WO2010015098A1 - Formulación farmacéutica veterinaria que comprende una partícula recombinante de arn que codifica para una proteína cu/zn superóxido dismutasa de bacterias patógenas de rumiantes y al menos un alfavirus arn perteneciente a la familia del virus semliki forest - Google Patents

Formulación farmacéutica veterinaria que comprende una partícula recombinante de arn que codifica para una proteína cu/zn superóxido dismutasa de bacterias patógenas de rumiantes y al menos un alfavirus arn perteneciente a la familia del virus semliki forest Download PDF

Info

Publication number
WO2010015098A1
WO2010015098A1 PCT/CL2009/000009 CL2009000009W WO2010015098A1 WO 2010015098 A1 WO2010015098 A1 WO 2010015098A1 CL 2009000009 W CL2009000009 W CL 2009000009W WO 2010015098 A1 WO2010015098 A1 WO 2010015098A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
sod
protein
virus
plasmid
Prior art date
Application number
PCT/CL2009/000009
Other languages
English (en)
French (fr)
Inventor
Ángel OÑATE CONTRERAS
Edilia ANDREWS GARCÍA
Gabriel DONOSO ÑANCULAO
Original Assignee
Universidad de Concepción
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Concepción filed Critical Universidad de Concepción
Priority to US13/057,620 priority Critical patent/US20110200667A1/en
Priority to BRPI0917956A priority patent/BRPI0917956A2/pt
Priority to MX2011001429A priority patent/MX2011001429A/es
Publication of WO2010015098A1 publication Critical patent/WO2010015098A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/098Brucella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0089Oxidoreductases (1.) acting on superoxide as acceptor (1.15)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36141Use of virus, viral particle or viral elements as a vector
    • C12N2770/36143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the use of this technology is directed towards the livestock sector, specifically for cattle that have high rates of abortions caused by the bacterium Brucella abortus.
  • Brucella abortus is a gram-negative, intracellular, facultative bacterium that contains mannose molecules that favor adherence to host mononuclear phagocytes.
  • the placenta of cattle contains a large number of receptors of ma ⁇ osa, which favors the nesting of this bacterium and consequently the probability of abortions in these animals.
  • the Cu-Zn Superoxide Dismutase and Catalase proteins are periplasmic enzymes that detoxify superoxide ion (O2 ”) and hydrogen peroxide (HbO2), produced by phagocytes after Ia phagocytosis of the bacteria.
  • O2 superoxide ion
  • HbO2 hydrogen peroxide
  • the expression of these enzymes favors the permanence of Brucella sp. within the viable phagocyte.
  • strains in attenuated vaccines are the vaccine whose active ingredient uses strain Brucella abortus 19, however, this vaccine causes abortions in the immunized animal and also develops antibodies against the O antigen of LPS, interfering with the serological diagnosis of this disease.
  • Another formulation used is Ia that is made with the strain 45/20 (rugose strain), which, although it does not interfere with the serological diagnosis, can be reverted to its virulent smooth form.
  • a third vaccine is Ia that uses the strain RB51 of Brucella abortus, which is a natural mutant of the strain 2308 of Brucella abortus, whose main characteristic is the lack of the O antigen of the LPS, for which it does not interfere in the serological diagnosis either.
  • An important aspect with the strain of B. abortus 2308 is that it produces placentitis in pregnant cows, there being the possibility of reverting to its virulent form.
  • immunization with plasmid expression vectors is a recent technique, with which encouraging results have been obtained in injectable pharmaceutical compositions, achieving levels of protection similar to those obtained with the use of the attenuated strain of Brucella abortus RB51.
  • the advantage of this methodology compared to vaccination with attenuated strains, is due to the ease of its management and the ability to generate prolonged immune responses, with a high level of biosecurity.
  • the plasmid DNA is incorporated into the genome of the cell, for which reason its practical use in the future would be in doubt.
  • RNA 42S that encodes a polyprotein called viral replicase, responsible for Ia replication of genomic RNA.
  • the latter is used as a template for the synthesis of subgenomic RNA 26S and viral genomic RNA.
  • the 26S subgenomic RNA encodes the structural proteins, which correspond to the proteins of the Capsid (C). These, newly synthesized, can be linked to one or more encapsidation sequences of the viral genomic RNA.
  • These vectors can consist basically of the naked self-replicating RNA, whose sequence contains insert of the gene of interest, which codes for the protein with immune capacity, or, for suicidal viral particles of the Semliki Forest virus, which contain RNA without replicative capacity. .
  • Previous experiments have shown the high efficiency of these systems to produce heterologous proteins in eukaryotic cells, as well as the ability to confer excellent levels of protection in immunized animals, surpassing even traditional DNA vaccines.
  • the US patent US6264952 discloses another type of vaccine, whose active principle is a bacterial agent (Brucella sp.). This bacterium is irradiated with gamma emissions, in this way a bacterium is obtained that is metabolically active, but it can not be replicated, so it does not interfere with the invention to be claimed.
  • British patent application GB2227936 discloses an improved vaccine against Brucella abortus, this allows to differentiate the infected cattle with other field strains. For this purpose, a combination of the major ⁇ proteins is used. abortus as specific antigens.
  • This immunizing agent is a pathogenic strain that can take various forms as purified proteins of said bacteria, dead or attenuated bacteria.
  • Another immunizing agent corresponds to the synthetic peptides with antigenic epitopes, which have been obtained from the same bacteria, for example, Omps I, II, III and the envelope protein of 7 and 8kD.
  • Other agents are the crude or pure recombinant extracts from transformed E. coli, for the expression of the same proteins, or crude or pure recombinant extracts of transformed E.
  • the US invention patent US5824310 discloses the use of the B. abortus LPS as coadjuvant. This invention patent application does not use the SOD protein.
  • the patent application of North American priority invention discloses a vector system based on the Semliki Forest virus (SFV), in addition to its use in an expression system directed to the central nervous system (CNS) and the related pharmaceutical formulation for the release of drugs in the CNS.
  • the invention demonstrated the potential use of alpha virus vectors as vectors for the CNS.
  • a vector that penetrates the CNS is protected and expresses a cloned gene that acts on the CNS, giving an efficient non-invasive treatment.
  • the North American application uses neither the protein nor the SOD gene. If you use the viral system as a vector, but this system was already protected in Liljestrom's patent application (US5739036).
  • the invention patent application of the world patent office WO9909192 discloses and protects a method for transforming a selected cell with a determined nucleic acid.
  • Semliki Forest virus particles are used to infect "in vivo" selectively.
  • the target cells are cardiac smooth muscle cells and cardiomyocytes after angioplasty.
  • the purpose is that the nucleic acid code for a restenosis inhibitor, the thymidine kinase of the herpes simplex virus. In this patent application, one does not work with the SOD protein.
  • US Patent No. 6566093 discloses a new expression vector for use as a vaccine, is of the DNA type and is based in part on the genome of an alphavirus. This initiative protects the use and methodology of introducing an exogenous gene in said expression system. This technology does not interfere with our proposal, since the DNA construct is different from the one synthesized in the present invention.
  • RNA-like alphavirus molecule protects an injectable pharmaceutical composition comprising an RNA-like alphavirus molecule.
  • a naked RNA-type vaccine composition is also protected, which is formulated with lipids that can be absorbed by inert particles together with the sequence of the exogenous antigen, where the herpes antigen is HSVgD and the influenza antigen is hemagglutinin.
  • HSVgD herpes antigen
  • influenza antigen is hemagglutinin.
  • the second vaccine incorporates only the RNA of the virus with the sequence of the protein.
  • the DNA segment coding for the Cu / Zn protein rSOD (sodC gene) must be subcloned in the plasmid carrying the viral replicase sequence (pSFV4.2).
  • the 3 plasmids encoding the recombinant Semliki Forest virus are transcribed in vitro.
  • the analysis of the expression of the SOD gene from the replicon RNA (pSFV4.2-SOD) is performed. The results obtained indicate that the SOD protein is expressed with similar effectiveness by the cells of an animal immunized with this RNA.
  • the viral particle (rSFV4.2-SOD) is packaged, starting at 3 Transcribed RNA, within a cell line (COS-7), from where the chimeric viral particles of the culture medium are purified.
  • the RB51 strain was used.
  • the procedure contemplates the cultivation of the strain for a period of 24 hours and its subsequent harvest.
  • the pellet is treated with methanol and a hypertonic solution to stop the bacterial activity, then sonicated and centrifuged in cold conditions, the supernatant contains the bacteria already used.
  • This pellet is treated with phenyl methyl sulfonyl fluoride, protease inhibitor (PMSF) and dialysate, in order to obtain the proteins.
  • the proteins are concentrated with polyethylene glycol in dialysis bags with the capacity to retain molecular weights above 3500.
  • This protein solution contains the Cu / Zn SOD protein that is used as a control.
  • the bacteria must be cultured, subsequently harvested from the culture broth and the supernatant added to an anion exchange column, which has no affinity for the Cu / Zn SOD protein.
  • the supernatant elutes the protein Cu / Zn SOD, which is treated with polymyxin B in order to eliminate the bacterial lipopolysaccharide.
  • this solution is dialyzed against phosphate buffered saline (PBS), to finally analyze the purity of the protein obtained by means of an SDS-PAGE gel and the concentration is determined by the Bradford method.
  • PBS phosphate buffered saline
  • This stage is carried out in two parts, first is the preparation of an expression vector that codes for the SOD protein, from the plasmid that contains the genes of the viral replicase of Semliky Forest virus.
  • a second stage involves a second expression system also based on plasmids from the same virus, these carry other genes necessary for viral replication.
  • competent bacteria To generate the expression system, competent bacteria must be prepared.
  • the strain used is E. coli BL21 for the two plasmids of the first stage, the transformation protocol involves the use of CaCl 2 .
  • the construction of the plasmid pSFV4.2-SOD was carried out through the gene coding for the protein Cu / Zn Superoxide Dismutase of ⁇ . abortus (sodC), which is obtained from the pBSSOD plasmid, previously developed in the invention and from the pSFV4.2 plasmid.
  • the already competent bacteria are transformed by conventional methods widely known in the art.
  • Figure 3 shows the general scheme of the process until the viral suicide particles are obtained: (1) The plasmid is constructed using the plasmid pSFV4.2, (2) plasmid pBSSOD is digested with the same restriction enzymes and synthesized after Ia gel extraction of the insert between 1000 and 1200 bp (sodC) whose gene encodes the protein Cu / Zn Superoxide Dismutase of S. abortus. In (3), the ligation of the insert of the range comprised between 1000 and 1200 bp takes place in the plasmid pSFV4.2, (4) the purification of each plasmid is carried out, in vitro transcription and transfection.
  • the second stage of expression is the preparation of the two viral structural plasmids, for which the vectors pSFV-Helper Spike2 (7543 bp) and plasmid pSFV-Helper Capsid S219A (5504 bp) were used.
  • Line 2 pSFV4.2-SOD plasmid digested with Xho ⁇ and BamHl,
  • Line 3 pSFV-Helper Spike2 plasmid digested with XhoI
  • Line 4 pSFV-Helper Capsid S219A plasmid digested with EcoRI.
  • the restriction enzyme Spel
  • In vitro transcription is performed using a commercial kit.
  • Transfection to cell line COS-7 ATCC, CRL 1651 is carried out using cationic liposomes.
  • RNA transcribed from the plasmid pSFV4.2-SOD like the RNA of the plasmids pSFV-Helper-Spike2 and pSFV-Helper-Capsid S219, are obtained by in vitro transcription as described above. This procedure is specifically developed in the application example. In Figure No. 5 the effectiveness of the in vitro transcription is checked. The sizes of the transcribed RNAs, from the plasmids pSFV-Helper Spike2, pSFV-Helper Capsid S219 and pSFV4.2-SOD, are as expected.
  • Figure 5 shows the analysis of the RNA transcribed from the plasmids under study.
  • the 1% agarose gel is subjected to electrophoresis for 30 min at 4OmA. Both standard RNA and RNA transcripts, must be pre - incubated with loading buffer and heated at 65 0 C for 3 min before being sown in the gel.
  • Figure No. 5 shows the following:
  • Lane 3 RNA transcribed from plasmid pSFV4.2-SOD
  • Line 5 RNA transcribed from plasmid pSFV-Helper Capsid S219A.
  • line 2 RNA transcribed from plasmid pSFV-Helper Capsid S219A.
  • the correct in vitro transcription of the positive control is observed, and in addition, the correct transcription of each plasmid can be observed, which have the expected sizes.
  • a Western Blot is performed. For this reason, an electrophoresis of the proteins must first be carried out on a polyacrylamide gel. Once the proteins are transferred to the nitrocellulose paper, the nonspecific sites are blocked, using skimmed milk dissolved in PBS buffer plus Tween 20. Subsequently, the nitrocellulose paper must be incubated under agitation for a period of time with a monoclonal antibody against SOD . Then incubate with a second anti-mouse IgG rabbit antibody, labeled with peroxidase. Finally, the transferred paper is revealed by incubation in a solution that diaminobenzidine (DAB) in PBS buffer, where a positive reaction to 18kD must be observed.
  • DAB diaminobenzidine
  • Figure No. 6 shows the Western Blot for the analysis of the expression of the protein Cu / Zn rSOD from the RNA replicon.
  • a monoclonal antibody against the Cu / Zn rSOD protein is used and the pure Cu / Zn rSOD protein is used as a positive control.
  • Line 1 negative control (cells not transfected with transcribed RNA)
  • Line 2 sample (cells transfected with transcribed RNA pSFV4.2-SOD)
  • Line 3 positive control (protein Cu / Zn rSOD).
  • RNA transcribed from the plasmid pSFV4.2-SOD has the ability to express the recombinant Cu / Zn Superoxide Dismutase protein (rSOD), it is transfected with RNA from the pSFV4.2-SOD plasmid to the J774 cell line (ATCC, TIB-67). Once transcribed, the expression of the Cu / Zn rSOD protein within this cell line is detected by means of a Western Blot.
  • the Semliki Forest virus is genetically modified in order to elaborate a viral suicide particle, which can be used as a vector for the expression of heterologous proteins in animals.
  • the genetically modified virus is encoded in three plasmids: pSFV4.2, pSFV-Helper-Capsid and pSFV-Helper-Spike.
  • Figure No. 1 presents the expression vectors based on the Semliki Forest virus.
  • Plasmid pSFV4.2 contains four genes that encode the replicase of Semliki Forest virus (nsP1-4); this plasmid lacks the structural genes of the virus (C, p62, 6K and E1). Plasmids pSFV-Helper-Spike2 and pSFV-Helper-Capsid S219A lack the genes that encode the viral Replicase, but they possess the structural genes of the virus. The three plasmids have the following characteristics in common:
  • Each plasmid has an SP6 promoter that allows it to be transcribed in vitro, obtaining RNA molecules from each one.
  • the plasmid pSFV4.2 has a multicloning site, in which a gene coding for the SOD protein can be inserted.
  • the RNA of the plasmid pSFV4.2 corresponds to the replicon vector, a subgenomic promoter followed by the heterologous genes of interest (SOD) and the 5 ' and 3 ' ends required for the replication of the genome, available in the three RNAs.
  • the plasmid RNA, pSFV-Helper-Capsid contains a subgenomic promoter, followed by the genes that code for the capsid proteins of the virus.
  • the RNA of the plasmid pSFV-Helper-Spike also possesses a subgenomic promoter followed by the genes of the transmembrane proteins of the envelope of the virus.
  • the three transcribed RNAs are cotransfected to the eukaryotic cell line COS-7, which are subsequently translated and initiate the packaging of the viral particles with the information of the protein of interest. Due to a genetic modification, these viruses have a limited genome, which consists only of the RNA of the replicon vector, since only this has the sequence of the encapsidation signal. This prevents the virus from developing a productive infection, giving a high biosecurity to the system. In addition, a mutation has been introduced into the gene coding for Ia p62 protein (Arg 66 -> Leu), which prevents the cleavage of this protein by the host proteases. Thus, the viruses obtained are conditionally infectious.
  • the cotransfection of a cell with the three RNAs induces the packing and release by budding of the recombinant Semliki Forest virus, which encapsidates only the Replicon RNA, since only the latter possesses Ia encapsidation signal.
  • the recombinant Semliki Forest virus was obtained from cells cotransfected with the RNA transcribed from the plasmids: pSFV4.2-SOD, pSFV-Helper-Capsid S219A and pSFV-Helper-Spike2.
  • FIG. 2 shows the construction of the plasmid pSFV4.2-SOD.
  • Plasmid pSFV4.2 was used to construct the plasmid, which was previously digested with the restriction enzymes BamH ⁇ and Xho ⁇ (1), before its ligation with the fragment obtained from the digestion of the pBSSOD plasmid with the same restriction enzymes.
  • (2) which was synthesized after the gel extraction of the insert between 1000 and 1200 bp (sodC).
  • the 1.1 kb fragment contains the sodC gene that encodes the Cu / Zn Superoxide Dismutase protein of B. abortus.
  • the ligation of the insert takes place in the range between 1000 and 1200 bp in the plasmid pSFV4.2, previously digested with the same restriction enzymes.
  • mice BALB / c strain were immunized. Naked replicon RNA (pSFV4.2-SOD) and replicon RNA packaged in the Semliki Forest virus (rSFV4.2-SOD) intraperitoneally was administered intramuscularly.
  • pSFV4.2-SOD replicon RNA
  • rSFV4.2-SOD Semliki Forest virus
  • the study of expression of the SOD protein, by the replicon RNA packaged in the Semliki Forest virus in vitro used the cell line COS-7 (ATCC, CRL 1651), which are kidney fibroblasts of the green African monkey and the cell line J774 (ATCC, TIB-67), which are mouse macrophages.
  • the two cell lines were cultured in complete DMEM medium.
  • 3 bacterial strains were used:
  • the packaging of Semliki Forest virus is carried out within the COS-7 cell line, for which it must be co-transfected with the RNAs transcribed from the plasmids pSFV4.2-SOD, pSFV-Helper-Capsid S219 and pSFV-Helper -Spike2.
  • the transfection is carried out through cationic liposomes, subsequently the transfection mixture is removed, and then the cotransfected cells are incubated in RPMI medium.
  • the viral particle formed inside the cell COS-7 is released into the culture medium, from where it is purified by a gradient of discontinuous sucrose. Finally, the fraction where the viral particles are found must be diluted.
  • the visualization and identification of the viral particles of the recombinant Semliki Forest virus is carried out in an electron microscope.
  • As a negative control the same cell line is used without transfecting.
  • the obtained from the sucrose gradient of this control is observed in the electron microscope.
  • Figure 7 shows an electron microscopy of a sample containing viral particles of the recombinant Semliki Forest virus.
  • Figure No. 7A corresponds to the photograph of a sample containing purified viral particles in a sucrose gradient
  • Figure No. 7B corresponds to the negative control of the previous sample. These samples must be previously stained with a solution of phosphotungstic acid, which is the differential staining for the virus.
  • Table No. 1 specifies the groups tested for the constructs, designed from the Semliki Forest virus.
  • the first group (I) of the tested individuals were immunized with the naked RNA sequences, ie the group IA
  • the sequence of immunization codes for the rSOD protein from rSFV4.2-SOD RNA.
  • a second group denominated as I. B was subjected to a test with naked RNA, but with the construct that does not code for the SOD protein (rSFV4.2).
  • the second group (II) of the study was immunized with viral particles, specifically individuals II.A, which were subjected to viral immunization, whose genetic material carries the genes coding for the rSOD proteins and was constructed from the plasmid pSFV4.2-SOD.
  • group II. B was also subjected to viral action, but whose genome only carried the genes that code for the protein complex of the viral replicase.
  • the PBS buffer pH 7.4 is used as a negative control.
  • Viral particles must be previously activated using a solution of succinic acid at pH 4.5.
  • mice immunized with the expression systems The cellular immune response of the mice immunized with the expression systems is evaluated, for which the proliferation of spleen lymphocytes in mice is measured, against antigens such as protein Cu / Zn rSOD and total proteins of Brucella abortus RB51.
  • antigens such as protein Cu / Zn rSOD and total proteins of Brucella abortus RB51.
  • the obtaining of both antigens has been described in the letters A and B of the description of the invention in the specification, namely Obtaining total proteins of B. abortus strain RB51 "and in” Expression of the protein Cu / Zn rSOD " .
  • Proliferation is determined by measuring the incorporation of thymidine [ 3 H] into the DNA of the spleen cells of the mice.
  • the cells are induced to actively divide in the presence of the antigen.
  • the cell suspension should be seeded in microplates and the antigen, corresponding to the protein Cu / Zn rSOD or total proteins of Brucella abortus strain RB51.
  • Splenocytes are cultured as a positive control and only the complete culture medium is incubated as a negative control.
  • the cells are cultured and then the lymphocytes are harvested to include them in the scintillation solution.
  • the stimulation index (EI) is determined, by obtaining the quotient between the value obtained in counts per minute (cpm) of the experimental group with the cpm obtained in the negative control of the same experimental group.
  • Figure No. 8 graphically shows the results of the proliferation of spleen lymphocytes of mice immunized with a naked RNA vaccine from the sequences coding for the SOD protein, viral replicase and buffer (rSFV4.2-SOD, rSFV4 .2 and PBS).
  • the study of lymphoproliferation is carried out for 28 days after the second immunization, culturing the lymphocytes in the presence of total protein of Brucella abortus RB51 (figure N ° 8, graph A) and protein Cu / Zn rSOD (figure N ° 8, graph B).
  • FIG. 9 graphically shows the results of the proliferation of spleen lymphocytes of mice, immunized with the vaccine containing the genetically modified virus (pSFV4.2-SOD, pSFV4.2 and PBS). Lymphoproliferation is carried out 18 days after the immunization, culturing the lymphocytes in the presence of Brucella abortus total protein RB51 (graph A) and protein Cu / Zn rSOD (graph B). In the graph A of the figure, it is observed that the lymphocytes of mice immunized with pSFV4.2-SOD, proliferate more than the lymphocytes of the mice immunized with the controls pSFV4.2 and PBS.
  • the maximum (14229 cpm) was obtained with a concentration of 4 ⁇ g / ml of the antigen, whose value is significantly higher than that of the lymphocytes of the control group of mice immunized with pSFV4.2 (8794 cpm) and PBS (5254 cpm).
  • a greater proliferative response is observed by the lymphocytes of mice immunized with pSFV4.2-SOD.
  • the maximum (18876 cpm) is obtained with a concentration of 0.8 ⁇ g / ml of the antigen, whose value is significantly higher than that of the lymphocytes of the control group of mice immunized with pSFV4.2 (7056 cpm) and PBS (4541 cpm) ). Protection Test
  • mice should be challenged with 10 4 colony forming units (CFU) of the pathogenic strain Brucella abortus 2308, injected intraperitoneally.
  • CFU colony forming units
  • the challenges are carried out 24 days after the second immunization in the case of mice immunized with replicon RNA or pSFV4.2-SOD (group I), in addition to their respective controls, and 36 days after the immunization in the case of the mice immunized with the recombinant Semliki Forest virus (rSFV-SOD) plus their respective controls (group II).
  • the protection test is carried out 2 weeks later, for which the spleens of the mice tested are extracted. The protection is expressed as the logarithm of the number of CFUs present in the dilution sown in the plate, where a maximum number of isolated colonies can be observed.
  • RNA Ribonucleic acid
  • SSV Semliki Forest virus
  • a second option is the use of naked RNA, carrier of the information required for the synthesis of a heterologous protein, with the capacity to generate an immune response against Brusella abortus.
  • the invented expression system has some additional advantages, which establish the difference in the type of response induced in the immunized animal.
  • This surprising expression system consists of a viral replicase encoded in the RNA replicon, which has the peculiarity of synthesizing several copies of the genomic RNA, further increasing the probability of the translation of the RNA molecule of interest.
  • viral particles based on the Semliki Forest virus have high affinity with a broad spectrum of cellular receptors, which in turn allows them to enter a wide variety of cells. Some of these are crucial for the development of the protective immune response, as they are antigen-presenting dendritic cells, however, they do not manage to phagocytose as efficiently as the macrophages, further increasing the efficiency of the immune system response.
  • This invention includes an expression system with a high level of biosecurity, because the virus is not self-replicating and its genome is constituted by an RNA replicon sequence, which is not incorporated into the host's genome, because its metabolism does not require DNA as an intermediary.
  • Example No. 1 Extraction of total proteins from the RB51 strain of Brucella abortus.
  • Example No. 2 Expression of the Cu / Zn Protein Recombinant Superoxide Dismutase (see Figure N 0 6)
  • the Cu / Zn SOD protein of Brucella abortus is expressed in E. coll DH5 bacteria, which was transformed by electroporation with the pBSSOD plasmid containing the gene coding for the Cu / Zn SOD protein (sodC).
  • the bacteria were grown in LB broth plus 100ug / ml ampicillin for 12 h at 37 0 C with stirring. Subsequently, the bacteria were collected from the culture broth by centrifuging at 3000 rpm for 20 min. Bacteria were resuspended in 10 mM phosphate buffer at pH 7.6 plus 0.1% Triton X-100 and incubated at 37 0 C for 12 h, with stirring.
  • the mixture was centrifuged at 10000 rpm for 20 min, recovering the supernatant added to an anion exchange column, which has no affinity for the Cu / Zn SOD protein, and most of the other proteins present in the supernatant are retained.
  • the eluate obtained from the column was treated with polymyxin B in order to eliminate the bacterial Lipopolysaccharide.
  • this solution was dialyzed against PBS buffer, to analyze the purity of the protein obtained by means of a gel 12% SDS-PAGE and its concentration by the Bradford method.
  • Cu / Zn RSOD -2O protein was stored at 0 C.
  • plasmid pSFV4.2-SOD was digested with ⁇ amHI and Xho enzymes ⁇ for 2 h at 37 0 C. From the digestion a fragment of 1, 1 kb, containing the gene of interest, which is extracted from obtained a 1% agarose gel using a commercial kit (see figure No. 4, line 2).
  • the plasmid pSFV4.2 was digested with the same restriction enzymes used previously and under the same conditions.
  • the restriction enzymes were inactivated at 6O 0 C for 15 min.
  • the ligation was performed by mixing in a 3: 1 ratio the insert of 1.1 kb, with the plasmid pSFV4.2, which had a marker for the antibiotic ampicillin. This was previously digested using the enzyme DNA ligase T4 in 10X T4 DNA ligase buffer plus 5mM ATP.
  • the ligation mixture was incubated for 12 h at 16 0 C in the dark, this was used to transform competent E. coli BL21 bacteria.
  • the effectiveness of the ligation was determined by growing in plates with LB medium containing 100 ⁇ g / mL of ampicillin.
  • plasmid DNA was extracted using a commercial kit. The obtained plasmid was digested with the enzymes ⁇ amHI and Xho ⁇ , then analyzed by means of a 1% agarose gel, which was observed in ultra violet light to confirm the presence of the 1.1 kb fragment.
  • the competent E. coli BL21 bacteria were transformed by mixing 100 ⁇ l of these with approximately 1 ⁇ g of plasmid, keeping them on ice for 30 min. Then incubated at 42 0 C for 90 s, then 400 ul of LB broth was added and again were incubated for 45 min at 37 0 C with shaking at 200 rpm. Finally, the mixture was seeded in a culture dish containing LB agar plus 60 ⁇ g / ml ampicillin, the bacteria were incubated for a period of 12 37 0 C.
  • Example No. 5 Competency test
  • the bacterial strain BL21 E. coli was plated on agar Laurya Bertoni (LB) and incubated at 37 0 C for 16 h. After the plate was selected from an isolated colony, which was inoculated in a test tube with 5 ml of LB broth and then incubated for 12 h at 37 0 C with shaking at 220 rpm. Subsequently, 1 ml of medium inoculated a flask with 100 ml of LB broth and incubated at 37 0 C with shaking at 220 rpm to an optical density of the broth from 0.38 to 590 nm.
  • the culture medium was centrifuged at 2500 rpm for 10 min and the supernatant was discarded.
  • the bacteria were resuspended in 20 ml of 0.1 M CaCb at 4 0 C. It was incubated for 10 min on ice and centrifuged at 2500 rpm for the same period of time. The supernatant was discarded and the bacteria were resuspended in 4 ml of CaCb (0.1 M) at 4 0 C.
  • a micropuge tube of 1.5 ml capacity, 850 ⁇ l of the previous suspension was mixed in with a microfuge tube. 150 ⁇ l of sterile glycerol and then each tube was placed in a container with liquid nitrogen. Finally, the competent frozen bacteria were stored at -80 ° C.
  • Example No. 6 Linearization of the plasmid and in vitro transcription system
  • the linearization of the plasmids was performed by digestion with the enzyme SpeI at 37 0 C for one hour.
  • the linearized plasmids were purified from the cutting mixture, adding a volume of mixture containing 25% phenol, 24% chloroform and 1% isoamyl alcohol, the mixture was stirred vigorously. Subsequently, it was centrifuged at 4650 rpm and the aqueous phase was recovered, from which the plasmid was extracted by precipitation using 2.5 volumes of 70% ethanol plus 0.05 volumes of 3M sodium acetate.
  • the plasmid was resuspended in deionized water treated with 0.2% diethylpyrocarbonate (DEPC). The transcription was then carried out in vitro using a commercial kit.
  • DEPC diethylpyrocarbonate
  • the 5 ⁇ g mixture of the linearized plasmid was treated with 10 ⁇ l of 5X SP6 transcription buffer; 5 ⁇ l of 100 mM Dithiothreitol (DTT); 50 units of recombinant ribonuclease inhibitor; 2.5 ⁇ l of 1mM rATP, 10mM rCTP and 1mM rUTP plus 2.5 ⁇ l of 1mM rGTP; 5 ⁇ l of the Cap 5mM analog, Ribo m 7 G; 40 units of the RNA polymerase SP6 and enrrasó with nuclease free water to a final volume of 50 ⁇ l, then this mixture was incubated for 2 h at 37 0 C.
  • DTT Dithiothreitol
  • the transcribed mRNA was purified by precipitation with 0, 72 volumes of sopropanol at -20 ° C plus 0.2 volumes of 3M sodium acetate (pH 4.8), and a new incubation was carried out for a period of 10 min at room temperature, then centrifuged for 15 min at 4650 rpm, to then precipitate the transcribed RNA. To carry out this step, it was washed with 75% ethanol and centrifuged at 4650 rpm for a period of 15 min. The precipitated RNA was resuspended in TE buffer at pH 7.5. The size of the transcribed RNA was verified by resolution by electrophoresis in a 1% agarose gel.
  • the sample was preincubated with loading buffer for 3 min at 65 0 C before being sown in the gel.
  • the gel was analyzed in an ultraviolet transilluminator where the size of the transcribed RNA was compared with that of the RNA molecular weight standard.
  • the transcribed RNA was aliquoted and stored at -80 ° C, see figures No. 4 and No. 5.
  • the transfection was performed by means of cationic liposomes, for which cell lines COS-7 (ATCC CRL-1651) and J774 (ATCC TIB-67) were cultured in complete DMEM medium, until obtaining an approximate amount of 4 x 10 6 cells per ml. .
  • the cells were detached and subsequently transferred to plates for cell cultures, where the cells were incubated with culture medium to a confluence of 80%.
  • This culture medium was then replaced by the modified complete DMEM medium and incubated for 5 to 10 minutes in a humid atmosphere at 37 ° C with 5% CO 2 . After the incubation, the medium was replaced by a transfection mixture containing 9 ⁇ g of Lipofectamine plus 2-5 ⁇ g of RNA transcribed in modified complete DMEM medium. The transfected mixture was incubated for 2 h.
  • Example No. 8 Expression of RNA transcribed from the plasmid pSFV4.2-SOD
  • RNA was transfected in J774 cell line (ATCC, TIB-67), following the same steps of transfection with liposomes.
  • the transfected cells were detached, by mechanical means and used with loading buffer, used in protein electrophoresis in polyacrylamide gels.
  • the above mixture was heated at 100 0 C for 5 min and then loaded on a polyacrylamide gel to electrophoretically separate proteins from the sample.
  • the expression of the Cu / Zn SOD protein in the transfected cell line was verified by means of a Western Blot ( Figure No. 5), whose procedure is described in Example No. 10.
  • a monoclonal mouse antibody of class IgG against the protein Cu / Zn SOD (figure No. 7) was used as the first antibody.
  • Example N ° 9 Preparation of Polyacrylamide gel SDS-PAGE
  • the polyacrylamide gels were built on a support for gels, these consist of a gel separator and a concentrator gel, the first was prepared at 12% by mixing 2 ml of a solution of 30% acrylamide, plus 1.3 ml of buffer Tris at pH 8.8 and 0.05 ml of 10% SDS. Polymerization was initiated by adding 0.05 ml of ammonium persulfate and 0.002 ml of EDTA. On the polymerized separating gel, the concentrating gel was added, which was prepared by adding 0.17 ml of the 30% acrylamide solution plus 0.13 ml of Tris-HCl at pH 6.8 and 0.01 ml of SDS at 10. %.
  • the staining of the polyacrylamide gel was carried out once the electrophoresis was finished, the gel was stained with a 0.5% Coomassie blue solution plus 45% methanol and 10% acetic acid. Subsequently, the gel was destained with a decolorizing solution containing 10% methanol and 10% acetic acid dissolved in distilled H 2 O.
  • Example N ° 10 Western Blot (see figure N ° 9)
  • a protein electrophoresis was first performed on a polyacrylamide gel, described in Example No. 9.
  • the gel was disassembled and placed on a sheet of nitrocellulose paper of the same size.
  • the gel was placed in a support for Western Blot, to introduce it in an electrophoresis chamber, which contained a transfer buffer.
  • the operating conditions to carry out the transfer were one hour at 25OmA at room temperature.
  • the proteins were transferred to the nitrocellulose paper, the nonspecific sites were blocked, using 5% skim milk dissolved in PBS buffer plus 0.3% Tween 20, then incubated for 12 h at 4 ° C.
  • the paper of nitrocellulose was incubated for a period of 3 h with the first monoclonal antibody against diluted SOD, which was in PBS buffer plus 0.03% Tween 20 and 5% skim milk, at room temperature with shaking.
  • nitrocellulose paper was washed 3 times for five minutes with PBS buffer and 0.03% Tween 20 under agitation. Then one hour was incubated with a second rabbit anti-mouse IgG antibody labeled with peroxidase, diluted in buffer PBS and 0.03% Tween 20, to wash again under agitation. Finally, the transferred paper was revealed by incubation in a solution containing 10 mg / ml Diaminobenzidine (DAB) and 0.3% hydrogen peroxide in PBS buffer.
  • DAB Diaminobenzidine
  • Example No. 11 Production of the recombinant Semliki Forest virus
  • Semliki Forest virus packaging was carried out within cell line COS-7 (ATCC, CRL 1651), for which it was cotransfected with the RNAs transcribed from the plasmids pSFV4.2-SOD, pSFV-Helper-Capsid S219 and pSFV-Helper-Spike2.
  • the transfection was performed through liposomes as described in example No. 7. Subsequently, the transfection mixture was removed and the plate was washed with 2ml of incomplete modified RPMI. Finally, cotransfected cells were incubated in modified complete RPMI medium, for 24 h in a humid atmosphere at 37 ° C with 5% CO 2 .
  • the viral particle formed inside the cell COS-7 is released to the culture medium from where it was purified by a gradient of discontinuous sucrose.
  • the gradient was prepared in an ultracentrifuge tube, first adding 1 ml of 55% sucrose and then 3 ml of 25% sucrose, on which 9 ml of the culture medium was added.
  • the sucrose gradient was subjected to a centrifugation of 135000 rpm for 90 minutes in an ultracentrifuge.
  • the culture medium of the gradient surface was carefully removed and 0.8 ml of 55% sucrose was subsequently aspirated from below the tube.

Abstract

Formulación farmacéutica veterinaria que contiene, o bien un sistema vectorial ARN el cual comprende partículas virales constituidas por una molécula recombinante de ARN que codifica para la Cu/Zn superóxido dismutasa de Brucella abortus unida al ARN del plásmido que porta la secuencia de la replicasa viral del virus Semliki Forest (pSFV4.2-SOD), junto con el ARN del plásmido que contiene los genes de las proteínas transmembrana de la envoltura del virus (pSFV-helper spike) y el ARN del plásmido que contiene los genes de las proteínas de la cápside (pSFV-helper capsid S219A), o bien un sistema vectorial ARN que comprende una molécula recombinante de ARN desnudo compuesta por la secuencia de ARN que codifica para la Cu/Zn superóxido dismutasa de Brucella abortus y el ARN del plásmido que porta la secuencia de la replicasa viral del virus Semliki Forest (rSFV4.2-SOD).

Description

FORMULACIÓN FARMACÉUTICA VETERINARIA QUE COMPRENDE UNA
PARTÍCULA RECOMBINANTE DE ARN QUE CODIFICA PARA UNA PROTEINA
CU/ZN SUPEROXIDO DISMUTASA DE BACTERIAS PATÓGENAS DE RUMIANTES
Y AL MENOS UN ALFAVIRUS ARN PERTENECIENTE A LA FAMILIA DEL VIRUS
SEMLIKI FOREST.
DESCRIPCIÓN
La utilización de está tecnología está dirigida hacia el sector ganadero, específicamente para el ganado bovino que presenta altas tasas de abortos causados por Ia bacteria Brucella abortus.
Técnica Anterior
Brucella abortus es una bacteria gram negativa, intracelular, facultativa, que contiene moléculas de mañosa que favorecen Ia adherencia a los fagocitos mononucleares del hospedero. Particularmente, Ia placenta de vacunos contiene gran cantidad de receptores de mañosa, Io que favorece el anidamiento de esta bacteria y consecuentemente Ia probabilidad de abortos en estos animales.
Cuando el macrófago reconoce patrones conservados en Ia superficie de Brucella sp. (LPS o Proteínas de Ia membrana externa) éste se activa y luego fagocita Ia bacteria. Sin embargo, Brucella sp. logra sobrevivir con gran eficiencia dentro de Ia célula fagocítica, ya que es capaz de evitar Ia fusión del lisosoma con el fagosoma. Brucella sp. evade el estallido respiratorio dentro del fagolisosoma, ya que evita Ia formación de radicales derivados del oxígeno, adicionalmente, libera productos celulares como ARN, los que inhiben algunas enzimas lisosomales .
Las proteínas Cu-Zn Superóxido Dismutasa y Catalasa son enzimas periplasmáticas que detoxifican el ion superóxido (O2") y el peróxido de hidrógeno (HbO2), producidos por los fagocitos después de Ia fagocitosis de Ia bacteria. La expresión de estas enzimas favorece Ia permanencia de Brucella sp. en el interior del fagocito viable.
La respuesta inmune de mayor efectividad que desarrolla el hospedero contra Brucella sp., es Ia secreción de anticuerpos y Ia activación de linfocitos T. Éstos son producidos específicamente contra esta bacteria, sin embargo, debido a que ésta es una bacteria intracelular, Ia respuesta inmune celular es Ia de mayor importancia en Ia erradicación del microorganismo del hospedero. Desarrollo de vacunas contra Brucella abortus
Se han desarrollado una serie de vacunas con fines preventivos, Ia mayoría utiliza cepas bacterianas atenuadas o componentes antigénicos propios de Ia bacteria (LPS y proteínas de Ia bacteria), escasas iniciativas utilizan vectores de expresión que codifican proteínas antigénicas bacterianas.
Dentro de las cepas más utilizadas en vacunas atenuadas, se encuentra Ia vacuna cuyo principio activo utiliza Ia cepa 19 de Brucella abortus, sin embargo, esta vacuna causa abortos en el animal inmunizado y además, desarrolla anticuerpos contra el antígeno O del LPS, interfiriendo con el diagnóstico serológico de esta enfermedad. Otra formulación utilizada es Ia que se elabora con Ia cepa 45/20 (cepa rugosa), que si bien no interfiere con el diagnóstico serológico, puede revertirse a su forma lisa virulenta. Una tercera vacuna es Ia que emplea Ia cepa RB51 de Brucella abortus, que es una mutante natural de Ia cepa 2308 de Brucella abortus, cuya característica principal es Ia carencia del antígeno O del LPS, por Io cual tampoco interfiere en el diagnóstico serológico. Un aspecto importante con Ia cepa de B. abortus 2308, es que produce placentitis en vacas preñadas, existiendo Ia posibilidad de revertirse a su forma virulenta.
Se ha probado el LPS y su uso como principio activo para una posible vacuna, observándose que no otorga protección contra Brucella sp.
Se ha investigado con gran interés Ia inmunización con proteínas recombinantes, debido a que Brucella sp. posee gran cantidad de proteínas capaces de inducir algún tipo de respuesta inmune en el hospedero.
Por otra parte, Ia inmunización con vectores de expresión plasmidial es una técnica reciente, con Ia cual se han obtenido resultados alentadores en composiciones farmacéuticas inyectables, lográndose niveles de protección similares a los obtenidos con el uso de Ia cepa atenuada de Brucella abortus RB51. La ventaja de esta metodología, frente a Ia vacunación con cepas atenuadas, se debe a Ia facilidad de su manejo y en Ia capacidad de generar respuestas inmunes prolongadas, con un alto nivel de bioseguridad. Sin embargo, existe Ia posibilidad de que el ADN plasmidial se incorpore al genoma de Ia célula, por Io cual, quedaría en duda su utilización práctica en el futuro.
Además de los vectores plasmidiales existen otros vectores de expresión, como los basados en el virus Semliki Forest (SFV). Este alfavirus ARN, presenta una región ARN 42S que codifica una poliproteína denominada replicasa viral, responsable de Ia replicación del ARN genómico. Este último, se utiliza como molde para Ia síntesis del ARN subgenómico 26S y del ARN genómico viral. El ARN subgenómico 26S codifica para las proteínas estructurales, que corresponden a las proteínas de Ia Cápside (C). Éstas, recién sintetizadas, se pueden unir a una o más secuencias de encapsidación del ARN genómico viral.
Estos vectores pueden consistir básicamente en el ARN desnudo autoreplicable, cuya secuencia contiene inserto del gen de interés, que codifica para Ia proteína con capacidad inmune, o bien, para partículas virales suicidas del virus Semliki Forest, que contienen en el interior ARN sin capacidad replicativa. Experimentos previos han demostrado Ia alta eficiencia de estos sistemas para producir proteínas heterólogas en células eucariotas, así como también, Ia capacidad para conferir excelentes niveles de protección en animales inmunizados, superando incluso a las vacunas ADN tradicionales.
Considerando Ia eficiencia de estos vectores de expresión, además de Ia demostrada capacidad inmune de Ia proteína Cu/Zn Superóxido Dismutasa (SOD), que confiere protección contra Brucella abortus, se han inventado dos sistemas de expresión de Ia proteína SOD, uno basado en el virus Semliki Forest y otro en las partículas de ARN. Ambos son capaces de conferir protección contra esta bacteria.
Existen varios documentos que divulgan invenciones, que de alguna manera pueden estar relacionadas con Ia presente iniciativa. A continuación, se discuten los documentos más relevantes:
La solicitud de patente de invención de Ia oficina europea de patentes EP1108433A3 divulga una vacuna contra brucelosis y el uso combinado de una proteína antigénica "r", además de un polisacárido tipo "A" ó "M". La tecnología utilizada comprende Ia utilización de componentes estructurales de diversas bacterias, las cuales pueden expresar esos antígenos. En ninguna parte de Ia patente se divulga o se nombra una posible utilización de Ia proteína SOD.
La patente de invención estadounidense US6264952 divulga otro tipo de vacuna, cuyo principio activo es un agente bacteriano (Brucella sp.). Esta bacteria es irradiada con emisiones gamma, de esta forma se obtiene una bacteria que es metabólicamente activa, pero no puede replicarse, por Io que no interfiere con Ia invención que se desea reivindicar.
La solicitud de patente de invención británica GB2227936 divulga una vacuna mejorada contra Brucella abortus, ésta permite diferenciar el ganado infectado con otras cepas de campo. Para este fin, se utiliza una combinación de las principales proteínas de β. abortus como antígenos específicos. Este agente inmunizante es una cepa patogénica que puede tomar varias formas como proteínas purificadas de Ia mencionada bacteria, bacterias muertas o atenuadas. Otro agente inmunizante corresponde a los péptidos sintéticos con epítopes antigénicos, que han sido obtenidos de las mismas bacterias, por ejemplo, Omps I, II, III y Ia proteína de Ia envoltura de 7 y 8kD. Otros agentes son los extractos recombinantes crudos o puros desde E. coli transformada, para Ia expresión de las mismas proteínas, o extractos recombinates crudos o puros de E. coli transformada, para Ia expresión de las mismas proteínas B. abortus viva modificada, seleccionando el DNA que codifica para una o más de estas proteínas o un vector recombinante vivo, con el material genético de uno o más de los principales antígenos de Brucella sp. Insertos en su genoma utiliza el virus del herpes o de Ia viruela recombinante. En Ia solicitud británica GB2227936 se protege una serie de formas de administración de algunas de las proteínas de Brucella sp., pero ninguna de ellas es SOD.
La patente de invención estadounidense US5824310 divulga Ia utilización del LPS de B. abortus como coadyudante. Esta solicitud de patente de invención no utiliza Ia proteína SOD.
La solicitud de patente de invención de prioridad norteamericana, de Ia oficina mundial de patentes WO03104468, divulga un sistema de vector basado en el virus Semliki Forest (SFV), además de su uso en un sistema de expresión dirigido al sistema nervioso central (CNS) y Ia formulación farmacéutica relacionada para Ia liberación de drogas en el CNS. El invento demostró el potencial uso de los vectores alpha virus como vectores para el CNS. Se resguarda un vector que penetra al CNS y expresa un gen clonado que actúa sobre el CNS, dando un tratamiento eficiente no invasivo. La solicitud norteamericana no utiliza ni Ia proteína ni el gen SOD. Si utiliza el sistema viral como vector, pero este sistema ya estaba protegido en Ia solicitud de patente de invención de Liljestrom (US5739036).
La solicitud de patente de invención de Ia oficina mundial de patentes WO9909192, divulga y protege un método para transformar una célula seleccionada con un ácido nucleico determinado. Para este fin, se utilizan partículas del virus Semliki Forest para infectar "en vivo" en forma selectiva. Las células dianas son células del músculo liso cardiaco y cardiomiocitos después de una angioplastia. El fin es que el ácido nucleico codifique para un inhibidor de restenosis, Ia timidita quinasa del virus herpes simplex. En esta solicitud de patente no se trabaja con Ia proteína SOD.
La patente de invención norteamericana US6566093 divulga un nuevo vector de expresión para ser utilizado como vacuna, es de tipo DNA y está basado en parte del genoma de un alfavirus. Esta iniciativa protege el uso y Ia metodología de introducción de un gen exógeno en dicho sistema de expresión. Esta tecnología no interfiere con nuestra propuesta, ya que el constructo de DNA es distinto al sintetizado en Ia presente invención.
La solicitud de patente de Ia oficina mundial de patentes WO95/27069 protege una composición farmacéutica de vía inyectable que comprende una molécula alfavirus de tipo ARN. Ésta incluye una secuencia de ARN exógeno, que codifica para un antígeno del virus Herpes simplex e influenza. Se protege además, una composición de vacuna de tipo ARN desnudo, Ia que es formulada con lípidos que pueden ser absorbidos por partículas inertes junto a Ia secuencia del antígeno exógeno, donde el antígeno de Herpes es HSVgD y el de Ia influenza es hemaglutinina. En Ia presente invención se desea proteger una formulación farmacéutica distinta.
Divulgación de Ia invención
Se han desarrollado dos vacunas, Ia primera basada en el genoma del virus Semliki Forest contra Ia bacteria intracelular Brucella abortus, utilizando como antígeno una proteína específica de esta bacteria denominada Cu/Zn Superóxido Dismutasa, Ia cual es capaz de inducir una respuesta inmune protectora contra Ia cepa patógena S. abortus. La segunda vacuna, incorpora solamente el ARN del virus con Ia secuencia de Ia proteína.
Para el montaje de este sistema de expresión se debe subclonar el segmento de ADN que codifica Ia proteína Cu/Zn rSOD (gen sodC), en el plásmido que porta Ia secuencia de Ia replicasa viral (pSFV4.2). Posteriormente, se transcriben in vitro los 3 plásmidos que codifican el virus Semliki Forest recombinante. Después de realizada Ia transcripción in vitro se realiza el análisis de Ia expresión del gen SOD a partir del ARN replicón (pSFV4.2-SOD). Los resultados obtenidos indican que Ia proteína SOD es expresada con similar efectividad por las células de un animal inmunizado con este ARN. Posteriormente, se empaqueta Ia partícula viral (rSFV4.2-SOD), a partir de los 3 ARN transcritos, dentro de una línea celular (COS-7), desde donde son purificadas las partículas virales quiméricas del medio de cultivo.
Los resultados de los ensayos indican Ia efectividad de Ia vacuna. Estos sistemas de expresión otorgan inmunidad protectora siendo capaces de inducir una respuesta mayor que las obtenidas con las vacunas convencionales, resolviendo Ia problemática aún existente de Ia bioseguridad de sistemas moleculares de alta eficiencia.
Para el desarrollo de Ia invención, que comprende varias etapas para Ia generación de una vacuna contra Ia bacteria Brucella abortus, como uno de los productos de este proceso, se deben considerar las siguientes etapas.
A. Obtención de antígenos
Para extraer las proteínas totales de Brucella abortus, y particularmente obtener Ia proteína Cu/Zn superóxido dismutasa (SOD), se utilizó Ia cepa RB51. El procedimiento contempla el cultivo de Ia cepa por un periodo de 24h y su posterior cosecha. El pellet es tratado con metanol y una solución hipertónica para detener Ia actividad bacteriana, luego son sonicadas y centrifugadas en condiciones de frío, el sobrenadante contiene las bacterias ya usadas. Este pellet es tratado con fenil metil sulfonil fluoruro, inhibidor de proteasas (PMSF) y dializado, para así obtener las proteínas. Finalmente, las proteínas son concentradas con polietilenglicol en bolsas de diálisis con capacidad de retención de pesos moleculares sobre 3500. Esta solución de proteínas contiene a Ia proteína Cu/Zn SOD que es utilizada como control.
B. Expresión de Ia Proteína Cu/Zn Superóxido Dismutasa recombinantβ
Para obtener Ia proteína Cu/Zn SOD recombinante de Brucella abortus, se generó una genoteca con Ia cepa B. abortus 2308. Luego, con una sonda de 20 bases se clonó una secuencia de 1 ,4 a 1 ,6kb que contenía el gen con su secuencia promotora. Este gen es expresado en bacterias E. coli DH5, transformadas por electroporación con el plásmido pBSSOD que contiene el gen que codifica Ia proteína Cu/Zn SOD (sodC).
Para obtener Ia proteína se debe cultivar Ia bacteria, posteriormente se recolecta desde el caldo de cultivo y el sobrenadante se agrega a una columna de intercambio aniónico, que no posee afinidad por Ia proteína Cu/Zn SOD. El sobrenadante eluye Ia proteína Cu/Zn SOD, el que se trata con polimixina B con el fin de eliminar el lipopolisacárido bacteriano. Luego esta solución se dializa contra tampón fosfato salino (PBS), para finalmente analizar Ia pureza de Ia proteína obtenida mediante un gel SDS- PAGE y se determina Ia concentración mediante el método de Bradford.
C. Etapas para Ia preparación de los plásmidos y su expresión
Esta etapa se efectúa en dos partes, primero es Ia confección de un vector de expresión que codifica para Ia proteína SOD, a partir del plásmido que contiene los genes de Ia replicasa viral del virus Semliky Forest. Una segunda etapa, implica un segundo sistema de expresión también basado en plásmidos a partir del mismo virus, éstos portan otros genes necesarios para Ia replicación viral.
Para generar el sistema de expresión, se deben preparar las bacterias competentes. La cepa utilizada es E. coli BL21 para los dos plásmidos de Ia primera etapa, el protocolo de transformación implica Ia utilización de CaCI2. La construcción del plásmido pSFV4.2-SOD se realizó a través del gen que codifica Ia proteína Cu/Zn Superóxido Dismutasa de β. abortus (sodC), que se obtiene del plásmido pBSSOD, previamente desarrollado en Ia invención y del plásmido pSFV4.2. Una vez logrado Ia confección del plásmido se transforman las bacterias, ya competentes, a través de métodos clásicos ampliamente conocidos en el arte. La figura N°3 muestra el esquema general del proceso hasta obtener las partículas virales suicidas: (1 ) Se construye el plásmido utilizando el plásmido pSFV4.2, (2) plásmido pBSSOD se digire con las mismas enzimas de restricción y se sintetiza posterior a Ia extracción del gel del inserto entre 1000 y 1200pb (sodC) cuyo gen codifica Ia proteína Cu/Zn Superóxido Dismutasa de S. abortus. En (3), tiene lugar Ia ligación del inserto del rango comprendido entre 1000 y 1200pb en el plásmido pSFV4.2, (4) se realiza Ia purificación de cada plásmido, transcripción in Vitro y transfección.
La segunda etapa de expresión, es Ia confección de los dos plásmidos estructurales virales, para ello se utilizaron los vectores pSFV-Helper Spike2 (7543 pb) y plásmido pSFV-Helper Capsid S219A (5504 pb).
Con el fin de analizar los constructos plásmidiales utilizados para elaborar el sistema de expresión, basado en el virus Semliki Forest, éstos se digieren con enzimas de restricción y posteriormente son examinados mediante electroforesis en gel de agarosa al 1%. En Ia figura N°4 se observa que los plásmidos linealizados pSFV-Helper Spike2 y pSFV-Helper Capsid S219A, concuerdan con el peso molecular teórico respectivo (líneas 3 y 4), además en Ia línea 2 se confirma Ia presencia del inserto en un rango entre 1000 y 1200pb en el plásmido pSFV4.2-SOD (11680 pb), el cual se digiere con dos enzimas de restricción simultáneamente. En esta misma figura, se individualiza el análisis del gel de agarosa (1 %) de los constructos, posterior a Ia digestión con endonucleasas:
Línea 1 : estándar de peso molecular de ADN 1kb,
Línea 2: plásmido pSFV4.2-SOD digerido con Xho\ y BamHl,
Línea 3: plásmido pSFV-Helper Spike2 digerido con Xhol,
Línea 4: plásmido pSFV-Helper Capsid S219A digerido con EcoRI.
D. Transcripción In vitro
Antes de Ia transcripción los plásmidos se deben linealizar, en esta invención se utiliza Ia enzima de restricción (Spel). La transcripción in vitro se realiza utilizando un kit comercial. La transfección a Ia línea celular COS-7 (ATCC, CRL 1651 ) se realiza utilizando liposomas catiónicos.
E. Análisis de expresión del ARN transcrito del plásmido pSFV4.2-SOD
El ARN transcrito a partir del plásmido pSFV4.2-SOD, al igual que el ARN de los plásmidos pSFV-Helper-Spike2 y pSFV-Helper-Capsid S219, se obtienen mediante una transcripción in vitro como se describió anteriormente. Este procedimiento se encuentra específicamente desarrollado en el ejemplo de aplicación. En Ia figura N°5 se comprueba Ia efectividad de Ia transcripción in vitro. Los tamaños de los ARN transcritos, a partir de los plásmidos pSFV-Helper Spike2, pSFV-Helper Capsid S219 y pSFV4.2-SOD, son los esperados.
En forma pormenorizada se presenta en Ia figura N°5 el análisis del ARN transcrito de los plásmidos en estudio. El gel de agarosa al 1 % se somete a electroforesis durante 30 min a 4OmA. Tanto el estándar de ARN como los ARN transcritos, se deben incubar previamente con un tampón de carga y calentados a 650C durante 3 min antes de ser sembrados en el gel. Específicamente, Ia figura N°5 muestra Io siguiente:
Línea 1 : estándar de peso molecular de ARN,
Línea 2: control positivo de transcripción,
Línea 3: ARN transcrito del plásmido pSFV4.2-SOD,
Línea 4: ARN transcrito del plásmido pSFV-Helper Spike2,
Línea 5: ARN transcrito del plásmido pSFV-Helper Capsid S219A. En Ia línea 2 se observa Ia correcta transcripción in vitro del control positivo, y además se puede advertir Ia correcta transcripción de cada plásmido, los cuales poseen los tamaños esperados.
F. Western Blot
Con el fin de visualizar Ia expresión de Ia proteína SOD recombinante, se realiza un Western Blot. Para Io cual, primero se debe efectuar una electroforesis de las proteínas en un gel de poliacrilamida. Una vez que las proteínas son transferidas al papel de nitrocelulosa se bloquean los sitios inespecíficos, utilizando leche descremada disuelta en tampón PBS más Tween 20. Posteriormente, el papel de nitrocelulosa se debe incubar bajo agitación durante un periodo de tiempo con un anticuerpo monoclonal contra SOD. Después se debe incubar con un segundo anticuerpo de conejo anti-lgG de ratón, marcado con peroxidasa. Finalmente, se revela el papel transferido por incubación en una solución que Diaminobencidina (DAB) en tampón PBS, donde se debe observar una reacción positiva a 18kD.
La figura N°6 muestra el Western Blot para el análisis de Ia expresión de Ia proteína Cu/Zn rSOD a partir del ARN replicón. Para el análisis de Western Blot se utiliza un anticuerpo monoclonal contra Ia proteína Cu/Zn rSOD y como control positivo se utiliza Ia proteína Cu/Zn rSOD pura.
Línea 1 : control negativo (células sin transfectar con ARN transcrito), Línea 2: muestra (células transfectadas con ARN transcrito pSFV4.2-SOD), Línea 3: control positivo (proteína Cu/Zn rSOD).
G. Análisis de Ia expresión del ARN replicón
Con el fin de demostrar que el ARN transcrito a partir del plásmido pSFV4.2-SOD, tiene Ia capacidad de expresar Ia proteína Cu/Zn Superóxido Dismutasa recombinante (rSOD), se transfecta con ARN proveniente del plámido pSFV4.2-SOD a Ia línea celular J774 (ATCC, TIB-67). Una vez transcrito, se detecta Ia expresión de Ia proteína Cu/Zn rSOD dentro de esta Ia línea celular mediante un Western Blot.
En Ia línea 2 de Ia figura N°6, se demuestra positivamente Ia presencia de Ia proteína Cu/Zn rSOD dentro de la línea celular J774. H. Elaboración de partículas virales suicidas del virus Semliki Forest
El virus Semliki Forest se modifica genéticamente con el fin de elaborar una partícula viral suicida, que puede ser usada como un vector para Ia expresión de proteínas heterólogas en animales. El virus modificado genéticamente se encuentra codificado en tres plásmidos: pSFV4.2, pSFV-Helper-Cápsid y pSFV-Helper-Spike. La figura N°1 presenta los vectores de expresión basados en el virus Semliki Forest.
El plásmido pSFV4.2 contiene cuatro genes que codifican Ia replicasa del virus Semliki Forest (nsP1-4); este plásmido carece de los genes estructurales del virus (C, p62, 6K y E1 ). Los plásmidos pSFV-Helper-Spike2 y pSFV-Helper-Capsid S219A carecen de los genes que codifican Ia Replicasa viral, pero poseen los genes estructurales del virus. Los tres plásmidos poseen las siguientes características en común:
• promotor SP6 para ser transcritos in vitro,
• un sitio de corte de Ia enzima de restricción Spel, para linealizar los plásmidos antes de Ia transcripción,
• un gen de resistencia a ampicilina (Ap).
Cada plásmido posee un promotor SP6 que Ie permite ser transcrito in vitro, obteniéndose moléculas de ARN a partir de cada uno. El plásmido pSFV4.2 posee un sitio de multiclonaje, en el cual se puede insertar un gen que codifique Ia proteína SOD. El ARN del plásmido pSFV4.2 corresponde al vector replicón, un promotor subgenómico seguido por los genes heterólogos de interés (SOD) y los extremos 5' y 3' requeridos para Ia replicación del genoma, disponibles en los tres ARN. El ARN del plásmido pSFV-Helper-Capsid, contiene un promotor subgenómico, seguido por los genes que codifican para las proteínas de Ia cápside del virus. El ARN del plásmido pSFV-Helper-Spike, también posee un promotor subgenómico seguido por los genes de las proteínas transmembrana de Ia envoltura del virus.
Los tres ARN transcritos son cotransfectados a Ia línea celular eucariota COS-7, que posteriormente se traducen e inician el empaquetamiento de las partículas virales con Ia información de Ia proteína de interés. Debido a una modificación genética, estos virus poseen un genoma limitado, que consta solamente del ARN del vector replicón, ya que sólo éste tiene Ia secuencia de Ia señal de encapsidación. Con esto se impide que el virus desarrolle una infección productiva, otorgándole una alta bioseguridad al sistema. Además, se ha introducido una mutación en el gen que codifica para Ia proteína p62 (Arg66->Leu), que impide el clivaje de esta proteína por las proteasas del hospedador. Así los virus obtenidos son condicionalmente infectantes. Por Io tanto, Ia cotransfección de una célula con los tres ARN (Replicón, Helper-Spike, Helper-Capsid) induce el empaquetamiento y liberación por gemación del virus Semliki Forest recombinante, el cual encapsida sólo el ARN Replicón, puesto que sólo éste posee Ia señal de encapsidación.
En Ia presente invención se ha desarrollado un sistema de expresión y dos vacunas. Construyendo un nuevo plásmido, denominado pSFV4.2-SOD a partir del gen que codifica para Ia proteína Cu/Zn Superóxido Dismutasa y del plásmido pSFV-4.2. Para esto, se purificó y transcribieron in vitro los plásmidos; pSFV4.2-SOD; pSFV-Helper- Capsid S219A y pSFV-Helper-Spike2. Se obtuvo el virus Semliki Forest recombinante a partir de células cotransfectadas con el ARN transcrito de los piásmidos: pSFV4.2- SOD, pSFV-Helper-Capsid S219A y pSFV-Helper-Spike2.
La figura N°2 muestra Ia construcción del plásmido pSFV4.2-SOD. Para construir el plásmido se utilizó el plásmido pSFV4.2, que fue previamente digerido con las enzimas de restricción BamH\ y Xho\ (1 ), antes de su ligación con el fragmento obtenido de Ia digestión del plásmido pBSSOD con las mismas enzimas de restricción (2), el que fue sintetizado posterior a Ia extracción del gel del inserto entre 1000 y 1200pb (sodC). El fragmento de 1.1 kb contiene el gen sodC que codifica Ia proteína Cu/Zn Superóxido Dismutasa de B. abortus. En (3), tiene lugar Ia ligación del inserto del rango comprendido entre 1000 y 1200pb en el plásmido pSFV4.2, previamente digerido con las mismas enzimas de restricción.
Para demostrar Ia viabilidad de Ia vacuna se inmunizó a ratones hembras cepa BALB/c. Se administró por vía intramuscular el ARN replicón desnudo (pSFV4.2-SOD) y el ARN replicón empaquetado en el virus Semliki Forest (rSFV4.2-SOD) por vía intraperitoneal.
El estudio de expresión de Ia proteína SOD, por el ARN replicón empaquetado en el virus Semliki Forest in vitro, utilizó Ia línea celular COS-7 (ATCC, CRL 1651 ), las cuales son fibroblastos de riñon del mono africano verde y Ia línea celular J774 (ATCC, TIB- 67), que son macrófagos de ratón. Las dos líneas celulares fueron cultivadas en medio DMEM completo. Para este invento se utilizaron 3 cepas bacterianas:
• bacteria Brucella abortus 2308, que es virulenta,
• bacteria Bucella abortus RB51 , cepa atenuada de Brucella abortus 2308, y
• E. CoIi BL21 , que sobreexpresa Ia proteína SOD en forma recombinante. Los plásmidos utilizados fueron pSFV4.2, pSFV4.2-Helper-Spike2 y pSFV4.2- Helper-Capsid S219A (ver figura N°1).
I. Producción del virus Semliki Forest recombinante
El empaquetamiento del virus Semliki Forest se lleva a cabo dentro de Ia línea celular COS-7, para Io cual se debe cotransfectar con los ARN transcritos a partir de los plásmidos pSFV4.2-SOD, pSFV-Helper-Capsid S219 y pSFV-Helper-Spike2. La transfección se realiza a través de liposomas catiónícos, posteriormente Ia mezcla de transfección se remueve, para luego incubar las células cotransfectadas en medio RPMI. La partícula viral formada en el interior de Ia célula COS-7 se libera al medio de cultivo, desde donde se purifica mediante un gradiente de sacarosa discontinuo. Finalmente, Ia fracción donde se encuentran las partículas virales se debe diluir.
La visualización e identificación de las partículas virales del virus Semliki Forest recombinante, se realiza en un microscopio electrónico. Como control negativo se utiliza Ia misma línea celular sin transfectar. Lo obtenido del gradiente de sacarosa de este control se observa en el microscopio electrónico.
En Ia figura N°7 se observa una microscopía electrónica de una muestra que contiene partículas virales del virus Semliki Forest rescombinante. La figura N°7A corresponde a Ia fotografía de una muestra que contiene partículas virales purificadas en un gradiente de sacarosa, y Ia figura N°7B corresponde al control negativo de Ia muestra anterior. Estas muestras se deben teñir previamente con una solución de ácido fosfotúngstico, que es Ia tinción diferencial para el virus.
En Ia figura N°7A se puede observar Ia presencia de partículas con forma redondeada y de densidad mayor al resto de Ia muestra, cuyo tamaño es similar al de las partículas del virus Semliki Forest, las que no se observan en Ia figura N°7B correspondiente al control.
J. Esquema experimental de Ia inmunización
Para determinar Ia efectividad de las vacunas se ensaya con ratones hembras cepa BALB/c, que son inmunizadas con partículas virales del virus Semliki Forest, o bien con los ARN desnudos que codifican para Ia proteína rSOD.
En Ia tabla N°1 se especifican los grupos ensayados para los contructos, diseñados a partir del virus Semliki Forest. El primer grupo (I) de los individuos ensayados fueron inmunizados con las secuencias de ARN desnudas, es decir, el grupo I.A. La secuencia de inmunización codifica para Ia proteína rSOD a partir del ARN rSFV4.2-SOD. Un segundo grupo denominado como I. B, fue sometido a un ensayo con ARN desnudo, pero con el constructo que no codifica para Ia proteína SOD (rSFV4.2). El segundo grupo (II) de estudio, fue inmunizado con las partículas virales, específicamente los individuos II.A, que fueron sometidos a Ia inmunización viral, cuyo material genético porta los genes que codifica para las proteínas rSOD y fue construido a partir del plásmido pSFV4.2-SOD. Por otra parte, el grupo II. B también fue sometido a Ia acción viral, pero cuyo genoma sólo portaba los genes que codifican para el complejo proteico de Ia replicasa viral. Además, se utiliza como control negativo el tampón PBS a pH 7,4. Las partículas virales deben ser previamente activadas utilizando una solución de ácido succínico a pH 4,5.
Tabla I. Grupos experimentales y vía de inmunización
Principio activo de Vía de
Grupo Ensayo Vector Ia vacuna inmunización
ARN desnudo + pSFV4.2-
I. A rSOD SOD Intramuscular I I.B ARN desnudo PSFV4.2 Intramuscular
Partículas virales pSFV4.2-
II.A del virus SF + rSOD SOD Intraperitoneal
Partículas virales M II. B del virus SF PSFV4.2 Intraperitoneal
Tampón fosfato
Control salino PBS Ambas vías
Se evalúa Ia respuesta inmune celular de los ratones inmunizados con los sistemas de expresión, para Io cual se mide Ia proliferización de los linfocitos de bazo en los ratones, frente a antígenos como Ia proteína Cu/Zn rSOD y proteínas totales de Brucella abortus RB51. La obtención de ambos antígenos se ha descrito en las letras A y B de Ia descripción de Ia invención en Ia memoria descriptiva, a saber Obtención de proteínas totales de B. abortus cepa RB51" y en "Expresión de Ia proteína Cu/Zn rSOD".
La proliferación se determina midiendo Ia incorporación de timidina [3H] en el ADN de las células de bazo de los ratones. Las células son inducidas a dividirse activamente en presencia del antígeno. Se debe sembrar Ia suspensión celular en microplacas y el antígeno, correspondientes a Ia proteína Cu/Zn rSOD o proteínas totales de Brucella abortus cepa RB51. Como control positivo se cultivan los esplenocitos y como control negativo se incuba sólo θl medio de cultivo completo. Las células son cultivadas y luego se cosechan los linfocitos para incluirlos en Ia solución de centelleo. Finalmente, se determina el índice de estimulación (IE), a través de Ia obtención del cuociente entre el valor obtenido en cuentas por minuto (cpm) del grupo experimental con las cpm obtenidas en el control negativo del mismo grupo experimental.
La figura N°8 muestra gráficamente los resultados de Ia proliferación de los linfocitos de bazo de ratones inmunizados con una vacuna RNA desnudo a partir de las secuencias que codifican para Ia proteína SOD, replicasa viral y el tampón (rSFV4.2- SOD, rSFV4.2 y PBS). El estudio de Ia linfoproliferación se realiza por 28 días después de Ia segunda inmunización, cultivando los linfocitos en presencia de proteína total de Brucella abortus RB51 (figura N°8, gráfico A) y proteína Cu/Zn rSOD (figura N°8, gráfico B). En el gráfico A, no se observa proliferación de los linfocitos de bazo de los ratones inmunizados con rSFV4.2-SOD, al igual que en los controles rSFV4.2 y PBS. En el gráfico B de Ia figura, se observa que los linfocitos de ratones inmunizados con Ia proteína recombinante rSFV4.2-SOD, al igual que en el caso anterior no proliferan significativamente frente al antígeno.
La figura N°9 muestra gráficamente los resultados de Ia proliferación de los linfocitos de bazo de ratones, inmunizados con Ia vacuna que contiene el virus modificado genéticamente (pSFV4.2-SOD, pSFV4.2 y PBS). La linfoproliferación se realiza 18 días después de Ia inmunización, cultivando los linfocitos en presencia de proteína total de Brucella abortus RB51 (gráfico A) y proteína Cu/Zn rSOD (gráfico B). En el gráfico A de Ia figura, se observa que los linfocitos de ratones inmunizados con pSFV4.2-SOD, proliferan más que los linfocitos de los ratones inmunizados con los controles pSFV4.2 y PBS. El máximo (14229 cpm) se obtuvo con una concentración de 4μg/ml del antígeno, cuyo valor es significativamente mayor que el de los linfocitos del grupo de ratones del control inmunizado con pSFV4.2 (8794 cpm) y PBS (5254 cpm). En el gráfico B de Ia figura, se observa una mayor respuesta proliferativa por parte de los linfocitos de ratones inmunizados con pSFV4.2-SOD. El máximo (18876 cpm) se obtiene con una concentración de 0,8μg/ml del antígeno, cuyo valor es significativamente mayor que el de los linfocitos del grupo de ratones del control inmunizado con pSFV4.2 (7056 cpm) y PBS (4541 cpm). Ensayo de Protección
Los ratones deben ser desafiados con 104 unidades formadoras de colonias (UFC) de Ia cepa patógena Brucella abortus 2308, inyectada por vía intraperitoneal. Los desafíos se realizan 24 días después de Ia segunda inmunización en el caso de los ratones inmunizados con ARN replicón o pSFV4.2-SOD (grupo I), además de sus respectivos controles, y 36 días después de Ia inmunización en el caso de los ratones inmunizados con el virus Semliki Forest recombinante (rSFV-SOD) más sus respectivos controles (grupo II). El ensayo de protección se realiza 2 semanas más tarde, para ello se extraen los bazos de los ratones ensayados. La protección se expresa como el logaritmo del número de UFC presentes en Ia dilución sembrada en Ia placa, donde se logra observar un máximo número de colonias aisladas.
En Ia tabla Il se observa una gran eficacia de los sistemas de expresión para conferir protección contra el desafío ante Ia cepa patógena. La mayor eficiencia en conferir protección contra Brucella abortus ocurre en los ratones inmunizados con rSFV4.2- SOD, donde no se observa Ia presencia de bacterias en el bazo. Por otro lado, en el caso de los ratones inmunizados con pSFV4.2-SOD, se determina que se alcanza un nivel importante de protección.
Tabla II. Sistemas de protección contra el desafío de Ia cepa 2308 de B. abortus
LogiO UFC de B. „ .., ., .,
Abortus 2308 en el lo^ Umdades de Vacuna bazo (promedio) Protección b
PSFV4.2-SOD 2,23 ± 1,48 1,76 pSFV4.2 4,62 ± 0,01 - rSFV4.2-SOD 0 3,99
PBS 3,99 ± 0 0
En esta invención se han desarrollado dos vacunas de fácil utilización, alta eficiencia y gran bioseguridad, cuya respuesta es mayor a las vacunas actualmente disponibles en el comercio, como son las clásicas vacunas a partir de organismos atenuados como Ia cepa RB51. La tecnología planteada es una alternativa para el desarrollo de una o más vacunas moleculares contra esta bacteria.
En el presente invento se pueden visualizar dos opciones, Ia primera corresponde al uso de sistemas de expresión basados en el virus Semliki Forest (SFV), que han demostrado ampliamente ser excelentes vectores de expresión de proteínas heterólogas dentro de células eucariotas. Una segunda opción, es el uso de ARN desnudo, portador de Ia información requerida para Ia síntesis de una proteína heteróloga, con capacidad de generar una respuesta inmune contra Brusella abortus.
En el arte existen iniciativas tendientes a masificar el uso de este tipo de tecnología en Ia industria farmacéutica, sin embargo, no han sido divulgadas iniciativas destinadas a erradicar B. Abortus, a partir de vacunas ARN y menos aún de virus ARN recombinantes. Por Io que existe una necesidad permanente en el desarrollo de nuevas formulaciones que ofrezcan alta bioseguridad. En esta invención se divulgan dos sistemas de expresión, capaces de inducir una inmunidad protectora mayor a Ia generada por las vacunas tradicionales, además es de bajo costo, gran eficiencia y alta bioseguridad.
El sistema de expresión inventado presenta algunas ventajas adicionales, que establecen Ia diferencia en el tipo de respuesta inducida en el animal inmunizado. Este sorprendente sistema de expresión consta de una replicasa viral codificada en el ARN replicón, el cual tiene Ia peculiaridad de sintetizar varias copias del ARN genómico, aumentando aún más Ia probabilidad de Ia traducción de Ia molécula de ARN de interés. Además, las partículas virales basadas en el virus Semliki Forest tienen alta afinidad con un amplio espectro de receptores celulares, Io que a su vez les permite ingresar a una gran diversidad de células. Algunas de éstas son cruciales para el desarrollo de Ia respuesta inmune protectora, como Io son las células dendríticas presentadoras de antígenos, sin embargo, éstas no logran fagocitar tan eficientemente como los macrófagos aumentando aún más Ia eficiencia de Ia respuesta del sistema inmune.
Esta invención incluye un sistema de expresión con alto nivel de bioseguridad, debido a que el virus no es autoreplicable y su genoma está constituido por una secuencia de ARN replicón, que no se incorpora al genoma del hospedero, debido a que su metabolismo no requiere de ADN como intermediario. Ejemplos de aplicación
Ejemplo N°1 : Extracción de proteínas totales de Ia cepa RB51 de Brucella abortus.
El procedimiento para Ia extracción de bacterias contempló el cultivo de éstas, una vez cosechadas se lavaron tres veces con PBS estéril a pH 7,2, centrifugándolas a 10000rpm durante 10 min a 40C, eliminando el sobrenadante. Las bacterias se inactivaron en metanol al 60% por 24 h, al término de ésta, las células fueron nuevamente lavadas y mantenidas durante 24 h a 40C en una solución salina hipertónica que contenía NaCI (1 M), 0,1 citrato de Sodio y EDTA (0,5mM). Posteriormente, las células fueron sonicadas durante aproximadamente 15 min a 60 w, luego fueron centrifugadas a 10000rpm durante 10 min a 40C. Al sobrenadante Ie fueron agregados 0,2 mM de PMSF y las proteínas fueron concentradas con polietilenglicol en bolsas de diálisis con capacidad de retención de pesos moleculares sobre 350OkD. Luego Ia fracción así concentrada se dializó contra agua destilada por dos días, al término de los cuales se centrifugó a 7500rpm por 30 min a 40C. Posteriormente, las proteínas se cuantificaron por el método de Bradford, almacenándose a -20° C.
Ejemplo N°2: Expresión de Ia Proteína Cu/Zn Superóxido Dismutasa recombinante (ver figura N0 6)
La proteína Cu/Zn SOD de Brucella abortus es expresada en bacterias E. coll DH5, que fue transformada por electroporación con el plásmido pBSSOD que contiene el gen que codifica Ia proteína Cu/Zn SOD (sodC). Para obtener Ia proteína se cultivó Ia bacteria, en caldo LB más 100μg/ml de ampicilina durante 12h a 370C, con agitación. Posteriormente, se colectaron las bacterias desde el caldo de cultivo centrifugando a 3000rpm por 20 min. Las bacterias fueron resuspendidas en Tampón Fosfato 10 mM a pH 7,6 más 0,1% de Tritón X-100 y se incubó a 370C por 12 h, con agitación. La mezcla se centrifugó a lOOOOrpm por 20 min, recuperándose el sobrenadante agregado a una columna de intercambio aniónico, Ia cual no posee afinidad por Ia proteína Cu/Zn SOD quedando retenida Ia mayor parte de las otras proteínas presentes en el sobrenadante. El eluido obtenido desde Ia columna fue tratado con polimixina B con el fin de eliminar el Lipopolisacárido bacteriano. Finalmente, esta solución se dializó contra tampón PBS, para analizar Ia pureza de Ia proteína obtenida mediante un gel SDS-PAGE al 12% y su concentración mediante el método de Bradford. La proteína Cu/Zn rSOD se almacenó a -2O0C.
Ejemplo N°3: Construcción del plásmido
Una vez obtenido el gen original de Ia proteína Cu-Zn Superoxido dismutasa (SodC), a través de enzimas de restricción desde el plásmido pUC19, se procedió a Ia construcción del plásmido pSFV4.2-SOD. Para Io cual, el plasmido PUC19 se sometió a digestión con las enzimas βamHI y Xho\ durante 2 h a 370C. De Ia digestión se obtuvo un fragmento de 1 ,1 kb, que contiene el gen de interés, el cual se extrajo desde un gel de agarosa al 1% mediante un kit comercial (ver figura N°4, línea 2). Por otro lado, el plásmido pSFV4.2 fue digerido con las mismas enzimas de restricción utilizadas anteriormente y en las mismas condiciones. Al término de Ia incubación, las enzimas de restricción fueron inactivadas a 6O0C por 15 min. Posteriormente, Ia ligación se realizó mezclando en una proporción 3:1 el inserto de 1 ,1 kb, con el plásmido pSFV4.2, el cual presentaba un marcador para el antibiótico ampicilina. Éste fue previamente digerido utilizando Ia enzima ligasa DNA T4 en tampón ligasa DNA T4 10X más 5mM de ATP. La mezcla de ligación se incubó durante 12 h a 160C en oscuridad, esta fue utilizada para transformar bacterias E. coli BL21 competentes. La efectividad de Ia ligación se determinó cultivando en placas con medio LB que contenía 100 μg/mL de ampicilina. Se seleccionaron algunas de las colonias que crecieron y se cultivaron con agitación por 12 h, en caldo LB con 100 μg/ml de ampicilina a 370C. Posteriormente, se extrajo el ADN plasmidial utilizando un kit comercial. El plásmido obtenido fue digerido con las enzimas βamHI y Xho\, luego analizado mediante un gel de agarosa al 1 %, el cual fue observado a Ia luz ultra violeta para confirmar Ia presencia del fragmento de 1 ,1 kb.
Ejemplo N°4: Transformación de bacterias competentes
Las bacterias E. coli BL21 competentes fueron transformadas mezclando 100μl de éstas con aproximadamente 1 μg de plásmido, manteniéndolas en hielo por 30 min. Posteriormente, se incubaron a 420C por 90 s, después se adicionaron 400 μl de caldo LB y nuevamente fueron incubadas durante 45 min a 370C con agitación a 200 rpm. Finalmente, Ia mezcla se sembró en una placa de cultivo que contenía agar LB más 60μg/ml de ampicilina, las bacterias fueron incubadas por un periodo de 12 h a 370C. Ejemplo N°5: Ensayo de competencia
Se sembró Ia cepa bacteriana E. coli BL21 en agar Laurya Bertoni (LB) y se incubó a 370C durante 16 h. Después se seleccionó de Ia placa una colonia aislada, que se inoculó en un tubo de ensayo con 5 mi de caldo LB y luego se incubó durante 12 h a 370C con agitación a 220 rpm. Posteriormente, se inoculó 1 mi del medio a un matraz con 100 mi de caldo LB y se incubó a 370C con agitación a 220 rpm hasta una densidad óptica del caldo de 0,38 a 590 nm. Una vez lograda Ia densidad óptica se centrifugó el medio de cultivo a 2500rpm por 10 min y se descartó el sobrenadante. Las bacterias fueron resuspendidas en 20 mi de CaCb 0,1 M a 40C. Se incubó por 10 min en hielo y se centrifugó a 2500rpm por este mismo periodo de tiempo. El sobrenadante se descartó y las bacterias fueron resuspendidas en 4ml de CaCb (0,1 M) a 40C. Para conservar las bacterias se mezcló, en un tubo de microfuga de 1 ,5 mi de capacidad, 850μl de Ia suspensión anterior con 150μl de glicerol estéril y después cada tubo se introdujo en un recipiente con nitrógeno líquido. Finalmente, las bacterias competentes congeladas fueron almacenadas a -80° C.
Ejemplo N°6: Linealización del plásmido y sistema de transcripción in vitro
La linealización de los plásmidos se realizó por digestión con Ia enzima Spel a 370C durante una hora. Los plásmidos linealizados fueron purificados de Ia mezcla de corte, adicionando un volumen de mezcla que contenía 25% de fenol, 24% de cloroformo y 1% de alcohol isoamílico, Ia mezcla se agitó enérgicamente. Posteriormente, se centrifugó a 4650rpm y se recuperó Ia fase acuosa, desde Ia cual el plásmido fue extraído por precipitación utilizando 2,5 volúmenes de etanol al 70% más 0,05 volúmenes de acetato de sodio 3M. El plásmido fue resuspendido en agua desionizada tratada con 0,2% de dietilpirocarbonato (DEPC). Después se realizó Ia transcripción in vitro utilizando un kit comercial.
La mezcla de 5μg del plásmido linealizado se trató con 10μl de tampón de transcripción SP6 5X; 5μl de Ditiotreitol (DTT) 100 mM; 50 unidades de inhibidor recombinante de ribonucleasas; 2,5μl de rATP 1OmM, rCTP 10 mM y rUTP 1OmM más 2,5μl de rGTP 1 mM; 5μl del análogo de Cap 5mM, Ribo m7G; 40 unidades de Ia ARN polimerasa SP6 y se enrrasó con agua libre de nucleasas a un volumen final de 50μl, luego esta mezcla se incubó durante 2 h a 370C. Completada Ia reacción de transcripción, el ARNm transcrito fue purificado por precipitación con 0,72 volúmenes de ¡sopropanol a -20° C más 0,2 volúmenes de acetato de sodio 3M (pH 4,8), y una nueva incubación fue efectuada por un periodo de 10 min a temperatura ambiente, posteriormente se centrifugó por 15 min a 4650rpm, para luego precipitar el ARN transcrito. Para realizar esta etapa se lavó con etanol al 75% y se centrifugó a 4650rpm por un periodo de 15 min. El ARN precipitado fue resuspendido en tampón TE a pH 7,5. El tamaño del ARN transcrito fue verificado mediante Ia resolución por electroforesis en un gel de agarosa al 1%. La muestra fue previamente incubada con un tampón de carga durante 3 min a 650C antes de ser sembrados en el gel. El gel se analizó en un transiluminador ultravioleta donde se comparó el tamaño del ARN transcrito con el del estándar de peso molecular de ARN. El ARN transcrito fue alicuotado y almacenado a -80° C, ver figuras N°4 y N°5.
Ejemplo N°7: Transfección de las células
La transfección se realizó mediante liposomas catiónicos, para ello se cultivaron las líneas celulares COS-7 (ATCC CRL-1651 ) y J774 (ATCC TIB-67) en medio DMEM completo, hasta obtener una cantidad aproximada de 4 x 106 células por mi. Las células fueron despegadas y posteriormente transferidas a placas para cultivos celulares, donde se incubaron las células con medio de cultivo hasta una confluencia de un 80%. Después este medio de cultivo fue reemplazado por el medio DMEM completo modificado y se incubó por 5 a 10 minutos en atmósfera húmeda a 37°C con 5% CO2. Después de Ia incubación se reemplazó el medio por una mezcla de transfección que contenía 9μg de Lipofectamina más 2-5μg de ARN transcrito en medio DMEM completo modificado. La mezcla transfectada se incubó por 2 h.
Ejemplo N°8: Expresión del ARN transcrito del plásmido pSFV4.2-SOD
El ARN transcrito fue transfectado en línea celular J774 (ATCC, TIB-67), siguiendo los mismos pasos de Ia transfección con liposomas. Las células transfectadas fueron despegadas, por medios mecánicos y usadas con tampón de carga, utilizado en las electroforesis de proteínas en geles de poliacrilamida. La mezcla anterior fue calentada a 1000C por 5 mins y posteriormente cargada en un gel de poliacrilamida para separar electroforéticamente las proteínas de Ia muestra. La expresión de Ia proteína Cu/Zn SOD en Ia línea celular transfectada fue verificada mediante un Western Blot (figura N°5), cuyo procedimiento se describe en el ejemplo N°10. Como primer anticuerpo se utilizó un anticuerpo monoclonal de ratón de clase IgG contra Ia proteína Cu/Zn SOD (figura N°7). Ejemplo N°9: Preparación de gel de Poliacrilamida SDS-PAGE
Los geles de poliacrilamida fueron construidos en un soporte para geles, estos constan de un gel separador y de un gel concentrador, el primero fue preparado al 12% mezclando 2 mi de una solución de acrilamida al 30%, más 1 ,3 mi de tampón Tris a pH 8,8 y 0,05 mi de SDS al 10%. La polimerización se inició agregando 0,05 mi de persulfato de amonio y 0,002 mi de EDTA. Sobre el gel separador polimerizado, se adicionó el gel concentrador que se preparó agregando 0,17 mi de Ia solución de acrilamida al 30% más 0,13 mi de Tris-HCI a pH 6,8 y 0,01 mi de SDS al 10%. La polimerización se comenzó incorporando 0,01 mi de persulfato de amonio y 0,001 mi EDTA. Cuando el gel polimerizó completamente, se cargó Ia muestra que fue previamente mezclada con tampón de carga en Ia proporción 1 :10 y calentada a 1000C durante 5 min. Para Ia electroforesis se utilizó un tampón de corrida a temperatura ambiente y a 100 v (ver figura N°5).
La tinción del gel de poliacrilamida se realizó una vez terminada Ia electroforesis, el gel fue teñido con una solución de azul de Coomasie al 0,5% más 45% de metanol y 10% ácido acético. Posteriormente, el gel fue desteñido con una solución decolorante que contenía 10% de metanol y 10% ácido acético disuelto en H2O destilada.
Ejemplo N°10: Western Blot (ver figura N°9)
Para realizar el Western Blot, primero se efectuó una electroforesis de proteínas en un gel de poliacrilamida, descrito en el ejemplo N°9. El gel fue desmontado y dispuesto sobre una hoja de papel de nitrocelulosa del mismo tamaño. El gel fue ubicado en un soporte para Western Blot, para introducirlo en una cámara de electroforesis, que contenía un tampón de transferencia. Las condiciones de operación para efectuar Ia transferencia fueron, una hora a 25OmA a temperatura ambiente. Una vez que las proteínas fueron transferidas al papel de nitrocelulosa se bloquearon los sitios inespecíficos, utilizando leche descremada al 5% disuelta en tampón PBS más 0,3% de Tween 20, luego se incubaron por 12 h a 40C. Posteriormente, el papel de nitrocelulosa se incubó por un periodo de 3 h con el primer anticuerpo monoclonal contra SOD diluido, que se encontraba en tampón PBS más 0,03% de Tween 20 y 5% de leche descremada, a temperatura ambiente con agitación.
El papel de nitrocelulosa se lavó 3 veces por cinco minutos con tampón PBS y 0,03% de Tween 20 bajo agitación. Después se incubó una hora con un segundo anticuerpo de conejo anti-lgG de ratón marcado con peroxidasa, diluido en tampón PBS y 0,03% de Tween 20, para lavarlo nuevamente bajo agitación. Finalmente, se reveló el papel transferido por incubación en una solución que contenía 10 mg/ml de Diaminobencidina (DAB) y 0,3% de peróxido de hidrógeno en tampón PBS.
Ejemplo N°11 : Producción del virus Semliki Forest recombinante
El empaquetamiento del virus Semliki Forest se llevó a cabo dentro de Ia línea celular COS-7 (ATCC, CRL 1651), para Io cual fue cotransfectada con los ARN transcritos a partir de los plásmidos pSFV4.2-SOD, pSFV-Helper-Capsid S219 y pSFV- Helper-Spike2. La transfección fue realizada a través de liposomas como se describió en el ejemplo N°7. Posteriormente, Ia mezcla de transfección se removió y se lavó Ia placa con 2ml de RPMI incompleto modificado. Finalmente, se dejó incubando las células cotransfectadas en medio RPMI completo modificado, durante 24 h en atmósfera húmeda a 37°C con 5% de CO2. La partícula viral formada en el interior de Ia célula COS-7, es liberada al medio de cultivo desde donde fue purificada mediante un gradiente de sacarosa discontinuo. El gradiente se preparó en un tubo de ultracentrífuga, agregando en primer lugar 1 mi de sacarosa al 55% y después 3ml de sacarosa al 25%, sobre Io cual se adicionó 9ml del medio de cultivo. El gradiente de sacarosa fue sometido a una centrifugación de 135000 rpm por 90 minutos en una ultracentrífuga. Para rescatar Ia fracción que contiene las partículas virales, se removió cuidadosamente el medio de cultivo de Ia superficie del gradiente y posteriormente se aspiró 0,8 mi de sacarosa al 55% desde abajo del tubo. Nuevamente se aspiró desde abajo un total de 1 mi, en cuya fracción se encuentran las partículas virales, posteriormente ésta fue diluida a Ia mitad en tampón TNE y almacenada en alícuotas de 50μl a una temperatura de -8O0C. A continuación, las partículas virales fueron visualizadas en un microscopio electrónico de transmisión, para Io cual fueron previamente teñidas con una solución de ácido fosfotúngstico al 1%. Paralelamente, se realizó un control negativo de este experimento, en el cual se utilizó Ia misma línea celular Ia que no fue cotransfectada con los ARN transcritos. Lo obtenido del gradiente de sacarosa de este control fue también observado en el microscopio electrónico de transmisión (ver figura N°7).

Claims

Reivindicaciones
1. Una formulación farmacéutica veterinaria a partir de un sistema vectorial viral ARN CARACTERIZADA porque el sistema vectorial comprende los siguientes constituyentes:
a. Partícula recombinante de ARN como principio activo, que codifica para al menos una proteína Cu/Zn superóxido dismutasa de bacterias patógenas de rumiantes, b. al menos un alfavirus ARN perteneciente a Ia familia del virus Semliki Forest, y es carrier del principio activo de esta formulación, y/o c. liposomas catiónicos como vehículo, y d. sustancias farmacéuticamente aceptables como excipientes.
2. Una formulación farmacéutica veterinaria a partir de ARN desnudo CARACTERIZADA porque el sistema vectorial comprende los siguientes constituyentes:
a. una molécula recombinante de ARN desnudo como principio activo, que porta una secuencia para Ia síntesis de al menos una proteína recombinante Cu/Zn superóxido dismutasa de Brucella abortus y algunos genes del virus Semliki Forest, b. opcionalmente liposomas catiónicos como vehículo de Ia formulación, y c. sustancias farmacéuticamente aceptables como excipientes.
3. Una formulación farmacéutica veterinaria a partir de un sistema vectorial viral ARN en concordancia con Ia reivindicación N°1 , CARACTERIZADA porque comprende un virus quimérico como vector a partir del virus Semliki Forest, que porta una secuencia de ARN exógeno y consta de los genes de Ia enzima SOD de Brucella abortus, genes codificantes del complejo proteico de Ia replicasa viral, genes codificadores de las proteína de Ia cápside y genes codificantes de las proteínas de las espículas de Ia cápside.
4. Una formulación farmacéutica veterinaria a partir de un sistema vectorial viral ARN en concordancia con Ia reivindicación N°1 , CARACTERIZADA porque Ia secuencia del ARN del virus quimérico comprende ARN transcritos a partir de los plásmidos pSFV4.2-SOD, pSFV-Helper-Capsid S219 y pSFV-Helper-Spike2.
5. Una formulación farmacéutica veterinaria a partir de un sistema vectorial viral ARN en concordancia con reivindicación N0I 1 CARACTERIZADA porque el ARN que contiene Ia secuencia nucleotídica que codifica para Ia proteína Cu/Zn SOD, en el alfavirus quimérico, comprende un tamaño entre aproximadamente 1 ,4 a 1 ,6 Kb.
6. Una formulación farmacéutica veterinaria a partir de un sistema vectorial viral ARN en concordancia con reivindicación N°1 , CARACTERIZADA porque el ARN que contiene Ia secuencia nucleotídica que codifica para Ia proteína Cu/Zn SOD, en el alfavirus quimérico, comprende un tamaño entre aproximadamente 1 ,4 a 1 ,6 kb, que es aislada a través de Ia acción de endonucleasas de restricción como Xhol y BamHI.
7. Una formulación farmacéutica veterinaria a partir de un sistema vectorial viral ARN en concordancia con reivindicación N°1 , CARACTERIZADA porque es útil para el tratamiento de patologías bacterianas, específicamente, de rumiantes.
8. La formulación farmacéutica que contiene parte del genoma del virus semliki Forest en concordancia con reivindicaciones N°1 y N°2, CARACTERIZADA porque Ia vía de administración es inyectable.
9. La formulación farmacéutica que contiene parte del genoma del virus semliki Forest en concordancia con reivindicaciones N°1 y N°2, CARACTERIZADA porque Ia información para sintetizar el principio activo de esta formulación, se encuentra contenido en el plásmido pSFV4.2-SOD.
10. La formulación farmacéutica veterinaria a partir de ARN desnudo en concordancia con reivindicación N°2, CARACTERIZADA porque el ácido nucleico comprende el constructo que codifica para Ia proteína superóxido dismutasa de Brucella abortus.
11. Una molécula recombinante de ARN a partir del genoma del virus Semliki Forest CARACTERIZADA porque Ia secuencia de ARN exógena transcrita in vitro es capaz de expresar un polipéptido antigénico dentro de una célula de un mamífero, específicamente, en un rumiante.
12. La molécula recombinante de ARN a partir del virus Semliki Forest según reivindicación N°11 CARACTERIZADO porque las partículas virales comprende parte de su genoma, el ARN transcrito del plásmido pSFV4.2-SOD.
13. Un sistema vectorial de material genético ARN según reivindicaciones N°1 y N°2 CARACTERIZADO porque comprende parte del genoma del virus Semliki Forest y el gen que codifica Ia proteína Cu/Zn SOD de bacterias patógenas.
14. Una línea celular transformada de mamíferos CARACTERIZADA porque Ia línea celular transformada es Ia COS-7 ATCC CRL1655, y es útil para producir un alfavirus quimérico de Semliki Forest, que contiene una secuencia modificada de Ia proteína superóxido dismutasa de B. abortus en su material genético a Ia forma de ARN.
15. Una cepa bacteriana transformada CARACTERIZADA porque contiene el plásmido, que comprende una secuencia quimérica del ARN y Ia proteína Cu/Zn de Ia proteína SOD, donde Ia cepa es LMBP 5584.
16. La cepa bacteriana transformada en concordancia con Ia reivindicación N°15 CARACTERIZADA porque Ia cepa LMBP 5584 es útil como productora del plásmido pVSF4.2-SOD, precursor del ARN, que es principio activo de formulaciones farmacéuticas para rumiantes.
17. Un vector quimérico de ARN según reivindicaciones N°1 y N°2 CARACTERIZADO porque el ARN transcrito del plásmido pSFV4.2-SOD tiene Ia capacidad de inducir linfoproliferación de los linfocitos de bazo de mamíferos.
18. Un vector quimérico de ARN según reivindicaciones N°1 y N°2 CARACTERIZADO porque ambos sistemas de expresión son capaces de inducir una respuesta inmune protectora contra el desafío con Ia bacteria B. abortus.
19. Un sistema de expresión basado en el virus Semliki Forest CARACTERIZADO porque los sistemas expresión pSFV4.2-SOD (ARN replicón) y rSFV4.2-SOD, inducen un gran nivel de protección contra Ia cepa patógena Brucella abortus.
20. Un uso de un sistema vectorial de RNA a partir del virus Semliki Forest y una secuencia exógena de RNA en concordancia con reivindicaciones N°1 y N°2 CARACTERIZADO porque el virus o Ia molécula quimérica es útil para tratar afecciones bacterianas en mamíferos.
21. Un uso de un sistema vector de RNA a partir del virus Semliki Forest y una secuencia exógena de ARN en concordancia con reivindicaciones N°1 y N°2 CARACTERIZADO porque el virus quimérico o Ia molécula quimérica es útil para Ia preparación de medicamentos para el tratamiento de enfermedades bacterianas de rumiantes.
22. Un método para preparar una formulación farmacéutica en concordancia con reivindicaciones N°1 y N°2 CARACTERIZADO porque consta de las siguientes etapas:
(a) aislamiento de los genes de interés y su secuencia promotora, desde una cepa bacteriana de S. abortus,
(b) clonación de genes de (a) y además clonación de un segundo sistema vectorial basado en un alfavirus RNA, que comprende el gen de replicación viral,
(c) incorporación de Ia información de (a) y (b) de un sistema de expresión viral RNA,
(d) elaboración de un constructo que contiene los genes estructurales de Ia Cápside, Ia secuencia proteica de interés, un vector de clonamiento y vector de expresión,
(e) elaboración de un constructo que contiene los genes de otras proteínas estructurales de interés,
(f) incorporación de Ia información de (a) y (e) en un vector plasmidial de expresión,
(g) inducción de síntesis de partículas virales en una célula eucarionte,
(h) colectar las partículas virales desde el medio de cultivo a través de un gradiente de sacarosa discontinuo,
(i) aislar, activar, encapsular en liposomas catiónicos,
(j) mezclado de los liposomas y las partículas virales con excipientes farmacéuticamente aceptables.
PCT/CL2009/000009 2008-08-07 2009-08-07 Formulación farmacéutica veterinaria que comprende una partícula recombinante de arn que codifica para una proteína cu/zn superóxido dismutasa de bacterias patógenas de rumiantes y al menos un alfavirus arn perteneciente a la familia del virus semliki forest WO2010015098A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/057,620 US20110200667A1 (en) 2008-08-07 2009-08-07 Veterinary pharmaceutical formulacion that comprises an rna recombinant particle that encodes for a cu/zn superoxide dismutase protein of ruminant pathogenic bacteria and at least one rna alphavirus belonging to the semliki forest virus family
BRPI0917956A BRPI0917956A2 (pt) 2008-08-07 2009-08-07 formulação farmacêutica veterinária que inclui uma partícula recombinante de rna que codifica para uma proteína cu/zn superóxido dismutase de bactérias patogênicas de ruminantes e pelo menos um alfavírus rna pertencente à família do vírus semliki forest
MX2011001429A MX2011001429A (es) 2008-08-07 2009-08-07 Formulacion farmaceutica veterinaria que comprende una particula recombinante de arn que codifica para una proteina cu/zn superoxido dismutasa de bacterias patogenas de rumiantes y al menos un alfavirus arn perteneciente a la familia del virus semlik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2008002322A CL2008002322A1 (es) 2008-08-07 2008-08-07 Formulacion farmaceutica veterinaria que comprende un sistema vectorial viral constituido por una particula recombinante de arn que codifica una cu/zn superoxido dismutasa de la bacteria patogena de bovinos brucella abortus, y al menos un alfavirus arn perteneciente a la familia del virus semliki forest (sfv), util como vacuna.
CL2322-2008 2008-08-07

Publications (1)

Publication Number Publication Date
WO2010015098A1 true WO2010015098A1 (es) 2010-02-11

Family

ID=41663260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2009/000009 WO2010015098A1 (es) 2008-08-07 2009-08-07 Formulación farmacéutica veterinaria que comprende una partícula recombinante de arn que codifica para una proteína cu/zn superóxido dismutasa de bacterias patógenas de rumiantes y al menos un alfavirus arn perteneciente a la familia del virus semliki forest

Country Status (5)

Country Link
US (1) US20110200667A1 (es)
BR (1) BRPI0917956A2 (es)
CL (1) CL2008002322A1 (es)
MX (1) MX2011001429A (es)
WO (1) WO2010015098A1 (es)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006378A1 (en) * 2010-07-06 2012-01-12 Novartis Ag Liposomes with lipids having an advantageous pka- value for rna delivery
US9254265B2 (en) 2010-08-31 2016-02-09 Novartis Ag Small liposomes for delivery of immunogen encoding RNA
EP2591103B1 (en) 2010-07-06 2019-08-28 GlaxoSmithKline Biologicals SA Delivery of rna to different cell types
US10487332B2 (en) 2010-07-06 2019-11-26 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11291635B2 (en) 2010-07-06 2022-04-05 Glaxosmithkline Biological Sa Virion-like delivery particles for self-replicating RNA molecules
US11291682B2 (en) 2010-07-06 2022-04-05 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11639370B2 (en) 2010-10-11 2023-05-02 Glaxosmithkline Biologicals Sa Antigen delivery platforms
US11759422B2 (en) 2010-08-31 2023-09-19 Glaxosmithkline Biologicals Sa Pegylated liposomes for delivery of immunogen-encoding RNA
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824310A (en) * 1991-10-22 1998-10-20 The United States Of America As Represented By The Department Of Health And Human Services Lipopplysaccharide conjugate vaccines
US6264952B1 (en) * 1993-11-05 2001-07-24 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method for protecting a mammalian host against infection by Brucella
SE9401091D0 (sv) * 1994-03-31 1994-03-31 Bioption Ab Alphavirus cDNA vectors

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MUNOZ-MONTESINO, C. ET AL.: "Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells.", INFECTION AND IMMUNITY., vol. 72, no. 4, April 2004 (2004-04-01), pages 2081 - 2087 *
ONATE, A. A. ET AL.: "An RNA vaccine based on recombinant Semliki Forest Virus particles expressing the Cu,Zn Superoxide Dismutase protein of Brucella abortus induces protective immunity in BALB/c mice.", INFECTION AND IMMUNITY., vol. 73, no. 6, June 2005 (2005-06-01), pages 3294 - 3300 *
ONATE, A. A. ET AL.: "Vaccination with live Escherichia coli expressing Brucella abortus Cu/ Zn superoxide dismutase protects mice against virulent B. abortus.", INFECTION AND IMMUNITY., vol. 67, no. 2, February 1999 (1999-02-01), pages 986 - 988 *
SÁEZ, D. ET AL.: "Evaluation of Brucella abortus DNA and RNA vaccines expressing Cu-Zn superoxide dismutase (SOD) gene in cattle.", VETERINARY MICROBIOLOGY., vol. 129, 22 June 2008 (2008-06-22), pages 396 - 403 *
TABATABAI, L. B. ET AL.: "Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine.", VACCINE., vol. 12, no. 10, 1994, pages 919 - 924 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11696923B2 (en) 2010-07-06 2023-07-11 Glaxosmithkline Biologicals, Sa Delivery of RNA to trigger multiple immune pathways
EP2591103B1 (en) 2010-07-06 2019-08-28 GlaxoSmithKline Biologicals SA Delivery of rna to different cell types
US11913001B2 (en) 2010-07-06 2024-02-27 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11690862B1 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US10487332B2 (en) 2010-07-06 2019-11-26 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11026964B2 (en) 2010-07-06 2021-06-08 Glaxosmithkline Biologicals Sa Delivery of RNA to different cell types
US11291635B2 (en) 2010-07-06 2022-04-05 Glaxosmithkline Biological Sa Virion-like delivery particles for self-replicating RNA molecules
US11291682B2 (en) 2010-07-06 2022-04-05 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US20220125723A1 (en) 2010-07-06 2022-04-28 Glaxosmithkline Biologicals Sa Lipid formulations with viral immunogens
US11324770B2 (en) 2010-07-06 2022-05-10 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11690864B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11596645B2 (en) 2010-07-06 2023-03-07 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
WO2012006378A1 (en) * 2010-07-06 2012-01-12 Novartis Ag Liposomes with lipids having an advantageous pka- value for rna delivery
US11905514B2 (en) 2010-07-06 2024-02-20 Glaxosmithkline Biological Sa Immunisation of large mammals with low doses of RNA
US11638693B2 (en) 2010-07-06 2023-05-02 Glaxosmithkline Biologicals Sa Vaccine for eliciting immune response comprising RNA encoding an immunogen and lipid formulations comprising mole percentage of lipids
US11655475B2 (en) 2010-07-06 2023-05-23 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11666534B2 (en) 2010-07-06 2023-06-06 Glaxosmithkline Biologicals Sa Methods of administering lipid formulations with viral immunogens
US11690861B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11690865B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11690863B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
EP4005592B1 (en) 2010-07-06 2022-10-12 GlaxoSmithKline Biologicals S.A. Virion-like delivery particles for self-replicating rna molecules
CN103153284A (zh) * 2010-07-06 2013-06-12 诺华有限公司 含有其pKa值有利于RNA递送的脂质的脂质体
US11638694B2 (en) 2010-07-06 2023-05-02 Glaxosmithkline Biologicals Sa Vaccine for eliciting immune response comprising lipid formulations and RNA encoding multiple immunogens
US11707482B2 (en) 2010-07-06 2023-07-25 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11717529B2 (en) 2010-07-06 2023-08-08 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11730754B2 (en) 2010-07-06 2023-08-22 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11739334B2 (en) 2010-07-06 2023-08-29 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11891608B2 (en) 2010-07-06 2024-02-06 Glaxosmithkline Biologicals Sa Immunization of large mammals with low doses of RNA
US11759475B2 (en) 2010-07-06 2023-09-19 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11766401B2 (en) 2010-07-06 2023-09-26 Glaxosmithkline Biologicals Sa Methods of administering lipid formulations with immunogens
US11773395B1 (en) 2010-07-06 2023-10-03 Glaxosmithkline Biologicals Sa Immunization of large mammals with low doses of RNA
US11786467B2 (en) 2010-07-06 2023-10-17 Glaxosmithkline Biologicals Sa Lipid formulations with immunogens
US11839686B2 (en) 2010-07-06 2023-12-12 Glaxosmithkline Biologicals Sa Lipid formulations with viral immunogens
US11845925B2 (en) 2010-07-06 2023-12-19 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11850305B2 (en) 2010-07-06 2023-12-26 Glaxosmithkline Biologicals Sa Method of making lipid formulations with RNA encoding immunogens
US11851660B2 (en) 2010-07-06 2023-12-26 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11857681B2 (en) 2010-07-06 2024-01-02 Glaxosmithkline Biologicals Sa Lipid formulations with RNA encoding immunogens
US11857562B2 (en) 2010-07-06 2024-01-02 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11865080B2 (en) 2010-07-06 2024-01-09 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11883534B2 (en) 2010-07-06 2024-01-30 Glaxosmithkline Biologicals Sa Immunisation with lipid formulations with RNA encoding immunogens
US11759422B2 (en) 2010-08-31 2023-09-19 Glaxosmithkline Biologicals Sa Pegylated liposomes for delivery of immunogen-encoding RNA
US9254265B2 (en) 2010-08-31 2016-02-09 Novartis Ag Small liposomes for delivery of immunogen encoding RNA
US11639370B2 (en) 2010-10-11 2023-05-02 Glaxosmithkline Biologicals Sa Antigen delivery platforms
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof

Also Published As

Publication number Publication date
US20110200667A1 (en) 2011-08-18
MX2011001429A (es) 2011-03-29
BRPI0917956A2 (pt) 2015-11-10
CL2008002322A1 (es) 2009-06-05

Similar Documents

Publication Publication Date Title
WO2010015098A1 (es) Formulación farmacéutica veterinaria que comprende una partícula recombinante de arn que codifica para una proteína cu/zn superóxido dismutasa de bacterias patógenas de rumiantes y al menos un alfavirus arn perteneciente a la familia del virus semliki forest
AU2017297610B2 (en) Compositions and methods for alphavirus vaccination
PL180639B1 (pl) Szczepionka polinukieotydowa dla ludzi przeciwko wirusowi brodawczaków PL PL PL PL PL PL
JP2020505444A (ja) ジカウイルスに対する免疫応答を誘導するためのヌクレオシド改変rna
WO2020063370A2 (zh) 免疫组合物及其制备方法与应用
Sadraeian et al. Induction of antitumor immunity against cervical cancer by protein HPV-16 E7 in fusion with ricin B chain in tumor-bearing mice
US7645455B2 (en) Chimeric lyssavirus nucleic acids and polypeptides
CN113354740B (zh) 一种猪瘟病毒自组装蛋白纳米颗粒、制备方法及应用
Hu et al. Generation and immunogenicity of porcine circovirus type 2 chimeric virus-like particles displaying porcine reproductive and respiratory syndrome virus GP5 epitope B
Mohit et al. Immunomodulatory effects of IP-10 chemokine along with PEI600-Tat delivery system in DNA vaccination against HPV infections
CN113151184A (zh) 基于细胞膜展示冠状病毒免疫原以诱导中和抗体的方法
ES2213743T3 (es) Vacuna de subunidad de coronavirus canino.
US20070275873A1 (en) Methods and Compositions Comprising Protein L Immunoglobulin Binding Domains for Cell-Specific Targeting
ES2345434T3 (es) Inmunizacion mediada por bacteriofagos.
Olivera-Ugarte et al. A nanoparticle-based COVID-19 vaccine candidate elicits broad neutralizing antibodies and protects against SARS-CoV-2 infection
JP2023523423A (ja) SARS-CoV-2に対するワクチン及びその調製物
ES2669018T3 (es) Procedimiento para la vacunación por vía oral/mucosa por medio de levaduras recombinantes
AU2021250442A1 (en) Novel salmonella-based coronavirus vaccine
ES2410593T3 (es) Ácidos nucleicos y polipéptidos de lisavirus quiméricos
Wang et al. In vivo kinetics and biodistribution of a Hantaan virus DNA vaccine after intramuscular injection in mice
JP4535874B2 (ja) 肝炎に対するバクテリオファージを介する免疫
Yadav Efficacy of Mixed MS2-L2 VLPs against Six HPV Types and the Development & Evaluation of Viral Structural Proteins for Assembly into VLPs
US7238672B1 (en) Chimeric lyssavirus nucleic acids and polypeptides
CN117838848A (zh) 一种口蹄疫二价mRNA疫苗及其制备方法和应用
WO2022269003A1 (en) MVA-BASED VACCINE EXPRESSING A PREFUSION-STABILIZED SARS-CoV-2 S PROTEIN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 492/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/001429

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 201190011

Country of ref document: ES

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P201190011

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13057620

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09804437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0917956

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110207