US20110135518A1 - Linear compressor - Google Patents

Linear compressor Download PDF

Info

Publication number
US20110135518A1
US20110135518A1 US13/057,335 US200913057335A US2011135518A1 US 20110135518 A1 US20110135518 A1 US 20110135518A1 US 200913057335 A US200913057335 A US 200913057335A US 2011135518 A1 US2011135518 A1 US 2011135518A1
Authority
US
United States
Prior art keywords
movable member
stator
linear compressor
conductor
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/057,335
Other languages
English (en)
Inventor
Kye-Lyong Kang
Jong-Kwon Kim
Shin-Hyun Park
Hyun Kim
Hee-Dong Kang
Jeong-Uk Lee
Yang-Hoon Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANG, HEE-DONG, KANG, KYE-LYONG, KIM, HYUN, PARK, SHIN-HYUN, KIM, JONG-KWON, LEE, JEONG-UK, JUNG, YANG-HOON
Publication of US20110135518A1 publication Critical patent/US20110135518A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a linear compressor, and more particularly to, a linear compressor which employs a conductor member in a linear motor instead of a magnet to produce a driving force by electromagnetic induction.
  • a compressor is a mechanical apparatus receiving power from a power generation apparatus such as an electric motor, a turbine or the like, and compressing the air, refrigerant or various operation gases to raise a pressure.
  • the compressor has been widely used for electric home appliances such as refrigerators and air conditioners, and application thereof has been expanded to the whole industry.
  • the compressors are roughly classified into a reciprocating compressor, wherein a compression space to/from which an operation gas is sucked and discharged is defined between a piston and a cylinder, and the piston linearly reciprocates in the cylinder to compress refrigerant, a rotary compressor, wherein a compression space to/from which an operation gas is sucked and discharged is defined between an eccentrically-rotating roller and a cylinder, and the roller eccentrically rotates along an inside wall of the cylinder to compress refrigerant, and a scroll compressor, wherein a compression space to/from which an operation gas is sucked and discharged is defined between an orbiting scroll and a fixed scroll, and the orbiting scroll rotates along the fixed scroll to compress refrigerant.
  • a linear compressor has been actively developed because it improves compression efficiency and provides simple construction by removing a mechanical loss caused by motion conversion by directly connecting a piston to a linearly-reciprocating driving motor.
  • FIG. 1 is a side view illustrating a conventional linear compressor.
  • the conventional linear compressor is installed such that a structure composed of a frame 2 , a cylinder 3 , a piston 4 , a suction valve 6 , a discharge valve 7 , a linear motor 10 , a motor cover 18 , a supporter 19 , a rear cover 20 , main springs S 1 and S 2 and a suction muffler assembly 21 is elastically supported inside a shell 1 .
  • the cylinder 3 is fixedly fitted into the frame 2 , the discharge valve 7 is installed to block one end of the cylinder 3 , the piston 4 is inserted into the cylinder 3 , and the thin suction valve 6 is installed to open and close a suction hole 5 of the piston 4 .
  • the linear motor 10 is installed such that a gap is maintained between an inner stator 12 and an outer stator 14 and a magnet frame 16 can linearly reciprocate therein.
  • the magnet frame 16 is connected to the piston 4 by a piston fixing portion 16 c , and linearly reciprocates due to a mutual electromagnetic force between the inner stator 12 and the outer stator 14 and the magnet frame 16 to operate the piston 4 .
  • the motor cover 18 supports the outer stator 14 in an axial direction and is bolt-fixed to the frame 2 so as to fix the outer stator 14 , and the rear cover 20 is coupled to the motor cover 18 .
  • the supporter 19 connected to the other end of the piston 4 is installed between the motor cover 18 and the rear cover 20 to be elastically supported by the main springs S 1 and S 2 in an axial direction, and the suction muffler assembly 21 which allows suction of refrigerant is also fastened with the supporter 19 .
  • the main springs S 1 and S 2 include four front springs S 1 and four rear springs S 2 in up-down and left-right symmetric positions around the supporter 19 .
  • the front springs S 1 and the rear springs S 2 move in opposite directions to buffer the shock of the piston 4 and the supporter 19 .
  • refrigerant existing on the side of a compression space P serves as a kind of gas spring to buffer the shock of the piston 4 and the supporter 19 .
  • the linear motor 10 of the linear compressor includes the inner stator 12 , the outer stator 14 , and the magnet frame 16 around the frame 2 as shown in FIG. 1 .
  • the inner stator 12 is constructed such that laminations are stacked in a circumferential direction
  • the outer stator 14 is constructed such that core blocks 14 b are installed on a coil winding body 14 a at certain intervals in a circumferential direction.
  • FIG. 2 is a perspective view illustrating a conventional magnet frame.
  • the magnet frame 16 includes a cylindrical frame main body 16 a positioned between the inner stator 12 and the outer stator 14 of the linear motor 10 , magnets 16 b fixed to some outer portions of the frame main body 16 a , and a piston fixing portion 16 c extended to the inside so that the piston 4 can be fixed to one end of the frame main body 16 a .
  • Holes 16 d are formed on one side of the magnets 16 b.
  • the magnets 16 b are formed on the frame main body 16 a at certain intervals in a circumferential direction. Preferably, eight magnets 16 b are coupled to the outside of the frame main body 16 a at regular intervals.
  • the magnet linearly reciprocates between the inner stator and the outer stator due to a mutual electromagnetic force.
  • it is difficult to employ a cylindrical magnet because of a high price of the magnet.
  • the linear motor varies a stroke to modulate a cooling capacity according to a load.
  • a complicated control unit is provided, which is accompanied with design limitations on sizes of peripheral components.
  • a complicated control method is required, which increases the costs of production and complicates a manufacturing process.
  • much power is consumed for controlling, which degrades efficiency of the whole compressor.
  • An object of the present invention is to provide a linear compressor which employs a conductor member instead of a magnet to simplify the shape and controlling of a linear motor.
  • Another object of the present invention is to provide a linear compressor which can supply a necessary cooling capacity, using a characteristic between a speed of a movable member and a force moving the movable member according to an amplitude or variation of a load.
  • a further object of the present invention is to provide a linear compressor which adjusts a frequency or voltage amplitude of applied power to generate a cooling capacity according to a load.
  • a linear compressor including: a fixed member provided with a compression space; a movable member which linearly reciprocates inside the fixed member to compress refrigerant; one or more springs installed to elastically support the movable member in a motion direction; a stator composed of a first stator supplied with a current, and a second stator spaced apart from the first stator at a certain interval; a conductor member electromagnetically induced by a magnetic field produced by the stator to make the movable member linearly reciprocate; and a control unit which controls supply of the current with respect to the first stator.
  • the linear compressor further includes a connection member which connects the movable member to the conductor member, wherein the conductor member is a conductor mounted on one end of the connection member.
  • the linear compressor further includes a connection member which connects the movable member to the conductor member, wherein the conductor member is formed by alternately stacking an annular iron piece and conductor, and mounted on one end of the connection member.
  • the linear compressor further includes a connection member which connects the movable member to the conductor member, wherein the conductor member is a conductor line wound around one end of the connection member.
  • the first stator includes a coil winding body wound with a coil, and a core mounted on the coil winding body, and the control unit controls On and Off of current supply with respect to the coil winding body so as to produce a one-way magnetic field in the conductor member.
  • the springs include one or more of a first spring installed to elastically support the movable member in a refrigerant compression direction, and a second spring installed to elastically support the movable member in the opposite direction to the refrigerant compression direction.
  • At least some portion of the conductor member is positioned between the first stator and the second stator.
  • the first stator includes first and second coil winding bodies spaced apart at an interval in an axial direction and wound with a coil, respectively, and a core mounted on the first and second coil winding bodies, and the control unit performs a control to supply currents having a phase difference to the first and second coil winding bodies to produce a two-way magnetic field in the conductor member.
  • the coil is wound around the first and second coil winding bodies in the same direction, and a capacitor is connected in series to one of the first and second coil winding bodies.
  • control unit performs a control to supply currents having a phase difference of 90° to the first and second coil winding bodies.
  • the springs include a first spring installed to elastically support the movable member in a refrigerant compression direction, and a second spring installed to elastically support the movable member in the opposite direction to the refrigerant compression direction.
  • a speed of the movable member and a force moving the movable member are inversely proportional at different ratios according to an amplitude of a load.
  • control unit varies an amplitude of a voltage applied to the first stator according to the amplitude of the load.
  • control unit varies the amplitude of the voltage so that the speed reduction of the movable member can be relatively small or the force moving the movable member can be substantially maintained or increase with the increase of the load.
  • control unit varies a frequency according to the amplitude of the load.
  • control unit varies the frequency so that the speed of the movable member can increase or the force moving the movable member can be substantially maintained or increase with the increase of the load.
  • a linear compressor including: a fixed member provided with a compression space; a movable member which is provided with a conductor member, and linearly reciprocates inside the fixed member to compress refrigerant; a plurality of springs installed to elastically support the movable member in a motion direction; a first stator applied with a current to magnetically induce the conductor member; a second stator positioned corresponding to the first stator so that at least some portion of the conductor member can be positioned in a space between the first stator and the second stator; and a control unit which varies one or more of an amplitude and frequency of power applied to the first stator according to an amplitude of a load to control a cooling capacity according to the load.
  • the linear motor since the linear motor employs the conductor member instead of the magnet to supply a driving force by magnetic induction, the mechanism and controlling thereof are simplified, so that the costs of production are cut down. Moreover, since the linear motor can be driven by minimum elements without a special driving unit for controlling, it is possible to improve entire efficiency.
  • the linear compressor varies one or more of the voltage and the frequency, using the characteristic between the speed of the movable member and the force moving the movable member according to variations of the load, to thereby supply a necessary cooling capacity.
  • the linear compressor adjusts the frequency or the voltage amplitude of applied power to generate a cooling capacity according to the load.
  • FIG. 1 is a side view illustrating a conventional linear compressor
  • FIG. 2 is a perspective view illustrating a conventional magnet frame
  • FIG. 3 is a side-sectional view illustrating a first embodiment of a linear compressor according to the present invention
  • FIG. 4 is a side-sectional view illustrating a second embodiment of the linear compressor according to the present invention.
  • FIG. 5 is a side-sectional view illustrating a third embodiment of the linear compressor according to the present invention.
  • FIG. 6 is a perspective view illustrating a first embodiment of a conductor member applied to the linear compressor according to the present invention
  • FIG. 7 is a perspective view illustrating a second embodiment of the conductor member applied to the linear compressor according to the present invention.
  • FIG. 8 is a perspective view illustrating a third embodiment of the conductor member applied to the linear compressor according to the present invention.
  • FIG. 9 is a graph showing magnetic flux waveforms of a linear motor shown in FIG. 5 by an applied current
  • FIG. 10 is a schematic circuit view for applying a current to the linear motor shown in FIG. 5 ;
  • FIG. 11 is a graph showing linear reciprocation magnetic flux operations of the linear motor shown in FIG. 5 ;
  • FIG. 12 is a graph showing the relation between a slip and a torque of the linear motor shown in FIG. 5 in variations of a voltage.
  • FIG. 13 is a graph showing the relation between the slip and the torque of the linear motor shown in FIG. 5 in variations of a frequency.
  • FIGS. 3 to 5 are side-sectional views illustrating various embodiments of a linear compressor according to the present invention.
  • the linear compressor according to the present invention is constructed such that a fixed member 120 provided with a compression space P of refrigerant, a movable member 130 compressing refrigerant in the fixed member 120 , and a linear motor 200 driving the movable member 130 are installed in a hermetic container 100 .
  • the linear motor 200 includes first and second stators 220 and 240 , and a conductor member 260 positioned in a space between the first and second stators 220 and 240 .
  • the second stator 240 is fixed to an outer circumference of the fixed member 120
  • the first stator 220 is fixed in an axial direction by a frame 110 and a motor cover 300 . Since the frame 110 and the motor cover 300 are fastened and coupled to each other by a fastening member such as a bolt, the first stator 220 is fixed between the frame 110 and the motor cover 300 .
  • the frame 110 may be formed integrally with the fixed member 120 , or manufactured individually from the fixed member 120 and coupled to the fixed member 120 .
  • a supporter 310 is connected to the rear of the movable member 130 , and a rear cover 320 is coupled to the rear of the motor cover 300 .
  • the supporter 310 is positioned between the motor cover 300 and the rear cover 320 .
  • Springs S 1 and S 2 are installed in an axial direction to buffer the shock of the linear reciprocation of the movable member 130 with both ends supported by the supporter 310 and the motor cover 300 or the supporter 310 and the rear cover 320 .
  • detailed installation positions and elastic moduli of the springs S 1 and S 2 may be changed according to the construction and operation of the linear motor 200 , which will be described below in detail.
  • a suction muffler 330 is provided at the rear of the movable member 130 .
  • the refrigerant is introduced into the movable member 130 through the suction muffler 330 , thereby reducing refrigerant suction noise.
  • a front end of the movable member 130 has a hollow so that the refrigerant introduced through the suction muffler 330 can be introduced into and compressed in the compression space P defined between the fixed member 120 and the movable member 130 .
  • a suction valve (not shown) is installed at the front end of the movable member 130 .
  • the suction valve (not shown) opens the front end of the movable member 130 so that the refrigerant can flow from the movable member 130 to the compression space P, and closes the front end of the movable member 130 so that the refrigerant cannot flow back from the compression space P to the movable member 130 .
  • a discharge valve 160 positioned at a front end of the fixed member 120 is open.
  • the high-pressure compressed refrigerant is discharged to a discharge cap 170 , discharged again to the outside of the linear compressor through a loop pipe 180 , and circulated in a freezing cycle.
  • the linear motor 200 includes the first stator 220 through which a current flows, the second stator 240 maintaining a gap from the first stator 220 , and the conductor member 260 installed maintaining a gap between the first and second stators 220 and 240 , and magnetically induced by the first stator 220 to make the movable member 130 linearly reciprocate.
  • the linear motor 200 includes a control unit (not shown) which controls supply of a current with respect to the first stator 220 .
  • the first stator 220 is an outer stator relatively distant from the fixed member 120
  • the second stator 240 is an inner stator mounted on the fixed member 120 .
  • the linear motor 200 of the linear compressor so constructed is a linear motor 200 provided with two stators 220 and 240 , but a general linear motor 200 provided with only one current-flowing stator 220 also belongs to the scope of the present invention.
  • the linear compressor may include a power unit (not shown) which can receive power from the outside.
  • the power unit is an element obvious to a person of ordinary skill in the art, explanations thereof are omitted.
  • an embodiment of the first stator 220 is constructed such that core blocks 222 are mounted on one coil winding body 221 wound with a coil in a circumferential direction.
  • the control unit controls On/Off of current supply with respect to the coil winding body 221 so as to produce a one-way magnetic field in the conductor member 260 , and produces a force so that the conductor member 260 can move in a refrigerant compression direction, i.e., a top dead center direction.
  • only the front main springs S 1 are installed between the motor cover 300 and the supporter 310 to grant a restoration force against a force applied to the movable member 130 by the linear motor 200 .
  • the elastic modulus and number of the front main springs S 1 are determined to be proportional to the coil winding number of the coil winding body 221 .
  • a magnet flux forms a closed circuit along the first and second stators 220 and 240 due to the current flowing through the coil winding body 221 . Since an induction field is produced in the conductor member 260 due to the magnetic flux, the force is applied in a top dead center direction, so that the conductor member 260 and the movable member 130 move in the top dead center direction to compress the refrigerant.
  • the magnet flux and the induction field are vanished, and the conductor member 260 and the movable member 130 move in a bottom dead center direction due to the restoration force of the front main springs S 1 . Such a process is repeated to suck, compress and discharge the refrigerant.
  • FIG. 4 another embodiment of the first stator 220 is constructed such that core blocks 222 are mounted on one coil winding body 221 wound with a coil in a circumferential direction like the above embodiment.
  • the control unit controls On/Off of current supply with respect to the coil winding body 221 so as to produce a one-way magnetic field in the conductor member 260 , and produces a force so that the conductor member 260 can move in a refrigerant suction direction, i.e., a bottom dead center direction unlike the above embodiment.
  • only the rear main springs S 2 are installed between the supporter 310 and the rear cover 320 to grant a restoration force against a force applied to the movable member 130 by the linear motor 200 .
  • the elastic modulus and number of the rear main springs S 2 are determined to be proportional to the coil winding number of the coil winding body 221 as in the above embodiment.
  • a magnet flux forms a closed circuit along the first and second stators 220 and 240 due to the current flowing through the coil winding body 221 . Since an induction field is produced in the conductor member 260 due to the magnetic flux, the force is applied in a bottom dead center direction, so that the conductor member 260 and the movable member 130 move in the bottom dead center direction to suck the refrigerant. Next, when the current is not input to the coil winding body 221 , the magnet flux and the induction field are vanished, and the conductor member 260 and the movable member 130 move in a top dead center direction due to the restoration force of the rear main springs S 2 . Such a process is repeated to suck, compress and discharge the refrigerant.
  • first stator 220 is constructed such that first and second coil winding bodies 221 A and 221 B wound with a coil in a circumferential direction are positioned at a certain interval in an axial direction, and core blocks 222 are mounted on the first and second coil winding bodies 221 A and 221 B.
  • the coil is wound around the first and second coil winding bodies 221 A and 221 B in the same direction.
  • the control unit performs a control to supply currents having a phase difference of 90° to the first and second coil winding bodies 221 A and 221 B, respectively, to produce a two-way magnetic field in the conductor member 260 , and repeats a process of producing a force so that the conductor member 260 can move in a refrigerant compression direction, i.e., a top dead center direction, and producing a force so that the conductor member 260 can move in a refrigerant suction direction, i.e., a bottom dead center direction.
  • the front main springs S 1 are installed between the motor cover 300 and the supporter 310 and the rear main springs S 2 are installed between the supporter 310 and the rear cover 320 to grant a restoration force against a force applied to the movable member 130 by the linear motor 200 .
  • the elastic modulus and number of the front main springs S 1 and the rear main springs S 2 are determined to be proportional to the coil winding number of the first and second coil winding bodies 221 A and 221 B.
  • the magnetic flux when the current is input to the first coil winding body 221 A, as the currents having AC waveforms with a phase difference of 90° are input to the first and second coil winding bodies 221 A and 221 B, the magnetic flux also has AC waveforms. Since an induction field is produced in the conductor member 260 due to the magnetic flux, the force is applied alternately in top and bottom dead center directions, so that the conductor member 260 and the movable member 130 repeat a process of moving in the top dead center direction to compress the refrigerant and moving in the bottom dead center direction to suck the refrigerant.
  • FIGS. 6 to 8 are perspective views illustrating various embodiments of the conductor member applied to the linear compressor according to the present invention.
  • an embodiment of the conductor member 260 is formed of a conductor material such as Cu and Al in a shape corresponding to a connection member 290 , e.g., a cylindrical shape.
  • the conductor member 260 is mounted on one end of the connection member 290 by an adhesive or an adhesion member, and the connection member 290 is installed to connect the conductor member 260 to the movable member 130 .
  • the connection member 290 has the same construction as the conventional one, and has various holes 291 in portions other than the mounting portion of the conductor member 260 to reduce a passage resistance or radiate heat.
  • another embodiment of the conductor member 270 is formed in a cylindrical shape by alternately stacking an annular iron piece 270 a and a ring conductor 270 b .
  • the conductor member 270 is mounted on one end of a connection member 290 by an adhesive or an adhesion member, and the connection member 290 is installed to connect the conductor member 270 to the movable member 130 .
  • the ring conductor 270 b may be formed of a conductor material such as Cu and Al.
  • a further embodiment of the conductor member 280 is formed by winding a conductor line.
  • the conductor member 280 is mounted to be wound around the outside of one end of a connection member 290 or the outside of the connection member 290 , and the connection member 290 is installed to connect the conductor member 280 to the movable member 130 .
  • the conductor members 260 , 270 and 280 shown in FIGS. 6 to 8 are preferably formed of Al or Cu, and have the feature of being magnetically induced by an electromagnetic force. Since the conductor members 260 , 270 and 280 are applied to the linear motor 200 , the present invention can more reduce manufacturing expenses than the prior art using the magnet.
  • FIG. 9 is a graph showing magnetic flux waveforms of the linear motor shown in FIG. 5 by an applied current.
  • the control unit applies power to the linear motor 200 including the first and second coil winding bodies 221 A and 221 B, with respect to currents flowing through the first stator 220 , a current I M of the first coil winding body 221 A and a current I A of the second coil winding body 221 B have AC waveforms with a phase difference of 90°. Therefore, a synthetic magnetic field B S of the first stator 220 by the current shows AC waveforms.
  • the produced magnetic field linearly reciprocates, alternated in positive and negative directions like the waveforms of the currents I M and I A .
  • FIG. 10 is a schematic circuit view for applying a current to the linear motor shown in FIG. 5 .
  • the current I A applied to the second coil winding body 221 A is the AC current applied through a capacitor C, and has a phase difference of 90° from the current I M applied to the first coil winding body 221 A.
  • FIG. 11 is a graph showing linear reciprocation magnetic flux operations of the linear motor shown in FIG. 5 .
  • FIG. 11 provides a graph showing the current I M of the first coil winding body 221 A, the current I A of the second coil winding body 221 B, and the synthetic magnetic field B S of the first stator 220 in the application of the current, and a table showing the linear reciprocation magnetic flux operations of the linear motor 200 in points a to f existing in one period. That is, the table of FIG. 11 shows that the first and second coil winding bodies 221 A and 221 B are repeatedly magnetized into N-S and S-N poles in the points a to f according to the applied voltage.
  • B S which is the sum of I M and I A appears in a positive direction, i.e., an N pole, and an amplitude thereof increases and then decreases
  • B S which is the magnetic field sum of I M and I A appears in a negative direction, i.e., an S pole, and an amplitude thereof increases and then decreases.
  • the magnetic flux is alternated in the positive/negative directions by the first coil winding body 221 A and the second coil winding body 221 B, and the electromagnetic force of the first and second stators 220 and 240 and the induction field of the conductor member 260 interwork with each other.
  • FIG. 12 is a graph showing the relation between a slip and a torque of the linear motor shown in FIG. 5 in variations of a voltage
  • FIG. 13 is a graph showing the relation between the slip and the torque of the linear motor shown in FIG. 5 in variations of a frequency.
  • the linear compressor when a load increases, a refrigerant gas is expanded, so that a speed of the movable member 130 decreases. The linear compressor varies the voltage or the frequency according to the load to control the speed of the movable member 130 , thereby compensating for decrease of a cooling capacity caused by the speed reduction of the movable member 130 .
  • the right-side graph of FIG. 12 is an enlarged view of a portion of the left-side graph.
  • the linear compressor designed to vary the voltage or the frequency according to the load when applied to e.g., a refrigerator, the linear motor 200 automatically regulates a freezing capacity, and the refrigerator naturally modulates the cooling capacity according to the load.
  • A represents an S-T curve in a first voltage
  • B represents an S-T curve in a second voltage higher than the first voltage
  • C represents an S-T curve using a variable voltage.
  • the refrigerant inside the linear compressor is expanded in a high temperature state, so that an elastic modulus of the refrigerant gas increases.
  • driving the linear motor 200 in a slip identical to that of a low temperature state requires more force in the high temperature state.
  • the high temperature state slip is smaller than the low temperature state slip in the same torque.
  • the control unit varies the voltage input to the linear motor 200 , so that the S-T characteristic moves following curve C as shown in FIG. 12 .
  • the control unit does not adjust the voltage, the S-T characteristic moves from a low temperature region II of curve A to a high temperature region I of curve A.
  • the control unit adjusts the voltage e.g., when the control unit varies power applied to the linear motor 200 from the first voltage to the second voltage, the stroke of the movable member 130 is identically maintained, and the speed of the movable member 130 increases, so that the high temperature region I of curve A is changed into a high temperature region II′ of curve B. Therefore, the S-T characteristic moves from the low temperature region II of curve A to the high temperature region II′ of curve B, i.e., moves following curve C.
  • the slip when the S-T characteristic moves from the low temperature region II to the high temperature region II′ following curve C, the slip relatively less decreases or decreases, and the torque is maintained to be substantially identical or increases, so that the stroke of the movable member 130 increases. Accordingly, the reduction of the cooling capacity caused by the decrease of the slip is compensated for by the increase of the stroke of the movable member 130 , thereby modulating the cooling capacity.
  • the voltage of the linear motor 200 may vary from the second voltage to the first voltage to modulate the cooling capacity.
  • the control unit is constructed to control an AC chopper unit and a triac unit so as to vary the voltage applied to the linear motor 200 as noted.
  • a mechanism insensitive to voltage variations is designed to control the voltage to be appropriate for the cooling capacity required in the linear compressor, to thereby ensure modulation of the cooling capacity. That is, when judging the load as an overload, the control unit applies a voltage to delay the time to turn on the AC chopper unit and the triac unit in a refrigerant suction stroke or to advance the time to turn on the AC chopper unit and the triac unit in a refrigerant compression stroke.
  • the control unit when judging the load as a low load, applies a voltage to advance the time to turn on the AC chopper unit and the triac unit in the refrigerant suction stroke or to delay the time to turn on the AC chopper unit and the triac unit in the refrigerant compression stroke.
  • A represents an S-T curve in a first frequency
  • B represents an S-T curve in a second frequency higher than the first frequency
  • C represents an S-T curve using a variable frequency.
  • the refrigerant inside the linear compressor is expanded in a high temperature state, so that an elastic modulus of the refrigerant gas increases. Consequently, driving the linear motor 200 in a slip identical to that of a low temperature state requires more force in the high temperature state.
  • the high temperature state slip is smaller than the low temperature state slip in the same torque.
  • the control unit varies the frequency input to the linear motor 200 , so that the S-T characteristic moves following curve C as shown in FIG. 13 .
  • the control unit does not adjust the frequency, the S-T characteristic moves from a low temperature region II of curve A to a high temperature region I of curve A.
  • the control unit adjusts the frequency, i.e., when the control unit supplies power varying from the first frequency to the second frequency to the linear motor 200 to prevent variations of the force moving the movable member 130 , the stroke of the movable member 130 is identically maintained, and the speed of the movable member 130 increases, so that the high temperature region I of curve A is changed into a high temperature region I′ of curve B.
  • the S-T characteristic moves from the low temperature region II of curve A to the high temperature region I′ of curve B, i.e., moves following curve C.
  • the slip increases, or the torque is maintained to be substantially identical or increases, so that the stroke of the movable member 130 increases to thereby modulate the cooling capacity.
  • power varying from the second frequency to the first frequency may be applied to the linear motor 200 to reduce the cooling capacity.
  • control of the voltage amplitude and the control of the frequency amplitude may be simultaneously, selectively or alternately performed.
  • the control unit is constructed to control an inverter unit so as to vary the frequency applied to the linear motor 200 as noted.
  • the inverter unit includes a rectification unit which rectifies AC power, and an inverter element which converts a rectified voltage from the rectification unit into an AC voltage according to a control signal.
  • the inverter unit applies power to the linear motor 200 according to a control frequency by the control signal. Hence, the inverter unit may apply power according to a control voltage.
  • the AC chopper method and the triac phase control method which are the methods using applied voltage variations, and the inverter method which is the method using applied frequency variations are nothing but examples of the control methods for modulating the cooling capacity according to the load.
  • methods for naturally modulating a cooling capacity can also be used, such as a direct application method which is a mechanical design method optimizing the relation between a slip and a torque regardless of a load, and a current direct application method which is a mechanical design method using a mechanical resonance frequency varied according to a load.
US13/057,335 2008-08-07 2009-08-05 Linear compressor Abandoned US20110135518A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20080077607 2008-08-07
KR10-2008-0077607 2008-08-07
PCT/KR2009/004366 WO2010016723A1 (ko) 2008-08-07 2009-08-05 리니어 압축기

Publications (1)

Publication Number Publication Date
US20110135518A1 true US20110135518A1 (en) 2011-06-09

Family

ID=41663861

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/057,335 Abandoned US20110135518A1 (en) 2008-08-07 2009-08-05 Linear compressor

Country Status (5)

Country Link
US (1) US20110135518A1 (ko)
EP (1) EP2322799B1 (ko)
KR (1) KR101448315B1 (ko)
CN (1) CN102105690B (ko)
WO (1) WO2010016723A1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058815A1 (en) * 2011-09-06 2013-03-07 Donghan KIM Reciprocating compressor with gas bearing
US20150226199A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226203A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226198A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226210A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226201A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226197A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226196A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226194A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150377531A1 (en) * 2014-06-26 2015-12-31 Lg Electronics Inc. Linear compressor and refrigerator including a linear compressor
US20180198337A1 (en) * 2017-01-10 2018-07-12 Lg Electronics Inc. Moving core-type reciprocating motor and reciprocating compressor having the same
US10288061B2 (en) * 2015-08-31 2019-05-14 Whirlpool S.A. Method and system for protection and diagnosis of a linear compressor, and a linear compressor
US11242845B2 (en) * 2016-10-14 2022-02-08 Hitachi Astemo, Ltd. Linear compressor and device mounted with the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203906210U (zh) * 2013-06-28 2014-10-29 Lg电子株式会社 线性压缩机
CN107288847B (zh) * 2016-03-30 2019-09-17 青岛海尔智能技术研发有限公司 线性压缩机及润滑油供油方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135879A (en) * 1958-08-04 1964-06-02 Gen Electric Linear motor
US3788778A (en) * 1972-06-30 1974-01-29 Carrier Corp Electrodynamic linear motor operated gas compressor
US3931554A (en) * 1974-08-13 1976-01-06 Spentzas Nikolaos E Reciprocating motor-compressor system
SU1079884A2 (ru) * 1982-04-02 1984-03-15 Физико-технический институт низких температур АН УССР Компрессор
US5495131A (en) * 1993-05-28 1996-02-27 Satcon Technology Corp. Parallel air gap serial flux A.C. electrical machine
US6379125B1 (en) * 1996-07-09 2002-04-30 Sanyo Electric Co., Ltd. Linear compressor
US20030017064A1 (en) * 2001-07-19 2003-01-23 Matsushita Electric Industrial Co., Ltd. Linear compressor
US6685438B2 (en) * 2001-08-01 2004-02-03 Lg Electronics Inc. Apparatus and method for controlling operation of reciprocating compressor
US6952060B2 (en) * 2001-05-07 2005-10-04 Trustees Of Tufts College Electromagnetic linear generator and shock absorber
WO2006025619A2 (en) * 2004-08-30 2006-03-09 Lg Electronics, Inc. Linear compressor
WO2006065718A1 (en) * 2004-12-13 2006-06-22 Sullair Corporation Reciprocating pump system
WO2007089083A2 (en) * 2006-02-02 2007-08-09 Lg Electronics, Inc. Control apparatus for linear compressor
US20080131292A1 (en) * 2005-04-08 2008-06-05 Lg Electronics Inc. Apparatus for controlling driving of reciprocating compressor and method thereof
US20110135501A1 (en) * 2008-08-05 2011-06-09 Kye-Lyong Kang Linear compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783968A (en) * 1986-08-08 1988-11-15 Helix Technology Corporation Vibration isolation system for a linear reciprocating machine
JP2004072854A (ja) * 2002-08-05 2004-03-04 Showa Electric Wire & Cable Co Ltd リニアモータ用可動子
KR100588717B1 (ko) * 2004-08-30 2006-06-12 엘지전자 주식회사 리니어 압축기
KR100615802B1 (ko) * 2005-02-16 2006-08-25 엘지전자 주식회사 리니어 압축기의 가동 어셈블리
KR100756721B1 (ko) * 2006-02-02 2007-09-07 엘지전자 주식회사 리니어 압축기의 제어장치
KR100783414B1 (ko) * 2006-09-18 2007-12-11 엘지전자 주식회사 압축기용 왕복동모터의 가동자 구조

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135879A (en) * 1958-08-04 1964-06-02 Gen Electric Linear motor
US3788778A (en) * 1972-06-30 1974-01-29 Carrier Corp Electrodynamic linear motor operated gas compressor
US3931554A (en) * 1974-08-13 1976-01-06 Spentzas Nikolaos E Reciprocating motor-compressor system
SU1079884A2 (ru) * 1982-04-02 1984-03-15 Физико-технический институт низких температур АН УССР Компрессор
US5495131A (en) * 1993-05-28 1996-02-27 Satcon Technology Corp. Parallel air gap serial flux A.C. electrical machine
US6379125B1 (en) * 1996-07-09 2002-04-30 Sanyo Electric Co., Ltd. Linear compressor
US6952060B2 (en) * 2001-05-07 2005-10-04 Trustees Of Tufts College Electromagnetic linear generator and shock absorber
US6742998B2 (en) * 2001-07-19 2004-06-01 Matsushita Electric Industrial Co., Ltd. Linear compressor with vibration canceling spring arrangement
US20030017064A1 (en) * 2001-07-19 2003-01-23 Matsushita Electric Industrial Co., Ltd. Linear compressor
US6685438B2 (en) * 2001-08-01 2004-02-03 Lg Electronics Inc. Apparatus and method for controlling operation of reciprocating compressor
WO2006025619A2 (en) * 2004-08-30 2006-03-09 Lg Electronics, Inc. Linear compressor
US20090047154A1 (en) * 2004-08-30 2009-02-19 Lg Electronics, Inc. Linear Compressor
WO2006065718A1 (en) * 2004-12-13 2006-06-22 Sullair Corporation Reciprocating pump system
US20080131292A1 (en) * 2005-04-08 2008-06-05 Lg Electronics Inc. Apparatus for controlling driving of reciprocating compressor and method thereof
WO2007089083A2 (en) * 2006-02-02 2007-08-09 Lg Electronics, Inc. Control apparatus for linear compressor
US20090206778A1 (en) * 2006-02-02 2009-08-20 Lg Electronics Inc. Control Apparatus For Linear Compressor
US7859801B2 (en) * 2006-02-02 2010-12-28 Lg Electronics Inc. Control apparatus for linear compressor
US20110135501A1 (en) * 2008-08-05 2011-06-09 Kye-Lyong Kang Linear compressor
US8794934B2 (en) * 2008-08-05 2014-08-05 Lg Electronics Inc. Linear compressor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058815A1 (en) * 2011-09-06 2013-03-07 Donghan KIM Reciprocating compressor with gas bearing
US9518573B2 (en) * 2011-09-06 2016-12-13 Lg Electronics Inc. Reciprocating compressor with gas bearing
US9322401B2 (en) * 2014-02-10 2016-04-26 General Electric Company Linear compressor
US9429150B2 (en) * 2014-02-10 2016-08-30 Haier US Appliances Solutions, Inc. Linear compressor
US20150226210A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226201A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226197A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226196A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226194A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US9841012B2 (en) * 2014-02-10 2017-12-12 Haier Us Appliance Solutions, Inc. Linear compressor
US20150226203A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US20150226198A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US9506460B2 (en) * 2014-02-10 2016-11-29 Haier Us Appliance Solutions, Inc. Linear compressor
US9518572B2 (en) * 2014-02-10 2016-12-13 Haier Us Appliance Solutions, Inc. Linear compressor
US20150226199A1 (en) * 2014-02-10 2015-08-13 General Electric Company Linear compressor
US9528505B2 (en) * 2014-02-10 2016-12-27 Haier Us Appliance Solutions, Inc. Linear compressor
US9562525B2 (en) * 2014-02-10 2017-02-07 Haier Us Appliance Solutions, Inc. Linear compressor
US20150377531A1 (en) * 2014-06-26 2015-12-31 Lg Electronics Inc. Linear compressor and refrigerator including a linear compressor
US10288061B2 (en) * 2015-08-31 2019-05-14 Whirlpool S.A. Method and system for protection and diagnosis of a linear compressor, and a linear compressor
US11242845B2 (en) * 2016-10-14 2022-02-08 Hitachi Astemo, Ltd. Linear compressor and device mounted with the same
US20180198337A1 (en) * 2017-01-10 2018-07-12 Lg Electronics Inc. Moving core-type reciprocating motor and reciprocating compressor having the same
US10811920B2 (en) * 2017-01-10 2020-10-20 Lg Electronics Inc. Moving core-type reciprocating motor and reciprocating compressor having the same

Also Published As

Publication number Publication date
EP2322799B1 (en) 2014-04-23
WO2010016723A1 (ko) 2010-02-11
CN102105690B (zh) 2014-06-18
EP2322799A1 (en) 2011-05-18
KR101448315B1 (ko) 2014-10-08
KR20100019351A (ko) 2010-02-18
CN102105690A (zh) 2011-06-22
EP2322799A4 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
EP2322799B1 (en) Linear compressor
US8535023B2 (en) Linear compressor
US8794934B2 (en) Linear compressor
US8562312B2 (en) Linear motor and reciprocating compressor employing the same
KR20130087862A (ko) 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
US8430642B2 (en) Controlling apparatus for linear compressor
US20090232666A1 (en) Linear Compressor
KR20130087864A (ko) 압축기 제어 장치 및 이를 포함한 냉장고
WO2009054640A2 (en) Reciprocating compressor
US20050112000A1 (en) Linear motor and linear compressor having the same
KR20120137899A (ko) 압축기 제어 장치 및 제어 방법
KR20100096536A (ko) 리니어 압축기의 제어 장치 및 제어 방법
US20080213108A1 (en) Linear Compressor
KR102441949B1 (ko) 리니어 압축기의 제어장치 및 그를 포함하는 냉장고
US20100084929A1 (en) Linear motor for linear compressor
KR101948563B1 (ko) 압축기 제어 장치 및 이를 포함한 냉장고
KR100648787B1 (ko) 리니어 압축기
KR100588719B1 (ko) 리니어 압축기의 제어장치 및 제어방법
KR20060020012A (ko) 리니어 압축기
KR20130080282A (ko) 왕복동식 압축기 및 압축기 제어 장치
KR20130080280A (ko) 왕복동식 압축기 및 압축기 제어 장치

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANG, KYE-LYONG;KIM, JONG-KWON;PARK, SHIN-HYUN;AND OTHERS;SIGNING DATES FROM 20110117 TO 20110124;REEL/FRAME:025745/0626

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION