WO2010016685A2 - 로터리 압축기 - Google Patents

로터리 압축기 Download PDF

Info

Publication number
WO2010016685A2
WO2010016685A2 PCT/KR2009/004258 KR2009004258W WO2010016685A2 WO 2010016685 A2 WO2010016685 A2 WO 2010016685A2 KR 2009004258 W KR2009004258 W KR 2009004258W WO 2010016685 A2 WO2010016685 A2 WO 2010016685A2
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
refrigerant
rotary compressor
vane
chamber
Prior art date
Application number
PCT/KR2009/004258
Other languages
English (en)
French (fr)
Other versions
WO2010016685A3 (ko
Inventor
변상명
김상모
Original Assignee
(주)엘지전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지전자 filed Critical (주)엘지전자
Priority to US13/056,398 priority Critical patent/US8517702B2/en
Priority to CN200980129626XA priority patent/CN102132045A/zh
Publication of WO2010016685A2 publication Critical patent/WO2010016685A2/ko
Publication of WO2010016685A3 publication Critical patent/WO2010016685A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/56Number of pump/machine units in operation

Definitions

  • the present invention relates to a rotary compressor, and more particularly to a rotary compressor that can increase the sealing force between the mode switching unit and the chamber for switching the operation mode of the compressor.
  • a refrigerant compressor is applied to a vapor compression refrigeration cycle (hereinafter, referred to as a refrigeration cycle) such as a refrigerator or an air conditioner.
  • a refrigeration cycle such as a refrigerator or an air conditioner.
  • the refrigerant compressor has been introduced is a constant-speed compressor that is driven at a constant speed or an inverter compressor of which the rotational speed is controlled.
  • the refrigerant compressor is a hermetic compressor, in which a drive motor which is a motor and a compression unit operated by the drive motor are installed together in an inner space of a closed casing, is called a hermetic compressor. It can be called a compressor. Most domestic or commercial refrigeration equipment is a hermetic compressor.
  • the refrigerant compressor may be classified into a reciprocating type, a scroll type, a rotary type, and the like according to a method of compressing the refrigerant.
  • the rotary compressor is a method of compressing a refrigerant by using a rolling piston that makes an eccentric rotation in a compression space of a cylinder and a vane that contacts the outer circumferential surface of the rolling piston and divides the compression space of the cylinder into a suction chamber and a discharge chamber.
  • a variable displacement rotary compressor that can vary the refrigeration capacity of the compressor according to the load change has been introduced.
  • a technique for varying the refrigeration capacity of the compressor a technique of applying an inverter motor and a technique of varying the volume of the compression chamber by bypassing a part of the refrigerant to be compressed to the outside of the cylinder are known.
  • variable displacement compressor of a modulation type having at least one cylinder and at least one of which is capable of idling
  • the variable displacement rotary compressor to which the modulation method is applied may be classified into a voltage type and a back pressure type according to a method of restraining vanes.
  • the voltage type is to supply the discharge pressure to the suction port so that the vane is pushed backward by the pressure of the compression space to be constrained
  • the back pressure type is to provide the back pressure of the suction pressure or the discharge pressure to the rear side of the vane to selectively restrain the vane.
  • the present invention is applied to a variable displacement rotary compressor (hereinafter, abbreviated as a rotary compressor) of a modulation method to which a post pressure type is applied.
  • a connecting tube is used between the connecting tube of the mode switching unit and the rear side of the vane when connecting the mode switching unit to provide a back pressure to the rear side of the vane.
  • the diameter of the connection tube and the diameter of the hole into which the connection tube is inserted are not properly set, leakage of the refrigerant may occur.
  • the connection tube and the hole are too tightly connected, the connection is relatively low in the press-fit of the connection tube. Tubes could be scratched or crushed to leak refrigerant.
  • the present invention solves the problems of the conventional rotary compressor as described above, to provide a rotary compressor that can effectively block the leakage of the refrigerant by optimizing the gap between the connection tube and the hole into which the connection tube is inserted. There is a purpose.
  • At least one cylinder is installed in the inner space of the sealed container, has a compression space for compressing the refrigerant, the chamber is formed to be separated from the inner space of the sealed container;
  • a plurality of bearings coupled to upper and lower sides to cover the compression space and the chamber of the cylinder;
  • At least one rolling piston for compressing the refrigerant while pivoting in the compression space of the cylinder;
  • At least one vane slidably coupled to the cylinder to divide the compression space into a suction chamber and a discharge chamber together with the rolling piston, and at least one of which is supported by a refrigerant filled in the chamber of the cylinder;
  • a mode switching unit for selectively supplying a refrigerant having a suction pressure or a discharge pressure to the chamber of the cylinder to change an operation mode of the compressor, wherein the cylinder or any one of the bearings communicates with the mode switching unit.
  • a connecting hole is formed, and a connecting tube is inserted into the connecting hole so that the connecting tube of
  • the value A minus the inner diameter of the connecting hole from the outer diameter of the connecting tube is formed in a range of about 0.02 mm ⁇ A ⁇ 0.15 mm.
  • An extension part may be formed at an edge of the inlet end of the connection hole so that an inner diameter thereof is expanded in the insertion direction of the connection tube.
  • the insertion end of the connecting tube may be formed with a guide so that the outer diameter is small in the end direction.
  • the inclination angle ratio B of the extension to the inclination angle of the guide part may be formed in a range of 0.2 ⁇ B ⁇ 2.5.
  • connection tube may be formed of the same material as the connection tube connected to the mode switching unit.
  • the connecting tube is formed such that the side connected to the mode switching unit forms a large diameter portion, while the side inserted into the connecting hole of the cylinder forms a small diameter portion.
  • the connecting tube may be formed by uniting a large diameter portion and a small diameter portion or a plurality of tubes having different diameters assembled.
  • the inner diameter of the connecting hole connected to the vane chamber and the outer diameter of the connecting tube inserted into the connecting hole are defined so that the connecting tube is in close contact with the connecting hole so that the refrigerant is connected to the connecting hole.
  • FIG. 1 is a schematic diagram showing a refrigeration cycle including a variable displacement rotary compressor of the present invention
  • Figure 2 is a longitudinal cross-sectional view showing the interior of the rotary compressor according to Figure 1 longitudinally around the vane
  • FIG. 3 is a longitudinal sectional view showing the inside of the rotary compressor according to FIG.
  • FIG. 4 is a perspective view of the compression part of the rotary compressor shown in FIG.
  • Figure 5 is a cross-sectional view showing a connection hole and a connecting tube for connecting the common connector in the rotary compressor according to FIG.
  • connection hole and the connection tube are assembled in the rotary compressor according to FIG. 5;
  • FIG. 7 is a longitudinal sectional view showing an enlarged relationship between a connection hole and a connection tube according to FIG. 6;
  • FIG. 8 is a cross-sectional view illustrating a constraining flow path for restraining the second vane in the rotary compressor according to FIG. 1.
  • 9 and 10 are a longitudinal cross-sectional view and a cross-sectional view showing a power operation mode of the rotary compressor according to FIG.
  • 11 and 12 are a longitudinal cross-sectional view and a cross-sectional view showing a saving operation mode of the rotary compressor according to FIG.
  • FIG. 13 is a graph illustrating changes in the performance of the compressor while changing a value obtained by subtracting the inner diameter of the connecting hole from the outer diameter of the connecting tube in the rotary compressor of the present invention.
  • variable displacement rotary compressor 1 comprises the evaporator 4 to form part of a closed loop refrigeration cycle leading to the condenser 2, the expansion valve 3, and the evaporator 4.
  • the suction side is connected to the outlet side of the outlet and the discharge side is connected to the inlet side of the condenser 2.
  • the accumulator 5 is connected between the outlet side of the evaporator 4 and the inlet side of the compressor 1 to separate the gas refrigerant and the liquid refrigerant from the refrigerant transferred from the evaporator 4 to the compressor 1. do.
  • the compressor 1 is provided with a transmission unit 200 generating a driving force in an upper side of the inner space of the closed casing 100, and the transmission unit 200 below the inner space of the casing 100.
  • the first compression unit 300 and the second compression unit 400 for compressing the refrigerant by the power generated in the) is installed.
  • a mode switching unit 500 is installed outside the casing 100 to switch the operation mode of the compressor such that the second compression unit 400 idles if necessary.
  • the casing 100 maintains a state of the discharge pressure by the refrigerant discharged from the first compression unit 300 and the second compression unit 400 or the first compression unit 300, the inner space of the casing 100,
  • One gas suction pipe 140 is connected to the lower main surface of the lower portion 100 so that the refrigerant is sucked between the first compression unit 300 and the second compression unit 400, and the first compression unit is connected to the upper end of the casing 100.
  • One gas discharge pipe 150 is connected to deliver the refrigerant compressed and discharged by the unit 300 and the second compression unit 400 to the refrigeration system.
  • the transmission unit 200 is a stator 210 fixed to the inner circumferential surface of the casing 100, a rotor 220 rotatably disposed inside the stator 210, and the rotor 220 Shrink is made of a rotating shaft 230 to rotate together.
  • the electric motor 200 may be a constant speed motor or an inverter motor. However, in consideration of the cost, the electric motor 200 may vary the operation mode of the compressor by idling one of the first compression part 300 and the second compression part 400 while using a constant speed motor if necessary. Can be.
  • the rotation shaft 230 includes a shaft portion 231 coupled to the rotor 220, and a first eccentric portion 232 and a second eccentric portion 233 which are eccentrically formed on both left and right sides of the lower end of the shaft portion 231.
  • the first eccentric portion 232 and the second eccentric portion 233 are formed symmetrically with a phase difference of approximately 180 °, and the first rolling piston 340 and the second rolling piston 430, which will be described later, are rotatable, respectively.
  • the first compression unit 300 is formed in an annular shape and rotatably coupled to the first cylinder 310 installed inside the casing 100 and the first eccentric portion 232 of the rotation shaft 230.
  • a first rolling piston 320 that rotates in the first compression space V1 of the first cylinder 310 and compresses the refrigerant, and is coupled to the first cylinder 310 so as to be movable in a radial direction.
  • a first vane 330 in which a sealing surface is in contact with the outer circumferential surface of the first rolling piston 320 and partitions the first compression space V1 of the first cylinder 310 into a first suction chamber and a first discharge chamber, respectively; And a vane spring 340 made of a compression spring to elastically support the rear side of the first vane 330.
  • Reference numeral 350 denotes a first discharge valve, and 360 denotes a first muffler.
  • the second compression unit 400 is formed in an annular shape, the second cylinder 410 installed below the first cylinder 310 in the casing 100 and the second eccentric portion of the rotary shaft 230 ( A second rolling piston 420 rotatably coupled to 233 and compressing the refrigerant while turning in the second compression space V2 of the second cylinder 410, and radially to the second cylinder 410.
  • the second compression space V2 of the second cylinder 410 is partitioned into a second suction chamber and a second discharge chamber, respectively, to be movable and coupled to the outer circumferential surface of the second rolling piston 420.
  • the second vane 430 is spaced apart from the outer circumferential surface of the piston 420 so that the second suction chamber and the second discharge chamber communicate with each other.
  • Reference numeral 440 denotes a second discharge valve
  • 450 denotes a second muffler.
  • an upper bearing plate (hereinafter referred to as an upper bearing) 110 is covered on the upper side of the first cylinder 310, and a lower bearing plate (hereinafter referred to as a lower bearing) 120 is provided below the second cylinder 410. Is covered, and an intermediate bearing plate (hereinafter, intermediate bearing) 130 is interposed between the lower side of the first cylinder 310 and the upper side of the second cylinder 410 together with the first compression space V1 and the second.
  • the rotation shaft 230 is supported in the axial direction while forming the compression space V2.
  • the upper bearing 110 and the lower bearing 120 are formed in a disc shape, and the center portion 231 of the rotary shaft 230 is radially supported at each center thereof.
  • the intermediate bearing 130 is formed in an annular shape having an inner diameter such that the eccentric portion of the rotating shaft 230 penetrates, and at one side thereof, the gas suction pipe 140 has a first suction port 312 and a second suction port.
  • a communication passage 131 is formed to communicate with the 412.
  • the communication passage 131 of the intermediate bearing 130 has a horizontal path 132 formed in a radial direction so as to communicate with the gas suction pipe 140, and the first suction port 312 at the end of the horizontal path 132. And a second suction port 412 is formed in a vertical path 133 penetrating in the axial direction so as to communicate with the horizontal path 132.
  • the horizontal path 132 is grooved to a predetermined depth from the outer circumferential surface of the intermediate bearing 130 to an inner circumferential surface, that is, a depth that does not completely penetrate the inner circumferential surface.
  • a first vane slot 311 is formed on one side of an inner circumferential surface of the first compression space V1 such that the first vane 330 linearly reciprocates, and the first vane slot is formed.
  • a first suction port 312 is formed at one side of the 311 to guide the refrigerant into the first compression space V1, and the other side of the first vane slot 311 has a refrigerant inside the second muffler 360.
  • a first discharge guide groove (not shown) for discharging into the space is formed to be inclined by chamfering at the corner opposite to the first suction port 312.
  • the second cylinder 410 has a second vane slot 411 is formed on one side of the inner peripheral surface constituting the second compression space (V2) so that the second vane 430 linearly reciprocates, the second vane slot
  • a second suction port 412 is formed at one side of the 411 to guide the refrigerant into the second compression space V2, and at the other side of the second vane slot 411, the refrigerant is inside the second muffler 450.
  • a second discharge guide groove (not shown) for discharging into the space is formed to be inclined by chamfering at the corner opposite to the second suction port 412.
  • the first suction port 312 is inclined by chamfering toward the inner circumferential surface of the first cylinder 310 from the bottom edge of the first cylinder 310 in contact with the upper end of the vertical path 133 of the intermediate bearing 130. Is formed.
  • the second suction port 412 is chamfered to face the inner circumferential surface of the second cylinder 410 at the upper edge of the second cylinder 410 in contact with the lower end of the vertical path 133 of the intermediate bearing 130. It is formed to be inclined.
  • the second vane slot 411 is formed by cutting a predetermined depth in the radial direction so that the second vane 430 reciprocates in a straight line, that is, the rear side of the second vane slot 411
  • the vane chamber 413 is formed at the outer side end side so as to communicate with the common side connecting pipe 530 which will be described later.
  • the vane chamber 413 is sealed to be separated from the inner space of the casing 100 by the intermediate bearing 130 and the lower bearing 120 in contact with the upper and lower surfaces thereof, and the second vane 430 is completely retracted. Even though the inside of the second vane slot 411 is accommodated inside the second vane 430, a predetermined internal volume is formed so that the rear surface of the second vane 430 forms a pressurized surface with respect to the refrigerant supplied through the common side connecting pipe 530. It is formed to have.
  • connection hole 416 communicates with one side of the vane chamber 413, that is, from the center of the second cylinder 410 to the outer circumferential surface thereof, so as to communicate with the common side connecting pipe 530 which will be described later.
  • the connection hole 416 is formed, and the connection tube 531 for connecting the vane chamber 413 and the common side connection pipe 530 is inserted and coupled.
  • connection hole 416 is formed in a circular shape, the outer edge thereof, that is, the corner of the side of the connection tube 531 is inserted into the diameter toward the outside so that the connection tube 531 can be easily inserted An enlarged portion 416a is formed.
  • the extension 416a may be formed to be inclined as shown in the drawing, but may be formed to be curved in some cases.
  • connection tube 531 is welded and coupled to the common side connector 530, it may be preferable that the connection tube 531 is formed of the same material as the common side connector 530, and is connected to the common side connector 530. While forming the large diameter portion, the side inserted into the connection hole 416 of the second cylinder 410 may be formed to form the small diameter portion.
  • the connecting tube 531 may be formed of a large diameter portion and a small diameter portion, but may be formed by assembling a plurality of tubes having different diameters. And, the end of the connecting tube 531, that is, the end inserted into the connection hole 416, the guide portion 531a is formed so that the outer diameter becomes narrower toward the insertion direction.
  • the guide part 531a may be formed to be inclined as shown in the drawing, but in some cases, may be formed to be curved.
  • the guide portion 531a of the connection tube 531 is formed such that the ratio B of dividing the inclination angle ⁇ by the extension inclination angle ⁇ of the connection hole is greater than or equal to about 0.2 and less than or equal to 2.5. It is preferable for the smooth indentation of the connecting tube 531.
  • connection hole 416 and the outer circumferential surface of the connection tube 531 may be in close contact with each other to reduce the leakage of the refrigerant from the vane chamber 413 to a minimum, but the outer diameter of the connection tube 531 may be reduced. If the outer diameter d2 is too large than the inner diameter d1 of the connection hole 416, the connection tube 531 may be scratched or deformed when the connection tube 531 is press-fitted. ) And the connection tube 531 should be formed in an appropriate size to be in close contact without deformation.
  • the gap A between the connection hole 416 and the connection tube 531 that is, the difference obtained by subtracting the inner diameter d1 of the connection hole from the outer diameter d2 of the connection tube is greater than or equal to about 0.02 mm. It may be desirable to form a size smaller than or equal to 0.15 mm.
  • the second vane 430 is filled with the pressing surface 432 in the vane chamber 413 so that the sealing surface 431 is in contact with or spaced apart from the second rolling piston 420 according to the operation mode of the compressor. Is supported by the refrigerant at the suction pressure or the refrigerant at the discharge pressure, the second vane 430 must be restrained inside the second vane slot 411 in a certain operating mode of the compressor, that is, the saving mode. Compressor noise and a decrease in efficiency due to the shaking of 430 can be prevented in advance. To this end, a method of restraining the second vane using the internal pressure of the casing as shown in FIG. 8 may be proposed.
  • the second cylinder 410 has a high pressure side vane constraining passage (hereinafter referred to as a 'first constraining passage') 414 perpendicular to or perpendicular to the direction of motion of the second vane 430. ) Is formed.
  • the first restriction passage 414 allows the inside of the casing 100 to communicate with the second vane slot 411 so that the refrigerant having a discharge pressure filled in the inner space of the casing 100 is the second vane 430. To the opposite vane slot face to restrain.
  • a low pressure side vane restriction flow passage (hereinafter referred to as a “second restraint flow passage”) in which the second vane slot 411 and the second suction port 412 communicate with the first restraint flow passage 414. 415 may be formed.
  • the second constrained passage 415 is a pressure difference with the first constrained passage 414 while the refrigerant of the discharge pressure flowing through the first constrained passage 414 exits to the second constrained passage 415.
  • the second vane 430 may serve to be quickly restrained while going.
  • the mode switching unit 500 has one end connected to the low pressure side connecting pipe 510 branched from the gas suction pipe 140, and one end thereof to the inner space of the casing 100.
  • One end is connected to the high pressure side connecting pipe 520 and the connecting tube 531 connected to the vane chamber 413 of the second cylinder 410 to connect the low pressure side connecting pipe 510 and the high pressure side.
  • the common side connecting pipe 530 selectively communicated with the connecting pipe 520 and the first mode switching valve connected to the vane chamber 413 of the second cylinder 410 through the common side connecting pipe 530 ( 540 and a second mode switching valve 550 connected to the first mode switching valve 540 to control the opening and closing operation of the first mode switching valve 540.
  • variable displacement rotary compressor The basic compression process of the variable displacement rotary compressor according to the present invention as described above is as follows.
  • the rotation shaft 230 rotates together with the rotor 220 while the transmission unit 200 is rotated.
  • the rotational force of the first compression unit 300 and the second compression unit 400 is transmitted, the first compression unit 300 and the second compression unit 400, respectively, the first rolling piston 320 and the first 2, the rolling piston 420 makes an eccentric rotational motion in each of the first and second compression spaces V1 and V2, and the first and second vanes 330 and 430 are respectively.
  • the refrigerant is compressed while forming compression spaces V1 and V2 having a phase difference of 180 ° together with the second rolling pistons 320 and 420.
  • the refrigerant flows into the communication passage 131 of the intermediate bearing 130 through the accumulator 5 and the suction pipe 140, and the refrigerant flows into the communication path 131.
  • the suction is compressed into the first compression space V1 through the first suction port 312 of the first cylinder 310.
  • the second compression space V2 of the second cylinder 410 having a phase difference of 180 ° with the first compression space V1 is the suction stroke while the first compression space V1 is in the compression stroke process. Will start.
  • variable capacity rotary compressor according to the present invention the process of varying the capacity is as follows.
  • the compressor or the air conditioner applying the same, the power is applied to the first mode switching valve 540 as shown in FIGS. 9 and 10, so that the low pressure side connecting pipe 510 is cut off.
  • the high pressure side connector 520 is connected to the common side connector (530). Accordingly, the high pressure gas inside the casing 100 is supplied to the vane chamber 413 of the second cylinder 410 through the high pressure side connecting pipe 520 so that the second vane 430 is the vane chamber 413.
  • the refrigerant gas flowing into the second compression space (V2) is normally compressed and discharged while being pressed by the high pressure refrigerant filled in the inside of the second rolling piston 420.
  • the high pressure refrigerant gas or oil is supplied to the first restriction passage 414 provided in the second cylinder 410 to add one side of the second vane 430, but the first restriction passage ( As the cross-sectional area of 414 is narrower than the cross-sectional area of the second vane slot 411, the pressing force at the side surface is smaller than the forward and backward pressing force in the vane chamber 413 so that the second vane 430 cannot be restrained. . Accordingly, the second vane 430 is pressed against the second rolling piston 420 to compress the entire refrigerant sucked into the second compression space V2 while dividing the second compression space V2 into the suction chamber and the discharge chamber. Discharged. As a result, the compressor or the air conditioner using the same is 100% operated.
  • the power is turned off to the first mode switching valve 540 as shown in FIGS.
  • the low pressure side connection pipe 510 and the common side connection pipe 530 communicate with each other, and a portion of the low pressure refrigerant gas sucked into the second cylinder 410 flows into the vane chamber 413. Accordingly, the second vane 430 is pushed by the refrigerant compressed in the second compression space V2 and received inside the second vane slot 411, so that the suction chamber and the discharge chamber of the second compression space V2 communicate with each other. The refrigerant gas sucked into the second compression space V2 may not be compressed.
  • the pressure is added to one side of the second vane 430 by the first restraint passage 414 provided in the second cylinder 410 and the second vane by the second restraint passage 415.
  • the second vane is generated as the pressure applied through the first restraint passage 414 tends to move toward the second restraint passage 415. (430) can be quickly and surely restrained without trembling.
  • the pressure of the vane chamber 413 when the pressure of the vane chamber 413 is switched from the discharge pressure to the suction pressure, the discharge pressure remains in the vane chamber 413 to form a kind of intermediate pressure Pm, but the vane chamber 413 The pressure of the vane chamber 413 is rapidly converted to the suction pressure Ps as the intermediate pressure Pm of the gas leaks through the second constrained flow passage 415 having a lower pressure than that of the second vane 430. It is possible to prevent the shaking phenomenon more quickly and thereby the second vane 430 is quickly and effectively restrained. Therefore, as the second compressed space of the second cylinder 410 communicates with one space, the entire refrigerant sucked into the second compressed space of the second cylinder 410 is not compressed, and the track of the second rolling piston is not compressed.
  • a portion of the refrigerant is moved along the communication passage 131 and the first suction port 312 to the first compression space (V1) by the pressure difference to the second compression unit 400 Will not work.
  • the compressor or the air conditioner using the same operates only as much as the capacity of the first compression unit.
  • the suction loss may be reduced by preventing overheating of the accumulator 5.
  • the connecting tube 531 is press-fitted into the connecting hole 416 of the second cylinder 410 to connect the common side connecting pipe 530 to the vane chamber 413 of the second cylinder 410.
  • the connection tube 531 is pressed into the connection hole 416, and the joint tube 531 is inserted into the connection tube 531 to be welded, but as shown in FIG. 7, the connection tube 531.
  • the outer diameter (d2) of the () is formed to an appropriate size with respect to the inner diameter (d1) of the connecting hole 416, the connecting tube 531 is scratched when the connecting tube 531 is pressed into the connecting hole 416.
  • FIG. 13 is a graph illustrating changes in performance of the compressor while changing a value obtained by subtracting the inner diameter d1 of the connecting hole 416 from the outer diameter d2 of the connecting tube 531 as in the present embodiment. As shown in the figure, it can be seen that the performance of the compressor is improved by 3 to 5% in the range of d2-d1 of 0.02 ⁇ 0.15.
  • connection hole may be formed in the first cylinder, the lower bearing, the intermediate bearing, or the upper bearing in addition to the second cylinder.
  • the connection hole may be formed in the same manner as in the above-described embodiment.
  • the present invention is applied to a double rotary compressor, but the present invention can also be applied to a single rotary compressor having a vane chamber.
  • the rotary compressor of the present invention can be widely used in a refrigeration machine to which a refrigerant compression refrigeration cycle such as an air conditioner is applied.

Abstract

본 발명은 로터리 압축기에 관한 것이다. 본 발명에 의한 로터리 압축기는, 베인챔버에 연결되는 연결구멍의 내경과 그 연결구멍에 삽입되는 연결튜브의 외경을 규정하여 상기 연결구멍에 연결튜브가 긴밀하게 밀착되도록 함으로써, 냉매가 연결구멍과 연결튜브 사이로 누설되는 것을 방지하여 베인의 모드전환이 신속하고 정확하게 이루어지도록 할 수 있고 이를 통해 압축기의 성능이 향상될 수 있을 뿐만 아니라 베인의 떨림으로 인한 소음을 미연에 방지할 수 있다.

Description

로터리 압축기
본 발명은 로터리 압축기에 관한 것으로, 특히 압축기의 운전모드를 전환하기 위한 모드전환유닛과 챔버 사이의 실링력을 높일 수 있는 로터리 압축기에 관한 것이다.
일반적으로 냉매 압축기는 냉장고나 에어콘과 같은 증기압축식 냉동사이클(이하, 냉동사이클로 약칭함)에 적용되고 있다. 상기 냉매 압축기는 일정한 속도로 구동되는 등속형 압축기 또는 회전 속도가 제어되는 인버터형 압축기가 소개되고 있다.
상기 냉매 압축기는 통상 전동기인 구동모터와 그 구동모터에 의해 작동되는 압축부가 밀폐된 케이싱의 내부공간에 함께 설치되는 경우를 밀폐형 압축기라고 하고, 상기 구동모터가 케이싱의 외부에 별도로 설치되는 경우를 개방형 압축기라고 할 수 있다. 가정용 또는 업소용 냉동기기는 대부분 밀폐형 압축기가 사용되고 있다. 그리고 상기 냉매 압축기는 냉매를 압축하는 방식에 따라 왕복동식, 스크롤식, 로터리식 등으로 구분될 수 있다.
상기 로터리 압축기는 실린더의 압축공간에서 편심 회전운동을 하는 롤링피스톤과 그 롤링피스톤의 외주면에 접하여 상기 실린더의 압축공간을 흡입실과 토출실로 구획하는 베인을 이용하여 냉매를 압축하는 방식이다. 근래에는 부하의 변화에 따라 압축기의 냉동용량을 가변할 수 있는 용량 가변형 로터리 압축기가 소개되고 있다. 압축기의 냉동용량을 가변하기 위한 기술로는 인버터 모터를 적용하는 기술과, 압축되는 냉매의 일부를 실린더의 외부로 바이패스시켜 압축실의 용적을 가변시키는 기술이 알려져 있다. 하지만, 인버터 모터를 적용하는 경우에는 그 인버터 모터를 구동하기 위한 드라이버의 가격이 통상 정속모터의 드라이버에 비해 10배 정도로 매우 비싸 압축기의 생산원가를 높이게 되는 반면, 냉매를 바이패스시키는 경우에는 배관시스템이 복잡하게 되어 냉매의 유동 저항이 증가됨에 따라 압축기의 효율이 저하되는 단점이 있다.
이를 감안하여, 적어도 한 개 이상의 실린더를 구비하고 그 중 적어도 한 개의 실린더는 공회전을 할 수 있도록 구비하는 모듈레이션 방식의 용량 가변 압축기가 소개되고 있다. 상기와 같은 모듈레이션 방식이 적용된 용량 가변 로터리 압축기는 베인을 구속하는 방식에 따라 전압식과 후압식으로 구분할 수 있다. 예컨대, 전압식은 흡입구로 토출압을 공급하여 베인이 압축공간의 압력에 의해 후방으로 밀려 구속되도록 하는 것이고, 후압식은 베인의 후방측에 흡입압 또는 토출압의 배압력을 제공하여 베인이 선택적으로 구속되도록 하는 것이다. 본 발명은 후압식이 적용된 모듈레이션 방식의 용량 가변형 로터리 압축기(이하, 로터리 압축기로 약칭함)에 적용되는 것이다.
상기와 같은 종래의 로터리 압축기에서는, 상기 베인의 후방측에 배압력을 제공하기 위해 모드전환유닛을 연결할 때 그 모드전환유닛의 연결관과 베인의 후방측 사이에는 연결튜브가 사용된다. 하지만, 상기 연결튜브의 직경과 그 연결튜브가 삽입되는 구멍의 직경이 적절하게 설정되지 못한 경우 냉매의 누설이 발생될 수 있다. 예컨대, 상기 연결튜브와 구멍 사이에 틈새가 큰 경우에는 그 틈새를 통해 냉매가 누설될 수 있고, 반대로 상기 연결튜브와 구멍 사이가 지나치게 밀착되는 경우에는 상기 연결튜브의 압입시 상대적으로 경도가 낮은 연결튜브가 긁히거나 찌그러져 냉매가 누설될 수 있었다.
본 발명은 상기와 같은 종래 로터리 압축기가 가지는 문제점을 해결한 것으로, 상기 연결튜브와 그 연결튜브가 삽입되는 구멍 사이의 틈새를 최적화하여 냉매가 누설되는 것을 효과적으로 차단할 수 있는 로터리 압축기를 제공하려는데 본 발명의 목적이 있다.
본 발명의 목적을 달성하기 위하여, 밀폐용기의 내부공간에 설치되고, 냉매를 압축하기 위한 압축공간을 가지며, 상기 밀폐용기의 내부공간과 분리되도록 챔버가 형성되는 적어도 한 개 이상의 실린더; 상기 실린더의 압축공간과 챔버를 복개하도록 상하 양측에 결합되는 복수 개의 베어링들; 상기 실린더의 압축공간에서 선회운동을 하면서 냉매를 압축하는 적어도 한 개의 롤링피스톤; 상기 실린더에 미끄러지게 결합되어 상기 롤링피스톤과 함께 상기 압축공간을 흡입실과 토출실로 구분하고 적어도 어느 한 개는 상기 실린더의 챔버에 채워지는 냉매에 의해 지지되는 적어도 한 개의 베인; 및 상기 실린더의 챔버에 흡입압 또는 토출압의 냉매를 선택적으로 공급하여 압축기의 운전모드를 가변하는 모드전환유닛;을 포함하고, 상기 실린더 또는 어느 한 개의 베어링에는 상기 챔버가 모드전환유닛과 연통되도록 연결구멍이 형성되고, 그 연결구멍에 상기 모드전환유닛의 연결관이 연결되도록 연결튜브가 삽입되며, 상기 연결튜브의 외경이 상기 연결구멍의 내경보다 크게 형성되는 로터리 압축기가 제공된다.
여기서, 상기 연결튜브의 외경에서 상기 연결구멍의 내경을 뺀 값(A)이 대략 0.02mm ≤ A ≤ 0.15mm의 범위에서 형성되는 것이 바람직할 수 있다.
그리고 상기 연결구멍의 입구단 모서리에는 상기 연결튜브의 삽입방향으로 그 내경이 확대되도록 확장부가 형성될 수 있다.
그리고 상기 연결튜브의 삽입단은 그 끝단방향으로 외경이 작아지도록 안내부가 형성될 수 있다.
그리고 상기 안내부의 경사각 대비 확장부의 경사각 비율(B)은 0.2 ≤ B ≤ 2.5의 범위에서 형성될 수 있다.
그리고 상기 연결튜브는 상기 모드전환유닛과 연결되는 연결관과 동일한 재질로 형성될 수 있다.
상기 연결튜브는 상기 모드전환유닛과 연결되는 쪽이 대경부를 이루는 반면 상기 실린더의 연결구멍에 삽입되는 쪽이 소경부를 이루도록 형성
상기 연결튜브는 대경부와 소경부가 일체로 형성되거나 또는 서로 다른 직경을 가지는 복수 개의 튜브가 조립되어 형성될 수 있다.
본 발명에 의한 로터리 압축기는, 베인챔버에 연결되는 연결구멍의 내경과 그 연결구멍에 삽입되는 연결튜브의 외경을 규정하여 상기 연결구멍에 연결튜브가 긴밀하게 밀착되도록 함으로써, 냉매가 연결구멍과 연결튜브 사이로 누설되는 것을 방지하여 베인의 모드전환이 신속하고 정확하게 이루어지도록 할 수 있고 이를 통해 압축기의 성능이 향상될 수 있을 뿐만 아니라 베인의 떨림으로 인한 소음을 미연에 방지할 수 있다.
도 1은 본 발명 용량 가변형 로터리 압축기를 포함한 냉동사이클을 개략적으로 보인 계통도,
도 2는 도 1에 따른 로터리 압축기를 베인을 중심으로 종단면하여 내부를 보인 종단면도,
도 3은 도 1에 따른 로터리 압축기를 흡입구를 중심으로 종단면하여 내부를 보인 종단면도,
도 4는 도 1에 따른 로터리 압축기의 압축부를 파단하여 보인 사시도,
도 5는 도 1에 따른 로터리 압축기에서 공용측 연결관을 연결하기 위한 연결구멍과 연결튜브를 보인 횡단면도,
도 6은 도 5에 따른 로터리 압축기에서 연결구멍과 연결튜브가 조립된 상태를 확대하여 보인 횡단면도,
도 7은 도 6에 따른 연결구멍과 연결튜브 사이의 관계를 확대하여 보인 종단면도,
도 8은 도 1에 따른 로터리 압축기에서 제2 베인을 구속하기 위한 구속유로를 설명하기 위한 것으로, 도 4의 Ⅰ-Ⅰ선단면도,
도 9 및 도 10은 도 1에 따른 로터리 압축기의 파워운전모드를 보인 종단면도 및 횡단면도,
도 11 및 도 12는 도 1에 따른 로터리 압축기의 세이빙운전모드를 보인 종단면도 및 횡단면도,
도 13은 본 발명의 로터리 압축기에서 연결튜브의 외경에서 연결구멍의 내경을 뺀 값을 변경하면서 압축기의 성능 변화를 살펴본 그래프.
본 발명의 로터리 압축기를 첨부도면에 도시된 실시예에 의거하여 상세하게 설명한다.
도 1에 도시된 바와 같이 본 발명에 의한 용량 가변형 로터리 압축기(1)는, 응축기(2), 팽창변(3), 그리고 증발기(4)로 이어지는 폐루프 냉동사이클의 일부를 이루도록 상기 증발기(4)의 출구측에 흡입측이 연결되는 동시에 상기 응축기(2)의 입구측에 토출측이 연결된다. 그리고 상기 증발기(4)의 출구측과 압축기(1)의 입구측 사이에는 상기 증발기(4)에서 압축기(1)로 전달되는 냉매에서 가스냉매와 액냉매를 분리할 수 있도록 어큐뮬레이터(5)가 연결된다.
상기 압축기(1)는 도 2에서와 같이 밀폐된 케이싱(100)의 내부공간 상측에 구동력을 발생하는 전동부(200)가 설치되고, 상기 케이싱(100)의 내부공간 하측에는 상기 전동부(200)에서 발생된 동력으로 냉매를 압축하는 제1 압축부(300)와 제2 압축부(400)가 설치된다. 그리고 상기 케이싱(100)의 외부에는 상기 제2 압축부(400)가 필요에 따라 공회전을 하도록 압축기의 운전모드를 전환하는 모드전환유닛(500)이 설치된다.
상기 케이싱(100)은 그 내부공간이 상기 제1 압축부(300)와 제2 압축부(400) 또는 제1 압축부(300)에서 토출되는 냉매에 의해 토출압의 상태를 유지하고, 상기 케이싱(100)의 하반부 주면에는 제1 압축부(300)와 제2 압축부(400)의 사이로 냉매가 흡입되도록 한 개의 가스흡입관(140)이 연결되며, 상기 케이싱(100)의 상단에는 제1 압축부(300)와 제2 압축부(400)에서 압축되어 토출된 냉매가 냉동시스템으로 전달되도록 한 개의 가스토출관(150)이 연결된다.
상기 전동부(200)는 상기 케이싱(100)의 내주면에 고정되는 고정자(210)와, 상기 고정자(210)의 내부에 회전 가능하게 배치되는 회전자(220)와, 상기 회전자(220)에 열박음 되어 함께 회전을 하는 회전축(230)으로 이루어진다. 상기 전동부(200)는 정속모터일 수도 있고 인버터모터일 수도 있다. 하지만, 비용을 고려하면 상기 전동부(200)는 정속모터를 이용하면서도 상기 제1 압축부(300)와 제2 압축부(400) 중에서 어느 한 쪽을 필요시 공회전시켜 압축기의 운전모드를 가변할 수 있다.
그리고 상기 회전축(230)은 회전자(220)에 결합되는 축부(231)와, 그 축부(231)의 하단부에 좌우 양측으로 편심지게 형성되는 제1 편심부(232)와 제2 편심부(233)로 이루어진다. 상기 제1 편심부(232)와 제2 편심부(233)는 대략 180°의 위상차를 두고 대칭되게 형성되고 후술할 제1 롤링피스톤(340)과 제2 롤링피스톤(430)이 각각 회전 가능하게 결합된다.
상기 제1 압축부(300)는 환형으로 형성되고 상기 케이싱(100)의 내부에 설치되는 제1 실린더(310)와, 상기 회전축(230)의 제1 편심부(232)에 회전 가능하게 결합되고 상기 제1 실린더(310)의 제1 압축공간(V1)에서 선회하면서 냉매를 압축하는 제1 롤링피스톤(320)과, 상기 제1 실린더(310)에 반경방향으로 이동 가능하게 결합되어 그 일측의 실링면이 상기 제1 롤링피스톤(320)의 외주면에 접촉되고 상기 제1 실린더(310)의 제1 압축공간(V1)을 제1 흡입실과 제1 토출실로 각각 구획하는 제1 베인(330)과, 상기 제1 베인(330)의 후방측을 탄력 지지하도록 압축스프링으로 된 베인스프링(340)을 포함한다. 그리고 미설명 부호인 350은 제1 토출밸브이고, 360은 제1 머플러이다.
상기 제2 압축부(400)는 환형으로 형성되고 상기 케이싱(100) 내부에서 상기 제1 실린더(310) 하측에 설치되는 제2 실린더(410)와, 상기 회전축(230)의 제2 편심부(233)에 회전 가능하게 결합되고 상기 제2 실린더(410)의 제2 압축공간(V2)에서 선회하면서 냉매를 압축하는 제2 롤링피스톤(420)과, 상기 제2 실린더(410)에 반경방향으로 이동 가능하게 결합되고 상기 제2 롤링피스톤(420)의 외주면에 접촉되어 상기 제2 실린더(410)의 제2 압축공간(V2)이 제2 흡입실과 제2 토출실로 각각 구획되거나 또는 상기 제2 롤링피스톤(420)의 외주면에서 이격되어 상기 제2 흡입실과 제2 토출실이 서로 연통되도록 하는 제2 베인(430)을 포함한다. 그리고 미설명 부호인 440은 제2 토출밸브이고, 450은 제2 머플러이다.
여기서, 상기 제1 실린더(310)의 상측에는 상부베어링플레이트(이하,상부베어링)(110)가 복개되고, 상기 제2 실린더(410)의 하측에는 하부베어링플레이트(이하, 하부베어링)(120)가 복개되며, 상기 제1 실린더(310)의 하측과 제2 실린더(410)의 상측 사이에는 중간베어링플레이트(이하, 중간베어링)(130)가 개재되어 함께 제1 압축공간(V1)과 제2 압축공간(V2)을 형성하면서 상기 회전축(230)을 축방향으로 지지하게 된다.
도 3 및 도 4에서와 같이, 상기 상부베어링(110)과 하부베어링(120)은 원판모양으로 형성되고, 그 각각의 중앙에는 상기 회전축(230)의 축부(231)가 반경방향으로 지지되도록 축구멍(111)(121)을 갖는 축수부(112)(122)가 돌출 형성된다. 그리고 상기 중간베어링(130)은 상기 회전축(230)의 편심부가 관통하는 정도의 내경을 가지는 환형으로 형성되고, 그 일측에는 상기 가스흡입관(140)이 후술할 제1 흡입구(312)와 제2 흡입구(412)에 연통되도록 하는 연통유로(131)가 형성된다.
상기 중간베어링(130)의 연통유로(131)는 상기 가스흡입관(140)과 연통되도록 반경방향으로 형성되는 수평로(132)와, 상기 수평로(132)의 끝단에는 상기 제1 흡입구(312)와 제2 흡입구(412)가 상기 수평로(132)와 연통되도록 축방향으로 관통되는 수직로(133)로 이루어진다. 상기 수평로(132)는 중간베어링(130)의 외주면에서 내주면을 향해 일정 깊이, 즉 완전히 내주면으로 관통되지 않는 깊이까지 홈파기 형성된다.
상기 제1 실린더(310)는 제1 압축공간(V1)을 이루는 내주면의 일측에 상기 제1 베인(330)이 직선 왕복운동을 하도록 제1 베인슬롯(311)이 형성되고, 상기 제1 베인슬롯(311)의 일측에는 냉매를 제1 압축공간(V1)으로 유도하는 제1 흡입구(312)가 형성되며, 상기 제1 베인슬롯(311)의 타측에는 냉매를 상기 제2 머플러(360)의 내부공간으로 토출하는 제1 토출안내홈(미도시)이 상기 제1 흡입구(312)와 반대쪽 모서리에서 모따기하여 경사지게 형성된다.
상기 제2 실린더(410)는 제2 압축공간(V2)을 이루는 내주면의 일측에 상기 제2 베인(430)이 직선 왕복운동을 하도록 제2 베인슬롯(411)이 형성되고, 상기 제2 베인슬롯(411)의 일측에는 냉매를 제2 압축공간(V2)으로 유도하는 제2 흡입구(412)가 형성되며, 상기 제2 베인슬롯(411)의 타측에는 냉매를 상기 제2 머플러(450)의 내부공간으로 토출하는 제2 토출안내홈(미도시)이 상기 제2 흡입구(412)와 반대쪽 모서리에서 모따기하여 경사지게 형성된다.
상기 제1 흡입구(312)는 상기 중간베어링(130)의 수직로(133)의 상측 끝단에 접하는 제1 실린더(310)의 하면 모서리에서 상기 제1 실린더(310)의 내주면을 향하도록 모따기하여 경사지게 형성된다.
상기 제2 흡입구(412)는 상기 중간베어링(130)의 수직로(133)의 하측 끝단에 접하는 상기 제2 실린더(410)의 상면 모서리에서 상기 제2 실린더(410)의 내주면을 향하도록 모따기하여 경사지게 형성된다.
여기서, 상기 제2 베인슬롯(411)은 상기 제2 베인(430)이 직선으로 왕복운동을 하도록 반경방향으로 소정의 깊이만큼 절개하여 형성되고, 상기 제2 베인슬롯(411)의 후방측, 즉 외곽측 끝단측에는 후술할 공용측 연결관(530)과 연통되도록 베인챔버(413)가 형성된다.
상기 베인챔버(413)는 그 상면과 하면에 접하는 중간베어링(130)과 하부베어링(120)에 의해 상기 케이싱(100)의 내부공간과 분리되도록 밀봉되고, 상기 제2 베인(430)이 완전히 후진하여 상기 제2 베인슬롯(411)의 안쪽에 수납되더라도 그 제2 베인(430)의 후면이 상기 공용측 연결관(530)을 통해 공급되는 냉매에 대해 가압면을 이룰 수 있도록 소정의 내부체적을 갖게 형성된다.
그리고 도 5 내지 도 7에서와 같이, 상기 베인챔버(413)의 일측, 즉 상기 제2 실린더(410)의 중앙에서 외주면쪽으로는 후술할 공용측 연결관(530)과 연통되도록 연결구멍(416)이 형성되고, 상기 연결구멍(416)에는 상기 베인챔버(413)와 공용측 연결관(530)을 연결하기 위한 연결튜브(531)가 삽입되어 결합된다.
상기 연결구멍(416)은 진원형으로 형성되고, 그 바깥쪽 모서리, 즉 상기 연결튜브(531)가 삽입되는 쪽의 모서리에는 상기 연결튜브(531)가 용이하게 삽입될 수 있도록 바깥쪽으로 갈수록 직경이 확대되는 확장부(416a)가 형성된다. 상기 확장부(416a)는 도면에서와 같이 경사지게 형성될 수도 있으나 경우에 따라서는 곡면지게 형성될 수도 있다.
상기 연결튜브(531)는 공용측 연결관(530)과 용접 결합되므로 그 공용측 연결관(530)과 동일한 재질로 형성되는 것이 바람직할 수 있고, 그 공용측 연결관(530)과 연결되는 쪽이 대경부를 이루는 반면 상기 제2 실린더(410)의 연결구멍(416)에 삽입되는 쪽이 소경부를 이루도록 형성될 수 있다. 그리고 상기 연결튜브(531)는 대경부와 소경부가 일체로 형성될 수도 있으나, 서로 다른 직경을 가지는 복수 개의 튜브가 조립되어 형성될 수도 있다. 그리고, 상기 연결튜브(531)는 그 끝단, 즉 상기 연결구멍(416)에 삽입되는 쪽 끝단은 삽입방향으로 갈수록 그 외경이 좁아지도록 안내부(531a)가 형성된다. 상기 안내부(531a)는 도면에서와 같이 경사지게 형성될 수도 있으나, 경우에 따라서는 곡면지게 형성될 수도 있다. 여기서, 상기 연결튜브(531)의 안내부(531a)는 그 경사각(α)을 상기 연결구멍의 확장부 경사각(β)으로 나눈 비율(B)이 대략 0.2보다는 크거나 같고 2.5보다는 작거나 같게 형성되는 것이 상기 연결튜브(531)의 원활한 압입을 위해 바람직하다.
그리고, 상기 연결구멍(416)의 내주면과 연결튜브(531)의 외주면은 서로 밀착되도록 하는 것이 상기 베인챔버(413)로부터 냉매가 누설되는 것을 최소한으로 줄일 수 있으나, 상기 연결튜브(531)의 외경(소경부 외경)(d2)이 상기 연결구멍(416)의 내경(d1)보다 너무 크면 상기 연결튜브(531)의 압입시 그 연결튜브(531)가 긁히거나 변형될 수 있으므로 상기 연결구멍(416)과 연결튜브(531)는 적정한 크기로 형성되어야 변형없이 긴밀하게 밀착될 수 있다.
이를 위해, 상기 연결구멍(416)과 연결튜브(531) 사이의 틈새(A), 즉 상기 연결튜브의 외경(d2)에서 연결구멍의 내경(d1)을 뺀 차이가 대략 0.02mm보다는 크거나 같고 0.15mm보다는 작거나 같은 크기로 형성하는 것이 바람직할 수 있다.
상기 제2 베인(430)은 그 실링면(431)이 압축기의 운전모드에 따라 상기 제2 롤링피스톤(420)과 접하거나 또는 이격되도록 그 가압면(432)이 상기 베인챔버(413)에 채워지는 흡입압의 냉매 또는 토출압의 냉매에 의해 지지되므로, 상기 제2 베인(430)이 압축기의 어떤 운전모드, 즉 세이빙모드에서 상기 제2 베인슬롯(411)의 안쪽에서 구속되어야 그 제2 베인(430)의 떨림에 의한 압축기 소음이나 효율저하를 미연에 방지할 수 있다. 이를 위해 도 8에서와 같은 케이싱의 내부압력을 이용한 제2 베인의 구속방법이 제안될 수 있다.
예컨대, 상기 제2 실린더(410)에는 제2 베인(430)의 운동방향에 대해 직교하거나 또는 적어도 엇갈림각을 갖는 방향으로 고압측 베인구속유로(이하, '제1 구속유로'라고도 한다)(414)가 형성된다. 상기 제1 구속유로(414)는 상기 케이싱(100)의 내부와 제2 베인슬롯(411)이 연통되도록 하여 그 케이싱(100)의 내부공간에 채워진 토출압의 냉매가 상기 제2 베인(430)을 반대쪽 베인슬롯면으로 밀어내 구속되도록 한다. 그리고, 상기 제1 구속유로(414)의 맞은편에는 상기 제2 베인슬롯(411)과 제2 흡입구(412)가 연통되는 저압측 베인구속유로(이하, '제2 구속유로'라고도 한다)(415)가 형성될 수 있다. 상기 제2 구속유로(415)는 상기 제1 구속유로(414)와 압력차가 유발되면서 상기 제1 구속유로(414)를 통해 유입되는 토출압의 냉매가 상기 제2 구속유로(415)로 빠져나가면서 상기 제2 베인(430)이 신속하게 구속되도록 하는 역할을 할 수 있다.
한편, 도 1 및 도 2에서와 같이 상기 모드전환유닛(500)은 그 일단이 상기 가스흡입관(140)에서 분관되는 저압측 연결관(510)과, 상기 케이싱(100)의 내부공간에 그 일단이 연결되는 고압측 연결관(520)과, 상기 제2 실린더(410)의 베인챔버(413)에 연결되는 연결튜브(531)에 그 일단이 연결되어 상기 저압측 연결관(510)과 고압측 연결관(520)에 선택적으로 연통되는 공용측 연결관(530)과, 상기 공용측 연결관(530)을 통해 제2 실린더(410)의 베인챔버(413)에 연결되는 제1 모드전환밸브(540)와, 상기 제1 모드전환밸브(540)에 연결되어 그 제1 모드전환밸브(540)의 개폐동작을 제어하는 제2 모드전환밸브(550)로 이루어진다.
상기와 같은 본 발명에 의한 용량 가변형 로터리 압축기의 기본적인 압축과정은 다음과 같다.
즉, 상기 전동부(200)의 고정자(210)에 전원을 인가하여 상기 회전자(220)가 회전하면, 상기 회전축(230)이 상기 회전자(220)와 함께 회전하면서 상기 전동부(200)의 회전력을 상기 제1 압축부(300)와 제2 압축부(400)에 전달하고, 상기 제1 압축부(300)와 제2 압축부(400)에서는 각각 제1 롤링피스톤(320)과 제2 롤링피스톤(420)이 상기 각 제1 압축공간(V1)과 제2 압축공간(V2)에서 편심 회전운동을 하며, 상기 제1 베인(330)과 제2 베인(430)이 상기 제1 및 제2 롤링피스톤(320)(420)과 함께 180°의 위상차를 가지는 압축공간들(V1)(V2)을 각각 형성하면서 냉매를 압축하게 된다.
예컨대, 상기 제1 압축공간(V1)이 흡입행정을 시작하면, 냉매가 어큐뮬레이터(5)와 흡입관(140)을 통해 상기 중간베어링(130)의 연통유로(131)로 유입되고, 이 냉매는 상기 제1 실린더(310)의 제1 흡입구(312)를 통해 제1 압축공간(V1)으로 흡입되어 압축된다. 그리고, 상기 제1 압축공간(V1)이 압축행정을 진행하는 동안에 그 제1 압축공간(V1)과 180°의 위상차를 가지는 상기 제2 실린더(410)의 제2 압축공간(V2)은 흡입행정을 시작하게 된다. 이때, 상기 제2 실린더(410)의 제2 흡입구(412)가 상기 연통유로(131)와 연통되면서 냉매가 상기 제2 실린더(410)의 제2 흡입구(412)를 통해 상기 제2 압축공간(V2)으로 흡입되어 압축된다.
한편, 본 발명에 의한 용량 가변형 로터리 압축기에서 용량이 가변되는 과정은 다음과 같다.
즉, 상기 압축기 또는 이를 적용한 에어콘이 파워운전을 하는 경우에는, 도 9 및 도 10에서와 같이 상기 제1 모드전환밸브(540)에 전원이 인가되어 상기 저압측 연결관(510)은 차단되는 반면 상기 고압측 연결관(520)이 공용측 연결관(530)과 연결된다. 이에 따라 상기 케이싱(100) 내부의 고압 가스가 고압측 연결관(520)을 통해 상기 제2 실린더(410)의 베인챔버(413)로 공급됨으로써 상기 제2 베인(430)이 베인챔버(413)의 내부에 채워진 고압의 냉매에 밀려 상기 제2 롤링피스톤(420)에 압접된 상태를 유지하면서 상기 제2 압축공간(V2)으로 유입되는 냉매가스를 정상적으로 압축하여 토출시키게 된다.
이때, 상기 제2 실린더(410)에 구비된 제1 구속유로(414)로 고압의 냉매가스 또는 오일이 공급되어 상기 제2 베인(430)의 일측면을 가세하게 되나, 이 제1 구속유로(414)의 단면적이 제2 베인슬롯(411)의 단면적보다 좁게 형성됨에 따라 측면에서의 가압력이 상기 베인챔버(413)에서의 전후방향 가압력보다 작게 되어 상기 제2 베인(430)을 구속하지 못하게 된다. 따라서, 상기 제2 베인(430)이 제2 롤링피스톤(420)에 압접되어 상기 제2 압축공간(V2)을 흡입실과 토출실로 구획하면서 상기 제2 압축공간(V2)으로 흡입되는 냉매 전체를 압축하여 토출하게 된다. 이로써 압축기 또는 이를 적용한 에어콘은 100% 운전을 하게 된다.
반면, 상기 압축기 또는 이를 적용한 에어콘이 기동할 때와 같이 세이빙운전을 하는 경우에는 도 11 및 도 12에서와 같이, 상기 제1 모드전환밸브(540)에 전원이 오프되어 파워운전때와는 반대로 상기 저압측 연결관(510)과 공용측 연결관(530)이 연통되고, 상기 제2 실린더(410)로 흡입되는 저압의 냉매가스 일부가 상기 베인챔버(413)로 유입된다. 이에 따라 상기 제2 베인(430)이 제2 압축공간(V2)에서 압축되는 냉매에 밀려 제2 베인슬롯(411)의 안쪽으로 수납되면서 제2 압축공간(V2)의 흡입실과 토출실이 연통되어 상기 제2 압축공간(V2)으로 흡입되는 냉매가스는 압축되지 못하도록 한다.
이때, 상기 제2 실린더(410)에 구비되는 제1 구속유로(414)에 의해 상기 제2 베인(430)의 일측면에 가세되는 압력과 상기 제2 구속유로(415)에 의해 상기 제2 베인(430)의 타측면에 가세되는 압력 사이에는 큰 압력차가 발생함에 따라 상기 제1 구속유로(414)를 통해 가세되는 압력이 제2 구속유로(415)쪽으로 이동하려는 경향이 발생되면서 상기 제2 베인(430)의 떨림현상 없이 신속하면서도 확실하게 구속할 수 있게 된다. 아울러, 상기 베인챔버(413)의 압력이 토출압에서 흡입압으로 전환되는 시점에서는 그 베인챔버(413)에 토출압이 잔류하여 일종의 중간압(Pm)을 형성하게 되나, 이 베인챔버(413)의 중간압(Pm)이 그보다 압력이 낮은 제2 구속유로(415)를 통해 누설됨에 따라 상기 베인챔버(413)의 압력이 신속하게 흡입압(Ps)으로 전환되면서 상기 제2 베인(430)의 떨림 현상을 더욱 신속하게 방지할 수 있게 되고 이를 통해 상기 제2 베인(430)이 신속하면서도 효과적으로 구속된다. 따라서, 상기 제2 실린더(410)의 제2 압축공간이 한 개의 공간으로 연통됨에 따라 상기 제2 실린더(410)의 제2 압축공간으로 흡입되는 냉매 전체가 압축되지 않고 상기 제2 롤링피스톤의 궤적을 따라 이동하게 되고, 이 냉매의 일부는 압력차에 의해 상기 연통유로(131)와 제1 흡입구(312)를 통해 상기 제1 압축공간(V1)으로 이동하게 되어 상기 제2 압축부(400)는 일을 하지 않게 된다. 이로써 압축기 또는 이를 적용한 에어콘은 제1 압축부의 용량만큼만 운전을 하게 된다. 그리고 이 과정에서 상기 제2 압축공간(V2)의 냉매가 어큐뮬레이터(5)로 역류하지 않고 제1 압축공간(V1)으로 이동함에 따라 어큐뮬레이터(5)의 과열을 방지하여 흡입손실을 줄일 수 있다.
여기서, 상기 제2 실린더(410)의 베인챔버(413)에 상기 공용측 연결관(530)을 연결하기 위해 연결튜브(531)를 상기 제2 실린더(410)의 연결구멍(416)에 압입할 때 상기 연결구멍(416)에 연결튜브(531)를 압입하고, 그 연결튜브(531)에 상기 공용측 연결관(530)을 삽입하여 용접 결합하게 되나, 도 7에서와 같이 상기 연결튜브(531)의 외경(d2)이 상기 연결구멍(416)의 내경(d1)에 대해 적절한 크기로 형성됨에 따라 상기 연결튜브(531)를 연결구멍(416)에 압입할 때 상기 연결튜브(531)가 긁히거나 변형되지 않고 긴밀하게 밀착되도록 하여 상기 베인챔버(413)로 흡입되는 냉매가 상기 연결구멍(416)과 연결튜브(531) 사이로 누설되는 것을 미연에 방지하고 이를 통해 로터리 압축기의 성능을 향상시킬 수 있다. 도 13는 본 실시예에서와 같이 상기 연결튜브(531)의 외경(d2)에서 상기 연결구멍(416)의 내경(d1)을 뺀 값을 변경하면서 압축기의 성능 변화를 살펴본 그래프이다. 이에 도시된 바와 같이 d2-d1의 값이 0.02 ~ 0.15의 범위에서 압축기의 성능이 3~5% 향상되는 것을 알 수 있다.
한편, 도면으로 도시하지는 않았으나, 상기 연결구멍은 제2 실린더 외에 제1 실린더 또는 하부베어링이나 중간베어링 또는 상부베어링 등에 형성될 수도 있고, 이 경우에도 전술한 실시예와 동일하게 형성될 수 있다.
본 실시예에서는 복식 로터리 압축기에 적용한 것이나, 본 발명은 베인챔버를 가지는 단식 로터리 압축기에서도 적용될 수 있다. 또, 본 발명의 로터리 압축기는 에어콘과 같은 냉매압축식 냉동사이클이 적용되는 냉동기계에 널리 이용될 수 있다.

Claims (9)

  1. 밀폐용기의 내부공간에 설치되고, 냉매를 압축하기 위한 압축공간을 가지며, 상기 밀폐용기의 내부공간과 분리되도록 챔버가 형성되는 적어도 한 개 이상의 실린더;
    상기 실린더의 압축공간과 챔버를 복개하도록 상하 양측에 결합되는 복수 개의 베어링들;
    상기 실린더의 압축공간에서 선회운동을 하면서 냉매를 압축하는 적어도 한 개의 롤링피스톤;
    상기 실린더에 미끄러지게 결합되어 상기 롤링피스톤과 함께 상기 압축공간을 흡입실과 토출실로 구분하고 적어도 어느 한 개는 상기 실린더의 챔버에 채워지는 냉매에 의해 지지되는 적어도 한 개의 베인; 및
    상기 실린더의 챔버에 흡입압 또는 토출압의 냉매를 선택적으로 공급하여 압축기의 운전모드를 가변하는 모드전환유닛;을 포함하고,
    상기 실린더 또는 어느 한 개의 베어링에는 상기 챔버가 모드전환유닛과 연통되도록 연결구멍이 형성되고, 그 연결구멍에 상기 모드전환유닛의 연결관이 연결되도록 연결튜브가 삽입되며, 상기 연결튜브의 외경이 상기 연결구멍의 내경보다 크게 형성되는 로터리 압축기.
  2. 제1항에 있어서,
    상기 연결튜브의 외경에서 상기 연결구멍의 내경을 뺀 값(A)이 대략 0.02mm ≤ A ≤ 0.15mm의 범위에서 형성되는 로터리 압축기.
  3. 제1항에 있어서,
    상기 연결구멍의 입구단 모서리에는 상기 연결튜브의 삽입방향으로 그 내경이 확대되도록 확장부가 형성되는 로터리 압축기.
  4. 제3항에 있어서,
    상기 연결튜브의 삽입단은 그 끝단방향으로 외경이 작아지도록 안내부가 형성되는 로터리 압축기.
  5. 제4항에 있어서,
    상기 안내부의 경사각 대비 확장부의 경사각 비율(B)은 0.2 ≤ B ≤ 2.5의 범위에서 형성되는 로터리 압축기.
  6. 제1항에 있어서,
    상기 연결튜브는 상기 모드전환유닛과 연결되는 연결관과 동일한 재질로 형성되는 로터리 압축기.
  7. 제1항에 있어서,
    상기 연결튜브는 상기 모드전환유닛과 연결되는 쪽이 대경부를 이루는 반면 상기 실린더의 연결구멍에 삽입되는 쪽이 소경부를 이루도록 형성되는 로터리 압축기.
  8. 제7항에 있어서,
    상기 연결튜브는 대경부와 소경부가 일체로 형성되는 로터리 압축기.
  9. 제7항에 있어서,
    상기 연결튜브는 서로 다른 직경을 가지는 복수 개의 튜브가 조립되어 형성되는 로터리 압축기.
PCT/KR2009/004258 2008-08-05 2009-07-30 로터리 압축기 WO2010016685A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/056,398 US8517702B2 (en) 2008-08-05 2009-07-30 Rotary compressor with enhanced sealing between mode switching device and chamber thereof
CN200980129626XA CN102132045A (zh) 2008-08-05 2009-07-30 旋转式压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0076688 2008-08-05
KR1020080076688A KR101442549B1 (ko) 2008-08-05 2008-08-05 로터리 압축기

Publications (2)

Publication Number Publication Date
WO2010016685A2 true WO2010016685A2 (ko) 2010-02-11
WO2010016685A3 WO2010016685A3 (ko) 2010-11-11

Family

ID=41664069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004258 WO2010016685A2 (ko) 2008-08-05 2009-07-30 로터리 압축기

Country Status (4)

Country Link
US (1) US8517702B2 (ko)
KR (1) KR101442549B1 (ko)
CN (1) CN102132045A (ko)
WO (1) WO2010016685A2 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043948B2 (ja) * 2012-05-29 2016-12-14 パナソニックIpマネジメント株式会社 圧縮機
EP3249230B1 (en) * 2015-01-13 2019-08-21 Fujitsu General Limited Rotary compressor
WO2018084868A1 (en) 2016-11-07 2018-05-11 Wood Mark W Scroll compressor with circular surface terminations
US10030658B2 (en) 2016-04-27 2018-07-24 Mark W. Wood Concentric vane compressor
US11480178B2 (en) 2016-04-27 2022-10-25 Mark W. Wood Multistage compressor system with intercooler
JP2018009534A (ja) * 2016-07-14 2018-01-18 株式会社富士通ゼネラル ロータリ圧縮機
US11686309B2 (en) 2016-11-07 2023-06-27 Mark W. Wood Scroll compressor with circular surface terminations
CN107476979A (zh) * 2017-08-10 2017-12-15 珠海格力节能环保制冷技术研究中心有限公司 压缩机、空调器及压缩机的装配方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154329A1 (en) * 2003-12-03 2007-07-05 Izumi Onoda Refrigeration cycle system
US20070243079A1 (en) * 2006-04-12 2007-10-18 Samsung Electronics Co., Ltd. Variable capacity rotary compressor and method of varying capacity thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064619A (en) * 1976-12-03 1977-12-27 Zap-Lok Systems International, Inc. Method of joining plastic coated pipe
US4240774A (en) * 1979-02-15 1980-12-23 General Electric Company Hermetically sealed compressor suction tube and method of assembly
MY120330A (en) * 1997-06-30 2005-10-31 Matsushita Electric Ind Co Ltd Sealed compressor having pipe connectors and method of joining pipe connectors to sealed casing
JPH11182434A (ja) * 1997-12-16 1999-07-06 Mitsubishi Electric Corp 冷媒圧縮機
JP2000337261A (ja) * 1999-05-26 2000-12-05 Funai Electric Co Ltd 圧縮機
KR20010026318A (ko) * 1999-09-04 2001-04-06 구자홍 밀폐형 회전식 압축기
JP3490950B2 (ja) * 2000-03-15 2004-01-26 三洋電機株式会社 2シリンダ型2段圧縮式ロータリーコンプレッサ
US7128540B2 (en) * 2001-09-27 2006-10-31 Sanyo Electric Co., Ltd. Refrigeration system having a rotary compressor
KR100620044B1 (ko) * 2005-07-29 2006-09-06 엘지전자 주식회사 로터리 압축기의 용량 가변 장치
JP2008524515A (ja) * 2005-02-23 2008-07-10 エルジー エレクトロニクス インコーポレイティド 容量可変型ロータリ圧縮機
WO2008023962A1 (en) * 2006-08-25 2008-02-28 Lg Electronics Inc. Variable capacity type rotary compressor
KR100816656B1 (ko) * 2006-12-27 2008-03-26 엘지전자 주식회사 용량 가변형 로터리 압축기
KR101335421B1 (ko) * 2006-12-29 2013-11-29 엘지전자 주식회사 밀폐형 압축기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154329A1 (en) * 2003-12-03 2007-07-05 Izumi Onoda Refrigeration cycle system
US20070243079A1 (en) * 2006-04-12 2007-10-18 Samsung Electronics Co., Ltd. Variable capacity rotary compressor and method of varying capacity thereof

Also Published As

Publication number Publication date
US8517702B2 (en) 2013-08-27
CN102132045A (zh) 2011-07-20
KR101442549B1 (ko) 2014-09-22
WO2010016685A3 (ko) 2010-11-11
KR20100017009A (ko) 2010-02-16
US20110176949A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2010016685A2 (ko) 로터리 압축기
EP1851434B1 (en) Capacity varying type rotary compressor and refrigeration system having the same
EP2177765B1 (en) Scroll compressor and refrigerating machine having the same
US8419395B2 (en) Compressor and refrigeration apparatus
WO2010021491A1 (en) Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
EP3406906B1 (en) Rotary compressor
EP1923571A2 (en) Capacity-variable rotary compressor
WO2010011082A2 (ko) 용량 가변형 로터리 압축기
KR101667710B1 (ko) 로터리 압축기
EP1772627B1 (en) A sealing system for a compressor
WO2010016684A2 (ko) 로터리 압축기
KR101587174B1 (ko) 로터리 압축기
US8485805B2 (en) Rotary compressor
KR20090125645A (ko) 용량가변형 로터리 압축기
KR100620043B1 (ko) 용량 가변형 복식 로터리 압축기 및 이를 적용한 에어콘
KR20100008281A (ko) 용량가변형 로터리 압축기
KR101463826B1 (ko) 로터리 압축기
CN219529308U (zh) 压缩机及制冷设备
KR101462933B1 (ko) 로터리 압축기
KR20100018382A (ko) 로터리 압축기
KR20100000370A (ko) 용량가변형 로터리 압축기
KR20100011792A (ko) 용량가변형 로터리 압축기
KR20100010294A (ko) 용량가변형 로터리 압축기
KR20140086547A (ko) 압축기
KR20100000368A (ko) 용량 가변형 로터리 압축기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129626.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805146

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13056398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09805146

Country of ref document: EP

Kind code of ref document: A2