルアミノ-シクロヘキシルカルボン酸 エチルエステル Example 1 (1S, 3R, 4S) -4-benzyloxycarbonylamino-3-trifluoromethanesulfonylamino-cyclohexylcarboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 (1S,3R,4S)-3-アミノ-4-ベンジルオキシカルボニルアミノーシクロヘキシルカルボン酸 エチルエステル(1.8g)をジクロロメタン10mL中に入れ、さらにトリエチルアミン(0.96mL)を連続的に入れ、-78℃に冷却した。無水トリフルオロメタンスルホン酸(0.93mL)を滴下し、1時間攪拌した。反応終了後、水を加え、分液操作後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製し、標題化合物2.27gを得た。
H-NMR(400MHz,CDCl)δ:7.29-7.38(5H,m,ArH),6.23(1H,brs,NHTf),5.06-5.13(3H,m,NH,CHAr),4.15(2H,q,J=7.3Hz,OCHCH),3.59(1H,brs),2.48-2.55(1H,m,CH),1.89-1.96(2H,m,CH),1.79-1.81(2H,m,CH),4.05-4.11(1H,m,CH),3.81-3.83(1H,m,CH),2.56(1H,brs),2.01-2.08(2H,m,CH),1.87-1.89(2H,m,CH),1.53-1.71(2H,m,CH),1.27(3H,t,J=7.3Hz,OCHCH).
HRMS(ESI)exact mass calcd.for C1823S m/z 475.1125([M+Na]),found:m/z 475.1126([M+Na]
(1S, 3R, 4S) -3-Amino-4-benzyloxycarbonylamino-cyclohexylcarboxylic acid ethyl ester (1.8 g) was placed in 10 mL of dichloromethane, and triethylamine (0.96 mL) was continuously added. Cooled to 78 ° C. Trifluoromethanesulfonic anhydride (0.93 mL) was added dropwise and stirred for 1 hour. After completion of the reaction, water was added, and after the liquid separation operation, the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to give 2.27 g of the title compound.
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.29-7.38 (5H, m, ArH), 6.23 (1H, brs, NHTf), 5.06-5.13 (3H, m, NH, CH 2 Ar), 4.15 (2H, q, J = 7.3 Hz, OCH 2 CH 3 ), 3.59 (1H, brs), 2.48-2.55 (1H, m, CH) 1.89-1.96 (2H, m, CH 2 ), 1.79-1.81 (2H, m, CH 2 ), 4.05-4.11 (1H, m, CH), 3. 81-3.83 (1H, m, CH), 2.56 (1H, brs), 2.01-1.08 (2H, m, CH 2 ), 1.87-1.89 (2H, m, CH 2), 1.53-1.71 (2H, m, CH 2), 1.27 (3H, t, J = 7.3Hz, OCH 2 CH 3).
HRMS (ESI) exact mass calcd. for C 18 H 23 N 2 O 6 F 3 S m / z 475.1125 ([M + Na] +), found: m / z 475.1126 ([M + Na] +)
実施例2(1S,3R,4S)-4-アミノ-3-トリフルオロメタンスルホニルアミノ-シクロヘキサンカルボン酸 エチルエステル Example 2 (1S, 3R, 4S) -4-amino-3-trifluoromethanesulfonylamino-cyclohexanecarboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (1S,3R,4S)-4-ベンジルオキシカルボニルアミノ-3-トリフルオロメタンスルホニルアミノ-シクロヘキシルカルボン酸 エチルエステル(2.27g)をメタノール(20mL)中に入れ、引き続きPd/C(200mg)を入れ40℃で6時間攪拌した。反応終了後、セライトろ過をし、残渣を濃縮した。濃縮残渣に酢酸エチル20mLを入れ、3時間スラリー精製を行った、ろ過、乾燥後、標題化合物(1.33g)を得た。
H-NMR(400MHz,CDOD)δ:4.10(2H,q,J=7.2Hz,COCHCH),3.74(1H,s,NH),3.07-3.11(1H,m,CHNH),2.78-2.83(1H,m,NHCH),2.06(1H,dd,J=13.6,1.2Hz,CH),1.97(1H,dd,J=13.6,1.2Hz,CH),1.77-1.85(1H,m),1.68-1.71(1H,m),1.58-1.64(1H,m),1.42-1.51(1H,m),1.22(3H,t,J=7.2Hz,COCHCH).
HRMS(FAB)exact mass calcd.for C1017S m/z 319.0935([M+H]),found:m/z 319.0939([M+H]);[α]20 =+3.3(c=0.3,MeOH).
(1S, 3R, 4S) -4-Benzyloxycarbonylamino-3-trifluoromethanesulfonylamino-cyclohexylcarboxylic acid ethyl ester (2.27 g) was placed in methanol (20 mL), followed by Pd / C (200 mg). The mixture was stirred at 40 ° C. for 6 hours. After completion of the reaction, the mixture was filtered through celite and the residue was concentrated. 20 mL of ethyl acetate was added to the concentrated residue, and slurry purification was performed for 3 hours. After filtration and drying, the title compound (1.33 g) was obtained.
1 H-NMR (400 MHz, CD 3 OD) δ: 4.10 (2H, q, J = 7.2 Hz, CO 2 CH 2 CH 3 ), 3.74 (1H, s, NH), 3.07- 3.11 (1H, m, CHNH), 2.78-2.83 (1H, m, NHCH), 2.06 (1H, dd, J = 13.6, 1.2 Hz, CH), 1.97 (1H, dd, J = 13.6, 1.2 Hz, CH), 1.77-1.85 (1H, m), 1.68-1.71 (1H, m), 1.58-1. 64 (1H, m), 1.42-1.51 (1H, m), 1.22 (3H, t, J = 7.2 Hz, CO 2 CH 2 CH 3 ).
HRMS (FAB) exact mass calcd. for C 10 H 17 N 2 O 4 F 3 S m / z 319.0935 ([M + H] + ), found: m / z 319.0939 ([M + H] + ); [α] 20 D = + 3.3 ( c = 0.3, MeOH).
実施例3(1S,3R,4R)-3-tert-ブトキシカルボニルアミノ-4-トリフルオロメチルスルホニルアミン-シクロヘキサンカルボン酸 エチルエステル Example 3 (1S, 3R, 4R) -3-tert-butoxycarbonylamino-4-trifluoromethylsulfonylamine-cyclohexanecarboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 (1R,2S,4R)-3-tert-ブトキシカルボニル-4-エトキシカルボニル-1,2-シクロヘキサンジアミン(1.62g)をジクロロメタン(10mL)中に入れ、引き続きトリエチルアミン(0.96mL)を入れ、-78℃に冷却した。無水トリフルオロメタンスルホン酸(0.93mL)を滴下し、そのままの温度で1時間攪拌した。反応終了後、0℃まで温度を上げ、水を加えて反応を停止させた。分液後、有機層を濃縮し、ショートシリカゲルカラムクロマトグラフィに付し、標題化合物(2.27g)を得た。
H-NMR(400MHz,CDCl)δ:4.13(2H,q,J=7.3Hz,COCHCH),3.61(2H,brs,NH),2.39(1H,brs,NH),1.88-2.08(4H,m,CH),1.55-1.68(2H,m,CH),1.46(9H,s,t-Bu),1.25(3H,t,J=7.3Hz,COCHCH).
HRMS(ESI)exact mass calcd.for C1525S m/z 441.1290([M+Na]),found:m/z 441.1283([M+Na]).
(1R * , 2S * , 4R * )-3-tert-butoxycarbonyl-4-ethoxycarbonyl-1,2-cyclohexanediamine (1.62 g) was placed in dichloromethane (10 mL), followed by triethylamine (0.96 mL). And cooled to -78 ° C. Trifluoromethanesulfonic anhydride (0.93 mL) was added dropwise and stirred at that temperature for 1 hour. After completion of the reaction, the temperature was raised to 0 ° C., and water was added to stop the reaction. After liquid separation, the organic layer was concentrated and subjected to short silica gel column chromatography to obtain the title compound (2.27 g).
1 H-NMR (400 MHz, CDCl 3 ) δ: 4.13 (2H, q, J = 7.3 Hz, CO 2 CH 2 CH 3 ), 3.61 (2H, brs, NH), 2.39 (1H , Brs, NH), 1.88-2.08 (4H, m, CH 2 ), 1.55-1.68 (2H, m, CH 2 ), 1.46 (9H, s, t-Bu) , 1.25 (3H, t, J = 7.3Hz, CO 2 CH 2 CH 3).
HRMS (ESI) exact mass calcd. for C 15 H 25 N 2 O 6 F 3 S m / z 441.1290 ([M + Na] +), found: m / z 441.1283 ([M + Na] +).
実施例4(1S,3R,4R)-3-アミノ-4-トリフルオロメタンスルホニルアミノ-シクロヘキサンカルボン酸 エチルエステル Example 4 (1S, 3R, 4R) -3-Amino-4-trifluoromethanesulfonylamino-cyclohexanecarboxylic acid ethyl ester
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 (1S,3R,4R)-3-tert-ブトキシカルボニルアミノ-4-トリフルオロメタンスルホニルアミノ-シクロヘキサンカルボン酸 エチルエステル1.26gをアセトニトリル20mL中に入れ、メタンスルホン酸(0.97mL)を入れて、6時間室温で攪拌した。結晶をろ取し、標題化合物のメタンスルホン酸塩を取得した。その化合物を重曹水で中和した後、ジクロロメタンで抽出し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィ(ヘキサン:酢酸エチル=1:1)で精製し、標題化合物812mgを得た。
実施例5
 シクロヘキサノン0.9mL及びp-ニトロベンズアルデヒド45.3mgをテトラヒドロフラン0.9mL及び水0.9mLの混合液に添加した。これに化合物(1a-1)又は化合物(1b-1)をp-ニトロベンズアルデヒド1モルに対して5モル%添加して、室温(25℃)で3~4日間攪拌した。反応混合液を酢酸エチル3mLにて抽出、分液操作後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィにて精製して、アルドール付加体を74.9mg(収率99%、ジアステレオ比:7/93(syn/anti)、97%ee)得た。
1.26 g of (1S, 3R, 4R) -3-tert-butoxycarbonylamino-4-trifluoromethanesulfonylamino-cyclohexanecarboxylic acid ethyl ester is placed in 20 mL of acetonitrile and methanesulfonic acid (0.97 mL) is added. Stir for 6 hours at room temperature. The crystals were collected by filtration to obtain the methanesulfonate salt of the title compound. The compound was neutralized with aqueous sodium bicarbonate, extracted with dichloromethane, and the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to obtain 812 mg of the title compound.
Example 5
0.9 mL cyclohexanone and 45.3 mg p-nitrobenzaldehyde were added to a mixture of 0.9 mL tetrahydrofuran and 0.9 mL water. To this was added 5 mol% of compound (1a-1) or compound (1b-1) with respect to 1 mol of p-nitrobenzaldehyde, and the mixture was stirred at room temperature (25 ° C.) for 3 to 4 days. The reaction mixture was extracted with 3 mL of ethyl acetate, and after liquid separation, the organic layer was concentrated. The residue was purified by silica gel column chromatography to obtain 74.9 mg (yield 99%, diastereo ratio: 7/93 (syn / anti), 97% ee) of an aldol adduct.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 実施例5と同様にしてアルドール反応を行った結果を表1に示す。 Table 1 shows the results of the aldol reaction as in Example 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかに、本発明の触媒を用いれば、1つの不斉源から合成された2つの触媒により、互いに異なる高純度のエナンチオマーが選択的に得られる。 As is apparent from Table 1, when the catalyst of the present invention is used, high-purity enantiomers different from each other can be selectively obtained by two catalysts synthesized from one asymmetric source.
実施例6
 シクロペンタノン0.9mL及びp-ニトロベンズアルデヒド45.3mgをテトラヒドロフラン0.9mL及び水0.9mLの混合液に添加した。これに化合物(1a-1)又は化合物(1b-1)をp-ニトロベンズアルデヒド1モルに対して5モル%添加して、室温(25℃)で16~22時間撹拌した。以下、実施例5と同様に処理して、アルドール付加体を69.9mg(収率99%、ジアステレオ比92/8(syn/anti)、93%ee)得た。
Example 6
0.9 mL of cyclopentanone and 45.3 mg of p-nitrobenzaldehyde were added to a mixture of 0.9 mL of tetrahydrofuran and 0.9 mL of water. To this was added 5 mol% of compound (1a-1) or compound (1b-1) with respect to 1 mol of p-nitrobenzaldehyde, and the mixture was stirred at room temperature (25 ° C.) for 16 to 22 hours. Thereafter, the same treatment as in Example 5 was performed to obtain 69.9 mg (yield 99%, diastereo ratio 92/8 (syn / anti), 93% ee) of an aldol adduct.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 実施例6と同様にしてアルドール反応を行った結果を表2に示す。 Table 2 shows the results of the aldol reaction performed in the same manner as in Example 6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例7
 シクロヘキサノンに代えて2,2-ジメチル-1,3-ジオキサ-5-オンを用いる以外は、実施例5とほぼ同様にして、反応を行った。その結果を表3に示す。
Example 7
The reaction was performed in substantially the same manner as in Example 5 except that 2,2-dimethyl-1,3-dioxa-5-one was used instead of cyclohexanone. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (4)

  1.  式(1)
    Figure JPOXMLDOC01-appb-C000034
    (式中、R及びRは、一方が水素原子、他方がアシル基を示し、Rはアルコキシ基、アリールオキシ基、アラルキルオキシ基、アミノ基、アルキルアミノ基又はジアルキルアミノ基を示す。*は不斉炭素原子を示し、RHN-及びRHN-は不斉炭素原子上で同一の立体配置を有する。)
    で表される光学活性ジアミノシクロヘキサンカルボン酸類又はそのブレンステッド酸塩からなる付加反応又は縮合反応用不斉有機触媒。
    Formula (1)
    Figure JPOXMLDOC01-appb-C000034
    (In the formula, one of R 1 and R 2 represents a hydrogen atom and the other represents an acyl group, and R 3 represents an alkoxy group, an aryloxy group, an aralkyloxy group, an amino group, an alkylamino group, or a dialkylamino group. * Represents an asymmetric carbon atom, and R 1 HN— and R 2 HN— have the same configuration on the asymmetric carbon atom.)
    An asymmetric organic catalyst for addition reaction or condensation reaction comprising an optically active diaminocyclohexanecarboxylic acid represented by the formula (1) or a Bronsted acid salt thereof.
  2.  R及びRの一方が水素原子であり、他方がアルカンスルホニル基又はハロゲノアルカンスルホニル基である請求項1記載の不斉有機触媒。 The asymmetric organic catalyst according to claim 1, wherein one of R 1 and R 2 is a hydrogen atom, and the other is an alkanesulfonyl group or a halogenoalkanesulfonyl group.
  3.  Rがアルコキシ基、アラルキルオキシ基、アルキルアミノ基又はジアルキルアミノ基である請求項1又は2記載の不斉有機触媒。 The asymmetric organic catalyst according to claim 1 or 2, wherein R 3 is an alkoxy group, an aralkyloxy group, an alkylamino group or a dialkylamino group.
  4.  式(2)
    Figure JPOXMLDOC01-appb-C000035
    (式中、R及びRは水素原子又は有機基を示す)
    で表されるケトン類と式(3)
    Figure JPOXMLDOC01-appb-C000036
    (式中、Rは有機基を示す)
    で表されるアルデヒド類とを、請求項1~3のいずれか1項記載の不斉有機触媒の存在下に反応させることを特徴とする式(4)
    Figure JPOXMLDOC01-appb-C000037
    (*は不斉炭素原子を示し、特定の立体配置を有し、R、R及びRは前記と同じ)
    で表される光学活性ケトアルコールの製造法。
    Formula (2)
    Figure JPOXMLDOC01-appb-C000035
    (Wherein R 4 and R 5 represent a hydrogen atom or an organic group)
    And ketones represented by formula (3)
    Figure JPOXMLDOC01-appb-C000036
    (Wherein R 6 represents an organic group)
    The aldehydes represented by formula (4) are reacted in the presence of the asymmetric organic catalyst according to any one of claims 1 to 3.
    Figure JPOXMLDOC01-appb-C000037
    (* Represents an asymmetric carbon atom, has a specific configuration, and R 4 , R 5 and R 6 are the same as above)
    The manufacturing method of optically active keto alcohol represented by these.
PCT/JP2009/003699 2008-08-18 2009-08-04 Asymmetric organic catalyst WO2010021093A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010525576A JP5548129B2 (en) 2008-08-18 2009-08-04 Asymmetric organic catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-209411 2008-08-18
JP2008209411 2008-08-18

Publications (1)

Publication Number Publication Date
WO2010021093A1 true WO2010021093A1 (en) 2010-02-25

Family

ID=41706986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003699 WO2010021093A1 (en) 2008-08-18 2009-08-04 Asymmetric organic catalyst

Country Status (2)

Country Link
JP (1) JP5548129B2 (en)
WO (1) WO2010021093A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002538A1 (en) * 2010-07-02 2012-01-05 第一三共株式会社 Process for preparation of optically active diamine derivative salt
US8541443B2 (en) 2010-03-19 2013-09-24 Daiichi Sankyo Company, Limited Crystal of diamine derivative and method of producing same
CN104781244A (en) * 2012-11-23 2015-07-15 第一三共株式会社 Process for the preparation of (1S,4S,5S)-4-bromo-6-oxabicyclo[3.2.1]octan-7-one
CN104936961A (en) * 2013-03-29 2015-09-23 第一三共株式会社 Method for producing (1S,4S,5S)-4-bromo-6- oxabicyclo[3.2.1]octane-7-one
CN105017121A (en) * 2015-06-09 2015-11-04 哈尔滨工程大学 Optically active phenylacetylene derivative with Fmoc-L-hydroxyproline and preparation and application methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275118A (en) * 2001-03-15 2002-09-25 Central Glass Co Ltd Method for producing aldol reaction product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275118A (en) * 2001-03-15 2002-09-25 Central Glass Co Ltd Method for producing aldol reaction product

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUIZZETTI STEFANIA ET AL.: "Enantioselective Direct Aldol Reaction "on Water" Promoted by Chiral Organic Catalysts", ORG. LETT., vol. 9, no. 7, 29 March 2007 (2007-03-29), pages 1247 - 1250 *
LUO SANZHONG ET AL.: "Highly Enantioselective Direct syn- and anti-Aldol Reactions of Dihydroxyacetones Catalyzed by Chiral Primary Amine Catalysts", ORG. LETT., vol. 10, no. 4, 21 February 2008 (2008-02-21), pages 653 - 656 *
NAKADAI MASAKAZU ET AL.: "Diversity-based strategy for discovery of environmentally benign organocatalyst:diamine-protonic acid catalysts for asymmetric direct aldol reaction", TETRAHEDRON, vol. 58, no. 41, 7 October 2002 (2002-10-07), pages 8167 - 8177 *
NAKAYAMA KEIJI ET AL.: "Complete Switch of Procuct Selectivity in Asymmetric Direct Aldol Reaction with Two Different Chiral Orgnocatalysts from a Common Chiral Source", J. AM. CHEM. SOC., vol. 130, no. 52, 31 December 2008 (2008-12-31), pages 17666 - 17667 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541443B2 (en) 2010-03-19 2013-09-24 Daiichi Sankyo Company, Limited Crystal of diamine derivative and method of producing same
WO2012002538A1 (en) * 2010-07-02 2012-01-05 第一三共株式会社 Process for preparation of optically active diamine derivative salt
CN103080078A (en) * 2010-07-02 2013-05-01 第一三共株式会社 Process for preparation of optically active diamine derivative salt
US20130165657A1 (en) * 2010-07-02 2013-06-27 Daiichi Sankyo Company, Limited Process for preparation of optically active diamine derivative salt
US8901345B2 (en) 2010-07-02 2014-12-02 Daiichi Sankyo Company, Limited Process for preparation of optically active diamine derivative salt
CN103080078B (en) * 2010-07-02 2015-02-11 第一三共株式会社 Process for preparation of optically active diamine derivative salt
JP5780657B2 (en) * 2010-07-02 2015-09-16 第一三共株式会社 Process for producing salt of optically active diamine derivative
CN104781244A (en) * 2012-11-23 2015-07-15 第一三共株式会社 Process for the preparation of (1S,4S,5S)-4-bromo-6-oxabicyclo[3.2.1]octan-7-one
CN104936961A (en) * 2013-03-29 2015-09-23 第一三共株式会社 Method for producing (1S,4S,5S)-4-bromo-6- oxabicyclo[3.2.1]octane-7-one
CN105017121A (en) * 2015-06-09 2015-11-04 哈尔滨工程大学 Optically active phenylacetylene derivative with Fmoc-L-hydroxyproline and preparation and application methods

Also Published As

Publication number Publication date
JP5548129B2 (en) 2014-07-16
JPWO2010021093A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5548129B2 (en) Asymmetric organic catalyst
TWI438188B (en) Production method of intermediate compound for synthesizing medicament
JP2021505682A (en) Intermediates of optically active piperidine derivatives and methods for producing them
US9771317B2 (en) Process for preparing lacosamide and related compounds
JP2013522273A (en) Methods and intermediates for the preparation of macrocyclic protease inhibitors of HCV
KR100915551B1 (en) Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof
US9422230B2 (en) Process for the preparation of an anticonvulsant agent pregabalin hydrochloride
KR100743617B1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
JP4143787B2 (en) Method for producing α-aminohalomethyl ketone derivative
JP5191385B2 (en) Succinic acid diester derivative, process for its preparation and use of said derivative in pharmaceutical manufacture
RU2742765C1 (en) Method for preparing intermediate compound for synthesis of medicinal agent
EP0802901B1 (en) Novel carbamate compounds containing thiocarbamoyl group and process for preparing the same
JP3140698B2 (en) Production method and purification method of 4-hydroxy-2-pyrrolidinone
KR0136706B1 (en) Process for 3-amino pyrrolidine derivatives
JP5704763B2 (en) Production of trans-4-aminocyclopent-2-ene-1-carboxylic acid derivative
KR100395717B1 (en) Synthesis of Optically Active Aminoindanol
WO2024091517A1 (en) Process for preparing 3-amino-1-butanol
WO2019066578A1 (en) Process for preparing intermediate compound for pharmaceutical synthesis
JPH10231280A (en) Production of 3-amino-2-hydroxy-4-phenylbutylonitrile derivatives
WO2017098975A1 (en) Method for producing biphenyl compound
JPH0812629A (en) Production of optically active dihydroxylamine derivative and intermediate thereof
JP2005104860A (en) Synthesis of cyclic nonprotein-constituting amino acid
US20100010225A1 (en) Isoquinuclidine derivative and method for manufacturing 1-cyclohexene-1-carboxylic acid derivative using the same
JPH08231477A (en) Production of optically active beta-aminoesters
JPH0912546A (en) Azabicyclocyclic compound and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010525576

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808029

Country of ref document: EP

Kind code of ref document: A1