WO2010016723A1 - 리니어 압축기 - Google Patents
리니어 압축기 Download PDFInfo
- Publication number
- WO2010016723A1 WO2010016723A1 PCT/KR2009/004366 KR2009004366W WO2010016723A1 WO 2010016723 A1 WO2010016723 A1 WO 2010016723A1 KR 2009004366 W KR2009004366 W KR 2009004366W WO 2010016723 A1 WO2010016723 A1 WO 2010016723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- movable member
- stator
- conductor
- linear compressor
- control unit
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 73
- 239000003507 refrigerant Substances 0.000 claims abstract description 45
- 230000006835 compression Effects 0.000 claims abstract description 21
- 238000007906 compression Methods 0.000 claims abstract description 21
- 238000004804 winding Methods 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 32
- 238000001816 cooling Methods 0.000 claims description 16
- 230000001965 increasing effect Effects 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 230000005674 electromagnetic induction Effects 0.000 abstract description 2
- 230000004907 flux Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
- F04B35/045—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
- F04B17/04—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/16—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
Definitions
- the present invention relates to a linear compressor, and more particularly, to a linear compressor that generates a driving force by electromagnetic induction by using a conductor member instead of a magnet in the linear motor.
- a compressor is a mechanical device that increases pressure by receiving power from a power generator such as an electric motor or a turbine to compress air, refrigerant, or various other working gases. It is widely used throughout.
- compressors are classified into a reciprocating compressor which compresses the refrigerant while linearly reciprocating the inside of the cylinder by forming a compression space in which the working gas is absorbed and discharged between the piston and the cylinder.
- a rotary compressor for compressing the refrigerant while the roller is eccentrically rotated along the inner wall of the cylinder to form a compression space in which the working gas is sucked and discharged between the eccentrically rotating roller and the cylinder.
- a scroll compressor that compresses the refrigerant while the rotating scroll rotates along the fixed scroll to form a compression space in which the working gas is absorbed and discharged between the orbiting scroll and the fixed scroll. Divided.
- FIG. 1 is a side view of a linear compressor according to the prior art.
- Conventional linear compressors have a frame (2), a cylinder (3), a piston (4), a suction valve (6), a discharge valve (7), a linear motor (10), a motor cover (18) inside a shell (1), A structure composed of the supporter 19, the back cover 20, the main springs S1 and S2, and the suction muffler 21 is installed to be elastically supported.
- the cylinder 3 is fitted to the frame 2 and the discharge valve 7 is installed to block one end of the cylinder 3, while the piston 4 is inserted inside the cylinder 3, and the thin suction
- the valve 6 is provided to open and close the inlet 5 of the piston 4.
- the linear motor 10 is installed so that the magnet frame 16 can reciprocally linearly move while maintaining a gap between the inner stator 12 and the outer stator 14, and the magnet frame 16 is attached to the piston fixing portion 16c. It is installed so as to be connected to the piston (4) by the mutual electromagnetic force between the inner stator 12 and the outer stator 14 and the magnet frame 16 to operate the piston (4) while reciprocating linear movement of the magnet frame 16 Let's do it.
- the motor cover 18 supports the outer stator 14 in the axial direction to fix the outer stator 14 and is bolted to the frame 2, and the back cover 20 is coupled to the motor cover 18.
- a supporter 19 connected to the other end of the piston 4 is installed between the motor cover 18 and the back cover 20 so as to be elastically supported in the axial direction by the main springs S1 and S2, and sucks the refrigerant.
- the suction muffler assembly 21 is also fastened together with the supporter 19.
- the main springs (S1, S2) includes four front springs (S1) and four rear springs (S2) in a position that is symmetrical up and down and left and right with respect to the supporter 19, the linear motor 10 is As it is actuated, the front springs S1 and the rear springs S2 behave in opposite directions to cushion the piston 4 and the supporter 19.
- the refrigerant on the compression space P side acts as a kind of gas spring to cushion the piston 4 and the supporter 19.
- the linear motor 10 of the linear compressor is composed of the inner stator 12, the outer stator 12, and the magnet frame 16 based on the frame 2 as shown in FIG. 2.
- the inner stator 12 is configured such that laminations are laminated in the circumferential direction
- the outer stator 14 is configured such that the core block 14b is provided at a predetermined interval in the circumferential direction on the coil winding 14a.
- FIG. 2 is a perspective view of a magnet frame according to the prior art.
- a frame body 16a formed in a cylindrical shape so as to be located between the inner stator 12 and the outer stator 14 of the linear motor 10, a magnet 16b fixed to an outer portion of the frame body 16a, and the A piston fixing portion 16c extending inwardly is fixed to one end of the frame body 16a, and a hole 16d is formed on one side of the magnet 16b.
- the magnet 16b is formed at regular intervals in the circumferential direction of the frame body 16a, and it is preferable that eight magnets 16b are coupled to the outside of the frame body 16a at equal intervals.
- the linear compressor according to the prior art operates the reciprocating linear motion between the inner and the outer stator by mutual electromagnetic force, but because the magnet itself is expensive, it is difficult to use the cylindrical magnet, and it is possible to fix the magnets in the form of several rods. Therefore, even if the magnet frame is manufactured, not only the manufacturing cost increases but also the production cost increases.
- the linear compressor according to the prior art is to vary the stroke for varying the cooling power corresponding to the load of the linear motor, for this purpose is not only equipped with a complex control, but also accompanied by design limitations on the size and size of the peripheral components, further complicated Since a control method is required, the production cost is not only high, but also difficult to manufacture, and there is a problem in that the power consumed to control increases, thereby lowering the overall efficiency of the compressor.
- An object of the present invention is to provide a linear compressor that simplifies the shape and control of a linear motor by using a conductor member instead of a magnet.
- an object of the present invention is to provide a linear compressor to adjust the magnitude of the frequency or voltage of the power source to be applied, so that the cooling force corresponding to the load is generated.
- the linear compressor according to the present invention includes a fixed member having a compression space, a movable member for compressing a refrigerant while reciprocating linearly moving in the fixed member, at least one or more springs installed to elastically support in the direction of movement of the movable member, and receiving a first current.
- a stator including a stator, a second stator spaced apart from the first stator, and a conductor member electromagnetically induced by a magnetic field formed by the stator to linearly move the movable member; And a controller for controlling supply of current to the first stator.
- the conductor member is preferably a conductor mounted on one end of the connecting member.
- the conductor member is a ring-shaped iron pieces and conductors mounted on one end of the connecting member alternately stacked.
- the conductor member is preferably a conductor wire wound on one end of the connecting member.
- the first stator is composed of a coil winding body in which the coil is wound and a core mounted on the coil winding body, and the control unit controls the supply of current to the coil winding body on / off so that a one-way magnetic field is formed in the conductor member. desirable.
- the spring may include at least one of a first spring installed to elastically support the movable member in a direction in which the refrigerant is compressed, or a second spring installed to elastically support the movable member in a direction opposite to the direction in which the refrigerant is compressed. It is preferable.
- At least a portion of the conductor member is located between the first stator and the second stator.
- the first stator is composed of a first and second coil windings, each of which coils are wound at an interval in the axial direction, and a core mounted on the first and second coil windings, and the control unit forms a bidirectional magnetic field in the conductor member. Preferably, it is controlled to supply a current having a phase difference to the first and second coil windings.
- the coils are wound in the same direction as the first and second coil windings, and a capacitor is connected in series to one of the windings of the first and second coil windings.
- control unit preferably controls to supply a current having a 90 ° phase difference to the first and second coil windings.
- the spring preferably includes a first spring installed to elastically support the movable member in a direction in which the refrigerant is compressed, and a second spring installed to elastically support the movable member in a direction opposite to the direction in which the refrigerant is compressed.
- the speed of the movable member and the force for moving the movable member are inversely proportional to each other according to the magnitude of the load.
- controller may vary the magnitude of the voltage applied to the first state according to the magnitude of the load.
- control unit may vary the magnitude of the voltage, so that as the load increases, the degree of deceleration of the movable member is relatively small, or the force for moving the movable member is substantially maintained or increased.
- control unit may vary the frequency according to the size of the load.
- control unit may vary the frequency so that the speed of the movable member increases as the load increases, or the force for moving the movable member is substantially maintained or increased.
- the linear compressor of the present invention includes a fixed member having a compression space and a conductor member, a movable member for compressing the refrigerant while reciprocating linearly moving inside the fixed member, and a plurality of springs installed to elastically support in the movement direction of the movable member.
- a first stator for receiving a current and magnetically inducing the conductor member
- a second stator positioned to correspond to the first stator and having at least a portion of the conductor member positioned in a space spaced from the first stator, and a magnitude of a load.
- a control unit for controlling the cooling power corresponding to the load by varying at least one or more of the magnitude or frequency of the power applied to the first stator.
- the present invention provides a driving force by induction magnetism by using a conductor member instead of a magnet, the mechanism and control of the linear motor are simplified to reduce the production cost, and furthermore, it is not necessary to provide a separate driving unit for the control and to minimize the number of elements. Since it can be driven alone, the overall efficiency is increased.
- the present invention utilizes the characteristics between the speed of the movable member and the force for moving the movable member in accordance with the change in the load, and variably controls at least one or more of the voltage and frequency, so that the required cooling power can be provided have.
- the present invention has the effect of generating a cooling force corresponding to the load by adjusting the magnitude of the frequency or voltage of the applied power source.
- FIG. 1 is a side view of a linear compressor according to the prior art.
- Figure 2 is a perspective view of a magnet frame according to the prior art.
- FIG. 3 is a side sectional view showing a first embodiment of a linear compressor according to the present invention.
- FIG. 4 is a side sectional view showing a second embodiment of a linear compressor according to the present invention.
- Fig. 5 is a side sectional view showing a third embodiment of the linear compressor according to the present invention.
- FIG. 6 is a perspective view showing a first embodiment of a conductor member applied to the linear compressor according to the present invention
- FIG. 7 is a perspective view showing a second embodiment of the conductor member applied to the linear compressor according to the present invention.
- FIG. 8 is a perspective view showing a third embodiment of the conductor member applied to the linear compressor according to the present invention.
- FIG. 9 is a graph showing a magnetic flux waveform according to an applied current of the linear motor illustrated in FIG. 5.
- FIG. 10 is a simplified circuit diagram for applying a current to the linear motor shown in FIG.
- FIG. 11 is a graph showing a linear reciprocating magnetic flux operation of the linear motor shown in FIG.
- FIG. 12 is a graph showing a relationship between slip and torque when the voltage of the linear motor shown in FIG. 5 varies.
- FIG. 13 is a graph illustrating a relationship between slip and torque when the frequency of the linear motor shown in FIG. 5 varies.
- 3 to 5 are side cross-sectional views illustrating various embodiments of a linen compressor according to the present invention.
- the linear compressor of the present invention compresses the refrigerant in the fixing member 120 and the fixing member 120 having the compression space P of the refrigerant in the sealed container 100.
- the movable member 130 and the linear motor 200 for driving the movable member 130 are installed, and the linear motor 200 includes the first and second stators 220 and 240, the first and second stators 220, It is configured to include a conductor member 260 located in the space between the 240.
- the second stator 240 is fixed to the outer circumference of the fixing member 120, the first stator 220 is fixed by the frame 110 and the motor cover 300 in the axial direction, the frame 110 and the motor cover The 300 is fastened by a fastening member such as a bolt to be coupled to each other, and the first stator 220 is fixed between the frame 110 and the motor cover 300.
- Frame 110 may be formed integrally with the fixing member 120, it may be manufactured separately from the fixing member 120 may be combined with the fixing member 120.
- a supporter 310 is connected to the rear of the movable member 130, and the back cover 320 is coupled to the rear of the motor cover 300, and the supporter 310 is disposed between the motor cover 300 and the back cover 320.
- Springs (S1, S2) are installed in the axial direction to cushion the reciprocating linear motion of the movable member 130, both ends are supported by the supporter 320 and the motor cover 540, or the supporter 320 and the bag Both ends are supported by the cover 560.
- the detailed installation position and the elastic modulus of the springs (S1, S2) and the like can be changed according to the configuration and operation of the linear motor 200, will be described in detail below.
- a suction muffler 700 is provided at the rear of the movable member 130, and refrigerant flows into the piston 300 through the suction muffler 140 to reduce noise during refrigerant suction.
- the movable member 130 has an inside of the movable member 130 such that the refrigerant introduced through the suction muffler 330 is introduced into the compression space P formed between the fixed member 120 and the movable member 130 and compressed.
- a part of the tip of is hollow.
- a suction valve (not shown) is installed at the tip of the movable member 130, and the suction valve (not shown) is opened to allow refrigerant to flow into the compression space P from the movable member 130, and the compression space P To close the tip of the movable member 130 so as not to flow into the movable member 130 again.
- the discharge valve 160 positioned at the tip of the fixing member 120 is opened.
- the compressed high-pressure refrigerant is discharged into the discharge cap 170 and then discharged to the outside of the linear compressor through the loop pipe 180 to circulate the refrigeration cycle.
- the linear motor 200 has a gap between the first stator 220 through which an electric current flows, the second stator 240 maintaining a gap with the first stator 220, and the first and second stators 220 and 240. And a conductor member 260 installed magnetically by the first stator 220 to reciprocally linearly move the movable member 130.
- the linear motor 200 is configured to supply current to the first stator 220. It is provided with a control unit (not shown) for controlling the supply of.
- the first stator 220 is an outer stator relatively far from the fixing member 120
- the second stator 240 is an inner stator mounted to the fixing member 120.
- the linear motor 200 of the linear compressor configured as described above used a linear motor 200 having both stators 220 and 240 as an example, and a general linear motor having only one stator 220 through which current flows. 200 is included in the claims of the present invention.
- the linear compressor may include a power supply unit (not shown) capable of receiving power from the outside, and in the case of such a power supply unit, a device naturally provided to a person familiar with the technical field to which the present invention pertains may be described. Omit.
- the embodiment of the first stator 220 is configured such that the core block 222 is mounted on one coil winding 221 in which a coil is wound in the circumferential direction, and the control unit includes a conductor member ( To control the supply of current to the coil winding body 221 so that the one-way magnetic field is formed in the 260, the force is generated so that the conductor member 260 moves in the direction of compressing the refrigerant, that is, the top dead center direction. do.
- the elastic modulus and the number of the front main springs S1 are determined in proportion to the number of coil turns of the coil winding 221.
- the magnetic flux forms a closed circuit along the first and second stators 220 and 240 by the current flowing along the coil winding 221, and the conductive member ( 260 also receives a force in the top dead center direction as the induction magnetic field is formed, the conductor member 260 and the movable member 130 to compress the refrigerant while moving in the top dead center direction, the current to the coil winding 221
- the conductor member 260 and the movable member 130 is moved in the bottom dead center direction by the restoring force of the front main springs (S1) while the magnetic flux and the induction magnetic field disappears, while repeating this process of the refrigerant Suction, compression and discharge take place.
- another embodiment of the first stator 220 may be mounted such that the core block 222 is mounted on one coil winding 221 in which a coil is wound in the circumferential direction, as in the above embodiment.
- the control unit controls to turn on / off the supply of current to the coil winding body 221 so that the one-way magnetic field is formed in the conductor member 260, but the conductor member 260 sucks the refrigerant as opposed to the above embodiment.
- Direction that is, force is generated to move in the bottom dead center direction.
- it is preferable that only the rear main springs S2 are installed between the supporter 310 and the back cover 320 so that the movable member 130 gives a restoring force to the force received by the linear motor 200.
- the elastic modulus and the number of the rear main springs S2 are determined in proportion to the number of coil turns of the coil winding 221.
- the magnetic flux forms a closed circuit along the first and second stators 220 and 240 by the current flowing along the coil winding 221, and the conductive member (
- the induction magnetic field is formed in the 260, the force is applied in the bottom dead center direction, the conductor member 260 and the movable member 130 move in the bottom dead center direction to suck the refrigerant, and then a current is applied to the coil winding 221.
- the conductor member 260 and the movable member 130 is moved in the top dead center direction by the restoring force of the rear main springs (S2) while the magnetic flux and the induction magnetic field is lost, while repeating this process Suction, compression and discharge take place.
- the first and second coil windings 221A and 221B having the coils wound in the circumferential direction are positioned at regular intervals in the axial direction.
- the core blocks 222 are configured to be mounted on the first and second coil windings 221A and 221B. Coils wound on the first and second coil windings 221A and 221B are wound in the same direction, and the controller is disposed on the first and second coil windings 221A and 221B to form a bidirectional magnetic field in the conductor member 260.
- a current is controlled so as to supply current having a phase difference of °, and the conductor member 260 generates a force in a direction in which the refrigerant is compressed, that is, a top dead center direction, and moves in a direction in which the refrigerant is sucked, that is, a bottom dead center direction. It will repeat the process of generating.
- the front main springs S1 are installed between the motor cover 300 and the supporter 310 in order to provide a restoring force to the force received by the linear motor 200 by the movable member 130 and the rear main spring.
- the field S2 is installed between the supporter 310 and the back cover 320, and the front main springs S1 and the rear in proportion to the number of coil turns of the second coil windings 221A and 221B. It is preferable that the elastic modulus and the number of the main springs S2 are determined.
- the magnetic flux when a current is input to the first coil winding 221A, the magnetic flux also exhibits an AC waveform as a current having an AC waveform having a phase difference of 90 ° is input to the first and second coil windings 221A and 221B. appear.
- the induction magnetic field is also formed in the conductor member 260 by such magnetic flux, the force is alternately received in the top dead center direction and the bottom dead center direction, and the conductor member 260 and the movable member 130 move in the top dead center direction. After compressing, the process of inhaling the refrigerant while repeating the movement in the bottom dead center direction is repeated.
- 6 to 8 are perspective views showing various embodiments of the conductor member applied to the linear compressor according to the present invention.
- one example of the conductor member 260 has a shape corresponding to the connection member 290 of a conductive material such as copper and aluminum, and is formed in, for example, a cylindrical shape.
- the conductor member 260 is mounted to one end of the connection member 290 by an adhesive or adhesive member, and the connection member 290 is installed to connect the conductor member 260 to the movable member 130.
- the connection member 290 is formed in the same manner as the existing configuration, the portion of the conductor member 260 except for the portion to be mounted, or to reduce the flow resistance, various holes 291 are provided for heat dissipation.
- another example of the conductor member 270 is formed in a cylindrical shape in which a ring-shaped iron piece 270a and a ring conductor 270b are alternately stacked in an axial direction. 270 is mounted to one end of the connection member 290 by an adhesive or adhesive member, the connection member 290 is installed to connect the conductor member 270 with the movable member 130.
- the ring conductor 270b may be made of a conductor material such as copper or aluminum.
- another example of the conductor member 280 is formed in a form in which the conductor wire is wound, and is mounted to be wound around one end or the outside of the connection member 290, and the connection member 290 is The conductor member 280 is installed to connect with the movable member 130.
- the conductor members 260, 270b, and 280 shown in FIGS. 6 to 8 are preferably formed of aluminum or copper, and have a property of being magnetically induced by electromagnetic force. Since the conductor members 260, 270, and 280 are applied to the linear motor 200, the manufacturing cost is reduced as compared with the conventional technology of applying the magnet.
- FIG. 9 is a graph showing a magnetic flux waveform according to an applied current of the linear motor shown in FIG. 5.
- the controller applies power to the linear motor 200 having the first and second coil windings 221A and 221B
- the current flowing through the first stator 220 is the current I M of the first coil winding 221A.
- the current I A of the second coil winding 221B has an AC waveform having a 90 ° phase difference.
- the synthesized magnetic field B S of the first stator 220 due to the current is also represented by an alternating current waveform.
- a linear reciprocating magnetic field is formed while alternating in the positive and negative directions.
- FIG. 10 is a simplified circuit diagram for applying a current to the linear motor shown in FIG. 5.
- the current I A applied to the second coil winding 221A is an alternating current applied through the capacitor C, and the coil winding ( It has a 90 ° phase difference from the current I M applied to 221 A).
- FIG. 11 is a graph illustrating a linear reciprocating magnetic flux operation of the linear motor illustrated in FIG. 5.
- a graph showing the current I M of the first coil winding 221A, the current I A of the second coil winding 221B, and the synthesized magnetic field B S of the first stator 220 as a current is applied.
- the linear reciprocating magnetic flux operation of the linear motor 200 at points a to f located is shown in a table. That is, the table of FIG. 10 shows that the processes of magnetizing the first and second coil windings 221A and 221B to NS pole and SN are repeated at points a to f.
- the sum of I M and I A appears in the positive direction in the north pole, and its size increases and decreases, and at points d, e, and f, I M and I
- the magnetic field of A , B S appears in the negative direction, S pole, but also increases in size and decreases.
- the magnetic flux is alternated in the positive / negative direction by the first coil winding 221A and the second coil winding 221B, and the electromagnetic force of the first and second stators 220 and 240 and the conductor member 260 are reduced.
- the induction magnet is activated while interacting.
- FIG. 12 is a graph illustrating a relationship between slip and torque when the voltage of the linear motor shown in FIG. 5 is changed.
- FIG. 13 is a relationship between slip and torque when the frequency of the linear motor shown in FIG. 5 is changed. Is a graph.
- the linear compressor reduces the speed of the movable member as the refrigerant gas expands as the load increases, but in order to control the speed of the movable member, the cooling force decreases due to the decrease of the speed of the movable member by varying the voltage or frequency according to the load.
- To compensate. 12 is a partially enlarged view of the left graph of FIG. 12.
- the linear motor 200 automatically adjusts the refrigerating capacity, and the refrigerator is naturally cold depending on the load.
- A is an S-T curve at a first voltage
- B is an S-T curve at a second voltage higher than the first voltage
- C is an S-T curve using a variable voltage.
- the controller varies the voltage input to the linear motor 200 so that the ST characteristic moves along the C curve as shown in FIG. 12. .
- the control unit does not adjust the voltage, the control unit moves from the low temperature region (II) of the A curve to the high temperature region (I) of the A curve, but the control unit adjusts the voltage, for example, in a power source applied to the linear motor.
- the high temperature region I of the A curve is the high temperature region of the B curve. Since it is changed to (II '), it moves from the low temperature region (II) of the A curve to the high temperature region (II') of the B curve, that is, along the C curve.
- the cooling force can be varied by compensating for the decrease in the cooling force due to the reduction of the slip by the increase in the stroke of the movable member 130.
- the cooling power may be varied.
- the control unit is configured to control the AC chopper part and the triac part Triac, but by designing a mechanism insensitive to voltage fluctuations, the cooling force required for the linear compressor. By controlling the voltage to match the cooling power. That is, if it is determined that the overload is determined, the control unit applies a voltage to delay the time when the AC chopper part and the triac part are turned on in the suction stroke of the refrigerant or to quickly advance the time when the AC chopper part and the triac part are turned on in the compression stroke of the refrigerant. do.
- control unit may accelerate the AC chopper part and the triac part when the refrigerant is in the intake stroke, or the voltage is set to slow down the time when the AC chopper part and the triac part are in the compression stroke of the refrigerant. Is authorized.
- A is an S-T curve at a first frequency
- B is an S-T curve at a second frequency higher than the first frequency
- C is an S-T curve using a variable frequency.
- the controller varies the frequency input to the linear motor 200 so that the S-T characteristic moves along the C curve as shown in FIG. 13.
- the control unit does not adjust the frequency, it moves from the low temperature region (II) of the A curve to the high temperature region (I) of the A curve, but the control unit adjusts the frequency, that is, to the power applied to the linear motor 200.
- the power for moving the movable member 130 is not changed by supplying power of the second frequency at the first frequency, the speed of the movable member 130 is increased while maintaining the same stroke of the movable member 130.
- a power having a first frequency at the second frequency may be applied to the linear motor 200 to reduce the cooling power.
- control of voltage magnitude and control of frequency magnitude may be performed simultaneously, or alternatively or alternately.
- the control unit is configured to control the inverter unit (Inverter) in order to vary the frequency applied to the linear motor.
- the inverter unit is composed of a rectifying unit for rectifying AC power, and an inverter element for generating a rectified voltage from the rectifying unit as an AC voltage according to a control signal, but the inverter unit applies power to the linear motor 200 at a control frequency in accordance with the control signal.
- the inverter unit may also apply power to the control voltage.
- the AC chopper method As such, among the control methods for varying the cooling power according to the load, the AC chopper method, the triac phase control method, and the inverter method, which use the variable variable frequency, are used. Is just one example.
- the natural cold power variable method such as the direct application method using the mechanical design method that optimizes the relationship between slip and stroke regardless of the load, and the direct current application method using the mechanical design method using the mechanical resonance frequency that varies according to the load. This can all apply.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Compressor (AREA)
- Linear Motors (AREA)
Abstract
본 발명은 리니어 압축기에 관한 것으로서, 특히 리니어 모터(200)에 마그네트 대신 도체부재(260)를 사용하여 전자기 유도에 의해 구동력을 발생시키는 리니어 압축기에 관한 것이다. 본 발명인 리니어 압축기는 압축공간을 구비한 고정부재(120), 고정부재(120) 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 가동부재(130), 가동부재의 운동 방향으로 탄성 지지하도록 설치되는 적어도 하나 이상의 스프링, 전류를 공급받는 제1 스테이터(220)와, 제1스테이터(220)와 일정 간격 이격된 제2스테이터(240)로 이루어진 스테이터와, 스테이터에 의해 형성된 자계에 의해 전자기 유도되어 가동부재를 직선 운동시키는 도체부재(260); 그리고, 제1 스테이터(220)로의 전류 공급을 제어하는 제어부를 포함한다.
Description
본 발명은 리니어 압축기에 관한 것으로서, 특히 리니어 모터에 마그네트 대신 도체부재를 사용하여 전자기 유도에 의해 구동력을 발생시키는 리니어 압축기에 관한 것이다.
일반적으로 압축기(Compressor)는 전기모터나 터빈 등의 동력발생장치로부터 동력을 전달받아 공기나 냉매 또는 그 밖의 다양한 작동가스를 압축하여 압력을 높여주는 기계장치로써, 냉장고와 에어컨 등과 같은 가전기기 또는 산업 전반에 걸쳐 널리 사용되고 있다.
이러한 압축기를 크게 분류하면, 피스톤(Piston)과 실린더(Cylinder) 사이에 작동가스가 흡,토출되는 압축공간이 형성되도록 하여 피스톤이 실린더 내부에서 직선 왕복 운동하면서 냉매를 압축시키는 왕복동식 압축기(Reciprocating compressor)와, 편심 회전되는 롤러(Roller)와 실린더(Cyliner) 사이에 작동가스가 흡,토출되는 압축공간이 형성되도록 하여 롤러가 실린더 내벽을 따라 편심 회전되면서 냉매를 압축시키는 회전식 압축기(Rotary compressor)와, 선회 스크롤(Orbiting scroll)과 고정 스크롤(Fixed scroll) 사이에 작동가스가 흡,토출되는 압축공간이 형성되도록 하여 선회 스크롤이 고정 스크롤을 따라 회전되면서 냉매를 압축시키는 스크롤식 압축기(Scroll compressor)로 나뉘어진다.
최근에는 왕복동식 압축기 중에서 특히 피스톤이 왕복 직선 운동하는 구동모터에 직접 연결되도록 하여 운동전환에 의한 기계적인 손실이 없이 압축효율을 향상시킬 뿐 아니라 구조가 간단한 리니어 압축기가 많이 개발되고 있다
도 1은 종래 기술에 따른 리니어 압축기의 측면도이다. 종래의 리니어 압축기는 쉘(1) 내측에 프레임(2), 실린더(3), 피스톤(4), 흡입밸브(6), 토출밸브(7), 리니어 모터(10), 모터 커버(18), 서포터(19), 백 커버(20), 메인 스프링들(S1,S2), 흡입 머플러(21)로 이루어진 구조체가 탄성 지지되도록 설치된다.
실린더(3)가 프레임(2)에 끼움 고정되고, 토출밸브(7)가 실린더(3)의 일단을 막아주도록 설치되는 반면, 피스톤(4)이 실린더(3) 내측에 삽입되고, 박형의 흡입밸브(6)가 피스톤(4)의 흡입구(5)를 개폐시키도록 설치된다.
리니어 모터(10)는 이너 스테이터(12)와 아우터 스테이터(14) 사이에 간극을 유지하면서 마그네트 프레임(16)이 왕복 직선 운동 가능하도록 설치되되, 마그네트 프레임(16)이 피스톤 고정부(16c)에 의해 피스톤(4)과 연결되도록 설치되고, 이너 스테이터(12)와 아우터 스테이터(14) 및 마그네트 프레임(16) 사이에 상호 전자기력에 의해 마그네트 프레임(16)이 왕복 직선 운동하면서 피스톤(4)을 작동시킨다.
모터 커버(18)는 아우터 스테이터(14)를 고정시키기 위하여 아우터 스테이터(14)를 축방향으로 지지하는 동시에 프레임(2)에 볼트 고정되고, 백 커버(20)는 모터 커버(18)에 결합되되, 모터 커버(18)와 백 커버(20) 사이에는 피스톤(4)의 다른 일단과 연결된 서포터(19)가 메인 스프링들(S1,S2)에 의해 축방향으로 탄성 지지되도록 설치되고, 냉매를 흡입시키는 흡입 머플러 어셈블리(21) 역시 서포터(19)와 같이 체결된다.
이때, 메인 스프링들(S1,S2)은 서포터(19)를 기준으로 상하 및 좌우 대칭되는 위치에 4개의 전방 스프링(S1) 및 4개의 후방 스프링(S2)을 포함하되, 리니어 모터(10)가 작동됨에 따라 전방 스프링들(S1)과 후방 스프링들(S2)이 반대로 거동하면서 피스톤(4) 및 서포터(19)를 완충시킨다. 그 외에도 압축공간(P) 측의 냉매가 일종의 가스 스프링으로 작용하여 피스톤(4) 및 서포터(19)를 완충시킨다.
따라서, 리니어 모터(10)가 작동되면, 피스톤(4) 및 이와 연결된 흡입 머플러 어셈블리(21)가 왕복 직선 운동하게 되고, 압축공간(P)의 압력이 가변됨에 따라 흡입밸브(6) 및 토출밸브(7)의 작동이 자동적으로 조절되며, 이와 같은 작동에 의해 냉매가 흡입관(미도시), 흡입 머플러 어셈블리(21), 피스톤(4)의 흡입구(5)를 지나 압축공간(P)으로 흡입되어 압축된 다음, 토출캡(8), 루프 파이프(9) 및 쉘 측의 유출관(미도시)을 통하여 외부로 빠져나간다.
리니어 압축기의 리니어 모터(10)는 도 2과 같이 프레임(2)을 기준으로 이너스테이터(12) 및 아우터스테이터(12), 마그네트 프레임(16)으로 구성된다. 이너스테이터(12)는 라미네이션이 원주방향으로 적층되도록 구성되고, 아우터스테이터(14)는 코일 권선체(14a)에 코어 블록(14b)이 원주 방향으로 일정 간격을 두고 설치되도록 구성된다.
도 2는 종래 기술에 따른 마그네트 프레임의 사시도이다. 리니어 모터(10)의 이너 스테이터(12)와 아우터 스테이터(14) 사이에 위치되도록 원통 모양으로 형성된 프레임 본체(16a), 상기 프레임 본체(16a)의 외부 일부에 고정되는 마그네트(16b)와, 상기 프레임 본체(16a)의 일단에 피스톤(4)이 고정되도록 내측으로 연장된 피스톤 고정부(16c)이 구성되며, 마그네트(16b)의 일측으로 홀(16d)이 형성된다.
이때, 마그네트(16b)는 프레임 본체(16a)의 원주 방향으로 일정 간격마다 형성되되, 8개의 마그네트(16b)가 프레임 본체(16a)의 외부에 등간격으로 결합하는 것이 바람직하다.
그러나, 종래 기술에 따른 리니어 압축기는 이너스테이터와 아우터스테이터 사이에 마그네트가 상호 전자기력에 의해 왕복 직선 운동하도록 작동하되, 마그네트 자체가 고가이기 때문에 원통형 마그네트를 사용하기 어렵고, 여러 개의 막대 형태의 마그네트를 고정하여 마그네트 프레임을 제작하게 되더라도 제조 단가가 높아질 뿐 아니라 생산 비용이 높아지게 된다.
또한, 종래 기술에 따른 리니어 압축기는 리니어 모터를 부하에 대응하는 냉력 가변을 위하여 스트로크를 가변시키되, 이를 위하여 복잡한 제어부가 구비될 뿐 아니라 주변 부품들의 크기 및 사이즈에 대한 설계 제한이 동반되고, 나아가 복잡한 제어 방법이 요구되기 때문에 생산 비용이 높아질 뿐 아니라 제작하기 어렵고, 제어하기 위하여 소모되는 전력이 많아져 압축기 전체 효율을 떨어뜨리는 문제점이 있다.
본 발명은 마그네트 대신 도체부재를 이용하여, 리니어 모터의 형태 및 제어를 단순화하는 리니어 압축기를 제공하는 것을 목적으로 한다.
또한, 본 발명은 부하의 크기 또는 변동에 따른, 가동부재의 속도 및 가동부재를 운동시키는 힘 간의 특성을 이용하여 필요한 냉력이 제공될 수 있도록 하는 리니어 압축기를 제공하는 것을 목적으로 한다.
또한, 본 발명은 인가되는 전원의 주파수 또는 전압의 크기를 조절하여, 부하에 대응하는 냉력이 생성되도록 하는 리니어 압축기를 제공하는 것을 목적으로 한다.
본 발명인 리니어 압축기는 압축공간을 구비한 고정부재, 고정부재 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 가동부재, 가동부재의 운동 방향으로 탄성 지지하도록 설치되는 적어도 하나 이상의 스프링, 전류를 공급받는 제1 스테이터와, 제1스테이터와 일정 간격 이격된 제2스테이터로 이루어진 스테이터와, 스테이터에 의해 형성된 자계에 의해 전자기 유도되어 가동부재를 직선 운동시키는 도체부재; 그리고, 제1 스테이터로의 전류 공급을 제어하는 제어부;를 포함한다.
또한, 가동부재와 도체부재를 연결하는 연결부재를 더 포함하고, 도체부재는 연결부재의 일단에 장착된 도체인 것이 바람직하다.
또한, 가동부재와 도체부재를 연결하는 연결부재를 더 포함하고, 도체부재는 연결부재의 일단에 장착된 링 형상의 철편 및 도체가 교대로 적층된 것이 바람직하다.
또한, 가동부재와 도체부재를 연결하는 연결부재를 더 포함하고, 도체부재는 연결부재의 일단에 권선된 도체선인 것이 바람직하다.
또한, 제1스테이터는 코일이 권선된 코일 권선체와, 코일 권선체에 장착된 코어로 이루어지며, 제어부는 도체부재에 일방향 자계가 형성되도록 코일 권선체에 전류의 공급을 온/오프 제어하는 것이 바람직하다.
또한, 스프링은 냉매가 압축되는 방향으로 가동부재를 탄성 지지하도록 설치되는 제1스프링, 또는 냉매가 압축되는 방향과 반대 방향으로 가동부재를 탄성 지지하도록 설치되는 제2스프링 중 어느 하나 이상을 포함하는 것이 바람직하다.
또한, 도체부재의 적어도 일부분이 제1스테이터와 제2스테이터 사이에 위치된 것이 바람직하다.
또한, 제1 스테이터는 축방향으로 간격을 두고 각각 코일이 권선된 제1,2 코일 권선체와, 제1,2 코일 권선체에 장착된 코어로 이루어지며, 제어부는 도체부재에 양방향 자계가 형성되도록 제1,2 코일 권선체에 위상차를 가진 전류를 공급하도록 제어하는 것이 바람직하다.
또한, 제1 및 제2코일 권선체는 동일 방향으로 코일이 감기고, 제1 및 제2코일 권선체 중의 하나의 권선체에는 캐패시터가 직렬로 연결된 것이 바람직하다.
또한, 제어부는 제1,2 코일 권선체에 90° 위상차를 가진 전류를 공급하도록 제어하는 것이 바람직하다.
또한, 스프링은 냉매가 압축되는 방향으로 가동부재를 탄성 지지하도록 설치되는 제1스프링, 및 냉매가 압축되는 방향과 반대 방향으로 가동부재를 탄성 지지하도록 설치되는 제2스프링을 포함하는 것이 바람직하다.
또한, 가동부재가 일정 속도 이상으로 운전되면, 부하의 크기에 따라 가동부재의 속도와 가동부재를 운동시키는 힘이 서로 다른 비율로 반비례하는 것이 바람직하다.
또한, 제어부는 부하의 크기에 따라 제1스테이트에 인가되는 전압의 크기를 가변시키는 것이 바람직하다.
또한, 제어부는 전압의 크기를 가변하여, 부하가 커질수록 가동부재의 감속 정도가 상대적으로 작도록 하거나, 가동부재를 운동시키는 힘이 실질적으로 유지되도록 하거나 증가시키는 것이 바람직하다.
또한, 제어부는 부하의 크기에 따라 주파수를 가변시키는 것이 바람직하다.
또한, 제어부는 주파수를 가변하여, 부하가 커질수록 가동부재의 속도가 증가시키거나, 가동부재를 운동시키는 힘이 실질적으로 유지되도록 하거나 증가시키는 것이 바람직하다.
또한, 본 발명인 리니어 압축기는 압축공간을 구비한 고정부재, 도체 부재를 구비하여, 고정부재 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 가동부재, 가동부재의 운동 방향으로 탄성 지지하도록 설치되는 복수 개의 스프링, 전류를 인가받아, 도체 부재를 자기 유도시키는 제1 스테이터, 제1 스테이터에 대응하여 위치되며, 제1 스테이터와의 이격 공간에 도체 부재의 적어도 일부분이 위치되도록 형성된 제2 스테이터와, 부하의 크기에 따라, 제1스테이터로 인가되는 전원의 크기 또는 주파수 중의 적어도 하나 이상을 가변하여, 부하에 대응하는 냉력 제어를 수행하는 제어부를 구비한다.
본 발명은 마그네트 대신 도체부재를 사용하여 유도 자기에 의해 구동력을 제공하기 때문에 리니어 모터의 기구 및 제어가 단순해져 생산 비용을 저감시키고, 나아가 제어를 위한 별도의 구동부를 구비하지 않을 뿐만 아니라 최소의 소자만으로 구동 가능하므로 전체 효율이 높아지는 이점이 있다.
또한, 본 발명은 부하의 변동에 따라, 가동부재의 속도 및 가동부재를 운동시키는 힘 간의 특성을 이용하되, 전압 및 주파수 중의 적어도 하나 이상을 가변 제어하여, 필요한 냉력이 제공될 수 있도록 하는 효과가 있다.
또한, 본 발명은 인가되는 전원의 주파수 또는 전압의 크기를 조절하여, 부하에 대응하는 냉력이 생성되도록 하는 효과가 있다.
도 1은 종래 기술에 따른 리니어 압축기의 측면도.
도 2는 종래 기술에 따른 마그네트 프레임의 사시도.
도 3은 본 발명에 따른 리니어 압축기의 제1 실시예가 도시된 측단면도.
도 4는 본 발명에 따른 리니어 압축기의 제2 실시예가 도시된 측단면도.
도 5는 본 발명에 따른 리니어 압축기의 제3 실시예가 도시된 측단면도.
도 6은 본 발명에 따른 리니어 압축기에 적용되는 도체부재의 제1 실시예가 도시된 사시도.
도 7은 본 발명에 따른 리니어 압축기에 적용되는 도체부재의 제2 실시예가 도시된 사시도.
도 8은 본 발명에 따른 리니어 압축기에 적용되는 도체부재의 제3 실시예가 도시된 사시도.
도 9는 도 5에 도시된 리니어 모터의 인가 전류에 따른 자속 파형을 나타낸 그래프.
도 10은 도 5에 도시된 리니어 모터에 전류를 인가하기 위한 간략 회로도.
도 11은 도 5에 도시된 리니어 모터의 직선 왕복 자속 동작을 나타낸 그래프.
도 12는 도 5에 도시된 리니어 모터의 전압 가변 시 슬립과 토크와의 관계를 나타낸 그래프.
도 13은 도 5에 도시된 리니어 모터의 주파수 가변 시 슬립과 토크와의 관계를 나타낸 그래프.
이하, 본 발명은 실시예와 도면들을 통하여 상세하게 설명된다.
도 3 내지 도 5는 본 발명에 따른 리니언 압축기의 다양한 실시예가 도시된 측단면도이다.
본 발명의 리니어 압축기는 도 3 내지 도 5에 도시된 바와 같이 밀폐용기(100) 내에 냉매의 압축공간(P)을 구비한 고정부재(120)와, 고정부재(120) 내부에서 냉매를 압축시키는 가동부재(130)와, 가동부재(130)를 구동하는 리니어 모터(200)가 설치되되, 리니어 모터(200)는 제1,2 스테이터(220,240) 및, 제1 및 제2 스테이터(220), (240) 사이의 공간에 위치한 도체부재(260)를 포함하도록 구성된다.
제2 스테이터(240)는 고정부재(120)의 외주에 고정되고, 제1 스테이터(220)는 축방향으로 프레임(110)과 모터 커버(300)에 의해 고정되되, 프레임(110)과 모터 커버(300)가 볼트와 같은 체결 부재에 의해 체결되어 서로 결합되어, 프레임(110)과 모터 커버(300) 사이에서 제1 스테이터(220)가 고정된다. 프레임(110)은 고정부재(120)와 일체로 형성될 수도 있으며, 고정부재(120)와 별도로 제조되어 고정부재(120)와 결합될 수도 있다.
가동부재(130)의 후방에는 서포터(310)가 연결되고, 백 커버(320)는 모터 커버(300)의 후방에 결합되는데, 서포터(310)가 모터 커버(300)와 백 커버(320) 사이에 위치된다. 가동부재(130)의 왕복 직선 운동을 완충시키기 위하여 축방향으로 스프링들(S1,S2)이 설치되는데, 서포터(320)와 모터 커버(540)에 의해 양단이 지지되거나, 서포터(320)와 백 커버(560)에 의해 양단이 지지된다. 이때, 스프링들(S1,S2)의 자세한 설치 위치 및 탄성 계수 등은 리니어 모터(200)의 구성 및 작동에 따라 변경될 수 있는데, 하기에서 자세하게 설명하기로 한다.
또한, 가동부재(130)의 후방에는 흡입 머플러(700)가 구비되며, 흡입 머플러(140)를 통해 피스톤(300)으로 냉매가 유입되면서, 냉매 흡입시의 소음을 저감한다.
가동부재(130) 내부는 흡입 머플러(330)를 통해 유입된 냉매가 고정부재(120)와 가동부재(130) 사이에 형성되는 압축 공간(P)으로 유입되어 압축될 수 있도록 가동부재(130)의 선단의 일부가 중공되어 있다. 가동부재(130)의 선단에는 흡입밸브(미도시)가 설치되어 있으며, 흡입밸브(미도시)는 냉매가 가동부재(130)에서 압축 공간(P)으로 유입되도록 개방되며, 압축 공간(P)에서 다시 가동부재(130)으로 유입되지 않도록 가동부재(130)의 선단을 폐쇄한다.
압축 공간(P)에서 가동부재(130)에 의해 냉매가 소정의 압력 이상으로 압축되면, 고정부재(120)의 선단에 위치하는 토출 밸브(160)가 개방된다. 압축된 고압의 냉매는 토출캡(170) 내로 토출된 뒤, 루프 파이프(180)를 통해 리니어 압축기 외부로 토출되어 냉동 사이클을 순환한다.
리니어 모터(200)는 전류가 흐르는 제1 스테이터(220)와, 제1 스테이터(220)와 간극을 유지하는 제2 스테이터(240)와, 제1,2 스테이터(220)(240) 사이에 간극을 유지하도록 설치되어 제1 스테이터(220)에 의해 자기 유도되어 가동부재(130)를 왕복 직선 운동시키는 도체부재(260)로 구성되며, 상기 리니어 모터(200)는 제1 스테이터(220)에 전류의 공급을 제어하는 제어부(미도시)를 구비한다. 이때, 제1 스테이터(220)는 고정부재(120)로부터 상대적으로 멀리 떨어진 아우터스테이터이고, 제2 스테이터(240)는 고정부재(120)에 장착된 이너스테이터이다.
상기와 같이 구성된 리니어 압축기의 리니어 모터(200)는 일례로 두 개의 스테이터(220,240)가 모두 구비된 리니어 모터(200)를 사용하였으며, 전류가 흐르는 하나의 스테이터(220)만 구비한 통상의 리니어 모터(200) 이더라도 본 발명의 청구 범위에 포함된다. 또한, 리니어 압축기는 외부로부터 전원을 인가받을 수 있는 전원부(미도시)를 구비할 수 있으며, 이러한 전원부의 경우, 본 발명이 속하는 기술분야에 익숙한 사람에게는 당연히 구비되는 소자에 해당하여, 그 설명을 생략한다.
도 3에 도시된 바와 같이, 제1스테이터(220)의 실시예는 원주 방향으로 코일이 권선된 하나의 코일 권선체(221)에 코어 블록(222)이 장착되도록 구성되며, 제어부는 도체부재(260)에 일방향 자계가 형성되도록 코일 권선체(221)에 전류의 공급을 온/오프하도록 제어하되, 도체부재(260)가 냉매를 압축시키는 방향 즉, 상사점 방향으로 이동하도록 힘을 발생시키도록 한다. 이때, 가동부재(130)가 리니어 모터(200)에 의해 받는 힘에 대한 복원력을 부여하기 위하여 전방 메인 스프링들(S1)만 모터 커버(300)와 서포터(310) 사이에 설치되는 것이 바람직하며, 코일 권선체(221)의 코일 권선수에 비례하여 전방 메인 스프링들(S1)의 탄성 계수 및 개수가 결정되는 것이 바람직하다.
따라서, 코일 권선체(221)에 전류가 입력되면, 코일 권선체(221)를 따라 흐르는 전류에 의해 자속이 제1,2 스테이터(220,240)를 따라 폐회로를 형성하고, 이러한 자속에 의해 도체부재(260)에도 유도 자계가 형성됨에 따라 상사점 방향으로 힘을 받게 되고, 도체부재(260) 및 가동부재(130)가 상사점 방향으로 이동하면서 냉매를 압축시킨 다음, 코일 권선체(221)에 전류가 입력되지 않으면, 자속 및 유도 자계가 없어지면서 전방 메인 스프링들(S1)의 복원력에 의해 도체부재(260) 및 가동부재(130)가 하사점 방향으로 이동하게 되며, 이러한 과정을 반복하면서 냉매의 흡입, 압축 및 토출이 이루어진다.
도 4에 도시된 바와 같이, 제1스테이터(220)의 다른 실시예는 상기의 실시예와 동일하게 원주 방향으로 코일이 권선된 하나의 코일 권선체(221)에 코어 블록(222)이 장착되도록 구성되며, 제어부는 도체부재(260)에 일방향 자계가 형성되도록 코일 권선체(221)에 전류의 공급을 온/오프하도록 제어하되, 상기의 실시예와 반대로 도체부재(260)가 냉매를 흡입하는 방향 즉, 하사점 방향으로 이동하도록 힘을 발생시키도록 한다. 이때, 가동부재(130)가 리니어 모터(200)에 의해 받는 힘에 대한 복원력을 부여하기 위하여 후방 메인 스프링들(S2)만 서포터(310)와 백 커버(320) 사이에 설치되는 것이 바람직하며, 상기의 실시예와 마찬가지로 코일 권선체(221)의 코일 권선수에 비례하여 후방 메인 스프링들(S2)의 탄성 계수 및 개수가 결정되는 것이 바람직하다.
따라서, 코일 권선체(221)에 전류가 입력되면, 코일 권선체(221)를 따라 흐르는 전류에 의해 자속이 제1,2 스테이터(220,240)를 따라 폐회로를 형성하고, 이러한 자속에 의해 도체부재(260)에도 유도 자계가 형성됨에 따라 하사점 방향으로 힘을 받게 되고, 도체부재(260) 및 가동부재(130)가 하사점 방향으로 이동하면서 냉매를 흡입한 다음, 코일 권선체(221)에 전류가 입력되지 않으면, 자속 및 유도 자계가 없어지면서 후방 메인 스프링들(S2)의 복원력에 의해 도체부재(260) 및 가동부재(130)가 상사점 방향으로 이동하게 되며, 이러한 과정을 반복하면서 냉매의 흡입, 압축 및 토출이 이루어진다.
도 5에 도시된 바와 같이, 제1스테이터(220)의 또 다른 실시예는 원주 방향으로 코일이 권선된 제1,2 코일 권선체(221A,221B)가 축방향으로 일정 간격을 두고 위치하고, 제1,2 코일 권선체(221A,221B)에 코어 블록(222)이 장착되도록 구성된다. 제1, 2 코일 권선체(221A, 221B)에 권선되는 코일은 동일한 방향으로 권선되며, 제어부는 도체부재(260)에 양방향 자계가 형성되도록 제1,2 코일 권선체(221A,221B)에 90°의 위상 차를 가진 전류를 각각 공급하도록 제어하되, 도체부재(260)가 냉매를 압축시키는 방향 즉, 상사점 방향으로 힘을 발생시키고, 냉매를 흡입하는 방향 즉, 하사점 방향으로 이동하도록 힘을 발생시키는 과정을 반복하게 된다.
이때, 가동부재(130)가 리니어 모터(200)에 의해 받는 힘에 대한 복원력을 부여하기 위하여 전방 메인 스프링들(S1)이 모터 커버(300)와 서포터(310) 사이에 설치되는 동시에 후방 메인 스프링들(S2)이 서포터(310)와 백 커버(320) 사이에 설치되는 것이 바람직하며, 제,2 코일 권선체(221A,221B)의 코일 권선수에 비례하여 전방 메인 스프링들(S1) 및 후방 메인 스프링들(S2)의 탄성 계수 및 개수가 결정되는 것이 바람직하다.
따라서, 제1 코일 권선체(221A)에 전류가 입력될 때, 제1,2 코일 권선체(221A,221B)에 위상 차가 90°인 교류 파형을 가진 전류가 입력됨에 따라 자속 역시 교류 파형을 띄게 나타난다. 이러한 자속에 의해 도체부재(260)에도 유도 자계가 형성됨에 따라 상사점 방향과 하사점 방향으로 힘을 교대로 받게 되고, 도체부재(260) 및 가동부재(130)가 상사점 방향으로 이동하면서 냉매를 압축시킨 다음, 반대로 하사점 방향으로 이동하면서 냉매를 흡입하는 과정을 반복하게 된다.
상기와 같이 구성된 리니어 압축기에 적용되는 도체부재(260)의 구성 및 작동을 하기에서 보다 상세하게 설명하기로 한다.
도 6 내지 도 8은 본 발명에 따른 리니어 압축기에 적용되는 도체부재의 다양한 실시예가 도시된 사시도이다.
도 6에 도시된 바와 같이, 도체부재(260)의 일예는 구리, 알루미늄 등과 같은 도체 재질로 연결부재(290)에 대응하는 형상을 지니며, 예를 들면 원통 형상으로 형성된다. 이때, 도체부재(260)는 연결부재(290)의 일단에 접착제 또는 접착 부재에 의해 장착되고, 연결부재(290)는 도체부재(260)를 가동부재(130)와 연결하도록 설치된다. 물론, 연결부재(290)는 기존의 구성과 동일하게 형성되는데, 도체부재(260)가 장착되는 부분을 제외한 부분에 유로 저항을 줄이거나, 방열을 위하여 각종 홀(291)이 구비된다.
도 7에 도시된 바와 같이, 도체부재(270)의 다른 일예는 링 형상의 철편(270a)과 링도체(270b)가 축방향으로 교대로 적층된 원통 형상으로 형성되되, 상기에서와 마찬가지로 도체부재(270)는 연결부재(290)의 일단에 접착제 또는 접착 부재에 의해 장착되고, 연결부재(290)는 도체부재(270)를 가동부재(130)와 연결하도록 설치된다. 링도체(270b)는 구리, 알루미늄 등의 도체 재질로 이루어질 수 있다.
도 8에 도시된 바와 같이, 도체부재(280)의 또 다른 일예는 도체선이 권선된 형태로 형성되되, 연결부재(290)의 일단 외측 또는 외측에 감기도록 장착되고, 연결부재(290)는 도체부재(280)를 가동부재(130)와 연결하도록 설치된다.
도 6 내지 도 8에 나타난 도체부재(260,270b,280)는 알루미늄 또는 구리로 형성되는 것이 바람직하며, 전자기력에 의해 자기 유도되는 성질을 가진다. 이와 같은 도체부재(260,270,280)를 리니어 모터(200)에 적용시키기 때문에 마그네트를 적용하는 종래의 기술에 비해 제작 비용이 저감된다.
도 9는 도 5에 도시된 리니어 모터의 인가 전류에 따른 자속 파형을 나타낸 그래프이다. 제어부가 제1,2 코일 권선체(221A,221B)를 구비한 리니어 모터(200)에 전원을 인가하면, 제1 스테이터(220)에 흐르는 전류는 제1 코일 권선체(221A)의 전류 IM과 제2 코일 권선체(221B)의 전류 IA가 90° 위상차를 갖는 교류 파형을 가진다. 이로 인하여 전류에 의한 제1 스테이터(220)의 합성 자계 BS도 교류 파형으로 나타나는데, 전류 IM과 IA 파형과 같이 양,음 방향으로 교번하면서 선형 왕복하는 자계가 형성된다.
도 10은 도 5에 도시된 리니어 모터에 전류를 인가하기 위한 간략 회로도이다. 예를 들면, 교류 전류가 단자(I-I')로 인가되면, 제2코일 권선체(221A)에 인가되는 전류 IA 는 교류 전류가 캐패시터(C)를 통하여 인가된 것으로, 코일 권선체(221A)에 인가되는 전류 IM와 90°위상차를 지니게 된다.
도 11은 도 5에 도시된 리니어 모터의 직선 왕복 자속 동작을 나타낸 그래프이다. 전류가 인가됨에 따라 제1 코일 권선체(221A)의 전류 IM과 제2 코일 권선체(221B)의 전류 IA 및 제1 스테이터(220)의 합성 자계 BS를 나타난 그래프로서, 한 주기 내에 위치한 a 내지 f 지점에서 리니어 모터(200)의 직선 왕복 자속 동작을 표로 나타내었다. 즉, 도 10의 표는 a 내지 f 지점에서 인가 전압에 따른 제1,2 코일 권선체(221A,221B)가 N-S극, S-N으로 착자되는 과정이 반복되는 것을 나타내었다.
구체적으로, a, b, c 지점에서는 IM과 IA의 합인 BS가 양의 방향으로, N극으로 나타나되, 그 크기가 커졌다가 작아지고, d, e, f 지점에서는 IM과 IA의 자계합인 BS가 음의 방향, S극으로 나타나되, 역시 그 크기가 커졌다가 작아지도록 나타난다. 상기와 같이 제1 코일 권선체(221A)와 제2 코일 권선체(221B)에 의해 자속이 양/음의 방향으로 교번되며, 제1,2 스테이터(220,240)의 전자기력과 도체부재(260)의 유도 자기가 상호 작용하면서 가동된다.
도 12는 도 5에 도시된 리니어 모터의 전압 가변 시 슬립(Slip)과 토크(Torque)와의 관계를 나타낸 그래프이고, 도 13은 도 5에 도시된 리니어 모터의 주파수 가변 시 슬립과 토크와의 관계를 나타낸 그래프이다. 리니어 압축기는 부하가 커질수록 냉매 가스가 팽창함에 따라 가동부재의 속도가 감소하되, 이와 같은 가동부재의 속도를 제어하기 위하여 부하에 따라 전압 또는 주파수를 가변하여 가동부재의 속도 감소로 인한 냉력 감소를 보상한다. 도 12의 우측 그래프는 도 12의 좌측 그래프의 부분 확대도이다.
따라서, 부하에 따라 전압 또는 주파수를 가변시키도록 설계한 리니어 압축기를 일예로 냉장고에 적용하면, 리니어 모터(200)는 냉동 능력을 자동적으로 조절하고, 냉장고는 부하에 따라 자연 냉력 가변된다.
보다 상세하게, 도체부재(260)가 적용된 리니어 모터(200)가 작동됨에 따라 가동부재(130)의 속도인 슬립과 가동부재(130)를 운동시키는 힘인 토크 사이의 관계를 살펴보면, 도 12 내지 도 13에 도시된 바와 같이 리니어 모터(200)가 초기 가동되면, 슬립과 토크가 비례하여 상승하지만, 슬립이 일정 값 또는 설정값 이상으로 안정적으로 운전되면, 부하에 상관없이 슬립과 토크가 반비례하도록 나타난다.
도 12에 도시된 바와 같이, A는 제1전압에서의 S-T 곡선이며, B는 제1전압보다 높은 제2전압에서의 S-T 곡선이며, C는 가변 전압을 이용한 S-T 곡선이다. 이때, 고온 상태에서 리니어 압축기 내부의 냉매가 팽창함에 따라 냉매 가스의 탄성 계수가 커지기 때문에 저온 상태에서와 같은 슬립으로 리니어 모터를 구동하기 위하여 고온 상태에서는 더 많은 힘이 소모되되, 동일한 토크에서 고온 상태의 슬립이 저온 상태의 슬립보다 작게 나타난다.
따라서, 주변 온도가 저온에서 고온으로 높아지는 것과 같이 부하가 증가하면, 제어부가 리니어 모터(200)로 입력되는 전압을 가변시켜서, 도 12에 도시된 바와 같이, S-T 특성이 C 곡선을 따라 이동하도록 한다. 이때, 제어부가 전압을 조절하지 않으면, A 곡선의 저온영역(Ⅱ)에서 A 곡선의 고온영역(Ⅰ)으로 이동하지만, 제어부가 전압을 조절하여, 예를 들면, 리니어 모터에 인가되는 전원에 있어서, 제1전압에서 제2전압으로의 가변하여, 가동부재(130)의 스트로크를 동일하게 유지하면서 가동부재(130)의 속도를 높여주어, A 곡선의 고온영역(Ⅰ)이 B 곡선의 고온영역(Ⅱ')으로 변경되기 때문에 A 곡선의 저온영역(Ⅱ)에서 B 곡선의 고온영역(Ⅱ')으로 즉, C 곡선을 따라 이동하게 된다.
이와 같이, C 곡선을 따라 저온영역(Ⅱ)에서 고온영역(Ⅱ')으로 이동하면, 슬립이 상대적으로 적게 감소하거나/감소하고, 토크가 실질적으로 동일하게 유지되거나 토크가 커짐에 따라 가동부재(130)의 스트로크가 커지기 때문에 슬립의 감소에 따른 냉력 감소를 가동부재(130)의 스트로크 증가로 보상해 주어 냉력 가변이 이루어진다. 리니어 모터(200)는 제2전압에서 제1전압으로 전압을 가변함에 따라, 냉력 가변이 이루어질 수도 있다.
상기와 같이, 리니어 모터로 인가되는 전압을 가변시키기 위하여 제어부는 AC 쵸퍼부(AC chopper) 및 트라이악부(Triac)를 제어하도록 구성되되, 전압 변동에 둔감한 기구를 설계하여 리니어 압축기에 요구되는 냉력에 맞는 전압을 제어하여 냉력 가변이 가능하도록 한다. 즉, 과부하로 판단되면, 제어부는 냉매의 흡입 행정에서 AC 쵸퍼부 및 트라이악부가 온되는 시기를 늦추거나, 냉매의 압축 행정에서 AC 쵸퍼부 및 트라이악부가 온되는 시기를 빨리 앞당기도록 전압을 인가한다. 반면, 저부하로 판단되면, 제어부는 냉매의 흡입 행정에서 AC 쵸퍼부 및 트라이악부가 온되는 시기를 빨리 앞당기거나, 냉매의 압축 행정에서 AC 쵸퍼부 및 트라이악부가 온되는 시기를 늦추도록 전압을 인가한다.
도 13에 도시된 바와 같이, A는 제1주파수에서의 S-T 곡선이며, B는 제1주파수보다 높은 제2주파수에서의 S-T 곡선이며, C는 가변 주파수를 이용한 S-T 곡선이다. 이때, 고온 상태에서 리니어 압축기 내부의 냉매가 팽창함에 따라 냉매 가스의 탄성 계수가 커지기 때문에 저온 상태에서와 같은 슬립으로 리니어 모터를 구동하기 위하여 고온 상태에서는 더 많은 힘이 소모되되, 동일한 토크에서 고온 상태의 슬립이 저온 상태의 슬립보다 작게 나타난다.
따라서, 주변 온도가 저온에서 고온으로 높아지는 것과 같이 부하가 증가하면, 제어부가 리니어 모터(200)로 입력되는 주파수를 가변시켜서 도 13에 도시된 바와 같이 S-T 특성이 C 곡선을 따라 이동하도록 한다. 이때, 제어부가 주파수를 조절하지 않으면, A 곡선의 저온영역(Ⅱ)에서 A 곡선의 고온영역(Ⅰ)으로 이동하지만, 제어부가 주파수를 조절하여, 즉, 리니어 모터(200)에 인가되는 전원에 있어서, 제1주파수에서 제2주파수의 전원을 공급하여 가동부재(130)를 움직이는 힘이 변동되지 않도록 하면, 가동부재(130)의 스트로크를 동일하게 유지하면서 가동부재(130)의 속도를 높여주어, A 곡선의 고온영역(Ⅰ)이 B 곡선의 고온영역(Ⅱ')으로 변경되기 때문에 결과적으로 A 곡선의 저온영역(Ⅱ)에서 B 곡선의 고온영역(Ⅱ')으로 즉, C 곡선을 따라 이동하게 된다.
이와 같이, C 곡선을 따라 저온영역(Ⅱ)에서 고온영역(Ⅱ')으로 이동하면, 슬립이 증가하거나, 토크가 실질적으로 동일하게 유지되거나, 토크가 커짐에 따라 가동부재(130)의 스트로크가 커지기 때문에 냉력 가변이 이루어진다. 또한, 제2주파수에서 제1주파수를 지닌 전원을 리니어 모터(200)에 인가하여, 냉력을 저감시킬 수도 있다.
상술된 전압 크기의 제어와 주파수 크기의 제어는 동시에, 또는 선택적으로 또는 교번하여 수행될 수도 있다.
상기와 같이, 리니어 모터로 인가되는 주파수를 가변시키기 위하여 제어부는 인버터부(Inverter)를 제어하도록 구성된다. 인버터부는 교류 전원을 정류하는 정류부와, 정류부로부터 정류전압을 제어신호에 따라 교류전압으로 생성하는 인버터 소자로 이루어지되, 인버터부는 제어신호에 따라 리니어 모터(200)에 제어 주파수에 맞추어 전원을 인가한다. 물론, 인버터부도 제어 전압에 맞추어 전원을 인가할 수도 있다.
이와 같이, 부하에 따라 냉력 가변을 위한 제어 방법 중에서, 인가 전압 가변을 이용한 방법인 AC 쵸퍼(AC chopper) 방식 및 트라이악(Triac) 위상 제어 방식, 인가 주파수 가변을 이용한 방법인 인버터(Inveter) 방식은 일예에 불과하다. 그 외에도, 부하에 상관없이 슬립과 스트로크의 관계를 최적화한 기구 설계 방법으로 직접 인가 방식, 부하에 따라 가변하는 기구적인 공진 주파수를 이용한 기구 설계 방법으로 전류를 직접 인가하는 방식 등과 같은 자연 냉력 가변 방식이 모두 적용될 수 있다.
이상에서 본 발명을 특정의 바람직한 실시예를 참고하여 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 본 발명의 요지를 벗어나지 않는 범위에서 통상의 지식을 가진자에 의해 다양한 변경과 수정이 이루어질 수 있으며, 본 발명의 범위는 후술한 특허청구범위에 기재된 내용에 의해서만 제한될 것이다.
Claims (20)
- 압축공간을 구비한 고정부재;고정부재 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 가동부재;가동부재의 운동 방향으로 탄성 지지하도록 설치되는 적어도 하나 이상의 스프링;전류를 공급받는 제1 스테이터와, 제1스테이터와 일정 간격 이격된 제2스테이터로 이루어진 스테이터와;스테이터에 의해 형성된 자계에 의해 전자기 유도되어 가동부재를 직선 운동시키는 도체부재; 그리고,제1 스테이터로의 전류 공급을 제어하는 제어부;를 포함하는 것을 특징으로 하는 리니어 압축기.
- 제1항에 있어서,가동부재와 도체부재를 연결하는 연결부재를 더 포함하고,도체부재는 연결부재의 일단에 장착된 도체인 것을 특징으로 하는 리니어 압축기.
- 제1항에 있어서,가동부재와 도체부재를 연결하는 연결부재를 더 포함하고,도체부재는 연결부재의 일단에 장착된 링 형상의 철편 및 도체가 교대로 적층된 것을 특징으로 하는 리니어 압축기.
- 제1항에 있어서,가동부재와 도체부재를 연결하는 연결부재를 더 포함하고,도체부재는 연결부재의 일단에 권선된 도체선인 것을 특징으로 하는 리니어 압축기.
- 제1항에 있어서,제1스테이터는 코일이 권선된 코일 권선체와, 코일 권선체에 장착된 코어로 이루어지며,제어부는 도체부재에 일방향 자계가 형성되도록 코일 권선체에 전류의 공급을 온/오프 제어하는 것을 특징으로 하는 리니어 압축기.
- 제5항에 있어서,스프링은 냉매가 압축되는 방향으로 가동부재를 탄성 지지하도록 설치되는 제1스프링, 또는 냉매가 압축되는 방향과 반대 방향으로 가동부재를 탄성 지지하도록 설치되는 제2스프링 중 어느 하나 이상을 포함하는 것을 특징으로 하는 리니어 압축기.
- 제1항에 있어서,도체부재의 적어도 일부분이 제1스테이터와 제2스테이터 사이에 위치된 것을 특징으로 하는 리니어 압축기.
- 제7항에 있어서,제1 스테이터는 축방향으로 간격을 두고 각각 코일이 권선된 제1,2 코일 권선체와, 제1,2 코일 권선체에 장착된 코어로 이루어지며,제어부는 도체부재에 양방향 자계가 형성되도록 제1,2 코일 권선체에 위상차를 가진 전류를 공급하도록 제어하는 것을 특징으로 하는 리니어 압축기.
- 제8항에 있어서, 제1 및 제2코일 권선체는 동일 방향으로 코일이 감기고, 제1 및 제2코일 권선체 중의 하나의 권선체에는 캐패시터가 직렬로 연결된 것을 특징으로 하는 리니어 압축기.
- 제8항에 있어서,제어부는 제1,2 코일 권선체에 90° 위상차를 가진 전류를 공급하도록 제어하는 것을 특징으로 하는 리니어 압축기.
- 제8항에 있어서,스프링은 냉매가 압축되는 방향으로 가동부재를 탄성 지지하도록 설치되는 제1스프링, 및 냉매가 압축되는 방향과 반대 방향으로 가동부재를 탄성 지지하도록 설치되는 제2스프링을 포함하는 것을 특징으로 하는 리니어 압축기.
- 제1항 내지 제11항 중 어느 한 항에 있어서,가동부재가 일정 속도 이상으로 운전되면, 부하의 크기에 따라 가동부재의 속도와 가동부재를 운동시키는 힘이 서로 다른 비율로 반비례하는 것을 특징으로 하는 리니어 압축기.
- 제12항에 있어서,제어부는 부하의 크기에 따라 제1스테이트에 인가되는 전압의 크기를 가변시키는 것을 특징으로 하는 리니어 압축기.
- 제13항에 있어서,제어부는 전압의 크기를 가변하여, 부하가 커질수록 가동부재의 감속 정도가 상대적으로 작도록 하거나, 가동부재를 운동시키는 힘이 실질적으로 유지되도록 하거나 증가시키는 것을 특징으로 하는 리니어 압축기.
- 제12항에 있어서,제어부는 부하의 크기에 따라 주파수를 가변시키는 것을 특징으로 하는 리니어 압축기.
- 제15항에 있어서,제어부는 주파수를 가변하여, 부하가 커질수록 가동부재의 속도가 증가시키거나, 가동부재를 운동시키는 힘이 실질적으로 유지되도록 하거나 증가시키는 것을 특징으로 하는 리니어 압축기.
- 압축공간을 구비한 고정부재;도체 부재를 구비하여, 고정부재 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 가동부재;가동부재의 운동 방향으로 탄성 지지하도록 설치되는 복수 개의 스프링;전류를 인가받아, 도체 부재를 자기 유도시키는 제1 스테이터;제1 스테이터에 대응하여 위치되며, 제1 스테이터와의 이격 공간에 도체 부재의 적어도 일부분이 위치되도록 형성된 제2 스테이터와;부하의 크기에 따라, 제1스테이터로 인가되는 전원의 크기 또는 주파수 중의 적어도 하나 이상을 가변하여, 부하에 대응하는 냉력 제어를 수행하는 제어부를 구비하는 것을 특징으로 하는 리니어 압축기.
- 제17항에 있어서,가동부재가 일정 속도 이상으로 운전되면, 가동부재의 속도와 가동부재를 운동시키는 힘이 서로 다른 비율로 반비례하는 것을 특징으로 하는 리니어 압축기.
- 제18항에 있어서,제어부는 전압의 크기를 가변하여, 부하가 커질수록 가동부재의 감속 정도가 상대적으로 작도록 하거나, 가동부재를 운동시키는 힘이 실질적으로 유지되도록 하거나 증가시키는 것을 특징으로 하는 리니어 압축기.
- 제18항에 있어서,제어부는 주파수를 가변하여, 부하가 커질수록 가동부재의 속도가 증가시키거나, 가동부재를 운동시키는 힘이 실질적으로 유지되도록 하거나 증가시키는 것을 특징으로 하는 리니어 압축기.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09805184.0A EP2322799B1 (en) | 2008-08-07 | 2009-08-05 | Linear compressor |
US13/057,335 US20110135518A1 (en) | 2008-08-07 | 2009-08-05 | Linear compressor |
CN200980128807.0A CN102105690B (zh) | 2008-08-07 | 2009-08-05 | 线性压缩机 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20080077607 | 2008-08-07 | ||
KR10-2008-0077607 | 2008-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016723A1 true WO2010016723A1 (ko) | 2010-02-11 |
Family
ID=41663861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/004366 WO2010016723A1 (ko) | 2008-08-07 | 2009-08-05 | 리니어 압축기 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110135518A1 (ko) |
EP (1) | EP2322799B1 (ko) |
KR (1) | KR101448315B1 (ko) |
CN (1) | CN102105690B (ko) |
WO (1) | WO2010016723A1 (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101299553B1 (ko) * | 2011-09-06 | 2013-08-23 | 엘지전자 주식회사 | 가스베어링을 구비한 왕복동식 압축기 |
CN203906210U (zh) * | 2013-06-28 | 2014-10-29 | Lg电子株式会社 | 线性压缩机 |
US9841012B2 (en) * | 2014-02-10 | 2017-12-12 | Haier Us Appliance Solutions, Inc. | Linear compressor |
US9528505B2 (en) * | 2014-02-10 | 2016-12-27 | Haier Us Appliance Solutions, Inc. | Linear compressor |
US20150226210A1 (en) * | 2014-02-10 | 2015-08-13 | General Electric Company | Linear compressor |
US9429150B2 (en) * | 2014-02-10 | 2016-08-30 | Haier US Appliances Solutions, Inc. | Linear compressor |
US9506460B2 (en) * | 2014-02-10 | 2016-11-29 | Haier Us Appliance Solutions, Inc. | Linear compressor |
US9322401B2 (en) * | 2014-02-10 | 2016-04-26 | General Electric Company | Linear compressor |
US9518572B2 (en) * | 2014-02-10 | 2016-12-13 | Haier Us Appliance Solutions, Inc. | Linear compressor |
US9562525B2 (en) * | 2014-02-10 | 2017-02-07 | Haier Us Appliance Solutions, Inc. | Linear compressor |
KR102201629B1 (ko) * | 2014-06-26 | 2021-01-12 | 엘지전자 주식회사 | 리니어 압축기 및 이를 포함하는 냉장고 |
BR102015021009B1 (pt) * | 2015-08-31 | 2022-05-03 | Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda | Método e sistema de proteção e diagnóstico de um compressor linear e compressor linear |
CN107288847B (zh) * | 2016-03-30 | 2019-09-17 | 青岛海尔智能技术研发有限公司 | 线性压缩机及润滑油供油方法 |
JP6764751B2 (ja) * | 2016-10-14 | 2020-10-07 | 日立オートモティブシステムズ株式会社 | リニア圧縮機及びこれを搭載した機器 |
KR20180082249A (ko) * | 2017-01-10 | 2018-07-18 | 엘지전자 주식회사 | 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004072854A (ja) * | 2002-08-05 | 2004-03-04 | Showa Electric Wire & Cable Co Ltd | リニアモータ用可動子 |
KR100588717B1 (ko) * | 2004-08-30 | 2006-06-12 | 엘지전자 주식회사 | 리니어 압축기 |
KR100615802B1 (ko) * | 2005-02-16 | 2006-08-25 | 엘지전자 주식회사 | 리니어 압축기의 가동 어셈블리 |
KR100783414B1 (ko) * | 2006-09-18 | 2007-12-11 | 엘지전자 주식회사 | 압축기용 왕복동모터의 가동자 구조 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3135879A (en) * | 1958-08-04 | 1964-06-02 | Gen Electric | Linear motor |
US3788778A (en) * | 1972-06-30 | 1974-01-29 | Carrier Corp | Electrodynamic linear motor operated gas compressor |
US3931554A (en) * | 1974-08-13 | 1976-01-06 | Spentzas Nikolaos E | Reciprocating motor-compressor system |
SU1079884A2 (ru) * | 1982-04-02 | 1984-03-15 | Физико-технический институт низких температур АН УССР | Компрессор |
US4783968A (en) * | 1986-08-08 | 1988-11-15 | Helix Technology Corporation | Vibration isolation system for a linear reciprocating machine |
US5396140A (en) * | 1993-05-28 | 1995-03-07 | Satcon Technology, Corp. | Parallel air gap serial flux A.C. electrical machine |
CN1083939C (zh) * | 1996-07-09 | 2002-05-01 | 三洋电机株式会社 | 线性压缩机 |
US6952060B2 (en) * | 2001-05-07 | 2005-10-04 | Trustees Of Tufts College | Electromagnetic linear generator and shock absorber |
JP4149147B2 (ja) * | 2001-07-19 | 2008-09-10 | 松下電器産業株式会社 | リニア圧縮機 |
US6685438B2 (en) * | 2001-08-01 | 2004-02-03 | Lg Electronics Inc. | Apparatus and method for controlling operation of reciprocating compressor |
WO2006025619A2 (en) * | 2004-08-30 | 2006-03-09 | Lg Electronics, Inc. | Linear compressor |
US20060127252A1 (en) * | 2004-12-13 | 2006-06-15 | Hamilton Sundstrand Corporation | Reciprocating pump system |
US7408310B2 (en) * | 2005-04-08 | 2008-08-05 | Lg Electronics Inc. | Apparatus for controlling driving of reciprocating compressor and method thereof |
KR100756721B1 (ko) * | 2006-02-02 | 2007-09-07 | 엘지전자 주식회사 | 리니어 압축기의 제어장치 |
WO2007089083A2 (en) * | 2006-02-02 | 2007-08-09 | Lg Electronics, Inc. | Control apparatus for linear compressor |
KR20100080957A (ko) * | 2008-08-05 | 2010-07-14 | 엘지전자 주식회사 | 리니어 압축기 |
-
2009
- 2009-08-05 CN CN200980128807.0A patent/CN102105690B/zh not_active Expired - Fee Related
- 2009-08-05 US US13/057,335 patent/US20110135518A1/en not_active Abandoned
- 2009-08-05 WO PCT/KR2009/004366 patent/WO2010016723A1/ko active Application Filing
- 2009-08-05 EP EP09805184.0A patent/EP2322799B1/en not_active Not-in-force
- 2009-08-06 KR KR1020090072215A patent/KR101448315B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004072854A (ja) * | 2002-08-05 | 2004-03-04 | Showa Electric Wire & Cable Co Ltd | リニアモータ用可動子 |
KR100588717B1 (ko) * | 2004-08-30 | 2006-06-12 | 엘지전자 주식회사 | 리니어 압축기 |
KR100615802B1 (ko) * | 2005-02-16 | 2006-08-25 | 엘지전자 주식회사 | 리니어 압축기의 가동 어셈블리 |
KR100783414B1 (ko) * | 2006-09-18 | 2007-12-11 | 엘지전자 주식회사 | 압축기용 왕복동모터의 가동자 구조 |
Also Published As
Publication number | Publication date |
---|---|
KR101448315B1 (ko) | 2014-10-08 |
CN102105690A (zh) | 2011-06-22 |
CN102105690B (zh) | 2014-06-18 |
EP2322799A4 (en) | 2011-11-02 |
EP2322799A1 (en) | 2011-05-18 |
EP2322799B1 (en) | 2014-04-23 |
KR20100019351A (ko) | 2010-02-18 |
US20110135518A1 (en) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010016723A1 (ko) | 리니어 압축기 | |
WO2010016712A2 (ko) | 리니어 압축기 | |
WO2010016700A1 (ko) | 리니어 압축기 | |
WO2016182211A1 (en) | Reciprocating compressor | |
WO2011105723A2 (ko) | 리니어 압축기 | |
JP2004190657A (ja) | リニアモータの運転制御装置及びその方法 | |
CN102017396B (zh) | 直线马达及使用该直线马达的往复式压缩机 | |
WO2011062427A2 (ko) | 리니어 압축기 | |
WO2012005497A2 (ko) | 압축기 제어 장치와 방법, 및 이를 포함한 냉장고 | |
WO2018030779A1 (ko) | 리니어 압축기 | |
CN101836354B (zh) | 往复式压缩机 | |
WO2011062428A2 (ko) | 리니어 압축기 | |
CN118367717B (zh) | 一种风冷电机及活塞式空气压缩机 | |
KR100588719B1 (ko) | 리니어 압축기의 제어장치 및 제어방법 | |
KR20060020011A (ko) | 리니어 압축기의 제어장치 | |
CN2290148Y (zh) | 磁力振子电动装置 | |
CN1779249B (zh) | 线性压缩机的控制装置及其控制方法 | |
KR101919886B1 (ko) | 왕복동식 압축기 및 압축기 제어 장치 | |
KR20070087915A (ko) | 리니어 압축기의 제어장치 | |
KR20130080282A (ko) | 왕복동식 압축기 및 압축기 제어 장치 | |
JP2002031072A (ja) | ロータリコンプレッサ | |
JPH08285396A (ja) | ガス圧縮器のピストン駆動機構 | |
KR20070079517A (ko) | 리니어 압축기의 제어장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980128807.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09805184 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009805184 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13057335 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |