WO2010013587A1 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
WO2010013587A1
WO2010013587A1 PCT/JP2009/062409 JP2009062409W WO2010013587A1 WO 2010013587 A1 WO2010013587 A1 WO 2010013587A1 JP 2009062409 W JP2009062409 W JP 2009062409W WO 2010013587 A1 WO2010013587 A1 WO 2010013587A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
semiconductor integrated
clock signal
integrated circuit
comparison
Prior art date
Application number
PCT/JP2009/062409
Other languages
French (fr)
Japanese (ja)
Inventor
義男 亀田
正之 水野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010522669A priority Critical patent/JPWO2010013587A1/en
Publication of WO2010013587A1 publication Critical patent/WO2010013587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/007Fail-safe circuits
    • H03K19/0075Fail-safe circuits by using two redundant chains

Definitions

  • the present invention relates to a semiconductor integrated circuit having high reliability.
  • a highly reliable semiconductor integrated circuit is required for a device in a place where repair is impossible or difficult, such as a space device, or a device having a large impact on human life or society, such as a medical device or a nuclear power controller.
  • Patent Document 2 As other methods for improving the reliability of the semiconductor integrated circuit, there are methods described in Patent Document 2 and Non-Patent Document 1.
  • Patent Document 2 includes a storage circuit that operates in synchronization with one clock signal and a storage circuit that operates in synchronization with the other clock signal obtained by delaying the clock signal. Is stored in these two storage circuits, and the two stored values are compared to detect an increase in calculation time generated in the calculation circuit.
  • Non-Patent Document 1 the output value of the arithmetic circuit is stored in the storage circuit in synchronization with the clock signal, and the same output value of the arithmetic circuit is stored in another storage circuit at an earlier point in time. A method is described in which it is determined that the calculation time of the calculation circuit has increased when the two stored values are different.
  • FIG. 1 is a block diagram showing the configuration of the background art of a semiconductor integrated circuit
  • FIG. 2 is a timing chart showing how the semiconductor integrated circuit shown in FIG. 1 detects a failure.
  • the background art semiconductor integrated circuit shown in FIG. 1 includes a first logic circuit including a memory circuit FF0A, an arithmetic circuit L1A, and a memory circuit FF1A, and a second logic circuit including a memory circuit FF0B, an arithmetic circuit L1B, and a memory circuit FF1B.
  • the configuration includes a logic circuit and a comparison circuit C1 that outputs a comparison result as to whether or not the output value of the memory circuit FF1A matches the output value of the memory circuit FF1B.
  • the first logic circuit and the second logic circuit have the same function.
  • the memory circuits FF0A, FF1A, FF0B, and FF1B hold and output input values in synchronization with the clock signals supplied thereto.
  • the arithmetic circuits L1A and L1B execute predetermined arithmetic processing on the input value, and output the arithmetic result after a predetermined arithmetic time has elapsed.
  • delay time the time required for inputting a value in the circuit and outputting the corresponding value, such as the calculation time of the arithmetic circuits L1A and L1B, will be referred to as “delay time”.
  • the output value of the memory circuit FF0A is input to the arithmetic circuit L1A, and the output value of the arithmetic circuit L1A is input to the memory circuit FF1A.
  • the output value of the memory circuit FF0B is input to the arithmetic circuit L1B, and the output value of the arithmetic circuit L1B is input to the memory circuit FF1B.
  • the same clock signal CK is supplied to the memory circuits FF0A, FF1A, FF0B, and FF1B, and the output values of the memory circuits FF1A and FF1B are input to the comparison circuit C1.
  • the same clock signal CK having the cycle T is supplied to the memory circuits FF0A, FF1A, FF0B, and FF1B.
  • the memory circuits FF0A, FF1A, FF0B, and FF1B hold the input value in synchronization with the rising edge of the clock signal CK and output the value.
  • the memory circuit FF1A holds and outputs the incorrect value F ′ (D2) output from the arithmetic circuit L1A, and the memory circuit FF1B outputs the correct value F (D2) output from the arithmetic circuit L1B. Is output. Therefore, since the output value of the memory circuit FF1A and the output value of the memory circuit FF1B do not match, the output value of the comparison circuit C1 changes (in the example shown in FIG. 2, the logic “0” (Low level) changes to the logic “1”. (High level)). Therefore, it can be determined whether or not a failure has occurred by monitoring the output value of the comparison circuit C1.
  • an increase in the delay time of the arithmetic circuit or a decrease in the delay time due to performance deterioration of the transistor or the like can be considered.
  • the delay time of the arithmetic circuit L1A shown in FIG. 1 increases and becomes longer than the cycle of the clock signal CK
  • the memory circuit FF1A erroneously outputs from the arithmetic circuit L1A in synchronization with the rising edge of the clock signal CK. Incorrect calculation result is output because the calculation result is taken in.
  • the delay time of the arithmetic circuit L1A shown in FIG. 1 decreases and becomes shorter than the hold time of the memory circuit FF1A, the memory circuit FF1A cannot correctly capture the arithmetic result of the arithmetic circuit L1A. Output the result.
  • FIG. 3 is a timing chart showing how the semiconductor integrated circuit shown in FIG. 1 cannot detect the failure factor.
  • the arithmetic circuit L1B outputs the correct arithmetic result value F (D2) at time D (L1 (D2)), and the arithmetic circuit L1A outputs the time D (L1
  • a correct operation result value F (D2) is output at a time d (L2 (D2)) + d later than (D2)).
  • the memory circuit FF1A starts from the arithmetic circuit L1A at time T.
  • the output value F (D2) is held and output.
  • the memory circuit FF1B holds and outputs the value F (D2) output from the arithmetic circuit L1B at time T.
  • An object of the present invention is to provide a semiconductor integrated circuit composed of duplicated logic circuits that can detect a failure factor such as an increase or decrease in delay time and improve operation reliability. To do.
  • a semiconductor integrated circuit includes a first arithmetic circuit that executes predetermined arithmetic processing, A second arithmetic circuit that executes the same arithmetic processing as the first arithmetic circuit; A first memory circuit connected to an input of the first arithmetic circuit and holding and outputting an input value in synchronization with a first clock signal; A second memory circuit connected to the output of the first arithmetic circuit and holding and outputting an input value in synchronization with a second clock signal; A third memory circuit connected to the input of the second arithmetic circuit and holding and outputting an input value in synchronization with a third clock signal; A fourth memory circuit connected to the output of the second arithmetic circuit and holding and outputting an input value in synchronization with a fourth clock signal; A first comparison circuit that outputs a comparison result as to whether or not the output value of the second storage circuit and the output value of the fourth storage circuit match; Have The first, second, third
  • a first logic circuit including a plurality of first arithmetic circuits that execute predetermined arithmetic processing and a plurality of first memory circuits that are alternately connected to the plurality of first arithmetic circuits
  • a second logic circuit including a second arithmetic circuit that executes the same arithmetic processing as the first arithmetic circuit and a plurality of second memory circuits that are alternately connected to the plurality of second arithmetic circuits
  • a plurality of comparison circuits each outputting a comparison result as to whether or not the output value of the first storage circuit and the output value of the second storage circuit match;
  • Have The first clock signal and the second clock signal are alternately supplied to the plurality of first memory circuits,
  • a third clock signal and a fourth clock signal are alternately supplied to the plurality of second memory circuits,
  • the first, second, third, and fourth clock signals are signals that alternately repeat a first period and a second period, and the start of each of the first periods coincides,
  • FIG. 1 is a block diagram showing a configuration of a semiconductor integrated circuit of the background art.
  • FIG. 2 is a timing chart showing how the semiconductor integrated circuit shown in FIG. 1 detects a failure.
  • FIG. 3 is a timing chart showing how the semiconductor integrated circuit shown in FIG. 1 cannot detect a failure factor.
  • FIG. 4 is a block diagram showing the configuration of the semiconductor integrated circuit of the first embodiment.
  • FIG. 5A is a timing chart showing an example of each clock signal supplied to the semiconductor integrated circuit of the first embodiment.
  • FIG. 5B is a timing chart illustrating the operation of the semiconductor integrated circuit according to the first embodiment.
  • FIG. 5C is a timing chart illustrating the operation of the semiconductor integrated circuit according to the first embodiment.
  • FIG. 6 is a block diagram showing the configuration of the semiconductor integrated circuit of the second embodiment.
  • FIG. 7 is a timing chart showing an operation when no failure factor occurs in the semiconductor integrated circuit of the second embodiment.
  • FIG. 8 is a timing chart showing the operation of the semiconductor integrated circuit according to the second embodiment when a failure factor that increases the delay time occurs in the arithmetic circuit L1A.
  • FIG. 9 is a timing chart showing the operation of the semiconductor integrated circuit according to the second embodiment when a failure factor that increases the delay time occurs in the arithmetic circuit L1B.
  • FIG. 10 is a block diagram showing the configuration of the semiconductor integrated circuit of the third embodiment.
  • FIG. 11 is a timing chart showing the operation when no failure factor has occurred in the semiconductor integrated circuit of the fourth embodiment.
  • FIG. 12 is a timing chart showing an operation in the semiconductor integrated circuit according to the fourth embodiment when a failure factor causing a decrease in delay time occurs in the arithmetic circuit L1A.
  • FIG. 13 is a timing chart showing the operation of the semiconductor integrated circuit of the fifth embodiment.
  • FIG. 14 is a timing chart showing the operation of the semiconductor integrated circuit according to the sixth embodiment.
  • FIG. 15 is a block diagram showing the configuration of the semiconductor integrated circuit of the seventh embodiment.
  • FIG. 16 is a block diagram showing the configuration of the semiconductor integrated circuit of the eighth embodiment.
  • FIG. 17 is a block diagram showing the configuration of the semiconductor integrated circuit of the ninth embodiment.
  • FIG. 18 is a block diagram showing the configuration of the semiconductor integrated circuit of the tenth embodiment.
  • FIG. 19 is a block diagram showing the configuration of the semiconductor integrated circuit of the eleventh embodiment.
  • FIG. 20 is a block diagram showing the configuration of the semiconductor integrated circuit of the twelfth embodiment.
  • FIG. 21 is a block diagram showing the configuration of the semiconductor integrated circuit of the thirteenth embodiment.
  • FIG. 22 is a timing chart showing the operation of the semiconductor integrated circuit of the thirteenth embodiment.
  • FIG. 23 is a block diagram showing the configuration of the semiconductor integrated circuit of the fourteenth embodiment.
  • FIG. 24 is a block diagram showing the configuration of the semiconductor integrated circuit of the fifteenth embodiment.
  • FIG. 25 is a timing chart showing the operation of the semiconductor integrated circuit of the fifteenth embodiment.
  • FIG. 26 is a block diagram showing the configuration of the semiconductor integrated circuit according to the sixteenth embodiment.
  • FIG. 20 is a block diagram showing the configuration of the semiconductor integrated circuit of the twelfth embodiment.
  • FIG. 21 is a block diagram showing the configuration of the semiconductor integrated circuit of the thirteenth embodiment.
  • FIG. 22 is a timing
  • FIG. 27 is a timing chart showing the operation of the semiconductor integrated circuit according to the sixteenth embodiment.
  • FIG. 28 is a block diagram showing the configuration of the semiconductor integrated circuit according to the seventeenth embodiment.
  • FIG. 29 is a timing chart showing the operation of the semiconductor integrated circuit of the seventeenth embodiment.
  • FIG. 30 is a block diagram showing the configuration of the semiconductor integrated circuit of the eighteenth embodiment.
  • FIG. 31 is a timing chart showing the operation of the semiconductor integrated circuit of the eighteenth embodiment.
  • FIG. 32 is a block diagram showing the configuration of the semiconductor integrated circuit of the nineteenth embodiment.
  • FIG. 33A is a block diagram showing the configuration of the semiconductor integrated circuit of the twentieth embodiment.
  • FIG. 33B is a block diagram showing a configuration of a modified example of the semiconductor integrated circuit of the twentieth embodiment.
  • FIG. 34 is a flowchart showing the processing procedure of the clock control circuit provided in the semiconductor integrated circuit of the twentieth embodiment.
  • FIG. 35 is a block diagram showing the configuration of the semiconductor integrated circuit of the twenty-first embodiment.
  • FIG. 36 is a block diagram showing the configuration of the semiconductor integrated circuit of the twenty-second embodiment.
  • FIG. 37 is a flowchart showing the test procedure of the semiconductor integrated circuit of the twenty-third embodiment.
  • FIG. 38 is a flowchart showing the test procedure of the semiconductor integrated circuit of the twenty-fourth embodiment.
  • FIG. 4 is a block diagram showing the configuration of the semiconductor integrated circuit of the first embodiment.
  • the semiconductor integrated circuit of the first embodiment includes a first logic circuit including a memory circuit FF0A, an arithmetic circuit L1A, and a memory circuit FF1A, a memory circuit FF0B, an arithmetic circuit L1B, and a memory circuit FF1B.
  • the second logic circuit is provided, and a comparison circuit C1 that outputs a comparison result as to whether or not the output value of the memory circuit FF1A and the output value of the memory circuit FF1B match.
  • the first logic circuit and the second logic circuit have the same function.
  • the memory circuits FF0A, FF1A, FF0B, and FF1B hold and output the input value in synchronization with the rising edge of the clock signal supplied thereto.
  • the arithmetic circuits L1A and L1B execute predetermined arithmetic processing on the input value, and output the arithmetic result after a predetermined arithmetic time has elapsed.
  • the output value of the memory circuit FF0A is input to the arithmetic circuit L1A, and the output value of the arithmetic circuit L1A is input to the memory circuit FF1A.
  • the output value of the memory circuit FF0B is input to the arithmetic circuit L1B, and the output value of the arithmetic circuit L1B is input to the memory circuit FF1B.
  • the output values of the memory circuits FF1A and FF1B are input to the comparison circuit C1.
  • the clock signal CKA is supplied to the memory circuit FF0A, and the clock signal CKA ′ is supplied to the memory circuit FF1A. Further, the clock signal CKB is supplied to the memory circuit FF0B, and the clock signal CKB ′ is supplied to the memory circuit FF1B.
  • FIG. 5A is a timing chart showing an example of each clock signal supplied to the semiconductor integrated circuit of the first embodiment.
  • the clock signal CKA is a signal that alternately repeats the first cycle T1A and the second cycle T2A
  • the clock signal CKA ′ includes the first cycle T1A ′ and the second cycle T2A ′. Is a signal that repeats alternately.
  • the clock signal CKB is a signal that alternately repeats the first cycle T1B and the second cycle T2B
  • the clock signal CKB ′ is a signal that alternately repeats the first cycle T1B ′ and the second cycle T2B ′. It is.
  • setup time and hold time of each memory circuit shall be negligible.
  • the clock signals CKA, CKA ′, CKB and CKB ′ are assumed to have the same start of the first period and the same end of the second period.
  • At least one of the clock signals CKA, CKA ′, CKB, and CKB ′ has a different length between the first period and the second period.
  • At least one of the clock signals CKA, CKA ', CKB and CKB' has a signal pattern different from that of the other clock signals.
  • the clock signals CKA, CKA ′, CKB and CKB ′ each have a first period and a second period having different lengths, and each of the clock signals has a signal pattern different from that of the other clock signals.
  • An example is shown.
  • Non-Patent Document 2 ISSCC2007 digest of technical papers, pp. 174-175 (hereinafter referred to as Non-Patent Document 2), etc.
  • the duty ratio of each of the first and second cycles of each clock signal (the ratio of the period in which the signal value occupies the entire cycle is 1) is 50%, respectively, the first cycle and The duty ratio of the second cycle is not limited to 50%.
  • a storage circuit (including a comparison storage circuit to be described later) will be described as an example of holding an input value in synchronization with a rising edge of a clock signal and outputting the held value. Any configuration may be used.
  • 5B and 5C are timing charts showing the operation of the semiconductor integrated circuit of the first embodiment.
  • the solid line in FIG. 5B shows the operation when the failure factor that increases the delay time does not occur in the arithmetic circuit L1A shown in FIG. 4, and the dotted line in FIG. 5B shows the delay time in the arithmetic circuit L1A shown in FIG. This shows the operation when a failure factor occurs.
  • the output value of the memory circuit FF1A becomes logic “1” (High level), and the output value of the memory circuit FF1B also becomes logic “1”.
  • the output value of the comparison circuit C1 is stabilized at logic “0” (Low level).
  • the solid line in FIG. 5C shows the operation when there is no failure factor causing the delay time to decrease in the arithmetic circuit L1A shown in FIG. 4, and the dotted line in FIG. 5C shows the delay time in the arithmetic circuit L1A shown in FIG. This shows the operation when a failure factor occurs.
  • the time when the output value of the arithmetic circuit L1A becomes logic “1” is after the clock signal CKA ′ rises, and the output value of the memory circuit FF1A Becomes logic “0”, and the output value of the memory circuit FF1B also becomes logic “0”. Therefore, the output value of the comparison circuit C1 is stabilized at logic “0”.
  • the time when the output value of the arithmetic circuit L1A becomes logic “1” is before the clock signal CKA ′ rises, and the output of the memory circuit FF1A Since the value is logic “1” and the output value of the memory circuit FF1B is logic “0”, the output value of the comparison circuit C1 is logic “1”.
  • the start of the first cycle of each clock signal coincides with the end of the second cycle, and at least one of the clock signals supplied to each memory circuit is the first.
  • the memory circuit FF1A outputs the arithmetic result of the value output from the memory circuit FF0A in synchronization with the rising of the first cycle of the clock signal CKA. If the delay time of the arithmetic circuit L1A decreases, the memory circuit FF1A holds the arithmetic result of the value output from the memory circuit FF0A in synchronization with the rising of the second period of the clock signal CKA. Therefore, it is possible to detect a failure factor that reduces the delay time occurring in the arithmetic circuit L1A.
  • FIG. 6 is a block diagram showing the configuration of the semiconductor integrated circuit of the second embodiment.
  • the semiconductor integrated circuit of the second embodiment includes a comparison memory circuit FFC1 for holding the output value of the comparison circuit C1, in addition to the semiconductor integrated circuit of the first embodiment shown in FIG.
  • a comparison memory circuit FFC1 for holding the output value of the comparison circuit C1, in addition to the semiconductor integrated circuit of the first embodiment shown in FIG.
  • a signal obtained by inverting the clock signal CKB ′ by the inverting circuit NOT is supplied to the comparison memory circuit FFC1.
  • a signal obtained by inverting the clock signal CKA, CKA ′, or CKB may be supplied to the comparison memory circuit FFC1.
  • the semiconductor integrated circuit of the second embodiment is an example in which the clock signals CKA, CKA ′, CKB, and CKB ′ supplied to each logic circuit satisfy the above conditions (3) and (6).
  • FIG. 7 is a timing chart showing an operation when no failure factor occurs in the semiconductor integrated circuit of the second embodiment.
  • the clock signals CKA and CKA ′ supplied to the semiconductor integrated circuit according to the second embodiment alternately repeat the first cycle TS and the second cycle TL longer than the first cycle TS.
  • the clock signals CKB and CKB ′ are signals that alternately repeat the first cycle TL and the second cycle TS shorter than the first cycle TL. That is, the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above conditions (3) and (6).
  • the first period TS of the clock signals CKA and CKA ′ is equal to the second period TS of the clock signals CKB and CKB ′, and the second period of the clock signals CKA and CKA ′ is the same. And the first period TL of the clock signal CKB and the clock signal CKB ′ are equal.
  • the memory circuit FF0A holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKA, and the memory circuit FF1A synchronizes with the rising edge of the clock signal CKA ′.
  • the input value F (D1) is held and output.
  • the storage circuit FF0B holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D1) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
  • the arithmetic circuits L1A and L1B to which the value D2 is input at time 0 change the output value to F (D2) at time D (L1 (D2)). That is, the time D (L1 (D2)) is a calculation time necessary for the calculation of the value D2 when the arithmetic circuits L1A and L1B are normal.
  • the storage circuit FF0A holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKA, and the storage circuit FF1A inputs the input value F (D2 in synchronization with the rising edge of the clock signal CKA ′. ) Is output.
  • the memory circuits FF0B and FF1B do not operate, and thus the output value F (D2) of the memory circuit FF1A does not match the output value F (D1) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 changes (in the example shown in FIG. 7, the logic “0” to the logic “1”).
  • the arithmetic circuit L1A to which the value D3 is input at time TS changes its output value to F (D3) at time TS + D (L1 (D3)). That is, the time D (L1 (D3)) is a calculation time necessary for the calculation of the value D3 when the calculation circuit L1A is normal.
  • the storage circuit FF0B holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D2 in synchronization with the rising edge of the clock signal CKB ′. ) Is output.
  • the output value F (D2) of the memory circuit FF1A matches the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 returns to the original value (in the example shown in FIG. 7, logic “1” to logic “0”).
  • the arithmetic circuit L1B to which the value D3 is input at time TL changes its output value to F (D3) at time TL + D (L1 (D3)). That is, the time D (L1 (D3)) is an operation time necessary for the operation of the value D3 when the operation circuit L1B is normal.
  • the storage circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA, and the storage circuit FF1A outputs the input value F (in synchronization with the rising edge of the clock signal CKA ′. D3) is held and output.
  • the storage circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
  • the semiconductor integrated circuit of the second embodiment repeats the same operation as the operation from time 0 to time TL + TS shown in FIG.
  • a signal obtained by inverting the clock signal CKB ′ is supplied to the comparison memory circuit FFC1. Therefore, as shown in FIG. 7, even if the output value of the comparison circuit C1 changes during the period from the rise of the clock signal CKA to the rise of the clock signal CKB ′, the output value of the comparison storage circuit FFC1 does not change. That is, in the semiconductor integrated circuit according to the second embodiment, if each logic circuit operates normally, the output value of the comparison memory circuit FFC1 does not change. It is possible to determine whether or not a failure factor that increases time occurs.
  • FIG. 8 is a timing chart showing the operation of the semiconductor integrated circuit of the second embodiment when a failure factor that increases the delay time occurs in the arithmetic circuit L1A.
  • clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. 8 are the same as the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. 8 are the same as the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG.
  • the memory circuit FF0A holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKA, and the memory circuit FF1A synchronizes with the rising edge of the clock signal CKA ′.
  • the input value F (D1) is held and output.
  • the storage circuit FF0B holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D1) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
  • the arithmetic circuit L1B to which the value D2 is input at time 0 changes its output value to F (D2) at time D (L1 (D2)).
  • the output value is changed to F (D2) at time D (L1 (D2)) + d. Change.
  • the memory circuit FF0A holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKA. Further, since the output value of the arithmetic circuit L1A is F (D1), the memory circuit FF1A again holds and outputs the input value F (D1) in synchronization with the rising edge of the clock signal CKA '. Even if the input value changes to F (D2) at time D (L1 (D2)) + d, the memory circuit FF1A maintains the output value at F (D1) until the next rising edge of the clock signal CKA '.
  • the arithmetic circuit L1A to which the value D3 is input at time TS changes its output value to F (D3) at time TS + D (L1 (D3)).
  • the output value F (D1) of the memory circuit FF1A matches the output value F (D1) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 does not change (logic “0” in the example shown in FIG. 8).
  • the storage circuit FF0B holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B inputs in synchronization with the rising edge of the clock signal CKB ′.
  • the value F (D2) is held and output.
  • the output value F (D1) of the memory circuit FF1A does not match the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 changes (in the example shown in FIG. 8, logic “0” to logic “1”).
  • the arithmetic circuit L1B to which the value D3 is input at time TL changes its output value to F (D3) at time TL + D (L1 (D3)).
  • the comparison memory circuit FFC1 holds and outputs the output value of the comparison circuit C1 (logic “1” in the example shown in FIG. 8) at time TL + TS / 2.
  • the memory circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA. Since the output value of the arithmetic circuit L1A changes to F (D3) at time TL + D (L1 (D3)), the memory circuit FF1A holds the input value F (D3) in synchronization with the rising edge of the clock signal CKA ′. Output.
  • the storage circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
  • the output value F (D3) of the memory circuit FF1A matches the output value F (D3) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 returns to the original value (in the example shown in FIG. 8, logic “1” to logic “0”). Even when the input value changes to logic “0” at time TL + TS, the comparison memory circuit FFC1 maintains the output value at logic “0” until the next rising edge of the clock signal CKB ′ supplied by being inverted.
  • FIG. 9 is a timing chart showing the operation of the semiconductor integrated circuit according to the second embodiment when a failure factor that increases the delay time occurs in the arithmetic circuit L1B.
  • clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. 9 are the same as the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. Further, in the operation example shown in FIG. 9, the operation from time 0 to time TL is the same as the operation example shown in the timing chart of FIG. Therefore, the description is omitted here.
  • the storage circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA, and the storage circuit FF1A outputs the input value F (in synchronization with the rising edge of the clock signal CKA ′. D3) is held and output.
  • the memory circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB.
  • the memory circuit FF1B Since the output value of the arithmetic circuit L1B is F (D2), the memory circuit FF1B again holds and outputs the input value F (D2) in synchronization with the rising edge of the clock signal CKB '. Even when the input value changes to F (D3) at time TL + D (L1 (D3)) + d, the memory circuit FF1B maintains the output value at F (D2) until the next rising edge of the clock signal CKB '.
  • the output value F (D3) of the memory circuit FF1A does not match the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 changes (in the example shown in FIG. 9, the logic “0” to the logic “1”).
  • the comparison storage circuit FFC1 holds and outputs the output value of the comparison circuit C1 (logic “1” in the example shown in FIG. 9) at time TL + TS + TL / 2.
  • FIG. 10 is a block diagram showing the configuration of the semiconductor integrated circuit of the third embodiment.
  • a clock signal CKB ′ is received using a delay circuit d1 instead of the inverting circuit NOT included in the semiconductor integrated circuit of the second embodiment shown in FIG.
  • the delayed signal is supplied to the comparison memory circuit FFC1. Since other configurations and operations are the same as those of the second embodiment, the description thereof is omitted.
  • the semiconductor integrated circuit according to the fourth embodiment is an example in which the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above conditions (7) and (8). Since the configuration of the semiconductor integrated circuit of the fourth embodiment is the same as that of the second embodiment, description thereof is omitted.
  • FIG. 11 is a timing chart showing the operation when no failure factor occurs in the semiconductor integrated circuit of the fourth embodiment.
  • the memory circuit FF0A holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKA, and the memory circuit FF1A synchronizes with the rising edge of the clock signal CKA ′.
  • the input value F (D1) is held and output.
  • the storage circuit FF0B holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D1) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
  • the arithmetic circuits L1A and L1B to which the value D2 is input at time 0 change the output value to F (D2) at time D (L1 (D2)). That is, the time D (L1 (D2)) is a calculation time necessary for the calculation of the value D2 when the arithmetic circuits L1A and L1B are normal.
  • the storage circuit FF0A holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKA, and the storage circuit FF1A holds the input value D3 in synchronization with the rising edge of the clock signal CKB. And output.
  • the output value F (D2) of the memory circuit FF1A matches the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 does not change (logic “0” in the example shown in FIG. 11).
  • the arithmetic circuits L1A and L1B to which the value D3 is input at time TS, change the output value to F (D3) at time TS + D (L1 (D3)). That is, the time D (L1 (D3)) is a calculation time necessary for the calculation of the value D3 when the arithmetic circuits L1A and L1B are normal.
  • the memory circuit FF1A holds and outputs the input value F (D2) in synchronization with the rising edge of the clock signal CKA ′, and the memory circuit FF1B reaches the rising edge of the clock signal CKB ′. In synchronization, the input value F (D2) is held and output.
  • the output value F (D2) of the memory circuit FF1A matches the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 does not change (logic “0” in the example shown in FIG. 11).
  • the memory circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA, and the memory circuit FF1A synchronizes with the rising edge of the clock signal CKA ′.
  • the input value F (D3) is held and output.
  • the storage circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
  • the output value of the comparison circuit C1 and the output value of the comparison storage circuit FFC1 do not change. That is, when the semiconductor integrated circuit according to the fourth embodiment operates normally, the output value of the comparison memory circuit FFC1 does not change.
  • FIG. 12 is a timing chart showing the operation of the semiconductor integrated circuit according to the fourth embodiment when a failure factor that reduces the delay time occurs in the arithmetic circuit L1A.
  • clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. 12 are the same as the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG.
  • the operation from time 0 to time TS is the same as the operation example shown in the timing chart of FIG. Therefore, the description is omitted here.
  • the memory circuit FF1A is input in synchronization with the rising edge of the clock signal CKA ′.
  • the value F (D3) is held and output.
  • the memory circuit FF1B holds and outputs the input value F (D2) in synchronization with the rising edge of the clock signal CKB '.
  • the output value F (D3) of the memory circuit FF1A does not match the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 changes (in the example shown in FIG. 12, “logic“ 0 ”to logic“ 1 ”)”.
  • the comparison memory circuit FFC1 holds and outputs the output value of the comparison circuit C1 (logic “1” in the example shown in FIG. 12) at time T + T / 2.
  • the memory circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA.
  • the storage circuit FF1A again holds and outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKA '.
  • the storage circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
  • FIG. 13 is a timing chart showing the operation of the semiconductor integrated circuit of the fifth embodiment.
  • the semiconductor integrated circuit of the fifth embodiment is an example in which the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above-described conditions (3), (6), (7) and (8). is there. Since the configuration of the semiconductor integrated circuit of the fifth embodiment is the same as that of the second embodiment, description thereof is omitted.
  • FIG. 14 is a timing chart showing the operation of the semiconductor integrated circuit of the sixth embodiment.
  • the semiconductor integrated circuit of the sixth embodiment is an example in which the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above-mentioned conditions (4), (5), (7) and (8). is there. Since the configuration of the semiconductor integrated circuit of the sixth embodiment is the same as that of the second embodiment, the description thereof is omitted. According to the semiconductor integrated circuit of the sixth embodiment, the delay times of the arithmetic circuits L1A and L1B increase. A failure factor and a failure factor with a reduced delay time can be detected. Conditions (1) and (2) are included in conditions (7) and (8). (Seventh embodiment) FIG. 15 is a block diagram showing the configuration of the semiconductor integrated circuit of the seventh embodiment.
  • the semiconductor integrated circuit of the seventh embodiment includes a comparison circuit C0 in addition to the semiconductor integrated circuit of the first embodiment shown in FIG. 4, and the comparison circuit C0 outputs the output value of the storage circuit FF0A and the output value of the storage circuit FF0B. Is a configuration for outputting a comparison result as to whether or not. Since other configurations and operations are the same as those of the semiconductor integrated circuit of the first embodiment, description thereof is omitted.
  • FIG. 16 is a block diagram showing the configuration of the semiconductor integrated circuit of the eighth embodiment.
  • the comparison storage circuit FFC1 is connected to the output of the comparison circuit C1 included in the semiconductor integrated circuit according to the seventh embodiment shown in FIG. 15, and the comparison storage circuit FFC0 is connected to the output of the comparison circuit C0. It is a connected configuration.
  • the comparison memory circuits FFC1 and FFC0 are supplied with signals obtained by inverting the clock signal CKB ′ by the inverting circuit NOT. Note that a signal obtained by inverting the clock signal CKA, CKA ', or CKB may be supplied to the comparison memory circuits FFC1 and FFC0.
  • comparison memory circuits FFC1 and FFC0 may be supplied with a signal obtained by delaying the clock signal CKA, CKA ', CKB or CKB' as in the third embodiment. Since other configurations and operations are the same as those of the semiconductor integrated circuit of the seventh embodiment, description thereof is omitted.
  • FIG. 17 is a block diagram showing the configuration of the semiconductor integrated circuit of the ninth embodiment.
  • the semiconductor integrated circuit of the ninth embodiment displays only a plurality of memory circuits FF0A to FFnA (n is a positive positive number) and a plurality of arithmetic circuits L1A to LnA (in FIG. 17, only L1A and L2A). ) Alternately connected to each other, a plurality of memory circuits FF0B to FFnB, and a plurality of arithmetic circuits L1B to LnB (in FIG. 17, only L1B and L2B are displayed) alternately connected to the second logic circuit.
  • the first logic circuit and the second logic circuit have the same function.
  • a multi-input comparison circuit Cmp is connected to the outputs of the comparison circuits C0 to Cn, and a comparison memory circuit FFC is connected to the output of the multi-input comparison circuit Cmp.
  • a signal obtained by inverting the clock signal CKB ' is supplied to the comparison memory circuit FFC. Note that a signal obtained by inverting the clock signal CKA, CKA ′, or CKB may be supplied to the comparison memory circuit FFC. Further, a signal obtained by delaying the clock signal CKA, CKA ′, CKB or CKB ′ may be supplied to the comparison memory circuit FFC as in the third embodiment.
  • the multi-input comparison circuit Cmp outputs a signal indicating a mismatch when at least one of the output values of the comparison circuits C0 to Cn does not match the other output values.
  • the arithmetic circuits L1A to LnA and L1B to LnB, the comparison circuits C0 to Cn, and the comparison memory circuit FFC are the same as those in the second embodiment, description thereof is omitted.
  • FIG. 18 is a block diagram showing the configuration of the semiconductor integrated circuit of the tenth embodiment.
  • the semiconductor integrated circuit of the tenth embodiment displays only a plurality of memory circuits FF0A to FFnA (n is a positive positive number) and a plurality of arithmetic circuits L1A to LnA (in FIG. 18, only L1A and L2A). ) Alternately connected to each other, and a plurality of memory circuits FF0B to FFnB and a plurality of arithmetic circuits L1B to LnB (shown only in L1B and L2B in FIG. 18) are alternately connected to a second logic circuit.
  • the first logic circuit and the second logic circuit have the same function.
  • the multiplexers MUX0 to MUXn are connected to the outputs of the comparison circuits C0 to Cn, and the comparison memory circuits FFC0 to FFCn are connected to the outputs of the multiplexers MUX0 to MUXn.
  • the comparison memory circuits FFC0 to FFCn are supplied with signals obtained by inverting the clock signal CKB '. Note that a signal obtained by inverting the clock signal CKA, CKA ', or CKB may be supplied to the comparison memory circuits FFC0 to FFCn. Further, a signal obtained by delaying the clock signal CKA, CKA ', CKB or CKB' may be supplied to the comparison memory circuits FFC0 to FFCn as in the third embodiment.
  • the multiplexers MUX0 to MUXn select the outputs of the comparison circuits C0 to Cn and output them to the comparison storage circuits FFC0 to FFCn during the normal operation of the semiconductor integrated circuit according to a control signal (not shown).
  • FIG. 19 is a block diagram showing the configuration of the semiconductor integrated circuit of the eleventh embodiment.
  • the semiconductor integrated circuit according to the eleventh embodiment is configured to supply a common clock signal CKA to the memory circuits FF0A, FF1A, and FF0B and to supply a clock signal CKB 'to the memory circuit FF1B. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • a failure factor that causes an increase in delay time in the arithmetic circuit L1A a failure factor that causes an increase in delay time in the arithmetic circuit L1B, and a failure that causes a delay time in the arithmetic circuit L1B to decrease. It is possible to detect the factor.
  • FIG. 20 is a block diagram showing the configuration of the semiconductor integrated circuit of the twelfth embodiment.
  • the semiconductor integrated circuit of the twelfth embodiment is configured to supply a common clock signal CKA to the memory circuits FF0A and FF1A and to supply a common clock signal CKB to the memory circuits FF0B and FF1B. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • FIG. 21 is a block diagram showing the configuration of the semiconductor integrated circuit of the thirteenth embodiment.
  • the semiconductor integrated circuit of the thirteenth embodiment includes a plurality of memory circuits FF0A to FFnA (only FF0A to FF2A are shown in FIG. 21) and a plurality of arithmetic circuits L1A to LnA (L1A and L2A in FIG. 21). Only one display), a plurality of memory circuits FF0B to FFnB (only FF0B to FF2B are displayed in FIG. 21), and a plurality of arithmetic circuits L1B to LnB (in FIG. 21, L1B and L2B).
  • a plurality of outputs of comparison results as to whether or not the output values of the memory circuits FF0B to FFnB and the output values of the memory circuits FF0B to FFnB coincide with each other.
  • the first logic circuit and the second logic circuit have the same function.
  • the output value of the comparison circuit C0 and the failure diagnosis information errCHK are input to the failure determination circuit D0, and the output value of the comparison circuit C1 and the failure diagnosis information errCHK are input to the failure determination circuit D1.
  • the output value of failure determination circuit D0 is input to failure determination storage circuit FFD0, and the output value of failure determination circuit D1 is input to failure determination storage circuit FFD1.
  • the output value of the failure determination storage circuit FFD0 is input to the failure determination circuit D0
  • the output value of the failure determination storage circuit FFD1 is input to the failure determination circuit D1.
  • the failure determination memory circuits FFD0 and FFD1 are supplied with a clock signal CKE.
  • the failure diagnosis information is information for designating a failure diagnosis target logic circuit (first logic circuit or second logic circuit) and a failure factor type (increase or decrease in delay time). It is a signal that changes according to the period of the clock signal to be supplied.
  • delay reduction failure diagnosis A signal for designating whether or not a failure factor to occur (hereinafter referred to as delay reduction failure diagnosis) is used is used.
  • the failure diagnosis information includes the delay reduction failure diagnosis of the second logic circuit. A signal designating is used.
  • FIG. 22 is a timing chart showing the operation of the semiconductor integrated circuit of the thirteenth embodiment.
  • FIG. 22 shows an operation example when the clock signals CKA and CKA ′ are equal, the clock signals CKB and CKB ′ are equal, and an inverted signal of the clock signal CKB is supplied as the clock signal CKE to the failure determination storage circuits FFD0 and FFD1. Show.
  • a signal (As) designating delay reduction failure diagnosis of the first logic circuit is input as failure diagnosis information errCHK.
  • the failure determination circuit D1 directly uses the output value of the comparison circuit C1 as the failure determination storage circuit. Output to FFD1.
  • the failure determination storage circuit FFD1 holds and outputs the output value of the failure determination circuit D1 at time TL + TS / 2.
  • the output of the failure determination storage circuit FFD1 is input to the failure determination circuit D1, and thereafter, the failure determination storage circuit FFD1 maintains the determination result of failure detection even if the output value of the comparison circuit C1 changes.
  • a signal (Bs) designating delay reduction failure diagnosis of the second logic circuit is input as failure diagnosis information errCHK.
  • the failure determination circuit D1 outputs the output value of the comparison circuit C1 as described above. Is output to the failure determination storage circuit FFD1, and the determination result is held by the failure determination storage circuit FFD1.
  • the semiconductor integrated circuit according to the thirteenth embodiment includes a failure determination circuit for determining a failure location and a failure factor from the result of the comparison circuit and failure diagnosis information, and a failure determination storage circuit for storing the failure determination result. Further, by reading out the comparison result to the outside in parallel, it is possible to determine the location of the failure and the type of failure factor that has occurred.
  • FIG. 23 is a block diagram showing the configuration of the semiconductor integrated circuit of the fourteenth embodiment.
  • the semiconductor integrated circuit of the fourteenth embodiment differs from the semiconductor integrated circuit of the thirteenth embodiment in that the output value of the failure determination storage circuit FFD0 is input to the failure determination circuit D1 in the next stage. That is, the semiconductor integrated circuit of this embodiment has a configuration in which a scan path is formed by a plurality of failure determination storage circuits. Since other configurations are the same as those of the thirteenth embodiment, the description thereof is omitted.
  • the failure determination circuit D1 when the failure determination circuit D1 outputs a signal (logic “1”) indicating that the output value of the memory circuit FF1A is different from the output value of the FF1B, the cause is the failure factor in the arithmetic circuit L1A or L1B. Has occurred, the output value of the memory circuit FF1A differs from the output value of the memory circuit FF1B, or a failure factor has occurred in the logic circuit connected to the preceding stage (not shown), so that the output of the memory circuit FF0A The value is different from the output value of the storage circuit FF0B.
  • FIG. 24 is a block diagram showing the configuration of the semiconductor integrated circuit of the fifteenth embodiment.
  • the semiconductor integrated circuit of the fifteenth embodiment has a configuration including selection circuits S1 and S2 and failure determination storage circuits FFD0F and FFD1F in addition to the semiconductor integrated circuit of the fourteenth embodiment.
  • the selection circuit S1 is inserted between the arithmetic circuits L1A and L1B and the memory circuits FF1A and FF1B.
  • the selection circuit S2 is inserted between the arithmetic circuits L2A and L2B and the memory circuits FF2A and FF2B.
  • the selection circuit S1 supplies either the output value of the arithmetic circuit L1A or the output value of the arithmetic circuit L1B to the memory circuits FF1A and FF1B according to the output values of the failure determination storage circuits FFD0 and FFD1F.
  • the selection circuit S2 stores either the output value of the arithmetic circuit L2A or the output value of the arithmetic circuit L2B according to the output value of the failure determination storage circuit FFD1 and the FFD 2F (not shown) connected to the next stage, as the storage circuits FF2A and FF2B. Output to.
  • the output value of the failure determination circuit D0 is input to the failure determination storage circuit FFD0F, and the output value of the failure determination storage circuit FFD0F is fed back to the input of the failure determination circuit D0. Further, the output value of the failure determination circuit D1 is input to the failure determination storage circuit FFD1F, and the output value of the failure determination storage circuit FFD1F is fed back to the input of the failure determination circuit D1.
  • the failure determination storage circuit FFD0 is a circuit that holds the output value (determination result) of the failure determination circuit D0 for only one cycle of the clock signal CKE, and the failure determination storage circuit FFD0F continues the determination result of the failure determination circuit D0. It is a circuit for holding.
  • the failure determination storage circuit FFD1 is a circuit that holds the determination result of the failure determination circuit D1 for a period of one cycle of the clock signal CKE, and the failure determination storage circuit FFD1F continuously holds the determination result of the failure determination circuit D1. It is a circuit for. Since other configurations are the same as those of the semiconductor integrated circuit of the fourteenth embodiment, description thereof is omitted.
  • the selection circuit S1 stores the output value of the normal arithmetic circuit L1B as a storage circuit. Supply to FF1A and FF1B.
  • an erroneous output value is input from the memory circuit FF1A to the arithmetic circuit L2A at the next stage only for the period of one cycle of the clock signal CKA '. Therefore, the selection circuit S2 outputs the output value of the arithmetic circuit L2B that has received the correct input value to the storage circuits FF2A and FF2B.
  • FIG. 25 is a timing chart showing the operation of the semiconductor integrated circuit of the fifteenth embodiment.
  • FIG. 25 shows an operation example when the clock signals CKA and CKA ′ are equal, the clock signals CKB and CKB ′ are equal, and an inverted signal of the clock signal CKB is supplied as the clock signal CKE to the failure determination storage circuits FFD0 and FFD1. Show.
  • FIG. 26 is a block diagram showing the configuration of the semiconductor integrated circuit of the sixteenth embodiment.
  • the semiconductor integrated circuit according to the sixteenth embodiment has a configuration including duplicated storage circuits FF0A and FF0B and an external input storage circuit FFin for storing values input from the outside of the semiconductor integrated circuit shown in FIG.
  • the output value of the external input storage circuit FFin is input to the storage circuits FF0A and FF0B.
  • a clock signal CKA is supplied to the memory circuit FF0A, and a clock signal CKB is supplied to the memory circuit FF0B.
  • the external input memory circuit FFin is supplied with a clock signal for maintaining the output value until the memory circuits FF0A and FF0B hold the input values.
  • the external input storage circuit FFin may be supplied with a logical product signal (CKA & CKB) of the clock signals CKA and CKB.
  • FIG. 27 is a timing chart showing the operation of the semiconductor integrated circuit of the sixteenth embodiment.
  • a logical product signal (CKA & CKB) of the clock signals CKA and CKB is supplied to the external input memory circuit FFin.
  • the external input storage circuit FFin can maintain the output value until the storage circuits FF0A and FF0B hold the input values at the rising edges of the clock signals CKA and CKB.
  • FIG. 28 is a block diagram showing the configuration of the semiconductor integrated circuit of the seventeenth embodiment.
  • the duplicated storage circuits FF0A and FF0B, the selection circuit S1 that outputs one of the output values of the storage circuit FF0A or FF0B, and the output value of the selection circuit S1 are shown in FIG. And an external output memory circuit FFout for outputting to the outside of the semiconductor integrated circuit shown.
  • the output values of the storage circuits FF0A and FF0B are output to the selection circuit S1, and the selection circuit S1 outputs either the output value of the storage circuit FF0A or the output value of the storage circuit FF0B according to a control signal (not shown) as the external output storage circuit FFout. Output to.
  • a clock signal CKA is supplied to the memory circuit FF0A, and a clock signal CKB is supplied to the memory circuit FF0B.
  • the external output memory circuit FFout is supplied with a clock signal for holding the values input before the output values of the memory circuits FF0A and FF0B change.
  • the external output storage circuit FFout is configured to hold an input value in synchronization with the rising edge of the clock signal
  • the logical output signal of the clock signals CKA and CKB may be supplied to the external output storage circuit FFout.
  • FIG. 29 is a timing chart showing the operation of the semiconductor integrated circuit of the seventeenth embodiment.
  • CKB) of clock signals CKA and CKB is supplied to the external input memory circuit FFin.
  • the external output memory circuit FFout can hold the input value before the output values of the memory circuits FF0A and FF0B change at the rising edges of the clock signals CKA and CKB.
  • FIG. 30 is a block diagram showing the configuration of the semiconductor integrated circuit of the eighteenth embodiment.
  • the semiconductor integrated circuit of the eighteenth embodiment includes a first logic circuit including a memory circuit FF0A, an arithmetic circuit L1A, an arithmetic circuit L2A, a memory circuit FF1A, and a memory circuit FF2A, a memory circuit FF0B,
  • the second logic circuit including the arithmetic circuit L1B, the arithmetic circuit L2B, the memory circuit FF1B, and the memory circuit FF2B, and the comparison result of whether or not the output value of the memory circuit FF0A and the output value of the memory circuit FF0B match.
  • the comparison circuit C0 that outputs, the comparison circuit C1 that outputs the comparison result of whether or not the output value of the storage circuit FF1A and the output value of the storage circuit FF1B match, the output value of the storage circuit FF2A, and the output of the storage circuit FF2B
  • the comparison circuit C2 outputs a comparison result as to whether or not the output value matches.
  • the first logic circuit and the second logic circuit have the same function.
  • the output value of the memory circuit FF0A is input to the arithmetic circuits L1A and L2A, the output value of the arithmetic circuit L1A is input to the memory circuit FF1A, and the output value of the arithmetic circuit L2A is input to the memory circuit FF2A.
  • the output value of the memory circuit FF2A is input to the arithmetic circuit L1A.
  • the output value of the memory circuit FF0B is input to the arithmetic circuits L1B and L2B
  • the output value of the arithmetic circuit L1B is input to the memory circuit FF1B
  • the output value of the arithmetic circuit L2B is input to the memory circuit FF2B.
  • the output value of the memory circuit FF2B is input to the arithmetic circuit L1B.
  • the output values of the storage circuits FF0A and FF0B are input to the comparison circuit C0, the output values of the storage circuits FF1A and FF1B are input to the comparison circuit C1, and the output values of the storage circuits FF2A and FF2B are input to the comparison circuit C2.
  • the clock signal CKA is supplied to the memory circuit FF0A
  • the clock signal CKA ′ is supplied to the memory circuit FF1A
  • the clock signal CKA ′′ is supplied to the memory circuit FF2A.
  • the clock signal CKB is supplied to the memory circuit FF0B
  • the clock signal CKB ′ is supplied to the memory circuit FF1B
  • the clock signal CKB ′′ is supplied to the memory circuit FF2B.
  • the semiconductor integrated circuit according to the eighteenth embodiment has two paths, that is, a case where the arithmetic processing by the arithmetic circuit L2A is executed before the arithmetic processing by the arithmetic circuit L1A and a case where the arithmetic processing is not executed. Further, the semiconductor integrated circuit according to the eighteenth embodiment has two paths, that is, the case where the arithmetic processing by the arithmetic circuit L2B is executed before the arithmetic processing by the arithmetic circuit L1B and the case where the arithmetic processing is not executed.
  • FIG. 31 is a timing chart showing the operation of the semiconductor integrated circuit of the eighteenth embodiment.
  • the clock signal CKA used in this embodiment is a signal that repeats the first period T1A, the second period T2A, and the third period T3A
  • the clock signal CKA ′ is the first period T1A ′
  • a signal that repeats the second period T2A ′ and the third period T3A ′, and the clock signal CKA ′′ has the first period T1A ′′, the second period T2A ′′, and the third period T3A ′′. It is a repeating signal.
  • the clock signal CKB is a signal that repeats the first cycle T1B, the second cycle T2B, and the third cycle T3B
  • the clock signal CKB ′ is the first cycle T1B ′, the second cycle T2B ′, and the third cycle
  • the clock signal CKB ′′ is a signal that repeats the first cycle T1B ′′, the second cycle T2B ′′, and the third cycle T3B ′′.
  • T1A ⁇ T1A ′ when the condition of T1A ⁇ T1A ′ is satisfied, it is possible to detect a delay decreasing fault occurring in the path including the memory circuit FF0A, the arithmetic circuit L1A, and the memory circuit FF1A, and T1A ⁇ T1A ′′. At this time, it is possible to detect a delay-reducing fault occurring in a path including the memory circuit FF0A, the arithmetic circuit L2A, and the memory circuit FF2A.
  • T1A ′′ + T2A ′′ ⁇ T1A + T2A it is possible to detect a delay-decreasing fault occurring in the path including the memory circuit FF2A, the arithmetic circuit L1A, and the memory circuit FF1A.
  • the semiconductor integrated circuit of the eighteenth embodiment includes the memory circuit FF0B, the arithmetic circuit L1B, and the memory circuit FF1B when the conditions of T1B ⁇ T1B ′ and T1B ⁇ T1B ′′ are satisfied. It is possible to detect a delay decreasing fault occurring in the path and the path including the memory circuit FF0B, the arithmetic circuit L2B, and the memory circuit FF2B.
  • FIG. 32 is a block diagram showing the configuration of the semiconductor integrated circuit of the nineteenth embodiment.
  • the semiconductor integrated circuit of the nineteenth embodiment has a clock generation circuit CG and a clock control circuit CC in addition to the semiconductor integrated circuit D shown in the first to eighteenth embodiments. It is.
  • the clock control circuit CC refers to the comparison result of the output values of two storage circuits having the same positional relationship among the two logic circuits included in the semiconductor integrated circuit D, that is, the output value of the comparison circuit or the comparison storage circuit, A control signal for controlling the clock generation circuit CG is generated based on the output value.
  • the clock generation circuit CG generates a plurality of clock signals CKA, CKA ′, CKB, and CKB ′ having different periods and / or phases from the external clock signal CK.
  • the cycle and phase of the clock signals CKA, CKA ', CKB, and CKB' generated by the clock generation circuit CG are changed according to the control signal output from the clock control circuit CC.
  • the clock control circuit CC refers to the output value of the comparison circuit or the comparison storage circuit during and / or before the operation of the semiconductor integrated circuit D. If the output value indicates “mismatch” between the outputs of the two logic circuits, it is determined that the semiconductor integrated circuit D is malfunctioning, and the various conditions described in the first to eighteenth embodiments are satisfied. The cause is determined based on the above. Then, a control signal for increasing the period of the plurality of clock signals and / or reducing the phase difference between the plurality of clock signals so as to avoid the malfunction is output to the clock generation circuit CG.
  • the clock generation circuit CG changes the period and / or phase of the clock signals CKA, CKA ', CKB, CKB' according to the control signal output from the clock control circuit CC.
  • the clock control circuit CC and the clock generation circuit CG can be realized by, for example, an LSI composed of various logic gate circuits, storage circuits, arithmetic circuits, etc., or a CPU that executes processing according to a program.
  • a plurality of clock signals having different periods and phases can be generated by referring to the non-patent document 2 and the like.
  • FIG. 33A is a block diagram showing the configuration of the semiconductor integrated circuit of the twentieth embodiment.
  • the semiconductor integrated circuit of the twentieth embodiment has a power control circuit PM in addition to the semiconductor integrated circuit shown in the nineteenth embodiment.
  • the semiconductor integrated circuit D is the semiconductor integrated circuit shown in the first to eighteenth embodiments.
  • the configurations and operations of the clock control circuit CC and the clock generation circuit CG are the same as those of the nineteenth embodiment. .
  • the power supply control circuit PM is a power supply device that supplies a required power supply voltage to the semiconductor integrated circuit D, and changes the power supply voltage supplied to the semiconductor integrated circuit D in accordance with a control signal output from the clock control circuit CC.
  • the clock control circuit CC refers to the output value of the comparison circuit or comparison memory circuit during and / or before the operation of the semiconductor integrated circuit D, as in the nineteenth embodiment. If the output value indicates “mismatch” between the outputs of the two logic circuits, it is determined that the semiconductor integrated circuit D is malfunctioning, and the various conditions described in the first to eighteenth embodiments are satisfied. The cause is determined based on the above. When it is determined that the cause of the malfunction is a setup violation, that is, an increase in the delay time of the arithmetic circuit, the power supply voltage supplied to the semiconductor integrated circuit D is increased by the power supply control circuit PM to increase the circuit speed.
  • the power supply voltage supplied to the semiconductor integrated circuit D is lowered by the power supply control circuit PM to reduce the circuit speed.
  • FIG. 34 is a flowchart showing the processing procedure of the clock control circuit provided in the semiconductor integrated circuit of the twentieth embodiment.
  • the clock control circuit CC of the present embodiment first sets the period and phase of each clock signal generated by the clock generation circuit CG.
  • a range maximum of occurrence of “mismatch” that can be accepted as the semiconductor integrated circuit D (hereinafter referred to as mismatch probability) (maximum) Value and minimum value) are set in advance (step A1).
  • the clock control circuit CC calculates a mismatch probability during operation, and determines whether or not the mismatch probability is within a preset allowable range (step A2). .
  • the clock control circuit CC executes the process of step A2 again after a predetermined time has elapsed.
  • the clock control circuit CC determines whether or not the mismatch probability is greater than the maximum value of the preset allowable range (step A3).
  • the clock control circuit CC determines that a malfunction has occurred because the circuit speed is low, and supplies the semiconductor integrated circuit D by the power supply control circuit PM.
  • the power supply voltage is increased to increase the circuit speed (step A4).
  • the clock control circuit CC determines that the circuit speed can be reduced, and the power supply control circuit PM performs the semiconductor integrated circuit D.
  • the circuit speed is decreased by lowering the power supply voltage supplied to (step A5). And it returns to the process of step A2 and repeats the process of step A2 to A5.
  • the semiconductor integrated circuit of this embodiment it is possible to avoid the malfunction by changing the power supply voltage supplied to the semiconductor integrated circuit D according to the cause of the malfunction, and tolerate the semiconductor integrated circuit D. Since the power supply voltage can be lowered within the required range, the power consumption can be reduced while maintaining the circuit speed within the required range.
  • the power supply control circuit PM receives the control signal generated by the clock control circuit CC according to the output value of the comparison circuit or the comparison storage circuit, and changes the power supply voltage supplied to the semiconductor integrated circuit D according to the control signal do it.
  • the circuit speed is controlled by changing the power supply voltage supplied to the semiconductor integrated circuit D in accordance with the output value of the comparison circuit or the comparison storage circuit. If the circuit performance can be changed, the configuration is not limited to changing the power supply voltage.
  • the semiconductor integrated circuit of this embodiment includes a temperature control device TC for controlling the ambient temperature of the semiconductor integrated circuit D in accordance with the output value of the comparison circuit or the comparison storage circuit. Also good.
  • the clock control circuit CC determines that the semiconductor integrated circuit D is malfunctioning in the same manner as described above when the output value of the comparison circuit or the comparison storage circuit indicates “mismatch” between the outputs of the two logic circuits. And determine the cause.
  • FIG. 35 is a block diagram showing the configuration of the semiconductor integrated circuit of the twenty-first embodiment.
  • the semiconductor integrated circuit of the 21st embodiment has a configuration including a nonvolatile memory MEM in addition to the semiconductor integrated circuit of the 20th embodiment shown in FIG. 33A.
  • the semiconductor integrated circuit D is the semiconductor integrated circuit shown in the first to eighteenth embodiments.
  • the configurations and operations of the clock control circuit CC, the clock generation circuit CG, and the power supply control circuit PM are the nineteenth embodiment and the twentieth embodiment. This is the same as the semiconductor integrated circuit shown in the embodiment.
  • the nonvolatile memory MEM is connected to the clock control circuit CC, and stores control instructions (control contents) for the clock generation circuit CG and the power supply control circuit PM executed by the clock control circuit CC.
  • the clock control circuit CC stores the control content in the nonvolatile memory MEM during operation and / or before the operation is stopped, and reads the control content stored in the nonvolatile memory MEM before or during the next operation.
  • the clock generation circuit CG and the power supply control circuit PM are controlled according to the contents. By saving the control contents in this way, the clock control circuit CC can generate a clock signal under the same conditions as before the operation stop.
  • FIG. 36 is a block diagram showing the configuration of the semiconductor integrated circuit of the twenty-second embodiment.
  • the twenty-second embodiment is an example in which the supply of the clock signal and the power supply voltage to one of the two logic circuits provided in the semiconductor integrated circuit D is stopped.
  • the configuration of the semiconductor integrated circuit of this embodiment is the same as that of the twentieth embodiment shown in FIGS. 33A and 33B and the twenty-first embodiment shown in FIG.
  • FIG. 36 a plurality of memory circuits and arithmetic circuits included in each logic circuit are schematically shown by two memory circuits and one arithmetic circuit.
  • the clock signals CKA and CKA ′ supplied from the clock generation circuit CG to the memory circuits FF0A and FF1A are stopped and the power supply is controlled by the clock control circuit CC.
  • the power supply supplied from the control circuit PM to the memory circuits FF0A and FF1A and the arithmetic circuit L1A is stopped.
  • the clock signal and the power supply voltage are stopped, but only one of the clock signal and the power supply voltage may be stopped.
  • FIG. 37 is a flowchart showing the test procedure of the semiconductor integrated circuit of the 23rd embodiment.
  • the twenty-third embodiment shows an example of a test method for determining whether the setup time and hold time of the semiconductor integrated circuit shown in the nineteenth embodiment to the twenty-second embodiment satisfy a predetermined specification value.
  • the clock control circuit CC shown in the nineteenth embodiment to the twenty-second embodiment uses the clock so as to satisfy the specification value of the setup time of the semiconductor integrated circuit to be tested.
  • the signal cycle difference (for example, the difference between the first cycle T1A and the second cycle T2A of the clock signal CKA shown in FIG. 4) is set to a required value.
  • the clock control circuit CC causes the clock signal phase difference (for example, the first cycle T1A of the clock signal CKA shown in FIG. 4 and the clock so as to satisfy the hold time specification value of the semiconductor integrated circuit to be tested).
  • the difference between the signal CKA ′ and the first period T1A ′ is set to a required value (step B1).
  • Step B2 an arbitrary test vector of test patterns created in advance is input to the semiconductor integrated circuit to be tested, and the output value of the comparison circuit or comparison storage circuit is observed by the clock control circuit CC ( Step B2).
  • the clock control circuit CC causes the malfunction based on various conditions shown in the first to eighteenth embodiments. Is a setup violation (setup error) (step B3). If the cause is a setup violation, that is, an increase in the delay time of the arithmetic circuit, it can be determined that the semiconductor integrated circuit to be tested does not satisfy the setup time specification value.
  • the clock control circuit CC determines whether or not the cause of the malfunction is a hold violation (hold error) based on the various conditions shown in the first to eighteenth embodiments (step B4). If the cause is a hold violation, that is, a decrease in the delay time of the arithmetic circuit, it can be determined that the semiconductor integrated circuit to be tested does not satisfy the hold time specification value.
  • the clock control circuit CC determines whether or not the processing for all the test vectors included in the previously created test pattern has been performed. (Step B5). If all the test vectors have not been processed, the process returns to step B2 and the processes of steps B2 to B5 are repeated.
  • the semiconductor integrated circuit under test has a setup time specification value and a hold time specification value. It can be determined that each value is satisfied.
  • the cycle and phase of the clock signal can be changed using the clock control circuit CC and the clock generation circuit CG provided in advance in the semiconductor integrated circuit. It can be determined whether or not the integrated circuit satisfies a required setup time and hold time.
  • the phase difference between the clock signals cannot be controlled, so the hold time cannot be tested.
  • the phase difference between a plurality of clock signals can be controlled, so that the hold time can be tested.
  • the processing shown in FIG. 37 may be executed by setting the power supply voltage supplied to the semiconductor integrated circuit D by the power supply control circuit PM shown in FIG. 33A, for example, to the minimum voltage or the maximum voltage within the guaranteed operation range.
  • the temperature control device TC shown in FIG. 33B may be executed by setting the ambient temperature of the semiconductor integrated circuit D to the lowest temperature or the highest temperature within the guaranteed operating range.
  • the semiconductor integrated circuit D is tested by changing the power supply voltage supplied to the semiconductor integrated circuit D and the ambient temperature of the semiconductor integrated circuit D, the non-test target semiconductor integrated circuit operates at the power supply voltage and temperature. Whether or not to operate within the guaranteed range can also be determined.
  • FIG. 38 is a flowchart showing the test procedure of the semiconductor integrated circuit of the twenty-fourth embodiment.
  • the twenty-fourth embodiment shows an example of a test method for obtaining the setup time and hold time of the semiconductor integrated circuit shown in the nineteenth embodiment to the twenty-second embodiment.
  • the clock control circuit CC shown in the nineteenth embodiment to the twenty-third embodiment uses the clock signal cycle difference (for example, the first difference of the clock signal CKA shown in FIG. 4). Difference between the period T1A and the second period T2A) and the phase difference between the clock signals (for example, the difference between the first period T1A of the clock signal CKA shown in FIG. 4 and the first period T1A ′ of the clock signal CKA ′). ) are set to temporary values (step C1).
  • the clock signal period difference is for measuring the setup time of the semiconductor integrated circuit to be tested
  • the clock signal phase difference is for measuring the hold time of the semiconductor integrated circuit to be tested. belongs to.
  • Step C2 an arbitrary test vector of test patterns created in advance is input to the semiconductor integrated circuit to be tested, and the output value of the comparison circuit or comparison storage circuit is observed by the clock control circuit CC ( Step C2).
  • the clock control circuit CC may cause a malfunction due to various conditions described in the first to eighteenth embodiments. It is determined whether or not it is a setup violation (setup error) (step C3).
  • the cause is a setup violation, that is, an increase in the delay time of the arithmetic circuit, it can be determined that a setup violation occurs with a clock signal having a temporarily set period difference. In that case, the clock control circuit CC reduces the period difference between the plurality of clock signals supplied to the semiconductor integrated circuit to be tested (step C6), returns to the process of step C2, and repeats the processes of steps C2 to C3.
  • the clock control circuit CC determines whether the cause of the malfunction is a hold violation (hold error) from the various conditions shown in the first to eighteenth embodiments (Ste C4).
  • the cause is a hold violation, that is, a reduction in the delay time of the arithmetic circuit, it can be determined that a hold violation occurs in a clock signal having a temporarily set phase difference.
  • the clock control circuit CC reduces the phase difference between the plurality of clock signals supplied to the semiconductor integrated circuit to be tested (step C7), returns to step C2, and repeats the processing of steps C2 to C4.
  • the clock control circuit CC determines whether or not the determination process has been performed for all the test vectors included in the test pattern created in advance. Determine (step C5). If the determination process for all the test vectors has not been performed, the process returns to step C2 and the processes of steps C2 to C5 are repeated.
  • the clock control circuit CC has a predetermined accuracy (hereinafter referred to as time accuracy) for the period of each clock signal generated by the clock generation circuit CG. Is determined (step C8).
  • the clock control circuit CC ends the process.
  • the period difference between the plurality of clock signals supplied to the semiconductor integrated circuit under test is the setup time of the semiconductor integrated circuit under test, and the phase difference between the clock signals is the semiconductor integrated circuit under test. Hold time.
  • the clock control circuit CC increases the period difference between the plurality of clock signals supplied to the semiconductor integrated circuit to be tested. (Step C9). Further, the clock control circuit CC increases the phase difference between the plurality of clock signals supplied to the semiconductor integrated circuit to be tested (step C10), returns to step C2, and repeats the processing of steps C2 to C10.
  • the semiconductor to be tested since the clock signal cycle and phase can be changed using the clock control circuit CC and the clock generation circuit CG included in the semiconductor integrated circuit, the semiconductor to be tested with an inexpensive test apparatus The setup time and hold time of integrated circuits can be measured.
  • the phase difference between the clock signals cannot be controlled, so the hold time cannot be tested.
  • the phase difference between a plurality of clock signals can be controlled, so that the hold time can be tested.
  • the processing shown in FIG. 38 is performed within the guaranteed operating range for the power supply voltage supplied to the semiconductor integrated circuit D by the power supply control circuit PM shown in FIG. 33A, for example.
  • the minimum voltage or the maximum voltage may be set, and the temperature control device TC shown in FIG. 33B may be used to set the ambient temperature of the semiconductor integrated circuit D to the minimum or maximum temperature within the guaranteed operating range. May be.
  • the semiconductor integrated circuit D is tested by changing the power supply voltage supplied to the semiconductor integrated circuit D and the ambient temperature of the semiconductor integrated circuit D, the non-test target semiconductor integrated circuit operates at the power supply voltage and temperature. Whether or not to operate within the guaranteed range can also be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

A semiconductor integrated circuit the logic circuits of which are duplexed is provided with a comparison circuit for outputting the result of the comparison of whether or not the output value of each of the logic circuits is matched with each other.  A storage circuit of each of the logic circuits is supplied with clock signals which repeat first periods and second periods alternately and in which the start of the first period of each of the clock signals is matched with one another and the end of the second period thereof is matched with one another.  Among the clock signals, at least one clock signal has different length in the first period and the second period and at least one clock signal has a signal pattern different from the signal patterns of the other clock signals.

Description

半導体集積回路Semiconductor integrated circuit
 本発明は高い信頼性を備えた半導体集積回路に関する。 The present invention relates to a semiconductor integrated circuit having high reliability.
 長期間、誤りなく動作することが要求されるシステムでは、該システムで用いる半導体集積回路の信頼性を高めることが重要になる。例えば、宇宙機器のように修理が不可能または困難な場所にある機器、あるいは医療機器や原子力制御装置のように人命や社会に与える影響が大きい機器では信頼性の高い半導体集積回路が求められる。 In a system that is required to operate without error for a long time, it is important to improve the reliability of a semiconductor integrated circuit used in the system. For example, a highly reliable semiconductor integrated circuit is required for a device in a place where repair is impossible or difficult, such as a space device, or a device having a large impact on human life or society, such as a medical device or a nuclear power controller.
 半導体集積回路の信頼性を向上させる方法としては、同一機能の論理回路を2つ備え、それらを並列に動作させると共に、その出力の一致/不一致を検出することで各論理回路の動作を検証する構成が知られている(例えば、特許文献1参照)。このような同一機能の論理回路を2つ備えた半導体集積回路を、以下では「二重化された論理回路」と称す。 As a method for improving the reliability of a semiconductor integrated circuit, two logic circuits having the same function are provided and operated in parallel, and the operation of each logic circuit is verified by detecting the coincidence / mismatch of the outputs. The configuration is known (see, for example, Patent Document 1). Hereinafter, such a semiconductor integrated circuit including two logic circuits having the same function is referred to as a “duplicated logic circuit”.
 また、半導体集積回路の信頼性を向上させる他の方法として、特許文献2や非特許文献1に記載された方法がある。 As other methods for improving the reliability of the semiconductor integrated circuit, there are methods described in Patent Document 2 and Non-Patent Document 1.
 特許文献2には、一方のクロック信号に同期して動作する記憶回路と、該クロック信号を遅延させた他方のクロック信号に同期して動作する記憶回路とを備え、1つの演算回路の出力値をこれら2つの記憶回路で記憶し、記憶した2つの値を比較することで、演算回路で発生する演算時間の増大を検出することが記載されている。 Patent Document 2 includes a storage circuit that operates in synchronization with one clock signal and a storage circuit that operates in synchronization with the other clock signal obtained by delaying the clock signal. Is stored in these two storage circuits, and the two stored values are compared to detect an increase in calculation time generated in the calculation circuit.
 また、非特許文献1には、クロック信号に同期して記憶回路に演算回路の出力値を記憶させると共に、それよりも早い時点で演算回路の同じ出力値を他の記憶回路で記憶し、該記憶した2つの値が異なっているときに演算回路の演算時間が増大したと判定する手法が記載されている。 In Non-Patent Document 1, the output value of the arithmetic circuit is stored in the storage circuit in synchronization with the clock signal, and the same output value of the arithmetic circuit is stored in another storage circuit at an earlier point in time. A method is described in which it is determined that the calculation time of the calculation circuit has increased when the two stored values are different.
 上述した背景技術の半導体集積回路では、既に発生している故障は検出できるが、該故障が起きる前に発生している事象(故障要因)は検出できないという課題がある。以下、この課題について説明する。 In the semiconductor integrated circuit of the background art described above, there is a problem that an already occurring failure can be detected, but an event (failure factor) occurring before the failure occurs cannot be detected. Hereinafter, this problem will be described.
 図1は半導体集積回路の背景技術の構成を示すブロック図であり、図2は図1に示した半導体集積回路が故障を検出する様子を示すタイミングチャートである。 FIG. 1 is a block diagram showing the configuration of the background art of a semiconductor integrated circuit, and FIG. 2 is a timing chart showing how the semiconductor integrated circuit shown in FIG. 1 detects a failure.
 図1に示す背景技術の半導体集積回路は、記憶回路FF0A、演算回路L1A及び記憶回路FF1Aを備えた第1の論理回路と、記憶回路FF0B、演算回路L1B及び記憶回路FF1Bを備えた第2の論理回路と、記憶回路FF1Aの出力値と記憶回路FF1Bの出力値とが一致しているか否かの比較結果を出力する比較回路C1とを有する構成である。第1の論理回路と第2の論理回路とは同一の機能を備えている。 The background art semiconductor integrated circuit shown in FIG. 1 includes a first logic circuit including a memory circuit FF0A, an arithmetic circuit L1A, and a memory circuit FF1A, and a second logic circuit including a memory circuit FF0B, an arithmetic circuit L1B, and a memory circuit FF1B. The configuration includes a logic circuit and a comparison circuit C1 that outputs a comparison result as to whether or not the output value of the memory circuit FF1A matches the output value of the memory circuit FF1B. The first logic circuit and the second logic circuit have the same function.
 記憶回路FF0A、FF1A、FF0B及びFF1Bは、各々に供給されるクロック信号に同期して入力値を保持して出力する。また、演算回路L1A及びL1Bは、入力値に対して所定の演算処理を実行し、所要の演算時間が経過した後、その演算結果を出力する。 The memory circuits FF0A, FF1A, FF0B, and FF1B hold and output input values in synchronization with the clock signals supplied thereto. In addition, the arithmetic circuits L1A and L1B execute predetermined arithmetic processing on the input value, and output the arithmetic result after a predetermined arithmetic time has elapsed.
 以下では、上記演算回路L1A、L1Bの演算時間のように、回路にある値を入力してからそれに対応する値を出力するまでに要する時間を「遅延時間」と称す。 Hereinafter, the time required for inputting a value in the circuit and outputting the corresponding value, such as the calculation time of the arithmetic circuits L1A and L1B, will be referred to as “delay time”.
 記憶回路FF0Aの出力値は演算回路L1Aに入力され、演算回路L1Aの出力値は記憶回路FF1Aに入力される。また、記憶回路FF0Bの出力値は演算回路L1Bに入力され、演算回路L1Bの出力値は記憶回路FF1Bに入力される。 The output value of the memory circuit FF0A is input to the arithmetic circuit L1A, and the output value of the arithmetic circuit L1A is input to the memory circuit FF1A. The output value of the memory circuit FF0B is input to the arithmetic circuit L1B, and the output value of the arithmetic circuit L1B is input to the memory circuit FF1B.
 記憶回路FF0A、FF1A、FF0B及びFF1Bには同一のクロック信号CKが供給され、記憶回路FF1A及びFF1Bの出力値は比較回路C1に入力される。 The same clock signal CK is supplied to the memory circuits FF0A, FF1A, FF0B, and FF1B, and the output values of the memory circuits FF1A and FF1B are input to the comparison circuit C1.
 図1に示すように、背景技術の半導体集積回路では、記憶回路FF0A、FF1A、FF0B及びFF1Bに周期Tの同一のクロック信号CKが供給されている。 As shown in FIG. 1, in the semiconductor integrated circuit of the background art, the same clock signal CK having the cycle T is supplied to the memory circuits FF0A, FF1A, FF0B, and FF1B.
 図2に示すように、記憶回路FF0A、FF1A、FF0B及びFF1Bは、クロック信号CKの立ち上がりエッジに同期して入力値を保持すると共に、その値を出力する。 As shown in FIG. 2, the memory circuits FF0A, FF1A, FF0B, and FF1B hold the input value in synchronization with the rising edge of the clock signal CK and output the value.
 ここで、例えば時刻D(L1(D2))において、演算回路L1Aが誤った値F'(D2)を出力し、演算回路L1Bが正しい値F(D2)を出力しているものと仮定する。 Here, for example, it is assumed that at time D (L1 (D2)), the arithmetic circuit L1A outputs an incorrect value F ′ (D2) and the arithmetic circuit L1B outputs a correct value F (D2).
 この場合、時刻Tにおいて、記憶回路FF1Aは演算回路L1Aから出力された誤った値F'(D2)を保持して出力し、記憶回路FF1Bは演算回路L1Bから出力された正しい値F(D2)を保持して出力する。したがって、記憶回路FF1Aの出力値と記憶回路FF1Bの出力値とが一致しないため、比較回路C1の出力値が変化する(図2に示す例では、論理「0」(Lowレベル)から論理「1」(Highレベル))。よって、比較回路C1の出力値を監視することで故障が発生したか否かを判断できる。 In this case, at time T, the memory circuit FF1A holds and outputs the incorrect value F ′ (D2) output from the arithmetic circuit L1A, and the memory circuit FF1B outputs the correct value F (D2) output from the arithmetic circuit L1B. Is output. Therefore, since the output value of the memory circuit FF1A and the output value of the memory circuit FF1B do not match, the output value of the comparison circuit C1 changes (in the example shown in FIG. 2, the logic “0” (Low level) changes to the logic “1”. (High level)). Therefore, it can be determined whether or not a failure has occurred by monitoring the output value of the comparison circuit C1.
 ところで、図1に示すような半導体集積回路で発生する故障要因としては、トランジスタ等の性能劣化による演算回路の遅延時間の増大や遅延時間の減少が考えられる。例えば、図1に示す演算回路L1Aの遅延時間が増大してクロック信号CKの周期よりも長くなると、記憶回路FF1Aは、クロック信号CKの立ち上がりエッジに同期して演算回路L1Aから出力されている誤った演算結果を取り込んでしまうため、誤った演算結果を出力する。一方、図1に示した演算回路L1Aの遅延時間が減少して記憶回路FF1Aのホールド時間よりも短くなると、記憶回路FF1Aは、演算回路L1Aの演算結果を正しく取り込むことができないため、誤った演算結果を出力する。 By the way, as a failure factor that occurs in the semiconductor integrated circuit as shown in FIG. 1, an increase in the delay time of the arithmetic circuit or a decrease in the delay time due to performance deterioration of the transistor or the like can be considered. For example, when the delay time of the arithmetic circuit L1A shown in FIG. 1 increases and becomes longer than the cycle of the clock signal CK, the memory circuit FF1A erroneously outputs from the arithmetic circuit L1A in synchronization with the rising edge of the clock signal CK. Incorrect calculation result is output because the calculation result is taken in. On the other hand, if the delay time of the arithmetic circuit L1A shown in FIG. 1 decreases and becomes shorter than the hold time of the memory circuit FF1A, the memory circuit FF1A cannot correctly capture the arithmetic result of the arithmetic circuit L1A. Output the result.
 図3は図1に示した半導体集積回路が故障要因を検出できない様子を示すタイミングチャートである。 FIG. 3 is a timing chart showing how the semiconductor integrated circuit shown in FIG. 1 cannot detect the failure factor.
 ここでは、時刻0で入力された値D2に対して、演算回路L1Bは時刻D(L1(D2))で正しい演算結果の値F(D2)を出力し、演算回路L1Aは、時刻D(L1(D2))よりも時間dだけ遅れて、すなわち時刻D(L1(D2))+dで正しい演算結果の値F(D2)を出力する例で説明する。 Here, with respect to the value D2 input at time 0, the arithmetic circuit L1B outputs the correct arithmetic result value F (D2) at time D (L1 (D2)), and the arithmetic circuit L1A outputs the time D (L1 An example will be described in which a correct operation result value F (D2) is output at a time d (L2 (D2)) + d later than (D2)).
 図3に示すように、演算回路L1Aから演算結果が出力される時刻D(L1(D2))+dがクロック信号CKの周期T以内にある場合、記憶回路FF1Aは、時刻Tで演算回路L1Aから出力された値F(D2)を保持して出力する。また、記憶回路FF1Bは、時刻Tで演算回路L1Bから出力された値F(D2)を保持して出力する。 As shown in FIG. 3, when the time D (L1 (D2)) + d at which the operation result is output from the arithmetic circuit L1A is within the cycle T of the clock signal CK, the memory circuit FF1A starts from the arithmetic circuit L1A at time T. The output value F (D2) is held and output. The memory circuit FF1B holds and outputs the value F (D2) output from the arithmetic circuit L1B at time T.
 したがって、比較回路C1は、同一の値が入力されているために出力値が変化せず、演算回路L1Aで発生している遅延時間の増大を検出できない。このような演算回路等で発生する遅延時間の増大は、時間の経過に伴って大きくなり、やがて半導体集積回路の誤動作を引き起こす。 Therefore, since the same value is input to the comparison circuit C1, the output value does not change, and an increase in delay time occurring in the arithmetic circuit L1A cannot be detected. The increase in delay time generated in such an arithmetic circuit or the like increases with time, and eventually causes a malfunction of the semiconductor integrated circuit.
 上述した特許文献2や非特許文献1に記載の回路では、予め設定された検出時間の範囲内であれば、演算回路等で発生している遅延時間の増大を検出できる。しかしながら、予め設定された検出時間を超える遅延時間の増大は検出することができない。また、特許文献2や非特許文献1に記載の回路では、遅延時間の増大は検出できるが、遅延時間の減少を検出することはできない。 In the circuits described in Patent Document 2 and Non-Patent Document 1 described above, an increase in delay time occurring in an arithmetic circuit or the like can be detected within a preset detection time range. However, an increase in the delay time exceeding the preset detection time cannot be detected. In the circuits described in Patent Document 2 and Non-Patent Document 1, an increase in delay time can be detected, but a decrease in delay time cannot be detected.
 さらに、背景技術の半導体集積回路では、二重化された論理回路のうち、どちらの論理回路で故障要因が発生しているかを判別できないため、例えば正常な論理回路の出力を選択することで、半導体集積回路の正常な動作を維持することはできない。 Furthermore, in the semiconductor integrated circuit of the background art, it is impossible to determine which of the duplicated logic circuits is causing the failure. For example, by selecting the output of the normal logic circuit, the semiconductor integrated circuit The normal operation of the circuit cannot be maintained.
特開2003-316599号公報JP 2003-316599 A 米国特許公開第2005/0246613号US Patent Publication No. 2005/0246613
 そこで本発明は、遅延時間の増大や減少等の故障要因の検出を可能にして、動作の信頼性を向上させることができる、二重化された論理回路から成る半導体集積回路を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit composed of duplicated logic circuits that can detect a failure factor such as an increase or decrease in delay time and improve operation reliability. To do.
 上記目的を達成するため本発明の半導体集積回路は、所定の演算処理を実行する第1の演算回路と、
 前記第1の演算回路と同一の演算処理を実行する第2の演算回路と、
 前記第1の演算回路の入力に接続された、第1のクロック信号に同期して入力値を保持して出力する第1の記憶回路と、
 前記第1の演算回路の出力に接続された、第2のクロック信号に同期して入力値を保持して出力する第2の記憶回路と、
 前記第2の演算回路の入力に接続された、第3のクロック信号に同期して入力値を保持して出力する第3の記憶回路と、
 前記第2の演算回路の出力に接続された、第4のクロック信号に同期して入力値を保持して出力する第4の記憶回路と、
 前記第2の記憶回路の出力値と前記第4の記憶回路の出力値とが一致しているか否かの比較結果を出力する第1の比較回路と、
を有し、
 前記第1、第2、第3及び第4のクロック信号は、第1の周期と第2の周期とを交互に繰り返す信号であり、それぞれの前記第1の周期の開始が一致し、かつ前記第2の周期の終了が一致し、
 前記第1、第2、第3及び第4のクロック信号のうち、少なくとも一つは前記第1の周期と前記第2の周期とが異なる長さであり、少なくとも一つは他のクロック信号と異なる信号パターンである。 
 または、所定の演算処理を実行する複数の第1の演算回路及び複数の前記第1の演算回路と交互に接続される複数の第1の記憶回路を備えた第1の論理回路と、
 前記第1の演算回路と同一の演算処理を実行する第2の演算回路及び複数の前記第2の演算回路と交互に接続される複数の第2の記憶回路を備えた第2の論理回路と、
 前記第1の記憶回路の出力値と前記第2の記憶回路の出力値とが一致しているか否かの比較結果をそれぞれ出力する複数の比較回路と、
を有し、
 複数の前記第1の記憶回路に第1のクロック信号及び第2のクロック信号が交互に供給され、
 複数の前記第2の記憶回路に第3のクロック信号及び第4のクロック信号が交互に供給され、
 前記第1、第2、第3及び第4のクロック信号は、第1の周期と第2の周期とを交互に繰り返す信号であり、それぞれの前記第1の周期の開始が一致し、かつ前記第2の周期の終了が一致し、
 前記第1、第2、第3及び第4のクロック信号のうち、少なくとも一つは前記第1の周期と前記第2の周期とが異なる長さであり、少なくとも一つは他のクロック信号と異なる信号パターンである。
In order to achieve the above object, a semiconductor integrated circuit according to the present invention includes a first arithmetic circuit that executes predetermined arithmetic processing,
A second arithmetic circuit that executes the same arithmetic processing as the first arithmetic circuit;
A first memory circuit connected to an input of the first arithmetic circuit and holding and outputting an input value in synchronization with a first clock signal;
A second memory circuit connected to the output of the first arithmetic circuit and holding and outputting an input value in synchronization with a second clock signal;
A third memory circuit connected to the input of the second arithmetic circuit and holding and outputting an input value in synchronization with a third clock signal;
A fourth memory circuit connected to the output of the second arithmetic circuit and holding and outputting an input value in synchronization with a fourth clock signal;
A first comparison circuit that outputs a comparison result as to whether or not the output value of the second storage circuit and the output value of the fourth storage circuit match;
Have
The first, second, third, and fourth clock signals are signals that alternately repeat a first period and a second period, and the start of each of the first periods coincides, and The end of the second cycle coincides,
At least one of the first, second, third, and fourth clock signals has a length different from the first period and the second period, and at least one of the other clock signals and Different signal patterns.
Alternatively, a first logic circuit including a plurality of first arithmetic circuits that execute predetermined arithmetic processing and a plurality of first memory circuits that are alternately connected to the plurality of first arithmetic circuits,
A second logic circuit including a second arithmetic circuit that executes the same arithmetic processing as the first arithmetic circuit and a plurality of second memory circuits that are alternately connected to the plurality of second arithmetic circuits; ,
A plurality of comparison circuits each outputting a comparison result as to whether or not the output value of the first storage circuit and the output value of the second storage circuit match;
Have
The first clock signal and the second clock signal are alternately supplied to the plurality of first memory circuits,
A third clock signal and a fourth clock signal are alternately supplied to the plurality of second memory circuits,
The first, second, third, and fourth clock signals are signals that alternately repeat a first period and a second period, and the start of each of the first periods coincides, and The end of the second cycle coincides,
At least one of the first, second, third, and fourth clock signals has a length different from the first period and the second period, and at least one of the other clock signals and Different signal patterns.
図1は、背景技術の半導体集積回路の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a semiconductor integrated circuit of the background art. 図2は、図1に示した半導体集積回路が故障を検出する様子を示すタイミングチャートである。FIG. 2 is a timing chart showing how the semiconductor integrated circuit shown in FIG. 1 detects a failure. 図3は、図1に示した半導体集積回路が故障要因を検出できない様子を示すタイミングチャートである。FIG. 3 is a timing chart showing how the semiconductor integrated circuit shown in FIG. 1 cannot detect a failure factor. 図4は、第1実施例の半導体集積回路の構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the semiconductor integrated circuit of the first embodiment. 図5Aは、第1実施例の半導体集積回路に供給される各クロック信号の一例を示すタイミングチャートである。FIG. 5A is a timing chart showing an example of each clock signal supplied to the semiconductor integrated circuit of the first embodiment. 図5Bは、第1実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 5B is a timing chart illustrating the operation of the semiconductor integrated circuit according to the first embodiment. 図5Cは、第1実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 5C is a timing chart illustrating the operation of the semiconductor integrated circuit according to the first embodiment. 図6は、第2実施例の半導体集積回路の構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the semiconductor integrated circuit of the second embodiment. 図7は、第2実施例の半導体集積回路において、故障要因が発生していないときの動作を示すタイミングチャートである。FIG. 7 is a timing chart showing an operation when no failure factor occurs in the semiconductor integrated circuit of the second embodiment. 図8は、第2実施例の半導体集積回路において、演算回路L1Aで遅延時間が増大する故障要因が発生しているときの動作を示すタイミングチャートである。FIG. 8 is a timing chart showing the operation of the semiconductor integrated circuit according to the second embodiment when a failure factor that increases the delay time occurs in the arithmetic circuit L1A. 図9は、第2実施例の半導体集積回路において、演算回路L1Bで遅延時間が増大する故障要因が発生しているときの動作を示すタイミングチャートである。FIG. 9 is a timing chart showing the operation of the semiconductor integrated circuit according to the second embodiment when a failure factor that increases the delay time occurs in the arithmetic circuit L1B. 図10は、第3実施例の半導体集積回路の構成を示すブロック図である。FIG. 10 is a block diagram showing the configuration of the semiconductor integrated circuit of the third embodiment. 図11は、第4実施例の半導体集積回路において、故障要因が発生していないときとの動作を示すタイミングチャートである。FIG. 11 is a timing chart showing the operation when no failure factor has occurred in the semiconductor integrated circuit of the fourth embodiment. 図12は、第4実施例の半導体集積回路において、演算回路L1Aで遅延時間が減少する故障要因が発生しているときの動作を示すタイミングチャートである。FIG. 12 is a timing chart showing an operation in the semiconductor integrated circuit according to the fourth embodiment when a failure factor causing a decrease in delay time occurs in the arithmetic circuit L1A. 図13は、第5実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 13 is a timing chart showing the operation of the semiconductor integrated circuit of the fifth embodiment. 図14は、第6実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 14 is a timing chart showing the operation of the semiconductor integrated circuit according to the sixth embodiment. 図15は、第7実施例の半導体集積回路の構成を示すブロック図である。FIG. 15 is a block diagram showing the configuration of the semiconductor integrated circuit of the seventh embodiment. 図16は、第8実施例の半導体集積回路の構成を示すブロック図である。FIG. 16 is a block diagram showing the configuration of the semiconductor integrated circuit of the eighth embodiment. 図17は、第9実施例の半導体集積回路の構成を示すブロック図である。FIG. 17 is a block diagram showing the configuration of the semiconductor integrated circuit of the ninth embodiment. 図18は、第10実施例の半導体集積回路の構成を示すブロック図である。FIG. 18 is a block diagram showing the configuration of the semiconductor integrated circuit of the tenth embodiment. 図19は、第11実施例の半導体集積回路の構成を示すブロック図である。FIG. 19 is a block diagram showing the configuration of the semiconductor integrated circuit of the eleventh embodiment. 図20は、第12実施例の半導体集積回路の構成を示すブロック図である。FIG. 20 is a block diagram showing the configuration of the semiconductor integrated circuit of the twelfth embodiment. 図21は、第13実施例の半導体集積回路の構成を示すブロック図である。FIG. 21 is a block diagram showing the configuration of the semiconductor integrated circuit of the thirteenth embodiment. 図22は、第13実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 22 is a timing chart showing the operation of the semiconductor integrated circuit of the thirteenth embodiment. 図23は、第14実施例の半導体集積回路の構成を示すブロック図である。FIG. 23 is a block diagram showing the configuration of the semiconductor integrated circuit of the fourteenth embodiment. 図24は、第15実施例の半導体集積回路の構成を示すブロック図である。FIG. 24 is a block diagram showing the configuration of the semiconductor integrated circuit of the fifteenth embodiment. 図25は、第15実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 25 is a timing chart showing the operation of the semiconductor integrated circuit of the fifteenth embodiment. 図26は、第16実施例の半導体集積回路の構成を示すブロック図である。FIG. 26 is a block diagram showing the configuration of the semiconductor integrated circuit according to the sixteenth embodiment. 図27は、第16実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 27 is a timing chart showing the operation of the semiconductor integrated circuit according to the sixteenth embodiment. 図28は、第17実施例の半導体集積回路の構成を示すブロック図である。FIG. 28 is a block diagram showing the configuration of the semiconductor integrated circuit according to the seventeenth embodiment. 図29は、第17実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 29 is a timing chart showing the operation of the semiconductor integrated circuit of the seventeenth embodiment. 図30は、第18実施例の半導体集積回路の構成を示すブロック図である。FIG. 30 is a block diagram showing the configuration of the semiconductor integrated circuit of the eighteenth embodiment. 図31は、第18実施例の半導体集積回路の動作を示すタイミングチャートである。FIG. 31 is a timing chart showing the operation of the semiconductor integrated circuit of the eighteenth embodiment. 図32は、第19実施例の半導体集積回路の構成を示すブロック図である。FIG. 32 is a block diagram showing the configuration of the semiconductor integrated circuit of the nineteenth embodiment. 図33Aは、第20実施例の半導体集積回路の構成を示すブロック図である。FIG. 33A is a block diagram showing the configuration of the semiconductor integrated circuit of the twentieth embodiment. 図33Bは、第20実施例の半導体集積回路の変形例の構成を示すブロック図である。FIG. 33B is a block diagram showing a configuration of a modified example of the semiconductor integrated circuit of the twentieth embodiment. 図34は、第20実施例の半導体集積回路が備えるクロック制御回路の処理手順を示すフローチャートである。FIG. 34 is a flowchart showing the processing procedure of the clock control circuit provided in the semiconductor integrated circuit of the twentieth embodiment. 図35は、第21実施例の半導体集積回路の構成を示すブロック図である。FIG. 35 is a block diagram showing the configuration of the semiconductor integrated circuit of the twenty-first embodiment. 図36は、第22実施例の半導体集積回路の構成を示すブロック図である。FIG. 36 is a block diagram showing the configuration of the semiconductor integrated circuit of the twenty-second embodiment. 図37は、第23実施例の半導体集積回路の試験手順を示すフローチャートである。FIG. 37 is a flowchart showing the test procedure of the semiconductor integrated circuit of the twenty-third embodiment. 図38は、第24実施例の半導体集積回路の試験手順を示すフローチャートである。FIG. 38 is a flowchart showing the test procedure of the semiconductor integrated circuit of the twenty-fourth embodiment.
 次に本発明について図面を参照して説明する。
(第1実施例)
 図4は第1実施例の半導体集積回路の構成を示すブロック図である。
Next, the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 4 is a block diagram showing the configuration of the semiconductor integrated circuit of the first embodiment.
 図4に示すように、第1実施例の半導体集積回路は、記憶回路FF0A、演算回路L1A及び記憶回路FF1Aを備えた第1の論理回路と、記憶回路FF0B、演算回路L1B及び記憶回路FF1Bを備えた第2の論理回路と、記憶回路FF1Aの出力値と記憶回路FF1Bの出力値とが一致しているか否かの比較結果を出力する比較回路C1とを有する構成である。第1の論理回路と第2の論理回路とは同一の機能を備えている。 As shown in FIG. 4, the semiconductor integrated circuit of the first embodiment includes a first logic circuit including a memory circuit FF0A, an arithmetic circuit L1A, and a memory circuit FF1A, a memory circuit FF0B, an arithmetic circuit L1B, and a memory circuit FF1B. The second logic circuit is provided, and a comparison circuit C1 that outputs a comparison result as to whether or not the output value of the memory circuit FF1A and the output value of the memory circuit FF1B match. The first logic circuit and the second logic circuit have the same function.
 記憶回路FF0A、FF1A、FF0B及びFF1Bは、各々に供給されるクロック信号の立ち上がりエッジに同期して入力値を保持して出力する。また、演算回路L1A及びL1Bは、入力値に対して所定の演算処理を実行し、所要の演算時間が経過した後、その演算結果を出力する。 The memory circuits FF0A, FF1A, FF0B, and FF1B hold and output the input value in synchronization with the rising edge of the clock signal supplied thereto. In addition, the arithmetic circuits L1A and L1B execute predetermined arithmetic processing on the input value, and output the arithmetic result after a predetermined arithmetic time has elapsed.
 記憶回路FF0Aの出力値は演算回路L1Aに入力され、演算回路L1Aの出力値は記憶回路FF1Aに入力される。また、記憶回路FF0Bの出力値は演算回路L1Bに入力され、演算回路L1Bの出力値は記憶回路FF1Bに入力される。記憶回路FF1A及びFF1Bの出力値は比較回路C1に入力される。 The output value of the memory circuit FF0A is input to the arithmetic circuit L1A, and the output value of the arithmetic circuit L1A is input to the memory circuit FF1A. The output value of the memory circuit FF0B is input to the arithmetic circuit L1B, and the output value of the arithmetic circuit L1B is input to the memory circuit FF1B. The output values of the memory circuits FF1A and FF1B are input to the comparison circuit C1.
 第1実施例の半導体集積回路では、記憶回路FF0Aにクロック信号CKAが供給され、記憶回路FF1Aにクロック信号CKA'が供給される。また、記憶回路FF0Bにクロック信号CKBが供給され、記憶回路FF1Bにクロック信号CKB'が供給される。 In the semiconductor integrated circuit of the first embodiment, the clock signal CKA is supplied to the memory circuit FF0A, and the clock signal CKA ′ is supplied to the memory circuit FF1A. Further, the clock signal CKB is supplied to the memory circuit FF0B, and the clock signal CKB ′ is supplied to the memory circuit FF1B.
 図5Aは第1実施例の半導体集積回路に供給される各クロック信号の一例を示すタイミングチャートである。 FIG. 5A is a timing chart showing an example of each clock signal supplied to the semiconductor integrated circuit of the first embodiment.
 図5Aに示すように、クロック信号CKAは第1の周期T1Aと第2の周期T2Aとを交互に繰り返す信号であり、クロック信号CKA'は第1の周期T1A'と第2の周期T2A'とを交互に繰り返す信号である。また、クロック信号CKBは第1の周期T1Bと第2の周期T2Bとを交互に繰り返す信号であり、クロック信号CKB'は第1の周期T1B'と第2の周期T2B'とを交互に繰り返す信号である。 As shown in FIG. 5A, the clock signal CKA is a signal that alternately repeats the first cycle T1A and the second cycle T2A, and the clock signal CKA ′ includes the first cycle T1A ′ and the second cycle T2A ′. Is a signal that repeats alternately. The clock signal CKB is a signal that alternately repeats the first cycle T1B and the second cycle T2B, and the clock signal CKB ′ is a signal that alternately repeats the first cycle T1B ′ and the second cycle T2B ′. It is.
 なお、図4に示す第1の論理回路及び第2の論理回路が同期式回路として正しく動作するためには、記憶回路FF1A及びFF1Bが入力値を保持する時点で、記憶回路FF0A及びFF0Bが既に値を出力している必要があり、
 T1A≦T1A'…………………………(1)
 かつ
 T1B≦T1B'…………………………(2)
の条件を満たす必要がある。
Note that in order for the first logic circuit and the second logic circuit shown in FIG. 4 to operate correctly as a synchronous circuit, the memory circuits FF0A and FF0B are already at the time when the memory circuits FF1A and FF1B hold the input values. Value must be output,
T1A ≦ T1A '…………………… (1)
And T1B ≦ T1B '…………………… (2)
It is necessary to satisfy the conditions.
 但し、各記憶回路のセットアップ時間及びホールド時間は無視できるものとする。 However, the setup time and hold time of each memory circuit shall be negligible.
 クロック信号CKA、CKA’、CKB及びCKB'は、それぞれの第1の周期の開始が一致し、かつ第2の周期の終了が一致するものとする。 The clock signals CKA, CKA ′, CKB and CKB ′ are assumed to have the same start of the first period and the same end of the second period.
 また、クロック信号CKA、CKA’、CKB及びCKB'のうち、少なくとも一つは、第1の周期と第2の周期とが異なる長さとする。 In addition, at least one of the clock signals CKA, CKA ′, CKB, and CKB ′ has a different length between the first period and the second period.
 さらに、クロック信号CKA、CKA’、CKB及びCKB'のうち、少なくとも一つは、他のクロック信号と異なる信号パターンとする。 Further, at least one of the clock signals CKA, CKA ', CKB and CKB' has a signal pattern different from that of the other clock signals.
 図5Aは、クロック信号CKA、CKA’、CKB及びCKB'が、それぞれ異なる長さの第1の周期と第2の周期とを備え、さらにいずれのクロック信号も他のクロック信号と異なる信号パターンである例を示している。 In FIG. 5A, the clock signals CKA, CKA ′, CKB and CKB ′ each have a first period and a second period having different lengths, and each of the clock signals has a signal pattern different from that of the other clock signals. An example is shown.
 図5Aに示すような、2つの異なる周期を交互に繰り返すクロック信号は、例えば、Shunichi Kaeriyama, Mikihiro Kajita, Masayuki Mizuno, "A 1-to-2GHz 4-Phase On-Chip Clock Generator with Timing-Margin Test Capability", ISSCC2007 digest of technical papers, pp. 174-175.(以下、非特許文献2と称す)等を参照することで生成できる。 For example, Shunichi Kaeriyama, Mikihiro Kajita, Masayuki Mizuno, “A 1-to-2GHz 4-Phase On-Chip Clock Generator with Timing-Margin Test, as shown in FIG. 5A, are alternately repeated. Capability ", ISSCC2007 digest of technical papers, pp. 174-175 (hereinafter referred to as Non-Patent Document 2), etc.
 以下では、各クロック信号の第1の周期及び第2の周期のデューティー比(周期全体に占める信号値が1である期間の比)をそれぞれ50%とする例を示すが、第1の周期及び第2の周期のデューティー比は50%に限定されるものではない。 In the following, an example in which the duty ratio of each of the first and second cycles of each clock signal (the ratio of the period in which the signal value occupies the entire cycle is 1) is 50%, respectively, the first cycle and The duty ratio of the second cycle is not limited to 50%.
 また、記憶回路(後述する比較記憶回路を含む)はクロック信号の立ち上がりエッジに同期して入力値を保持すると共に保持した値を出力する例で説明するが、同様の機能を有するものであれば、どのような構成であってもよい。 A storage circuit (including a comparison storage circuit to be described later) will be described as an example of holding an input value in synchronization with a rising edge of a clock signal and outputting the held value. Any configuration may be used.
 また、以下では、演算回路L1AとL1Bの演算時間(遅延時間)が同一であるとして説明するが、2つの演算回路は、その処理機能が同一であれば内部構成は異なっていてもよく、演算時間が異なっていてもよい。 In the following description, it is assumed that the computation time (delay time) of the arithmetic circuits L1A and L1B is the same, but the two arithmetic circuits may have different internal configurations as long as their processing functions are the same. The times may be different.
 これらの条件は、後述する第2実施例~第17実施例にも適用される。 These conditions also apply to second to seventeenth embodiments described later.
 次に第1実施例の半導体集積回路の動作について図面を用いて説明する。 Next, the operation of the semiconductor integrated circuit of the first embodiment will be described with reference to the drawings.
 図5B及び図5Cは第1実施例の半導体集積回路の動作を示すタイミングチャートである。 5B and 5C are timing charts showing the operation of the semiconductor integrated circuit of the first embodiment.
 図5Bの実線は図4に示した演算回路L1Aで遅延時間が増大する故障要因が発生していないときの動作を示し、図5Bの点線は図4に示した演算回路L1Aで遅延時間が増大する故障要因が発生しているときの動作を示している。 The solid line in FIG. 5B shows the operation when the failure factor that increases the delay time does not occur in the arithmetic circuit L1A shown in FIG. 4, and the dotted line in FIG. 5B shows the delay time in the arithmetic circuit L1A shown in FIG. This shows the operation when a failure factor occurs.
 演算回路L1Aで遅延時間が増大する故障要因が発生していない場合、記憶回路FF1Aの出力値は論理「1」(Highレベル)になり、記憶回路FF1Bの出力値も論理「1」になるため、比較回路C1の出力値は論理「0」(Lowレベル)で安定する。 When the failure factor that increases the delay time does not occur in the arithmetic circuit L1A, the output value of the memory circuit FF1A becomes logic “1” (High level), and the output value of the memory circuit FF1B also becomes logic “1”. The output value of the comparison circuit C1 is stabilized at logic “0” (Low level).
 一方、演算回路L1Aで遅延時間が増大する故障要因が発生している場合、記憶回路FF1Aの出力値は論理「0」になり、記憶回路FF1Bの出力値は論理「1」になるため、比較回路C1の出力値は論理「1」になる。 On the other hand, when a failure factor that increases the delay time occurs in the arithmetic circuit L1A, the output value of the memory circuit FF1A becomes logic “0” and the output value of the memory circuit FF1B becomes logic “1”. The output value of the circuit C1 becomes logic “1”.
 したがって、比較回路C1の出力値を監視することで遅延時間が増大する故障要因の発生有無を判別できる。 Therefore, by monitoring the output value of the comparison circuit C1, it is possible to determine whether or not a failure factor that increases the delay time occurs.
 なお、図5Bの実線で示すように、演算回路L1Aで遅延時間が増大する故障要因が発生していない場合でも、比較回路C1の出力値が論理「1」になる期間がある。しかしながら、これは、クロック信号CKA、CKA’、CKB及びCKB'のいずれか一つが立ち上がってから残りのクロック信号が全て立ち上がるまでの期間を比較結果の不感期間に設定することで無視できる。 Note that, as indicated by the solid line in FIG. 5B, there is a period in which the output value of the comparison circuit C1 is logic “1” even when the failure factor that increases the delay time does not occur in the arithmetic circuit L1A. However, this can be ignored by setting the period from the rise of any one of the clock signals CKA, CKA ', CKB and CKB' to the rise of all the remaining clock signals as the dead period of the comparison result.
 図5Cの実線は図4に示した演算回路L1Aで遅延時間が減少する故障要因が発生していないときの動作を示し、図5Cの点線は図4に示した演算回路L1Aで遅延時間が減少する故障要因が発生しているときの動作を示している。 The solid line in FIG. 5C shows the operation when there is no failure factor causing the delay time to decrease in the arithmetic circuit L1A shown in FIG. 4, and the dotted line in FIG. 5C shows the delay time in the arithmetic circuit L1A shown in FIG. This shows the operation when a failure factor occurs.
 演算回路L1Aで遅延時間が減少する故障要因が発生していない場合、演算回路L1Aの出力値が論理「1」になる時刻はクロック信号CKA'が立ち上がった後であり、記憶回路FF1Aの出力値は論理「0」になり、記憶回路FF1Bの出力値も論理「0」になるため、比較回路C1の出力値は論理「0」で安定する。 When there is no failure factor that reduces the delay time in the arithmetic circuit L1A, the time when the output value of the arithmetic circuit L1A becomes logic “1” is after the clock signal CKA ′ rises, and the output value of the memory circuit FF1A Becomes logic “0”, and the output value of the memory circuit FF1B also becomes logic “0”. Therefore, the output value of the comparison circuit C1 is stabilized at logic “0”.
 一方、演算回路L1Aで遅延時間が減少する故障要因が発生している場合、演算回路L1Aの出力値が論理「1」になる時刻はクロック信号CKA'が立ち上がる前であり、記憶回路FF1Aの出力値は論理「1」になり、記憶回路FF1Bの出力値は論理「0」であるため、比較回路C1の出力値は論理「1」になる。 On the other hand, when a failure factor that reduces the delay time occurs in the arithmetic circuit L1A, the time when the output value of the arithmetic circuit L1A becomes logic “1” is before the clock signal CKA ′ rises, and the output of the memory circuit FF1A Since the value is logic “1” and the output value of the memory circuit FF1B is logic “0”, the output value of the comparison circuit C1 is logic “1”.
 したがって、比較回路C1の出力値を監視することで遅延時間が減少する故障要因の発生有無を判別できる。 Therefore, by monitoring the output value of the comparison circuit C1, it is possible to determine whether or not a failure factor that reduces the delay time occurs.
 第1実施例の半導体集積回路によれば、各クロック信号の第1の周期の開始および第2の周期の終了が一致し、各記憶回路へ供給するクロック信号のうち、少なくとも一つは第1の周期と第2の周期とが異なる長さであり、少なくとも一つは他のクロック信号と異なる信号パターンである、第1の周期と第2の周期が交互に繰り返すクロック信号を各記憶回路へ供給し、二重化された論理回路の最終段の記憶回路の値を比較することで、論理回路で発生している遅延時間の増大または減少する故障要因を検出できる。 According to the semiconductor integrated circuit of the first embodiment, the start of the first cycle of each clock signal coincides with the end of the second cycle, and at least one of the clock signals supplied to each memory circuit is the first. A clock signal in which the first cycle and the second cycle are alternately repeated, and at least one of them has a signal pattern different from that of the other clock signals, is repeated to each memory circuit. By supplying and comparing the values of the storage circuit at the final stage of the duplicated logic circuit, a failure factor that increases or decreases the delay time generated in the logic circuit can be detected.
 ここで、図5Aに示したクロック信号CKA、CKA'、CKB及びCKB'において、
 T1A'<T1B'…………………………(3)
 または
 T1A>T1B…………………………(4)
の条件が成り立つとき、記憶回路FFA0に入力されるクロック信号CKAが立ち上がってから記憶回路FFA1に入力されるクロック信号CKA’が立ち上がるまでの時間は、記憶回路FFB0に入力されるクロック信号CKBが立ち上がってから記憶回路FFB1に入力されるクロック信号CKB’が立ち上がるまでの時間よりも短い。そのため、演算回路L1Aで発生している遅延時間が増大する故障要因を検出することが可能である。
Here, in the clock signals CKA, CKA ′, CKB and CKB ′ shown in FIG. 5A,
T1A '<T1B' …………………… (3)
Or T1A> T1B …………………… (4)
When the above condition is satisfied, the time from the rise of the clock signal CKA input to the memory circuit FFA0 to the rise of the clock signal CKA ′ input to the memory circuit FFA1 is the rise of the clock signal CKB input to the memory circuit FFB0. Is shorter than the time until the clock signal CKB ′ input to the memory circuit FFB1 rises. Therefore, it is possible to detect a failure factor that increases the delay time occurring in the arithmetic circuit L1A.
 また、
 T1A'>T1B'…………………………(5)
 または
 T1A<T1B…………………………(6)
の条件が成り立つとき、記憶回路FFA0に入力されるクロック信号CKAが立ち上がってから記憶回路FFA1に入力されるクロック信号CKA’が立ち上がるまでの時間は、記憶回路FFB0に入力されるクロック信号CKBが立ち上がってから記憶回路FFB1に入力されるクロック信号CKB’が立ち上がるまでの時間よりも長い。そのため、演算回路L1Bで発生している遅延時間が増大する故障要因を検出することが可能である。
Also,
T1A '>T1B' …………………… (5)
Or T1A <T1B …………………… (6)
When the above condition is satisfied, the time from the rise of the clock signal CKA input to the memory circuit FFA0 to the rise of the clock signal CKA ′ input to the memory circuit FFA1 is the rise of the clock signal CKB input to the memory circuit FFB0. Longer than the time until the clock signal CKB ′ input to the memory circuit FFB1 rises. Therefore, it is possible to detect a failure factor that increases the delay time generated in the arithmetic circuit L1B.
 また、図5Aに示したクロック信号CKA、CKA'、CKB及びCKB'において、
 T1A<T1A'…………………………(7)
の条件が成り立つとき、演算回路L1Aの遅延時間が変化していなければ、記憶回路FF1Aは、クロック信号CKAの第1の周期の立ち上がりに同期して記憶回路FF0Aから出力された値の演算結果を保持し、演算回路L1Aの遅延時間が減少していれば、記憶回路FF1Aは、クロック信号CKAの第2の周期の立ち上がりに同期して記憶回路FF0Aから出力された値の演算結果を保持する。そのため、演算回路L1Aで発生している遅延時間が減少する故障要因を検出することが可能である。
In the clock signals CKA, CKA ′, CKB and CKB ′ shown in FIG. 5A,
T1A <T1A '…………………… (7)
If the delay time of the arithmetic circuit L1A does not change when the above condition is satisfied, the memory circuit FF1A outputs the arithmetic result of the value output from the memory circuit FF0A in synchronization with the rising of the first cycle of the clock signal CKA. If the delay time of the arithmetic circuit L1A decreases, the memory circuit FF1A holds the arithmetic result of the value output from the memory circuit FF0A in synchronization with the rising of the second period of the clock signal CKA. Therefore, it is possible to detect a failure factor that reduces the delay time occurring in the arithmetic circuit L1A.
 また、
 T1B<T1B'…………………………(8)
の条件が成り立つとき、演算回路L1Bの遅延時間が変化していなければ、記憶回路FF1Bは、クロック信号CKBの第1の周期の立ち上がりに同期して記憶回路FF0Bから出力された値の演算結果を保持し、演算回路L1Bの遅延時間が減少していれば、記憶回路FF1Bは、クロック信号CKBの第2の周期の立ち上がりに同期して記憶回路FF0Bから出力された値の演算結果を保持する。そのため、演算回路L1Bで発生している遅延時間が減少する故障要因を検出することが可能である。
(第2実施例)
 図6は第2実施例の半導体集積回路の構成を示すブロック図である。
Also,
T1B <T1B '………………………… (8)
If the delay time of the arithmetic circuit L1B does not change when the above condition is satisfied, the memory circuit FF1B outputs the arithmetic result of the value output from the memory circuit FF0B in synchronization with the rising of the first cycle of the clock signal CKB. If the delay time of the arithmetic circuit L1B decreases, the memory circuit FF1B holds the arithmetic result of the value output from the memory circuit FF0B in synchronization with the rising of the second period of the clock signal CKB. Therefore, it is possible to detect a failure factor that reduces the delay time occurring in the arithmetic circuit L1B.
(Second embodiment)
FIG. 6 is a block diagram showing the configuration of the semiconductor integrated circuit of the second embodiment.
 図6に示すように、第2実施例の半導体集積回路は、図4に示した第1実施例の半導体集積回路に加えて、比較回路C1の出力値を保持するための比較記憶回路FFC1を備えた構成である。比較記憶回路FFC1には、反転回路NOTによってクロック信号CKB'を反転させた信号が供給される。なお、比較記憶回路FFC1には、クロック信号CKA、CKA’またはCKBを反転させた信号を供給してもよい。 As shown in FIG. 6, the semiconductor integrated circuit of the second embodiment includes a comparison memory circuit FFC1 for holding the output value of the comparison circuit C1, in addition to the semiconductor integrated circuit of the first embodiment shown in FIG. This is a configuration provided. A signal obtained by inverting the clock signal CKB ′ by the inverting circuit NOT is supplied to the comparison memory circuit FFC1. Note that a signal obtained by inverting the clock signal CKA, CKA ′, or CKB may be supplied to the comparison memory circuit FFC1.
 第2実施例の半導体集積回路は、各論理回路に供給するクロック信号CKA、CKA'、CKB及びCKB'が上述した条件(3)、(6)を満たす例である。 The semiconductor integrated circuit of the second embodiment is an example in which the clock signals CKA, CKA ′, CKB, and CKB ′ supplied to each logic circuit satisfy the above conditions (3) and (6).
 図7は、第2実施例の半導体集積回路において、故障要因が発生していないときの動作を示すタイミングチャートである。 FIG. 7 is a timing chart showing an operation when no failure factor occurs in the semiconductor integrated circuit of the second embodiment.
 図7に示すように、第2実施例の半導体集積回路に供給するクロック信号CKA及びCKA'は、第1の周期TSと第1の周期TSよりも長い第2の周期TLとを交互に繰り返す信号である。また、クロック信号CKB及びCKB'は、第1の周期TLと第1の周期TLよりも短い第2の周期TSとを交互に繰り返す信号である。すなわち、各論理回路に供給するクロック信号CKA、CKA'、CKB及びCKB'が上述した条件(3)、(6)を満たしている。 As shown in FIG. 7, the clock signals CKA and CKA ′ supplied to the semiconductor integrated circuit according to the second embodiment alternately repeat the first cycle TS and the second cycle TL longer than the first cycle TS. Signal. The clock signals CKB and CKB ′ are signals that alternately repeat the first cycle TL and the second cycle TS shorter than the first cycle TL. That is, the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above conditions (3) and (6).
 ここでは、説明を簡単にするために、クロック信号CKA及びCKA'の第1の周期TSと、クロック信号CKB及びCKB'の第2の周期TSとが等しく、クロック信号CKA及びCKA'の第2の周期TLと、クロック信号CKB及びクロック信号CKB'の第1の周期TLとが等しいものとする。 Here, for simplicity of explanation, the first period TS of the clock signals CKA and CKA ′ is equal to the second period TS of the clock signals CKB and CKB ′, and the second period of the clock signals CKA and CKA ′ is the same. And the first period TL of the clock signal CKB and the clock signal CKB ′ are equal.
 図7に示すように、時刻0において、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D2を保持して出力し、記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D1)を保持して出力する。また、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D2を保持して出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D1)を保持して出力する。 As shown in FIG. 7, at time 0, the memory circuit FF0A holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKA, and the memory circuit FF1A synchronizes with the rising edge of the clock signal CKA ′. The input value F (D1) is held and output. The storage circuit FF0B holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D1) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
 時刻0で値D2が入力された演算回路L1A及びL1Bは、時刻D(L1(D2))になると、その出力値をF(D2)に変化させる。すなわち、時間D(L1(D2))は、演算回路L1A及びL1Bの正常時における値D2の演算で必要な演算時間である。 The arithmetic circuits L1A and L1B to which the value D2 is input at time 0 change the output value to F (D2) at time D (L1 (D2)). That is, the time D (L1 (D2)) is a calculation time necessary for the calculation of the value D2 when the arithmetic circuits L1A and L1B are normal.
 時刻TSにおいて、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D3を保持して出力し、記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D2)を保持して出力する。時刻TSでは、記憶回路FF0B及びFF1Bが動作しないため、記憶回路FF1Aの出力値F(D2)と記憶回路FF1Bの出力値F(D1)とが一致しない。そのため、比較回路C1は出力値が変化する(図7に示す例では、論理「0」から論理「1」)。 At time TS, the storage circuit FF0A holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKA, and the storage circuit FF1A inputs the input value F (D2 in synchronization with the rising edge of the clock signal CKA ′. ) Is output. At time TS, the memory circuits FF0B and FF1B do not operate, and thus the output value F (D2) of the memory circuit FF1A does not match the output value F (D1) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 changes (in the example shown in FIG. 7, the logic “0” to the logic “1”).
 時刻TSで値D3が入力された演算回路L1Aは、時刻TS+D(L1(D3))になると、その出力値をF(D3)に変化させる。すなわち、時間D(L1(D3))は、演算回路L1Aの正常時における値D3の演算で必要な演算時間である。 The arithmetic circuit L1A to which the value D3 is input at time TS changes its output value to F (D3) at time TS + D (L1 (D3)). That is, the time D (L1 (D3)) is a calculation time necessary for the calculation of the value D3 when the calculation circuit L1A is normal.
 時刻TLにおいて、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D3を保持すると共に出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D2)を保持して出力する。時刻TLでは、記憶回路FF0A及びFF1Aが動作しないため、記憶回路FF1Aの出力値F(D2)と記憶回路FF1Bの出力値F(D2)とが一致する。そのため、比較回路C1は、出力値が元に戻る(図7に示す例では、論理「1」から論理「0」)。 At time TL, the storage circuit FF0B holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D2 in synchronization with the rising edge of the clock signal CKB ′. ) Is output. At time TL, since the memory circuits FF0A and FF1A do not operate, the output value F (D2) of the memory circuit FF1A matches the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 returns to the original value (in the example shown in FIG. 7, logic “1” to logic “0”).
 時刻TLで値D3が入力された演算回路L1Bは、時刻TL+D(L1(D3))になると、その出力値をF(D3)に変化させる。すなわち、時間D(L1(D3))は、演算回路L1Bの正常時における値D3の演算で必要な演算時間である。 The arithmetic circuit L1B to which the value D3 is input at time TL changes its output value to F (D3) at time TL + D (L1 (D3)). That is, the time D (L1 (D3)) is an operation time necessary for the operation of the value D3 when the operation circuit L1B is normal.
 時刻TL+TSになると、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D4を保持して出力し、記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。また、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D4を保持して出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。 At time TL + TS, the storage circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA, and the storage circuit FF1A outputs the input value F (in synchronization with the rising edge of the clock signal CKA ′. D3) is held and output. The storage circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
 以降、第2実施例の半導体集積回路は、図7に示した時刻0から時刻TL+TSまでの動作と同様の動作を繰り返す。 Thereafter, the semiconductor integrated circuit of the second embodiment repeats the same operation as the operation from time 0 to time TL + TS shown in FIG.
 上述したように、第2実施例の半導体集積回路では、比較記憶回路FFC1にクロック信号CKB'を反転させた信号を供給している。そのため、図7に示すようにクロック信号CKAが立ち上がってからクロック信号CKB'が立ち上がるまでの期間で比較回路C1の出力値が変化しても、比較記憶回路FFC1の出力値は変化しない。すなわち、第2実施例の半導体集積回路では、各論理回路が正常に動作していれば、比較記憶回路FFC1の出力値が変化しないため、比較記憶回路FFC1の出力値を監視するだけで、遅延時間が増大する故障要因が発生しているか否かを判別できる。 As described above, in the semiconductor integrated circuit of the second embodiment, a signal obtained by inverting the clock signal CKB ′ is supplied to the comparison memory circuit FFC1. Therefore, as shown in FIG. 7, even if the output value of the comparison circuit C1 changes during the period from the rise of the clock signal CKA to the rise of the clock signal CKB ′, the output value of the comparison storage circuit FFC1 does not change. That is, in the semiconductor integrated circuit according to the second embodiment, if each logic circuit operates normally, the output value of the comparison memory circuit FFC1 does not change. It is possible to determine whether or not a failure factor that increases time occurs.
 図8は、第2実施例の半導体集積回路において、演算回路L1Aで遅延時間が増大する故障要因が発生しているときの動作を示すタイミングチャートである。 FIG. 8 is a timing chart showing the operation of the semiconductor integrated circuit of the second embodiment when a failure factor that increases the delay time occurs in the arithmetic circuit L1A.
 なお、図8に示すクロック信号CKA、CKA'、CKB及びCKB'は、図7に示したクロック信号CKA、CKA'、CKB及びCKB'と同様である。 Note that the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. 8 are the same as the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG.
 図8に示すように、時刻0において、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D2を保持して出力し、記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D1)を保持して出力する。また、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D2を保持して出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D1)を保持して出力する。 As shown in FIG. 8, at time 0, the memory circuit FF0A holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKA, and the memory circuit FF1A synchronizes with the rising edge of the clock signal CKA ′. The input value F (D1) is held and output. The storage circuit FF0B holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D1) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
 時刻0で値D2が入力された演算回路L1Bは、時刻D(L1(D2))になると、その出力値をF(D2)に変化させる。一方、演算回路L1Aは、遅延時間が増大する故障要因が発生しているため、時刻0で値D2が入力されると、時刻D(L1(D2))+dで出力値をF(D2)に変化させる。 The arithmetic circuit L1B to which the value D2 is input at time 0 changes its output value to F (D2) at time D (L1 (D2)). On the other hand, since a failure factor with an increased delay time has occurred in the arithmetic circuit L1A, when the value D2 is input at time 0, the output value is changed to F (D2) at time D (L1 (D2)) + d. Change.
 時刻TSにおいて、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D3を保持して出力する。また、記憶回路FF1Aは、演算回路L1Aの出力値がF(D1)であるため、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D1)を再び保持して出力する。記憶回路FF1Aは、時刻D(L1(D2))+dで入力値がF(D2)に変化しても、クロック信号CKA’の次の立ち上がりエッジまで出力値をF(D1)で維持する。 At time TS, the memory circuit FF0A holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKA. Further, since the output value of the arithmetic circuit L1A is F (D1), the memory circuit FF1A again holds and outputs the input value F (D1) in synchronization with the rising edge of the clock signal CKA '. Even if the input value changes to F (D2) at time D (L1 (D2)) + d, the memory circuit FF1A maintains the output value at F (D1) until the next rising edge of the clock signal CKA '.
 時刻TSで値D3が入力された演算回路L1Aは、時刻TS+D(L1(D3))になると、その出力値をF(D3)に変化させる。 The arithmetic circuit L1A to which the value D3 is input at time TS changes its output value to F (D3) at time TS + D (L1 (D3)).
 時刻TSでは、記憶回路FF0B及びFF1Bが動作しないため、記憶回路FF1Aの出力値F(D1)と記憶回路FF1Bの出力値F(D1)とが一致する。そのため、比較回路C1は出力値が変化しない(図8に示す例では、論理「0」)。 At time TS, since the memory circuits FF0B and FF1B do not operate, the output value F (D1) of the memory circuit FF1A matches the output value F (D1) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 does not change (logic “0” in the example shown in FIG. 8).
 次に、時刻TLになると、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D3を保持すると共に出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D2)を保持して出力する。時刻TLでは、記憶回路FF0A及びFF1Aが動作しないため、記憶回路FF1Aの出力値F(D1)と記憶回路FF1Bの出力値F(D2)とが一致しない。そのため、比較回路C1の出力値が変化する(図8に示す例では、論理「0」から論理「1」)。 Next, at time TL, the storage circuit FF0B holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B inputs in synchronization with the rising edge of the clock signal CKB ′. The value F (D2) is held and output. At time TL, since the memory circuits FF0A and FF1A do not operate, the output value F (D1) of the memory circuit FF1A does not match the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 changes (in the example shown in FIG. 8, logic “0” to logic “1”).
 時刻TLで値D3が入力された演算回路L1Bは、時刻TL+D(L1(D3))になると、その出力値をF(D3)に変化させる。 The arithmetic circuit L1B to which the value D3 is input at time TL changes its output value to F (D3) at time TL + D (L1 (D3)).
 また、比較記憶回路FFC1は、時刻TL+TS/2になると、比較回路C1の出力値(図8に示す例では、論理「1」)を保持して出力する。 The comparison memory circuit FFC1 holds and outputs the output value of the comparison circuit C1 (logic “1” in the example shown in FIG. 8) at time TL + TS / 2.
 次に、時刻TL+TSになると、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D4を保持して出力する。記憶回路FF1Aは、時刻TL+D(L1(D3))で演算回路L1Aの出力値がF(D3)に変化するため、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。また、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D4を保持して出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。 Next, at time TL + TS, the memory circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA. Since the output value of the arithmetic circuit L1A changes to F (D3) at time TL + D (L1 (D3)), the memory circuit FF1A holds the input value F (D3) in synchronization with the rising edge of the clock signal CKA ′. Output. The storage circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
 時刻TL+TSでは、記憶回路FF1Aの出力値F(D3)と記憶回路FF1Bの出力値F(D3)とが一致する。そのため、比較回路C1は出力値が元に戻る(図8に示す例では、論理「1」から論理「0」)。比較記憶回路FFC1は、時刻TL+TSで入力値が論理「0」に変化しても、反転して供給されているクロック信号CKB'の次の立ち上がりエッジまで出力値を論理「0」で維持する。 At time TL + TS, the output value F (D3) of the memory circuit FF1A matches the output value F (D3) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 returns to the original value (in the example shown in FIG. 8, logic “1” to logic “0”). Even when the input value changes to logic “0” at time TL + TS, the comparison memory circuit FFC1 maintains the output value at logic “0” until the next rising edge of the clock signal CKB ′ supplied by being inverted.
 したがって、比較記憶回路FFC1の出力値を監視することで、演算回路L1Aで発生した遅延時間が増大する故障要因を検出できる。 Therefore, by monitoring the output value of the comparison memory circuit FFC1, it is possible to detect a failure factor that increases the delay time generated in the arithmetic circuit L1A.
 図9は、第2実施例の半導体集積回路において、演算回路L1Bで遅延時間が増大する故障要因が発生しているときの動作を示すタイミングチャートである。 FIG. 9 is a timing chart showing the operation of the semiconductor integrated circuit according to the second embodiment when a failure factor that increases the delay time occurs in the arithmetic circuit L1B.
 なお、図9に示すクロック信号CKA、CKA'、CKB及びCKB'は、図7に示したクロック信号CKA、CKA'、CKB及びCKB'と同様である。また、図9に示す動作例では、時刻0から時刻TLまでは図7のタイミングチャートで示した動作例と同様に動作する。したがって、ここではその説明を省略する。 Note that the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. 9 are the same as the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. Further, in the operation example shown in FIG. 9, the operation from time 0 to time TL is the same as the operation example shown in the timing chart of FIG. Therefore, the description is omitted here.
 図9に示すように、演算回路L1Bは、遅延時間が増大する故障要因が発生しているため、時刻TLで値D3が入力されると、時刻TL+D(L1(D3))+dで出力値をF(D3)に変化させる。 As shown in FIG. 9, since a failure factor with an increased delay time has occurred in the arithmetic circuit L1B, when the value D3 is input at time TL, the output value is output at time TL + D (L1 (D3)) + d. Change to F (D3).
 時刻TL+TSになると、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D4を保持して出力し、記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。また、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D4を保持して出力する。 At time TL + TS, the storage circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA, and the storage circuit FF1A outputs the input value F (in synchronization with the rising edge of the clock signal CKA ′. D3) is held and output. The memory circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB.
 記憶回路FF1Bは、演算回路L1Bの出力値がF(D2)であるため、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D2)を再び保持して出力する。記憶回路FF1Bは、時刻TL+D(L1(D3))+dで入力値がF(D3)に変化しても、クロック信号CKB’の次の立ち上がりエッジまで出力値をF(D2)で維持する。 Since the output value of the arithmetic circuit L1B is F (D2), the memory circuit FF1B again holds and outputs the input value F (D2) in synchronization with the rising edge of the clock signal CKB '. Even when the input value changes to F (D3) at time TL + D (L1 (D3)) + d, the memory circuit FF1B maintains the output value at F (D2) until the next rising edge of the clock signal CKB '.
 時刻TL+TSでは、記憶回路FF1Aの出力値F(D3)と記憶回路FF1Bの出力値F(D2)とが一致しない。そのため、比較回路C1は出力値が変化する(図9に示す例では、論理「0」から論理「1」)。 At time TL + TS, the output value F (D3) of the memory circuit FF1A does not match the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 changes (in the example shown in FIG. 9, the logic “0” to the logic “1”).
 比較記憶回路FFC1は、時刻TL+TS+TL/2になると、比較回路C1の出力値(図9に示す例では、論理「1」)を保持して出力する。 The comparison storage circuit FFC1 holds and outputs the output value of the comparison circuit C1 (logic “1” in the example shown in FIG. 9) at time TL + TS + TL / 2.
 したがって、比較記憶回路FFC1の出力値を監視することで、演算回路L1Bで発生している遅延時間が増大する故障要因を検出できる。
(第3実施例)
 図10は第3実施例の半導体集積回路の構成を示すブロック図である。
Therefore, by monitoring the output value of the comparison memory circuit FFC1, it is possible to detect a failure factor that increases the delay time occurring in the arithmetic circuit L1B.
(Third embodiment)
FIG. 10 is a block diagram showing the configuration of the semiconductor integrated circuit of the third embodiment.
 図10に示すように、第3実施例の半導体集積回路は、図6に示した第2実施例の半導体集積回路が備える反転回路NOTに代えて、遅延回路d1を用いてクロック信号CKB'を遅延させた信号を比較記憶回路FFC1に供給する構成である。その他の構成及び動作は第2実施例と同様であるため、その説明は省略する。 As shown in FIG. 10, in the semiconductor integrated circuit of the third embodiment, a clock signal CKB ′ is received using a delay circuit d1 instead of the inverting circuit NOT included in the semiconductor integrated circuit of the second embodiment shown in FIG. In this configuration, the delayed signal is supplied to the comparison memory circuit FFC1. Since other configurations and operations are the same as those of the second embodiment, the description thereof is omitted.
 このような構成でも、第2実施例と同様に、各論理回路が正常に動作していれば、比較記憶回路FFC1の出力値が変化しないため、比較記憶回路FFC1の出力値を監視するだけで、遅延時間の増大する故障要因が発生した否かを判別できる。
(第4実施例)
 第4実施例の半導体集積回路は、各論理回路に供給するクロック信号CKA、CKA'、CKB及びCKB'が上述した条件(7)、(8)を満たす例である。第4実施例の半導体集積回路の構成は、第2実施例と同様であるため、その説明は省略する。
Even in such a configuration, as in the second embodiment, if each logic circuit is operating normally, the output value of the comparison memory circuit FFC1 does not change, so only the output value of the comparison memory circuit FFC1 is monitored. It is possible to determine whether or not a failure factor with an increased delay time has occurred.
(Fourth embodiment)
The semiconductor integrated circuit according to the fourth embodiment is an example in which the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above conditions (7) and (8). Since the configuration of the semiconductor integrated circuit of the fourth embodiment is the same as that of the second embodiment, description thereof is omitted.
 図11は、第4実施例の半導体集積回路において、故障要因が発生していないときとの動作を示すタイミングチャートである。 FIG. 11 is a timing chart showing the operation when no failure factor occurs in the semiconductor integrated circuit of the fourth embodiment.
 図11に示すように、クロック信号CKA及びCKBは、第1の周期TSと第1の周期TSよりも長い第2の周期TLとを交互に繰り返す信号である。また、クロック信号CKA’及びCKB'は、周期Tの信号である。すなわち、各論理回路に供給するクロック信号CKA、CKA'、CKB及びCKB'が上述した条件(7)、(8)を満たしている。 As shown in FIG. 11, the clock signals CKA and CKB are signals that alternately repeat a first cycle TS and a second cycle TL longer than the first cycle TS. Further, the clock signals CKA ′ and CKB ′ are signals having a period T. That is, the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above conditions (7) and (8).
 図11に示すように、時刻0において、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D2を保持して出力し、記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D1)を保持して出力する。また、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D2を保持して出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D1)を保持して出力する。 As shown in FIG. 11, at time 0, the memory circuit FF0A holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKA, and the memory circuit FF1A synchronizes with the rising edge of the clock signal CKA ′. The input value F (D1) is held and output. The storage circuit FF0B holds and outputs the input value D2 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D1) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
 時刻0で値D2が入力された演算回路L1A及びL1Bは、時刻D(L1(D2))になると、その出力値をF(D2)に変化させる。すなわち、時間D(L1(D2))は、演算回路L1A及びL1Bの正常時における値D2の演算で必要な演算時間である。 The arithmetic circuits L1A and L1B to which the value D2 is input at time 0 change the output value to F (D2) at time D (L1 (D2)). That is, the time D (L1 (D2)) is a calculation time necessary for the calculation of the value D2 when the arithmetic circuits L1A and L1B are normal.
 時刻TSになると、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D3を保持すると共に出力し、記憶回路FF1Aは、クロック信号CKBの立ち上がりエッジに同期して入力値D3を保持して出力する。時刻TSでは、記憶回路FF0B及びFF1Bが動作しないため、記憶回路FF1Aの出力値F(D2)と記憶回路FF1Bの出力値F(D2)とが一致する。そのため、比較回路C1は出力値が変化しない(図11に示す例では、論理「0」)。 At time TS, the storage circuit FF0A holds and outputs the input value D3 in synchronization with the rising edge of the clock signal CKA, and the storage circuit FF1A holds the input value D3 in synchronization with the rising edge of the clock signal CKB. And output. At time TS, since the memory circuits FF0B and FF1B do not operate, the output value F (D2) of the memory circuit FF1A matches the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 does not change (logic “0” in the example shown in FIG. 11).
 時刻TSで値D3が入力された演算回路L1A及びL1Bは、時刻TS+D(L1(D3))になると、出力値をF(D3)に変化させる。すなわち、時間D(L1(D3))は、演算回路L1A及びL1Bの正常時における値D3の演算で必要な演算時間である。 The arithmetic circuits L1A and L1B, to which the value D3 is input at time TS, change the output value to F (D3) at time TS + D (L1 (D3)). That is, the time D (L1 (D3)) is a calculation time necessary for the calculation of the value D3 when the arithmetic circuits L1A and L1B are normal.
 次に、時刻Tになると、記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D2)を保持して出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D2)を保持して出力する。時刻Tでは、記憶回路FF1Aの出力値F(D2)と記憶回路FF1Bの出力値F(D2)とが一致 する。そのため、比較回路C1は出力値が変化しない(図11に示す例では、論理「0」)。 Next, at time T, the memory circuit FF1A holds and outputs the input value F (D2) in synchronization with the rising edge of the clock signal CKA ′, and the memory circuit FF1B reaches the rising edge of the clock signal CKB ′. In synchronization, the input value F (D2) is held and output. At time T, the output value F (D2) of the memory circuit FF1A matches the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 does not change (logic “0” in the example shown in FIG. 11).
 続いて、時刻TL+TS(=2T)になると、記憶回路FF0Aはクロック信号CKAの立ち上がりエッジに同期して入力値D4を保持して出力し、記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。また、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D4を保持して出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。 Subsequently, at time TL + TS (= 2T), the memory circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA, and the memory circuit FF1A synchronizes with the rising edge of the clock signal CKA ′. The input value F (D3) is held and output. The storage circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
 以降、第4実施例の半導体集積回路は、図11に示す時刻0から時刻TL+TS(=2T)までの動作と同様の動作を繰り返す。 Thereafter, the semiconductor integrated circuit of the fourth embodiment repeats the same operation as the operation from time 0 to time TL + TS (= 2T) shown in FIG.
 図11に示す動作例では、比較回路C1の出力値及び比較記憶回路FFC1の出力値が変化しない。すなわち、第4実施例の半導体集積回路は、正常に動作している場合、比較記憶回路FFC1の出力値が変化しない。 In the operation example shown in FIG. 11, the output value of the comparison circuit C1 and the output value of the comparison storage circuit FFC1 do not change. That is, when the semiconductor integrated circuit according to the fourth embodiment operates normally, the output value of the comparison memory circuit FFC1 does not change.
 図12は、第4実施例の半導体集積回路において、演算回路L1Aで遅延時間が減少する故障要因が発生しているときの動作を示すタイミングチャートである。 FIG. 12 is a timing chart showing the operation of the semiconductor integrated circuit according to the fourth embodiment when a failure factor that reduces the delay time occurs in the arithmetic circuit L1A.
 なお、図12に示すクロック信号CKA、CKA'、CKB及びCKB'は、図11に示したクロック信号CKA、CKA'、CKB及びCKB'と同様である。また、図12に示す動作例では、時刻0から時刻TSまでは図11のタイミングチャートで示した動作例と同様に動作する。したがって、ここではその説明を省略する。 Note that the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. 12 are the same as the clock signals CKA, CKA ′, CKB, and CKB ′ shown in FIG. In the operation example shown in FIG. 12, the operation from time 0 to time TS is the same as the operation example shown in the timing chart of FIG. Therefore, the description is omitted here.
 図12に示すように、演算回路L1Aは、遅延時間が減少する故障要因が発生しているため、時刻TSで値D3が入力されると、時刻TS+D(L1(D3))-dで出力値をF(D3)に変化させる。一方、時刻TSで値D3が入力された演算回路L1Bは、時刻TS+D(L1(D3))になると、出力値をF(D3)に変化させる。 As shown in FIG. 12, since the failure factor causing the delay time to decrease occurs in the arithmetic circuit L1A, when the value D3 is input at the time TS, the output value at the time TS + D (L1 (D3)) − d. Is changed to F (D3). On the other hand, the arithmetic circuit L1B to which the value D3 is input at the time TS changes the output value to F (D3) at the time TS + D (L1 (D3)).
 時刻Tにおいて、記憶回路FF1Aは、時刻TS+D(L1(D3))-dで演算回路L1Aの出力値がF(D3)に変化しているため、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D2)を保持して出力する。時刻Tでは、記憶回路FF1Aの出力値F(D3)と記憶回路FF1Bの出力値F(D2)とが一致しない。そのため、比較回路C1は出力値が変化する(図12に示す例では、「論理「0」から論理「1」)。 At time T, since the output value of the arithmetic circuit L1A is changed to F (D3) at time TS + D (L1 (D3)) − d, the memory circuit FF1A is input in synchronization with the rising edge of the clock signal CKA ′. The value F (D3) is held and output. The memory circuit FF1B holds and outputs the input value F (D2) in synchronization with the rising edge of the clock signal CKB '. At time T, the output value F (D3) of the memory circuit FF1A does not match the output value F (D2) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 changes (in the example shown in FIG. 12, “logic“ 0 ”to logic“ 1 ”)”.
 比較記憶回路FFC1は、時刻T+T/2になると、比較回路C1の出力値(図12に示す例では、論理「1」)を保持して出力する。 The comparison memory circuit FFC1 holds and outputs the output value of the comparison circuit C1 (logic “1” in the example shown in FIG. 12) at time T + T / 2.
 次に、時刻TL+TS(=2T)になると、記憶回路FF0Aは、クロック信号CKAの立ち上がりエッジに同期して入力値D4を保持して出力する。記憶回路FF1Aは、クロック信号CKA’の立ち上がりエッジに同期して入力値F(D3)を再び保持して出力する。また、記憶回路FF0Bは、クロック信号CKBの立ち上がりエッジに同期して入力値D4を保持して出力し、記憶回路FF1Bは、クロック信号CKB’の立ち上がりエッジに同期して入力値F(D3)を保持して出力する。 Next, at time TL + TS (= 2T), the memory circuit FF0A holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKA. The storage circuit FF1A again holds and outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKA '. The storage circuit FF0B holds and outputs the input value D4 in synchronization with the rising edge of the clock signal CKB, and the storage circuit FF1B outputs the input value F (D3) in synchronization with the rising edge of the clock signal CKB ′. Hold and output.
 時刻TL+TSでは、記憶回路FF1Aの出力値F(D3)と記憶回路FF1Bの出力値F(D3)とが一致する。そのため、比較回路C1は出力値が元に戻る(図12に示す例では、論理「1」から論理「0」)。比較記憶回路FFC1は、時刻TL+TS(=2T)で入力値が論理「0」に変化しても、反転して供給されているクロック信号CKB'の次の立ち上がりエッジまで出力値を論理「1」で維持する。 At time TL + TS, the output value F (D3) of the memory circuit FF1A matches the output value F (D3) of the memory circuit FF1B. Therefore, the output value of the comparison circuit C1 returns to the original value (in the example shown in FIG. 12, logic “1” to logic “0”). Even if the input value changes to logic “0” at time TL + TS (= 2T), the comparison memory circuit FFC1 outputs the output value to logic “1” until the next rising edge of the clock signal CKB ′ supplied by being inverted. Maintain with.
 したがって、比較記憶回路FFC1の出力値を観測することで、演算回路L1Aで発生した遅延時間が減少する故障要因を検出できる。
(第5実施例)
 図13は第5実施例の半導体集積回路の動作を示すタイミングチャートである。
Therefore, by observing the output value of the comparison memory circuit FFC1, it is possible to detect a failure factor that reduces the delay time generated in the arithmetic circuit L1A.
(5th Example)
FIG. 13 is a timing chart showing the operation of the semiconductor integrated circuit of the fifth embodiment.
 第5実施例の半導体集積回路は、各論理回路に供給するクロック信号CKA、CKA'、CKB及びCKB'が上述した条件(3)、(6)、(7)、(8)を満たす例である。第5実施例の半導体集積回路の構成は、第2実施例と同様であるため、その説明は省略する。 The semiconductor integrated circuit of the fifth embodiment is an example in which the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above-described conditions (3), (6), (7) and (8). is there. Since the configuration of the semiconductor integrated circuit of the fifth embodiment is the same as that of the second embodiment, description thereof is omitted.
 第5実施例の半導体集積回路によれば、演算回路L1A及びL1Bの遅延時間が増大する故障要因及び遅延時間が減少する故障要因をそれぞれ検出可能である。なお、条件(1)及び(2)は条件(7)及び(8)に包含されている。
(第6実施例)
 図14は第6実施例の半導体集積回路の動作を示すタイミングチャートである。
According to the semiconductor integrated circuit of the fifth embodiment, it is possible to detect a failure factor that increases the delay time of the arithmetic circuits L1A and L1B and a failure factor that decreases the delay time. Conditions (1) and (2) are included in conditions (7) and (8).
(Sixth embodiment)
FIG. 14 is a timing chart showing the operation of the semiconductor integrated circuit of the sixth embodiment.
 第6実施例の半導体集積回路は、各論理回路に供給するクロック信号CKA、CKA'、CKB及びCKB'が上述した条件(4)、(5)、(7)、(8)を満たす例である。第6実施例の半導体集積回路の構成は、第2実施例と同様であるため、その説明は省略する
 第6実施例の半導体集積回路によれば、演算回路L1A及びL1Bの遅延時間が増大する故障要因及び遅延時間が減少する故障要因をそれぞれ検出可能である。なお、条件(1)及び(2)は条件(7)及び(8)に包含されている。
(第7実施例)
 図15は第7実施例の半導体集積回路の構成を示すブロック図である。
The semiconductor integrated circuit of the sixth embodiment is an example in which the clock signals CKA, CKA ′, CKB and CKB ′ supplied to each logic circuit satisfy the above-mentioned conditions (4), (5), (7) and (8). is there. Since the configuration of the semiconductor integrated circuit of the sixth embodiment is the same as that of the second embodiment, the description thereof is omitted. According to the semiconductor integrated circuit of the sixth embodiment, the delay times of the arithmetic circuits L1A and L1B increase. A failure factor and a failure factor with a reduced delay time can be detected. Conditions (1) and (2) are included in conditions (7) and (8).
(Seventh embodiment)
FIG. 15 is a block diagram showing the configuration of the semiconductor integrated circuit of the seventh embodiment.
 第7実施例の半導体集積回路は、図4に示した第1実施例の半導体集積回路に加えて比較回路C0を備え、比較回路C0によって記憶回路FF0Aの出力値と記憶回路FF0Bの出力値とが一致しているか否かの比較結果を出力する構成である。その他の構成及び動作は第1実施例の半導体集積回路と同様であるため、その説明は省略する。 The semiconductor integrated circuit of the seventh embodiment includes a comparison circuit C0 in addition to the semiconductor integrated circuit of the first embodiment shown in FIG. 4, and the comparison circuit C0 outputs the output value of the storage circuit FF0A and the output value of the storage circuit FF0B. Is a configuration for outputting a comparison result as to whether or not. Since other configurations and operations are the same as those of the semiconductor integrated circuit of the first embodiment, description thereof is omitted.
 第7実施例の半導体集積回路によれば、演算回路L1A及びL1Bで発生している遅延時間が増大または減少する故障要因だけでなく、記憶回路FF0A及びFF0Bの前段に接続された、不図示の論理回路で発生している遅延時間が増大または減少する故障要因も検出できる。
(第8実施例)
 図16は第8実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of the seventh embodiment, not only the failure factor that increases or decreases the delay time occurring in the arithmetic circuits L1A and L1B, but also the unillustrated circuit connected to the previous stage of the memory circuits FF0A and FF0B. A failure factor that increases or decreases the delay time generated in the logic circuit can also be detected.
(Eighth embodiment)
FIG. 16 is a block diagram showing the configuration of the semiconductor integrated circuit of the eighth embodiment.
 第8実施例の半導体集積回路は、図15に示した第7実施例の半導体集積回路が備える比較回路C1の出力に比較記憶回路FFC1が接続され、比較回路C0の出力に比較記憶回路FFC0が接続された構成である。比較記憶回路FFC1及びFFC0には、反転回路NOTによりクロック信号CKB'を反転させた信号がそれぞれ供給される。なお、比較記憶回路FFC1及びFFC0には、クロック信号CKA、CKA’またはCKBを反転させた信号を供給してもよい。また、比較記憶回路FFC1及びFFC0には、第3実施例と同様にクロック信号CKA、CKA’、CKBまたはCKB’を遅延させた信号を供給してもよい。その他の構成及び動作は第7実施例の半導体集積回路と同様であるため、その説明は省略する。 In the semiconductor integrated circuit according to the eighth embodiment, the comparison storage circuit FFC1 is connected to the output of the comparison circuit C1 included in the semiconductor integrated circuit according to the seventh embodiment shown in FIG. 15, and the comparison storage circuit FFC0 is connected to the output of the comparison circuit C0. It is a connected configuration. The comparison memory circuits FFC1 and FFC0 are supplied with signals obtained by inverting the clock signal CKB ′ by the inverting circuit NOT. Note that a signal obtained by inverting the clock signal CKA, CKA ', or CKB may be supplied to the comparison memory circuits FFC1 and FFC0. Further, the comparison memory circuits FFC1 and FFC0 may be supplied with a signal obtained by delaying the clock signal CKA, CKA ', CKB or CKB' as in the third embodiment. Since other configurations and operations are the same as those of the semiconductor integrated circuit of the seventh embodiment, description thereof is omitted.
 第8実施例の半導体集積回路によれば、比較回路C1及びC0の比較結果を保持できるため、第2実施例の半導体集積回路と同様に、各論理回路が正常に動作していれば、比較記憶回路FFC1及びFFC0の出力値が変化しない。そのため、比較記憶回路FFC1及びFFC0の出力値を監視するだけで、演算回路L1A及びL1Bで発生している遅延時間が増大または減少する故障要因、及び記憶回路FF0A及びFF0Bの前段に接続された不図示の論理回路で発生している遅延時間が増大または減少する故障要因を検出できる。
(第9実施例)
 図17は第9実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of the eighth embodiment, the comparison results of the comparison circuits C1 and C0 can be held. Therefore, as in the semiconductor integrated circuit of the second embodiment, if each logic circuit operates normally, the comparison is possible. The output values of the memory circuits FFC1 and FFC0 do not change. Therefore, only by monitoring the output values of the comparison memory circuits FFC1 and FFC0, a failure factor that increases or decreases the delay time generated in the arithmetic circuits L1A and L1B, and a failure connected to the previous stage of the memory circuits FF0A and FF0B. A failure factor that increases or decreases the delay time generated in the illustrated logic circuit can be detected.
(Ninth embodiment)
FIG. 17 is a block diagram showing the configuration of the semiconductor integrated circuit of the ninth embodiment.
 図17に示すように、第9実施例の半導体集積回路は、複数の記憶回路FF0A~FFnA(nは正の正数)と複数の演算回路L1A~LnA(図17では、L1A、L2Aのみ表示)とが交互に接続された第1の論理回路と、複数の記憶回路FF0B~FFnBと複数の演算回路L1B~LnB(図17では、L1B、L2Bのみ表示)とが交互に接続された第2の論理回路と、記憶回路FF0A~FFnAの出力値と記憶回路FF0B~FFnBの出力値とが一致しているか否かの比較結果をそれぞれ出力する複数の比較回路C0~Cnとを備えた構成である。第1の論理回路と第2の論理回路とは同一の機能を備えている。 As shown in FIG. 17, the semiconductor integrated circuit of the ninth embodiment displays only a plurality of memory circuits FF0A to FFnA (n is a positive positive number) and a plurality of arithmetic circuits L1A to LnA (in FIG. 17, only L1A and L2A). ) Alternately connected to each other, a plurality of memory circuits FF0B to FFnB, and a plurality of arithmetic circuits L1B to LnB (in FIG. 17, only L1B and L2B are displayed) alternately connected to the second logic circuit. And a plurality of comparison circuits C0 to Cn for outputting comparison results as to whether or not the output values of the memory circuits FF0A to FFnA match the output values of the memory circuits FF0B to FFnB, respectively. is there. The first logic circuit and the second logic circuit have the same function.
 比較回路C0~Cnの出力には多入力比較回路Cmpが接続され、多入力比較回路Cmpの出力には比較記憶回路FFCが接続されている。比較記憶回路FFCには、クロック信号CKB’を反転させた信号が供給される。なお、比較記憶回路FFCには、クロック信号CKA、CKA’またはCKBを反転させた信号を供給してもよい。また、比較記憶回路FFCには、第3実施例と同様にクロック信号CKA、CKA’、CKBまたはCKB’を遅延させた信号を供給してもよい。 A multi-input comparison circuit Cmp is connected to the outputs of the comparison circuits C0 to Cn, and a comparison memory circuit FFC is connected to the output of the multi-input comparison circuit Cmp. A signal obtained by inverting the clock signal CKB 'is supplied to the comparison memory circuit FFC. Note that a signal obtained by inverting the clock signal CKA, CKA ′, or CKB may be supplied to the comparison memory circuit FFC. Further, a signal obtained by delaying the clock signal CKA, CKA ′, CKB or CKB ′ may be supplied to the comparison memory circuit FFC as in the third embodiment.
 多入力比較回路Cmpは、比較回路C0~Cnの出力値のうち、少なくとも一つの出力値が他の出力値と一致しないとき、不一致を示す信号を出力する。 The multi-input comparison circuit Cmp outputs a signal indicating a mismatch when at least one of the output values of the comparison circuits C0 to Cn does not match the other output values.
 記憶回路FF0A~FFnA及びFF0B~FFnB、演算回路L1A~LnA及びL1B~LnB、比較回路C0~Cn並びに比較記憶回路FFCの動作は、第2実施例と同様であるため、その説明は省略する。 Since the operations of the memory circuits FF0A to FFnA and FF0B to FFnB, the arithmetic circuits L1A to LnA and L1B to LnB, the comparison circuits C0 to Cn, and the comparison memory circuit FFC are the same as those in the second embodiment, description thereof is omitted.
 第9実施例の半導体集積回路によれば、複数の演算回路を備えた構成であっても、いずれかの演算回路で発生している遅延時間が増大または減少する故障要因を検出できる。
(第10実施例)
 図18は第10実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of the ninth embodiment, even in a configuration including a plurality of arithmetic circuits, it is possible to detect a failure factor that increases or decreases the delay time generated in any of the arithmetic circuits.
(Tenth embodiment)
FIG. 18 is a block diagram showing the configuration of the semiconductor integrated circuit of the tenth embodiment.
 図18に示すように、第10実施例の半導体集積回路は、複数の記憶回路FF0A~FFnA(nは正の正数)と複数の演算回路L1A~LnA(図18では、L1A、L2Aのみ表示)とが交互に接続された第1の論理回路と、複数の記憶回路FF0B~FFnBと複数の演算回路L1B~LnB(図18では、L1B、L2Bのみ表示)とが交互に接続された第2の論理回路と、記憶回路FF0B~FFnBの出力値と記憶回路FF0B~FFnBの出力値とが一致しているか否かの比較結果をそれぞれ出力する複数の比較回路C0~Cnとを備えた構成である。第1の論理回路と第2の論理回路とは同一の機能を備えている。 As shown in FIG. 18, the semiconductor integrated circuit of the tenth embodiment displays only a plurality of memory circuits FF0A to FFnA (n is a positive positive number) and a plurality of arithmetic circuits L1A to LnA (in FIG. 18, only L1A and L2A). ) Alternately connected to each other, and a plurality of memory circuits FF0B to FFnB and a plurality of arithmetic circuits L1B to LnB (shown only in L1B and L2B in FIG. 18) are alternately connected to a second logic circuit. And a plurality of comparison circuits C0 to Cn for outputting comparison results as to whether or not the output values of the memory circuits FF0B to FFnB match the output values of the memory circuits FF0B to FFnB, respectively. is there. The first logic circuit and the second logic circuit have the same function.
 比較回路C0~Cnの出力にはマルチプレクサMUX0~MUXnが接続され、マルチプレクサMUX0~MUXnの出力には比較記憶回路FFC0~FFCnが接続されている。比較記憶回路FFC0~FFCnには、クロック信号CKB’を反転させた信号がそれぞれ供給される。なお、比較記憶回路比較記憶回路FFC0~FFCnには、クロック信号CKA、CKA’またはCKBを反転させた信号を供給してもよい。また、比較記憶回路比較記憶回路FFC0~FFCnには、第3実施例と同様にクロック信号CKA、CKA’、CKBまたはCKB’を遅延させた信号を供給してもよい。 The multiplexers MUX0 to MUXn are connected to the outputs of the comparison circuits C0 to Cn, and the comparison memory circuits FFC0 to FFCn are connected to the outputs of the multiplexers MUX0 to MUXn. The comparison memory circuits FFC0 to FFCn are supplied with signals obtained by inverting the clock signal CKB '. Note that a signal obtained by inverting the clock signal CKA, CKA ', or CKB may be supplied to the comparison memory circuits FFC0 to FFCn. Further, a signal obtained by delaying the clock signal CKA, CKA ', CKB or CKB' may be supplied to the comparison memory circuits FFC0 to FFCn as in the third embodiment.
 マルチプレクサMUX0~MUXnは、不図示の制御信号にしたがって、半導体集積回路の通常動作時は比較回路C0~Cnの出力を選択して比較記憶回路FFC0~FFCnへ出力する。 The multiplexers MUX0 to MUXn select the outputs of the comparison circuits C0 to Cn and output them to the comparison storage circuits FFC0 to FFCn during the normal operation of the semiconductor integrated circuit according to a control signal (not shown).
 また、マルチプレクサMUX0~MUXnは、不図示の制御信号にしたがって、半導体集積回路のスキャンテスト時は前段の比較記憶回路FFC0~FFCn-1の出力を選択して比較記憶回路FFC0~FFCnへ出力する。すなわち、半導体集積回路のスキャンテスト時、比較記憶回路FFCi(i=0~n)には前段の比較記憶回路FFC(i-1)の出力が入力され、周知のスキャンパスが形成される。 Further, the multiplexers MUX0 to MUXn select the outputs of the preceding comparison memory circuits FFC0 to FFCn-1 and output them to the comparison memory circuits FFC0 to FFCn during the scan test of the semiconductor integrated circuit according to a control signal (not shown). That is, at the time of the scan test of the semiconductor integrated circuit, the output of the previous comparison memory circuit FFC (i−1) is input to the comparison memory circuit FFCi (i = 0 to n), and a known scan path is formed.
 第10実施例の半導体集積回路によれば、第9実施例の半導体集積回路と同様に複数の演算回路のいずれかで発生している遅延時間の増大や減少の故障要因を検出できると共に、比較記憶回路FFC0~FFCnで保持された比較結果をシリアル信号として読み出すことで、故障要因が発生している演算回路を特定できる。
(第11実施例)
 図19は第11実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of the tenth embodiment, as with the semiconductor integrated circuit of the ninth embodiment, it is possible to detect a failure factor of increase or decrease in delay time occurring in any of a plurality of arithmetic circuits, and to compare By reading the comparison result held in the memory circuits FFC0 to FFCn as a serial signal, the arithmetic circuit in which the failure factor has occurred can be specified.
(Eleventh embodiment)
FIG. 19 is a block diagram showing the configuration of the semiconductor integrated circuit of the eleventh embodiment.
 第11実施例の半導体集積回路は、記憶回路FF0A、FF1A及びFF0Bに共通のクロック信号CKAを供給し、記憶回路FF1Bにクロック信号CKB’を供給する構成である。その他の構成及び動作は第1実施例と同様であるため、その説明は省略する。 The semiconductor integrated circuit according to the eleventh embodiment is configured to supply a common clock signal CKA to the memory circuits FF0A, FF1A, and FF0B and to supply a clock signal CKB 'to the memory circuit FF1B. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
 第11実施例の半導体集積回路では、演算回路L1Aで発生する遅延時間が増大する故障要因、演算回路L1Bで発生する遅延時間が増大する故障要因及び演算回路L1Bで発生する遅延時間が減少する故障要因を検出することが可能である。 In the semiconductor integrated circuit according to the eleventh embodiment, a failure factor that causes an increase in delay time in the arithmetic circuit L1A, a failure factor that causes an increase in delay time in the arithmetic circuit L1B, and a failure that causes a delay time in the arithmetic circuit L1B to decrease. It is possible to detect the factor.
 第11実施例の半導体集積回路によれば、クロック信号用の配線数が低減するため、半導体集積回路のレイアウト面積を低減できる。
(第12実施例)
 図20は第12実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of the eleventh embodiment, since the number of clock signal wirings is reduced, the layout area of the semiconductor integrated circuit can be reduced.
(Twelfth embodiment)
FIG. 20 is a block diagram showing the configuration of the semiconductor integrated circuit of the twelfth embodiment.
 第12実施例の半導体集積回路は、記憶回路FF0A及びFF1Aに共通のクロック信号CKAを供給し、記憶回路FF0B及びFF1Bに共通のクロック信号CKBを供給する構成である。その他の構成及び動作は第1実施例と同様であるため、その説明は省略する。 The semiconductor integrated circuit of the twelfth embodiment is configured to supply a common clock signal CKA to the memory circuits FF0A and FF1A and to supply a common clock signal CKB to the memory circuits FF0B and FF1B. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
 第12実施例の半導体集積回路では、演算回路L1A及びL1Bで発生する遅延時間が増大する故障要因を検出することが可能である。 In the semiconductor integrated circuit of the twelfth embodiment, it is possible to detect a failure factor that increases the delay time generated in the arithmetic circuits L1A and L1B.
 第12実施例の半導体集積回路によれば、クロック信号用の配線数が低減するため、半導体集積回路のレイアウト面積を低減できる。
(第13実施例)
 図21は第13実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of the twelfth embodiment, since the number of clock signal wirings is reduced, the layout area of the semiconductor integrated circuit can be reduced.
(Thirteenth embodiment)
FIG. 21 is a block diagram showing the configuration of the semiconductor integrated circuit of the thirteenth embodiment.
 図21に示すように、第13実施例の半導体集積回路は、複数の記憶回路FF0A~FFnA(図21ではFF0A~FF2Aのみ表示)と複数の演算回路L1A~LnA(図21では、L1A、L2Aのみ表示)とが交互に接続された第1の論理回路と、複数の記憶回路FF0B~FFnB(図21ではFF0B~FF2Bのみ表示)と複数の演算回路L1B~LnB(図21では、L1B、L2Bのみ表示)とが交互に接続された第2の論理回路と、記憶回路FF0B~FFnBの出力値と記憶回路FF0B~FFnBの出力値とが一致しているか否かの比較結果をそれぞれ出力する複数の比較回路C0~Cnと、故障判定回路D0、D1と、故障判定記憶回路FFD0、FFD1とを備えた構成である。第1の論理回路と第2の論理回路とは同一の機能を備えている。 As shown in FIG. 21, the semiconductor integrated circuit of the thirteenth embodiment includes a plurality of memory circuits FF0A to FFnA (only FF0A to FF2A are shown in FIG. 21) and a plurality of arithmetic circuits L1A to LnA (L1A and L2A in FIG. 21). Only one display), a plurality of memory circuits FF0B to FFnB (only FF0B to FF2B are displayed in FIG. 21), and a plurality of arithmetic circuits L1B to LnB (in FIG. 21, L1B and L2B). A plurality of outputs of comparison results as to whether or not the output values of the memory circuits FF0B to FFnB and the output values of the memory circuits FF0B to FFnB coincide with each other. Comparison circuits C0 to Cn, failure determination circuits D0 and D1, and failure determination storage circuits FFD0 and FFD1. The first logic circuit and the second logic circuit have the same function.
 故障判定回路D0には比較回路C0の出力値及び故障診断情報errCHKが入力され、故障判定回路D1には比較回路C1の出力値及び故障診断情報errCHKが入力される。故障判定回路D0の出力値は故障判定記憶回路FFD0に入力され、故障判定回路D1の出力値は故障判定記憶回路FFD1に入力される。 The output value of the comparison circuit C0 and the failure diagnosis information errCHK are input to the failure determination circuit D0, and the output value of the comparison circuit C1 and the failure diagnosis information errCHK are input to the failure determination circuit D1. The output value of failure determination circuit D0 is input to failure determination storage circuit FFD0, and the output value of failure determination circuit D1 is input to failure determination storage circuit FFD1.
 また、故障判定記憶回路FFD0の出力値は故障判定回路D0へ入力され、故障判定記憶回路FFD1の出力値は故障判定回路D1へ入力される。故障判定記憶回路FFD0及びFFD1にはクロック信号CKEが供給されている。 Also, the output value of the failure determination storage circuit FFD0 is input to the failure determination circuit D0, and the output value of the failure determination storage circuit FFD1 is input to the failure determination circuit D1. The failure determination memory circuits FFD0 and FFD1 are supplied with a clock signal CKE.
 故障診断情報は、故障診断対象の論理回路(第1の論理回路または第2の論理回路)及び故障要因の種類(遅延時間の増大または減少)を指定するための情報であり、各記憶回路に供給するクロック信号の周期に応じて変化する信号である。 The failure diagnosis information is information for designating a failure diagnosis target logic circuit (first logic circuit or second logic circuit) and a failure factor type (increase or decrease in delay time). It is a signal that changes according to the period of the clock signal to be supplied.
 例えば、第1の論理回路に短周期のクロック信号が供給され、第2の論理回路に長周期のクロック信号が供給されているとき、故障診断情報には第1の論理回路で遅延時間が減少する故障要因が発生しているか否かの診断(以下、遅延減少故障診断と称す)を指定する信号が用いられる。 For example, when a short cycle clock signal is supplied to the first logic circuit and a long cycle clock signal is supplied to the second logic circuit, the delay time is reduced by the first logic circuit in the failure diagnosis information. A signal for designating whether or not a failure factor to occur (hereinafter referred to as delay reduction failure diagnosis) is used is used.
 一方、第1の論理回路に長周期のクロック信号が供給され、第2の論理回路に短周期のクロック信号が供給されているとき、故障診断情報には第2の論理回路の遅延減少故障診断を指定する信号が用いられる。 On the other hand, when the long-cycle clock signal is supplied to the first logic circuit and the short-cycle clock signal is supplied to the second logic circuit, the failure diagnosis information includes the delay reduction failure diagnosis of the second logic circuit. A signal designating is used.
 図22は第13実施例の半導体集積回路の動作を示すタイミングチャートである。 FIG. 22 is a timing chart showing the operation of the semiconductor integrated circuit of the thirteenth embodiment.
 図22は、クロック信号CKAとCKA’とが等しく、クロック信号CKBとCKB’とが等しく、クロック信号CKBの反転信号をクロック信号CKEとして故障判定記憶回路FFD0及びFFD1へ供給するときの動作例を示している。 FIG. 22 shows an operation example when the clock signals CKA and CKA ′ are equal, the clock signals CKB and CKB ′ are equal, and an inverted signal of the clock signal CKB is supplied as the clock signal CKE to the failure determination storage circuits FFD0 and FFD1. Show.
 また、図22に示す動作例では、時刻0から時刻TSまでは図7のタイミングチャートで示した動作例と同様に動作する。したがって、ここではその説明を省略する。 In the operation example shown in FIG. 22, the operation is performed from time 0 to time TS in the same manner as the operation example shown in the timing chart of FIG. Therefore, the description is omitted here.
 時刻TSでは、故障診断情報errCHKとして、第1の論理回路の遅延減少故障診断を指定する信号(A-s)が入力される。このとき、記憶回路FF1AとFF1Bの出力値が異なることを示す信号(論理「1」)が比較回路C1から出力されると、故障判定回路D1は比較回路C1の出力値をそのまま故障判定記憶回路FFD1へ出力する。 At time TS, a signal (As) designating delay reduction failure diagnosis of the first logic circuit is input as failure diagnosis information errCHK. At this time, when a signal (logic “1”) indicating that the output values of the storage circuits FF1A and FF1B are different is output from the comparison circuit C1, the failure determination circuit D1 directly uses the output value of the comparison circuit C1 as the failure determination storage circuit. Output to FFD1.
 故障判定記憶回路FFD1は、時刻TL+TS/2で故障判定回路D1の出力値を保持して出力する。故障判定記憶回路FFD1の出力は故障判定回路D1へ入力され、以降、故障判定記憶回路FFD1は、比較回路C1の出力値が変化しても故障検出の判定結果を維持する。 The failure determination storage circuit FFD1 holds and outputs the output value of the failure determination circuit D1 at time TL + TS / 2. The output of the failure determination storage circuit FFD1 is input to the failure determination circuit D1, and thereafter, the failure determination storage circuit FFD1 maintains the determination result of failure detection even if the output value of the comparison circuit C1 changes.
 時刻TL+TSでは、故障診断情報errCHKとして、第2の論理回路の遅延減少故障診断を指定する信号(B-s)が入力される。このとき、記憶回路FF1AとFF1Bの出力値が異なることを示す信号(論理「1」)が比較回路C1から出力されると、上記と同様に、故障判定回路D1は、比較回路C1の出力値を故障判定記憶回路FFD1へ出力し、故障判定記憶回路FFD1によってその判定結果が保持される。 At time TL + TS, a signal (Bs) designating delay reduction failure diagnosis of the second logic circuit is input as failure diagnosis information errCHK. At this time, when a signal (logic “1”) indicating that the output values of the memory circuits FF1A and FF1B are different is output from the comparison circuit C1, the failure determination circuit D1 outputs the output value of the comparison circuit C1 as described above. Is output to the failure determination storage circuit FFD1, and the determination result is held by the failure determination storage circuit FFD1.
 第13実施例の半導体集積回路は、比較回路の結果と故障診断情報から故障箇所と故障要因を判定するための故障判定回路と故障判定結果を記憶する故障判定記憶回路とを備えている。また、比較結果をパラレルに外部に読み出すことで、故障箇所及び発生している故障要因の種類を判別できる。
(第14実施例)
 図23は第14実施例の半導体集積回路の構成を示すブロック図である。
The semiconductor integrated circuit according to the thirteenth embodiment includes a failure determination circuit for determining a failure location and a failure factor from the result of the comparison circuit and failure diagnosis information, and a failure determination storage circuit for storing the failure determination result. Further, by reading out the comparison result to the outside in parallel, it is possible to determine the location of the failure and the type of failure factor that has occurred.
(14th embodiment)
FIG. 23 is a block diagram showing the configuration of the semiconductor integrated circuit of the fourteenth embodiment.
 第14実施例の半導体集積回路は、故障判定記憶回路FFD0の出力値が次段の故障判定回路D1に入力される点で第13実施例の半導体集積回路と異なっている。すなわち、本実施例の半導体集積回路では、複数の故障判定記憶回路によりスキャンパスが形成された構成である。その他の構成は第13実施例と同様であるため、その説明は省略する。 The semiconductor integrated circuit of the fourteenth embodiment differs from the semiconductor integrated circuit of the thirteenth embodiment in that the output value of the failure determination storage circuit FFD0 is input to the failure determination circuit D1 in the next stage. That is, the semiconductor integrated circuit of this embodiment has a configuration in which a scan path is formed by a plurality of failure determination storage circuits. Since other configurations are the same as those of the thirteenth embodiment, the description thereof is omitted.
 例えば、故障判定回路D1から記憶回路FF1Aの出力値とFF1Bの出力値とが異なることを示す信号(論理「1」)が出力されている場合、その原因は、演算回路L1AまたはL1Bで故障要因が発生しているために記憶回路FF1Aの出力値と記憶回路FF1Bの出力値とが異なるか、不図示の前段に接続された論理回路で故障要因が発生しているために記憶回路FF0Aの出力値と記憶回路FF0Bの出力値とが異なるかのどちらかである。 For example, when the failure determination circuit D1 outputs a signal (logic “1”) indicating that the output value of the memory circuit FF1A is different from the output value of the FF1B, the cause is the failure factor in the arithmetic circuit L1A or L1B. Has occurred, the output value of the memory circuit FF1A differs from the output value of the memory circuit FF1B, or a failure factor has occurred in the logic circuit connected to the preceding stage (not shown), so that the output of the memory circuit FF0A The value is different from the output value of the storage circuit FF0B.
 したがって、故障判定回路D0の出力値が「故障なし」を示している場合、故障要因が発生しているのは演算回路L1AまたはL1Bであると判定できる。また、故障判定回路D0の出力値が「故障なし」を示している場合、故障要因が発生しているのは不図示の前段に接続された論理回路であると判定できる。
(第15実施例)
 図24は第15実施例の半導体集積回路の構成を示すブロック図である。
Therefore, when the output value of the failure determination circuit D0 indicates “no failure”, it can be determined that the failure factor has occurred in the arithmetic circuit L1A or L1B. In addition, when the output value of the failure determination circuit D0 indicates “no failure”, it can be determined that the failure factor has occurred in the logic circuit connected to the preceding stage (not shown).
(15th embodiment)
FIG. 24 is a block diagram showing the configuration of the semiconductor integrated circuit of the fifteenth embodiment.
 第15実施例の半導体集積回路は、第14実施例の半導体集積回路に加えて選択回路S1及びS2並びに故障判定記憶回路FFD0F及びFFD1Fを備えた構成である。 The semiconductor integrated circuit of the fifteenth embodiment has a configuration including selection circuits S1 and S2 and failure determination storage circuits FFD0F and FFD1F in addition to the semiconductor integrated circuit of the fourteenth embodiment.
 選択回路S1は、演算回路L1A及びL1Bと、記憶回路FF1A及びFF1B間に挿入されている。選択回路S2は、演算回路L2A及びL2Bと、記憶回路FF2A及びFF2B間に挿入されている。 The selection circuit S1 is inserted between the arithmetic circuits L1A and L1B and the memory circuits FF1A and FF1B. The selection circuit S2 is inserted between the arithmetic circuits L2A and L2B and the memory circuits FF2A and FF2B.
 選択回路S1は、故障判定記憶回路FFD0及びFFD1Fの出力値にしたがって、演算回路L1Aの出力値または演算回路L1Bの出力値のいずれか一方を記憶回路FF1A及びFF1Bへ供給する。 The selection circuit S1 supplies either the output value of the arithmetic circuit L1A or the output value of the arithmetic circuit L1B to the memory circuits FF1A and FF1B according to the output values of the failure determination storage circuits FFD0 and FFD1F.
 選択回路S2は、故障判定記憶回路FFD1及び次段に接続された不図示のFFD2Fの出力値にしたがって、演算回路L2Aの出力値または演算回路L2Bの出力値のいずれか一方を記憶回路FF2A及びFF2Bへ出力する。 The selection circuit S2 stores either the output value of the arithmetic circuit L2A or the output value of the arithmetic circuit L2B according to the output value of the failure determination storage circuit FFD1 and the FFD 2F (not shown) connected to the next stage, as the storage circuits FF2A and FF2B. Output to.
 故障判定記憶回路FFD0Fには、故障判定回路D0の出力値が入力され、故障判定記憶回路FFD0Fの出力値は故障判定回路D0の入力へ帰還されている。また、故障判定記憶回路FFD1Fには、故障判定回路D1の出力値が入力され、故障判定記憶回路FFD1Fの出力値は故障判定回路D1の入力へ帰還されている。 The output value of the failure determination circuit D0 is input to the failure determination storage circuit FFD0F, and the output value of the failure determination storage circuit FFD0F is fed back to the input of the failure determination circuit D0. Further, the output value of the failure determination circuit D1 is input to the failure determination storage circuit FFD1F, and the output value of the failure determination storage circuit FFD1F is fed back to the input of the failure determination circuit D1.
 故障判定記憶回路FFD0は、クロック信号CKEの1サイクルの期間だけ故障判定回路D0の出力値(判定結果)を保持する回路であり、故障判定記憶回路FFD0Fは、故障判定回路D0の判定結果を継続して保持するための回路である。 The failure determination storage circuit FFD0 is a circuit that holds the output value (determination result) of the failure determination circuit D0 for only one cycle of the clock signal CKE, and the failure determination storage circuit FFD0F continues the determination result of the failure determination circuit D0. It is a circuit for holding.
 故障判定記憶回路FFD1は、クロック信号CKEの1サイクルの期間だけ故障判定回路D1の判定結果を保持する回路であり、故障判定記憶回路FFD1Fは、故障判定回路D1の判定結果を継続して保持するための回路である。その他の構成は第14実施例の半導体集積回路と同様であるため、その説明は省略する。 The failure determination storage circuit FFD1 is a circuit that holds the determination result of the failure determination circuit D1 for a period of one cycle of the clock signal CKE, and the failure determination storage circuit FFD1F continuously holds the determination result of the failure determination circuit D1. It is a circuit for. Since other configurations are the same as those of the semiconductor integrated circuit of the fourteenth embodiment, description thereof is omitted.
 第15実施例の半導体集積回路では、例えば、故障判定回路D1によって演算回路L1Aで故障要因が発生していると判定された場合、選択回路S1は、正常な演算回路L1Bの出力値を記憶回路FF1A及びFF1Bへ供給する。 In the semiconductor integrated circuit according to the fifteenth embodiment, for example, when the failure determination circuit D1 determines that a failure factor has occurred in the arithmetic circuit L1A, the selection circuit S1 stores the output value of the normal arithmetic circuit L1B as a storage circuit. Supply to FF1A and FF1B.
 その場合、次段の演算回路L2Aには、クロック信号CKA’の1サイクルの期間だけ記憶回路FF1Aから誤った出力値が入力される。そのため、選択回路S2は、正しい入力値を受け取った演算回路L2Bの出力値を記憶回路FF2A及びFF2Bへ出力する。 In this case, an erroneous output value is input from the memory circuit FF1A to the arithmetic circuit L2A at the next stage only for the period of one cycle of the clock signal CKA '. Therefore, the selection circuit S2 outputs the output value of the arithmetic circuit L2B that has received the correct input value to the storage circuits FF2A and FF2B.
 図25は第15実施例の半導体集積回路の動作を示すタイミングチャートである。 FIG. 25 is a timing chart showing the operation of the semiconductor integrated circuit of the fifteenth embodiment.
 図25は、クロック信号CKAとCKA’とが等しく、クロック信号CKBとCKB’とが等しく、クロック信号CKBの反転信号をクロック信号CKEとして故障判定記憶回路FFD0及びFFD1へ供給するときの動作例を示している。 FIG. 25 shows an operation example when the clock signals CKA and CKA ′ are equal, the clock signals CKB and CKB ′ are equal, and an inverted signal of the clock signal CKB is supplied as the clock signal CKE to the failure determination storage circuits FFD0 and FFD1. Show.
 図25に示す動作例では、時刻0から時刻TL+TS/2までは、図22に示した第13実施例と同様に動作するため、ここではその説明を省略する。 In the operation example shown in FIG. 25, the operation from time 0 to time TL + TS / 2 is the same as that in the thirteenth embodiment shown in FIG.
 時刻TL+TS/2において、故障判定記憶回路FFD1、FFD1Fが故障判定回路D1の判定結果を保持すると、選択回路S1は故障要因が発生していない演算回路の出力値を記憶回路FF1A及びFF1Bへ出力し、選択回路S2は正しい入力値を受け取った演算回路の出力値を記憶回路FF2A及びFF2Bへ供給する。
(第16実施例)
 図26は第16実施例の半導体集積回路の構成を示すブロック図である。
When failure determination storage circuits FFD1 and FFD1F hold the determination result of failure determination circuit D1 at time TL + TS / 2, selection circuit S1 outputs the output value of the arithmetic circuit in which no failure factor has occurred to storage circuits FF1A and FF1B. The selection circuit S2 supplies the output value of the arithmetic circuit that has received the correct input value to the memory circuits FF2A and FF2B.
(Sixteenth embodiment)
FIG. 26 is a block diagram showing the configuration of the semiconductor integrated circuit of the sixteenth embodiment.
 第16実施例の半導体集積回路は、二重化された記憶回路FF0A及びFF0Bと、図26に示す半導体集積回路の外部から入力される値を記憶する外部入力記憶回路FFinとを備えた構成である。 The semiconductor integrated circuit according to the sixteenth embodiment has a configuration including duplicated storage circuits FF0A and FF0B and an external input storage circuit FFin for storing values input from the outside of the semiconductor integrated circuit shown in FIG.
 記憶回路FF0A及びFF0Bには、外部入力記憶回路FFinの出力値が入力される。記憶回路FF0Aにはクロック信号CKAが供給され、記憶回路FF0Bにはクロック信号CKBが供給される。 The output value of the external input storage circuit FFin is input to the storage circuits FF0A and FF0B. A clock signal CKA is supplied to the memory circuit FF0A, and a clock signal CKB is supplied to the memory circuit FF0B.
 外部入力記憶回路FFinには、記憶回路FF0A、FF0Bが入力された値を保持するまで出力値を維持するためのクロック信号が供給される。例えば、外部入力記憶回路FFinがクロック信号の立ち上がりに同期して入力値を保持する構成の場合、外部入力記憶回路FFinにはクロック信号CKAとCKBの論理積信号(CKA&CKB)を供給すればよい。 The external input memory circuit FFin is supplied with a clock signal for maintaining the output value until the memory circuits FF0A and FF0B hold the input values. For example, when the external input storage circuit FFin holds an input value in synchronization with the rising edge of the clock signal, the external input storage circuit FFin may be supplied with a logical product signal (CKA & CKB) of the clock signals CKA and CKB.
 図27は第16実施例の半導体集積回路の動作を示すタイミングチャートである。 FIG. 27 is a timing chart showing the operation of the semiconductor integrated circuit of the sixteenth embodiment.
 図27に示す動作例では、外部入力記憶回路FFinにクロック信号CKAとCKBの論理積信号(CKA&CKB)が供給されている。 In the operation example shown in FIG. 27, a logical product signal (CKA & CKB) of the clock signals CKA and CKB is supplied to the external input memory circuit FFin.
 この場合、クロック信号CKA及びCKBの立ち上がりで記憶回路FF0A及びFF0Bが入力された値を保持するまで、外部入力記憶回路FFinは出力値を維持できる。 In this case, the external input storage circuit FFin can maintain the output value until the storage circuits FF0A and FF0B hold the input values at the rising edges of the clock signals CKA and CKB.
 第16実施例の半導体集積回路によれば、二重化された論理回路と二重化されていない論理回路とを接続できるため、両者を混在して使用できる。そのため、高い信頼性が要求される論理回路のみを二重化し、それ以外の論理回路を二重化しないことで、必要以上に回路規模や消費電力が増大するのを抑制できる。また、既に設計された二重化されていない論理回路を用いることができるため、既存の設計回路資産を活用できる。
(第17実施例)
 図28は第17実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of the sixteenth embodiment, a duplicated logic circuit and a non-duplexed logic circuit can be connected, and both can be used in combination. For this reason, it is possible to suppress an increase in circuit scale and power consumption more than necessary by duplicating only logic circuits that require high reliability and not duplicating other logic circuits. In addition, since an already designed logic circuit that is not duplicated can be used, existing design circuit assets can be utilized.
(Seventeenth embodiment)
FIG. 28 is a block diagram showing the configuration of the semiconductor integrated circuit of the seventeenth embodiment.
 第17実施例の半導体集積回路は、二重化された記憶回路FF0A及びFF0Bと、記憶回路FF0AまたはFF0Bの出力値のいずれか一方を出力する選択回路S1と、選択回路S1の出力値を図28に示す半導体集積回路の外部へ出力するための外部出力記憶回路FFoutとを備えた構成である。 In the semiconductor integrated circuit of the seventeenth embodiment, the duplicated storage circuits FF0A and FF0B, the selection circuit S1 that outputs one of the output values of the storage circuit FF0A or FF0B, and the output value of the selection circuit S1 are shown in FIG. And an external output memory circuit FFout for outputting to the outside of the semiconductor integrated circuit shown.
 記憶回路FF0A及びFF0Bの出力値は選択回路S1へ出力され、選択回路S1は不図示の制御信号にしたがって記憶回路FF0Aの出力値または記憶回路FF0Bの出力値のいずれか一方を外部出力記憶回路FFoutへ出力する。記憶回路FF0Aにはクロック信号CKAが供給され、記憶回路FF0Bにはクロック信号CKBが供給される。 The output values of the storage circuits FF0A and FF0B are output to the selection circuit S1, and the selection circuit S1 outputs either the output value of the storage circuit FF0A or the output value of the storage circuit FF0B according to a control signal (not shown) as the external output storage circuit FFout. Output to. A clock signal CKA is supplied to the memory circuit FF0A, and a clock signal CKB is supplied to the memory circuit FF0B.
 外部出力記憶回路FFoutには、記憶回路FF0A及びFF0Bの出力値が変化する前に入力された値を保持するためのクロック信号が供給される。例えば、外部出力記憶回路FFoutがクロック信号の立ち上がりに同期して入力値を保持する構成の場合、外部出力記憶回路FFoutには、クロック信号CKAとCKBの論理和信号を供給すればよい。 The external output memory circuit FFout is supplied with a clock signal for holding the values input before the output values of the memory circuits FF0A and FF0B change. For example, in the case where the external output storage circuit FFout is configured to hold an input value in synchronization with the rising edge of the clock signal, the logical output signal of the clock signals CKA and CKB may be supplied to the external output storage circuit FFout.
 図29は第17実施例の半導体集積回路の動作を示すタイミングチャートである。 FIG. 29 is a timing chart showing the operation of the semiconductor integrated circuit of the seventeenth embodiment.
 図29に示す動作例では、外部入力記憶回路FFinにクロック信号CKAとCKBの論理和信号(CKA|CKB)が供給されている。 In the operation example shown in FIG. 29, a logical sum signal (CKA | CKB) of clock signals CKA and CKB is supplied to the external input memory circuit FFin.
 この場合、クロック信号CKA及びCKBの立ち上がりで記憶回路FF0A及びFF0Bの出力値が変化する前に、外部出力記憶回路FFoutは入力された値を保持できる。 In this case, the external output memory circuit FFout can hold the input value before the output values of the memory circuits FF0A and FF0B change at the rising edges of the clock signals CKA and CKB.
 第17実施例の半導体集積回路によれば、第16実施例と同様に、二重化された論理回路と二重化されていない論理回路とを接続できるため、両者を混在して使用できる。そのため、高い信頼性が要求される論理回路のみを二重化し、それ以外の論理回路を二重化しないことで、必要以上に回路規模や消費電力が増大するのを抑制できる。また、既に設計された二重化されていない論理回路を用いることができるため、既存の設計回路資産を活用できる。
(第18実施例)
 図30は第18実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of the seventeenth embodiment, as in the sixteenth embodiment, a duplicated logic circuit and a non-duplicated logic circuit can be connected, and both can be used together. For this reason, it is possible to suppress an increase in circuit scale and power consumption more than necessary by duplicating only logic circuits that require high reliability and not duplicating other logic circuits. In addition, since an already designed logic circuit that is not duplicated can be used, existing design circuit assets can be utilized.
(Eighteenth embodiment)
FIG. 30 is a block diagram showing the configuration of the semiconductor integrated circuit of the eighteenth embodiment.
 図30に示すように、第18実施例の半導体集積回路は、記憶回路FF0A、演算回路L1A、演算回路L2A、記憶回路FF1A及び記憶回路FF2Aを備えた第1の論理回路と、記憶回路FF0B、演算回路L1B、演算回路L2B、記憶回路FF1B及び記憶回路FF2Bを備えた第2の論理回路と、記憶回路FF0Aの出力値と記憶回路FF0Bの出力値とが一致しているか否かの比較結果を出力する比較回路C0と、記憶回路FF1Aの出力値と記憶回路FF1Bの出力値とが一致しているか否かの比較結果を出力する比較回路C1と、記憶回路FF2Aの出力値と記憶回路FF2Bの出力値とが一致しているか否かの比較結果を出力する比較回路C2とを有する構成である。第1の論理回路と第2の論理回路とは同一の機能を備えている。 As shown in FIG. 30, the semiconductor integrated circuit of the eighteenth embodiment includes a first logic circuit including a memory circuit FF0A, an arithmetic circuit L1A, an arithmetic circuit L2A, a memory circuit FF1A, and a memory circuit FF2A, a memory circuit FF0B, The second logic circuit including the arithmetic circuit L1B, the arithmetic circuit L2B, the memory circuit FF1B, and the memory circuit FF2B, and the comparison result of whether or not the output value of the memory circuit FF0A and the output value of the memory circuit FF0B match. The comparison circuit C0 that outputs, the comparison circuit C1 that outputs the comparison result of whether or not the output value of the storage circuit FF1A and the output value of the storage circuit FF1B match, the output value of the storage circuit FF2A, and the output of the storage circuit FF2B The comparison circuit C2 outputs a comparison result as to whether or not the output value matches. The first logic circuit and the second logic circuit have the same function.
 記憶回路FF0Aの出力値は演算回路L1A、L2Aに入力され、演算回路L1Aの出力値は記憶回路FF1Aに入力され、演算回路L2Aの出力値は記憶回路FF2Aに入力される。記憶回路FF2Aの出力値は演算回路L1Aに入力される。 The output value of the memory circuit FF0A is input to the arithmetic circuits L1A and L2A, the output value of the arithmetic circuit L1A is input to the memory circuit FF1A, and the output value of the arithmetic circuit L2A is input to the memory circuit FF2A. The output value of the memory circuit FF2A is input to the arithmetic circuit L1A.
 また、記憶回路FF0Bの出力値は演算回路L1B、L2Bに入力され、演算回路L1Bの出力値は記憶回路FF1Bに入力され、演算回路L2Bの出力値は記憶回路FF2Bに入力される。記憶回路FF2Bの出力値は演算回路L1Bに入力される。 Further, the output value of the memory circuit FF0B is input to the arithmetic circuits L1B and L2B, the output value of the arithmetic circuit L1B is input to the memory circuit FF1B, and the output value of the arithmetic circuit L2B is input to the memory circuit FF2B. The output value of the memory circuit FF2B is input to the arithmetic circuit L1B.
 記憶回路FF0A及びFF0Bの出力値は比較回路C0に入力され、記憶回路FF1A及びFF1Bの出力値は比較回路C1に入力され、記憶回路FF2A及びFF2Bの出力値は比較回路C2に入力される。 The output values of the storage circuits FF0A and FF0B are input to the comparison circuit C0, the output values of the storage circuits FF1A and FF1B are input to the comparison circuit C1, and the output values of the storage circuits FF2A and FF2B are input to the comparison circuit C2.
 第18実施例の半導体集積回路では、記憶回路FF0Aにクロック信号CKAが供給され、記憶回路FF1Aにクロック信号CKA'が供給され、記憶回路FF2Aにクロック信号CKA'’が供給される。また、記憶回路FF0Bにクロック信号CKBが供給され、記憶回路FF1Bにクロック信号CKB'が供給され、記憶回路FF2Bにクロック信号CKB'’が供給される。 In the semiconductor integrated circuit of the eighteenth embodiment, the clock signal CKA is supplied to the memory circuit FF0A, the clock signal CKA ′ is supplied to the memory circuit FF1A, and the clock signal CKA ″ is supplied to the memory circuit FF2A. Further, the clock signal CKB is supplied to the memory circuit FF0B, the clock signal CKB ′ is supplied to the memory circuit FF1B, and the clock signal CKB ″ is supplied to the memory circuit FF2B.
 第18実施例の半導体集積回路は、演算回路L1Aによる演算処理を実行する前に演算回路L2Aによる演算処理を実行する場合と実行しない場合の2通りの経路を備えている。さらに、第18実施例の半導体集積回路は、演算回路L1Bによる演算処理を実行する前に演算回路L2Bによる演算処理を実行する場合と実行しない場合の2通りの経路を備えている。 The semiconductor integrated circuit according to the eighteenth embodiment has two paths, that is, a case where the arithmetic processing by the arithmetic circuit L2A is executed before the arithmetic processing by the arithmetic circuit L1A and a case where the arithmetic processing is not executed. Further, the semiconductor integrated circuit according to the eighteenth embodiment has two paths, that is, the case where the arithmetic processing by the arithmetic circuit L2B is executed before the arithmetic processing by the arithmetic circuit L1B and the case where the arithmetic processing is not executed.
 図31は第18実施例の半導体集積回路の動作を示すタイミングチャートである。 FIG. 31 is a timing chart showing the operation of the semiconductor integrated circuit of the eighteenth embodiment.
 図31に示すように、本実施例で用いるクロック信号CKAは第1の周期T1A、第2の周期T2A及び第3の周期T3Aを繰り返す信号であり、クロック信号CKA’は第1の周期T1A’、第2の周期T2A’及び第3の周期T3A’を繰り返す信号であり、クロック信号CKA’’は第1の周期T1A’’、第2の周期T2A’’及び第3の周期T3A’’を繰り返す信号である。 As shown in FIG. 31, the clock signal CKA used in this embodiment is a signal that repeats the first period T1A, the second period T2A, and the third period T3A, and the clock signal CKA ′ is the first period T1A ′. , A signal that repeats the second period T2A ′ and the third period T3A ′, and the clock signal CKA ″ has the first period T1A ″, the second period T2A ″, and the third period T3A ″. It is a repeating signal.
 また、クロック信号CKBは第1の周期T1B、第2の周期T2B及び第3の周期T3Bを繰り返す信号であり、クロック信号CKB’は第1の周期T1B’、第2の周期T2B’及び第3の周期T3B’を繰り返す信号であり、クロック信号CKB’’は第1の周期T1B’’、第2の周期T2B’’及び第3の周期T3B’’を繰り返す信号である。 The clock signal CKB is a signal that repeats the first cycle T1B, the second cycle T2B, and the third cycle T3B, and the clock signal CKB ′ is the first cycle T1B ′, the second cycle T2B ′, and the third cycle. The clock signal CKB ″ is a signal that repeats the first cycle T1B ″, the second cycle T2B ″, and the third cycle T3B ″.
 ここで、T1A<T1A’の条件を満たすとき、記憶回路FF0A、演算回路L1A及び記憶回路FF1Aから成る経路で発生している遅延減少故障を検出することが可能であり、T1A<T1A’'のとき、記憶回路FF0A、演算回路L2A、及び記憶回路FF2Aから成る経路で発生している遅延減少故障を検出することが可能である。 Here, when the condition of T1A <T1A ′ is satisfied, it is possible to detect a delay decreasing fault occurring in the path including the memory circuit FF0A, the arithmetic circuit L1A, and the memory circuit FF1A, and T1A <T1A ″. At this time, it is possible to detect a delay-reducing fault occurring in a path including the memory circuit FF0A, the arithmetic circuit L2A, and the memory circuit FF2A.
 また、T1A’’+T2A’’<T1A+T2Aの条件を満たすとき、記憶回路FF2A、演算回路L1A及び記憶回路FF1Aから成る経路で発生している遅延減少故障を検出することが可能である。 In addition, when the condition of T1A ″ + T2A ″ <T1A + T2A is satisfied, it is possible to detect a delay-decreasing fault occurring in the path including the memory circuit FF2A, the arithmetic circuit L1A, and the memory circuit FF1A.
 なお、図31では例示していないが、第18実施例の半導体集積回路では、T1B<T1B’かつT1B<T1B’’の条件を満たすとき、記憶回路FF0B、演算回路L1B及び記憶回路FF1Bから成る経路、並びに記憶回路FF0B、演算回路L2B及び記憶回路FF2Bから成る経路で発生している遅延減少故障を検出することが可能である。 Although not illustrated in FIG. 31, the semiconductor integrated circuit of the eighteenth embodiment includes the memory circuit FF0B, the arithmetic circuit L1B, and the memory circuit FF1B when the conditions of T1B <T1B ′ and T1B <T1B ″ are satisfied. It is possible to detect a delay decreasing fault occurring in the path and the path including the memory circuit FF0B, the arithmetic circuit L2B, and the memory circuit FF2B.
 また、T1B’’+T2B’’<T1B+T2Bの条件を満たすとき、記憶回路FF2B、演算回路L1B及び記憶回路FF1Bから成る経路で発生している遅延減少故障を検出することが可能である。
(第19実施例)
 図32は第19実施例の半導体集積回路の構成を示すブロック図である。
In addition, when the condition of T1B ″ + T2B ″ <T1B + T2B is satisfied, it is possible to detect a delay-decreasing fault occurring in the path including the memory circuit FF2B, the arithmetic circuit L1B, and the memory circuit FF1B.
(Nineteenth embodiment)
FIG. 32 is a block diagram showing the configuration of the semiconductor integrated circuit of the nineteenth embodiment.
 図32に示すように、第19の実施例の半導体集積回路は、第1実施例~第18実施例で示した半導体集積回路Dに加えて、クロック生成回路CGおよびクロック制御回路CCを有する構成である。 As shown in FIG. 32, the semiconductor integrated circuit of the nineteenth embodiment has a clock generation circuit CG and a clock control circuit CC in addition to the semiconductor integrated circuit D shown in the first to eighteenth embodiments. It is.
 クロック制御回路CCは、半導体集積回路Dが備える2つの論理回路のうち、位置関係が同一である2つの記憶回路の出力値の比較結果、すなわち比較回路または比較記憶回路の出力値を参照し、該出力値に基づいてクロック生成回路CGを制御するための制御信号を生成する。 The clock control circuit CC refers to the comparison result of the output values of two storage circuits having the same positional relationship among the two logic circuits included in the semiconductor integrated circuit D, that is, the output value of the comparison circuit or the comparison storage circuit, A control signal for controlling the clock generation circuit CG is generated based on the output value.
 クロック生成回路CGは、周期および/または位相が異なる複数のクロック信号CKA,CKA’,CKB,CKB’を外部クロック信号CKから生成する。このクロック生成回路CGが生成するクロック信号CKA,CKA’,CKB,CKB’の周期および位相は、クロック制御回路CCから出力される制御信号にしたがって変更される。 The clock generation circuit CG generates a plurality of clock signals CKA, CKA ′, CKB, and CKB ′ having different periods and / or phases from the external clock signal CK. The cycle and phase of the clock signals CKA, CKA ', CKB, and CKB' generated by the clock generation circuit CG are changed according to the control signal output from the clock control circuit CC.
 クロック制御回路CCは、半導体集積回路Dの動作中および/または動作前において、比較回路または比較記憶回路の出力値を参照する。そして、該出力値が2つの論理回路の出力の「不一致」を示している場合は半導体集積回路Dが誤動作していると判定し、第1実施例~第18実施例で示した各種の条件に基づきその原因を判定する。そして、該誤動作を回避するように複数のクロック信号の周期を長くするおよび/または複数のクロック信号の位相差を小さくするための制御信号をクロック生成回路CGに出力する。 The clock control circuit CC refers to the output value of the comparison circuit or the comparison storage circuit during and / or before the operation of the semiconductor integrated circuit D. If the output value indicates “mismatch” between the outputs of the two logic circuits, it is determined that the semiconductor integrated circuit D is malfunctioning, and the various conditions described in the first to eighteenth embodiments are satisfied. The cause is determined based on the above. Then, a control signal for increasing the period of the plurality of clock signals and / or reducing the phase difference between the plurality of clock signals so as to avoid the malfunction is output to the clock generation circuit CG.
 クロック生成回路CGは、クロック制御回路CCから出力された制御信号にしたがって、クロック信号CKA,CKA’,CKB,CKB’の周期および/または位相を変更する。 The clock generation circuit CG changes the period and / or phase of the clock signals CKA, CKA ', CKB, CKB' according to the control signal output from the clock control circuit CC.
 クロック制御回路CCおよびクロック生成回路CGは、例えば各種の論理ゲート回路、記憶回路、演算回路等から成るLSI、あるいはプログラムにしたがって処理を実行するCPU等によって実現できる。周期や位相が異なる複数のクロック信号は、上記非特許文献2等を参照することで生成できる。 The clock control circuit CC and the clock generation circuit CG can be realized by, for example, an LSI composed of various logic gate circuits, storage circuits, arithmetic circuits, etc., or a CPU that executes processing according to a program. A plurality of clock signals having different periods and phases can be generated by referring to the non-patent document 2 and the like.
 本実施例の半導体集積回路によれば、半導体集積回路Dが備える比較回路または比較記憶回路の出力値に応じてクロック信号CKA,CKA’,CKB,CKB’の周期および/または位相を変更することで、半導体集積回路Dの誤動作を回避できる。
(第20実施例)
 図33Aは第20実施例の半導体集積回路の構成を示すブロック図である。
According to the semiconductor integrated circuit of this embodiment, the period and / or phase of the clock signals CKA, CKA ′, CKB, and CKB ′ are changed according to the output value of the comparison circuit or the comparison storage circuit included in the semiconductor integrated circuit D. Thus, malfunction of the semiconductor integrated circuit D can be avoided.
(20th embodiment)
FIG. 33A is a block diagram showing the configuration of the semiconductor integrated circuit of the twentieth embodiment.
 図33Aに示すように、第20の実施例の半導体集積回路は、第19実施例で示した半導体集積回路に加えて、電源制御回路PMを備えた構成である。 As shown in FIG. 33A, the semiconductor integrated circuit of the twentieth embodiment has a power control circuit PM in addition to the semiconductor integrated circuit shown in the nineteenth embodiment.
 半導体集積回路Dは、第1実施例~第18実施例で示した半導体集積回路であり、クロック制御回路CCおよびクロック生成回路CGの構成および動作は第19実施例の半導体集積回路と同様である。 The semiconductor integrated circuit D is the semiconductor integrated circuit shown in the first to eighteenth embodiments. The configurations and operations of the clock control circuit CC and the clock generation circuit CG are the same as those of the nineteenth embodiment. .
 電源制御回路PMは、半導体集積回路Dに所要の電源電圧を供給する電源装置であり、クロック制御回路CCから出力される制御信号にしたがって半導体集積回路Dに供給する電源電圧を変更する。 The power supply control circuit PM is a power supply device that supplies a required power supply voltage to the semiconductor integrated circuit D, and changes the power supply voltage supplied to the semiconductor integrated circuit D in accordance with a control signal output from the clock control circuit CC.
 クロック制御回路CCは、半導体集積回路Dの動作中および/または動作前において、第19実施例と同様に、比較回路または比較記憶回路の出力値を参照する。そして、該出力値が2つの論理回路の出力の「不一致」を示している場合は半導体集積回路Dが誤動作していると判定し、第1実施例~第18実施例で示した各種の条件に基づきその原因を判定する。そして、誤動作の原因がセットアップ違反、すなわち演算回路の遅延時間の増大であると判定した場合は、電源制御回路PMにより半導体集積回路Dに供給する電源電圧を上げて回路速度を速くする。
一方、誤動作の原因がホールド違反、すなわち演算回路の遅延時間の減少であると判定した場合は、電源制御回路PMにより半導体集積回路Dに供給する電源電圧を下げて回路速度を遅くする。
The clock control circuit CC refers to the output value of the comparison circuit or comparison memory circuit during and / or before the operation of the semiconductor integrated circuit D, as in the nineteenth embodiment. If the output value indicates “mismatch” between the outputs of the two logic circuits, it is determined that the semiconductor integrated circuit D is malfunctioning, and the various conditions described in the first to eighteenth embodiments are satisfied. The cause is determined based on the above. When it is determined that the cause of the malfunction is a setup violation, that is, an increase in the delay time of the arithmetic circuit, the power supply voltage supplied to the semiconductor integrated circuit D is increased by the power supply control circuit PM to increase the circuit speed.
On the other hand, when it is determined that the cause of the malfunction is a violation of hold, that is, a reduction in the delay time of the arithmetic circuit, the power supply voltage supplied to the semiconductor integrated circuit D is lowered by the power supply control circuit PM to reduce the circuit speed.
 図34は第20実施例の半導体集積回路が備えるクロック制御回路の処理手順を示すフローチャートである。 FIG. 34 is a flowchart showing the processing procedure of the clock control circuit provided in the semiconductor integrated circuit of the twentieth embodiment.
 図34に示すように、本実施例のクロック制御回路CCは、まずクロック生成回路CGで生成する各クロック信号の周期および位相をそれぞれ設定する。クロック制御回路CGには、比較回路または比較記憶回路の出力値が「不一致」を示しても半導体集積回路Dとして許容可能な「不一致」の発生確率(以下、不一致確率と称す)の範囲(最大値及び最小値)が予め設定されている(ステップA1)。 As shown in FIG. 34, the clock control circuit CC of the present embodiment first sets the period and phase of each clock signal generated by the clock generation circuit CG. In the clock control circuit CG, even if the output value of the comparison circuit or the comparison memory circuit indicates “mismatch”, a range (maximum of occurrence of “mismatch”) that can be accepted as the semiconductor integrated circuit D (hereinafter referred to as mismatch probability) (maximum) Value and minimum value) are set in advance (step A1).
 半導体集積回路Dが動作を開始すると、クロック制御回路CCは、動作中における不一致確率を算出し、該不一致確率が予め設定された許容可能な範囲内にあるか否かを判定する(ステップA2)。算出した不一致確率が予め設定された許容可能な範囲内にある場合、クロック制御回路CCは、所定時間の経過後にステップA2の処理を再び実行する。 When the semiconductor integrated circuit D starts operating, the clock control circuit CC calculates a mismatch probability during operation, and determines whether or not the mismatch probability is within a preset allowable range (step A2). . When the calculated mismatch probability is within an allowable range set in advance, the clock control circuit CC executes the process of step A2 again after a predetermined time has elapsed.
 算出した不一致確率が予め設定された許容可能な範囲外である場合、クロック制御回路CCは、該不一致確率が予め設定された許容範囲の最大値よりも大きいか否かを判定する(ステップA3)。 When the calculated mismatch probability is outside the preset allowable range, the clock control circuit CC determines whether or not the mismatch probability is greater than the maximum value of the preset allowable range (step A3). .
 不一致確率が予め設定された許容範囲の最大値よりも大きい場合、クロック制御回路CCは、回路速度が遅いために誤動作が起きていると判定し、電源制御回路PMにより半導体集積回路Dに供給する電源電圧を上げて回路速度を速くする(ステップA4)。 When the mismatch probability is larger than the preset maximum value of the allowable range, the clock control circuit CC determines that a malfunction has occurred because the circuit speed is low, and supplies the semiconductor integrated circuit D by the power supply control circuit PM. The power supply voltage is increased to increase the circuit speed (step A4).
 一方、算出した不一致確率が予め設定された許容範囲の最小値よりも小さい場合、クロック制御回路CCは、回路速度を遅くすることが可能であると判定し、電源制御回路PMにより半導体集積回路Dに供給する電源電圧を下げて回路速度を遅くする(ステップA5)。そして、ステップA2の処理へ戻ってステップA2からA5の処理を繰り返す。 On the other hand, when the calculated mismatch probability is smaller than the minimum value of the preset allowable range, the clock control circuit CC determines that the circuit speed can be reduced, and the power supply control circuit PM performs the semiconductor integrated circuit D. The circuit speed is decreased by lowering the power supply voltage supplied to (step A5). And it returns to the process of step A2 and repeats the process of step A2 to A5.
 本実施例の半導体集積回路によれば、誤動作の原因に応じて半導体集積回路Dに供給する電源電圧を変更することで、誤動作を回避することが可能であると共に、半導体集積回路Dとして許容可能な範囲内で電源電圧を下げることができるため、回路速度を所要の範囲内で維持しつつ消費電力を低減できる。 According to the semiconductor integrated circuit of this embodiment, it is possible to avoid the malfunction by changing the power supply voltage supplied to the semiconductor integrated circuit D according to the cause of the malfunction, and tolerate the semiconductor integrated circuit D. Since the power supply voltage can be lowered within the required range, the power consumption can be reduced while maintaining the circuit speed within the required range.
 なお、本実施例では、半導体集積回路の内部に電源制御回路PMを備える構成例を示しているが、電源制御回路PMは半導体集積回路の外部に独立して備えていてもよい。その場合、電源制御回路PMは、比較回路または比較記憶回路の出力値に応じてクロック制御回路CCで生成された制御信号を受け取り、該制御信号にしたがって半導体集積回路Dへ供給する電源電圧を変更すればよい。 In this embodiment, a configuration example in which the power supply control circuit PM is provided inside the semiconductor integrated circuit is shown. However, the power supply control circuit PM may be provided outside the semiconductor integrated circuit independently. In this case, the power supply control circuit PM receives the control signal generated by the clock control circuit CC according to the output value of the comparison circuit or the comparison storage circuit, and changes the power supply voltage supplied to the semiconductor integrated circuit D according to the control signal do it.
 また、本実施例では、比較回路または比較記憶回路の出力値に応じて半導体集積回路Dに供給する電源電圧を変更することで回路速度を制御する例を示しているが、半導体集積回路Dの回路性能が変更できれば、電源電圧を変更する構成に限定されるものではない。 In the present embodiment, an example is shown in which the circuit speed is controlled by changing the power supply voltage supplied to the semiconductor integrated circuit D in accordance with the output value of the comparison circuit or the comparison storage circuit. If the circuit performance can be changed, the configuration is not limited to changing the power supply voltage.
 例えば、図33Bに示すように、本実施例の半導体集積回路は、比較回路または比較記憶回路の出力値に応じて半導体集積回路Dの周囲温度を制御するための温度制御装置TCを備えていてもよい。 For example, as shown in FIG. 33B, the semiconductor integrated circuit of this embodiment includes a temperature control device TC for controlling the ambient temperature of the semiconductor integrated circuit D in accordance with the output value of the comparison circuit or the comparison storage circuit. Also good.
 その場合、クロック制御回路CCは、比較回路または比較記憶回路の出力値が2つの論理回路の出力の「不一致」を示している場合、上記と同様に半導体集積回路Dが誤動作していると判定してその原因を判定する。 In this case, the clock control circuit CC determines that the semiconductor integrated circuit D is malfunctioning in the same manner as described above when the output value of the comparison circuit or the comparison storage circuit indicates “mismatch” between the outputs of the two logic circuits. And determine the cause.
 そして、誤動作の原因がセットアップ違反、すなわち演算回路の遅延時間の増大であると判定した場合、温度制御装置TCにより半導体集積回路Dの周囲温度を下げて回路性能を向上させ、誤動作の原因がホールド違反、すなわち演算回路の遅延時間の減少であると判定した場合、温度制御装置TCにより半導体集積回路Dの周囲温度を上昇させて回路性能を低下させればよい。温度制御装置TCには、例えばペルチェ素子等の温度制御素子、あるいはヒータやヒートシンク等を用いることができる。
(第21実施例)
 図35は第21実施例の半導体集積回路の構成を示すブロック図である。
If it is determined that the cause of the malfunction is a setup violation, that is, an increase in the delay time of the arithmetic circuit, the ambient temperature of the semiconductor integrated circuit D is lowered by the temperature control device TC to improve the circuit performance, and the cause of the malfunction is held. If it is determined that this is a violation, that is, the delay time of the arithmetic circuit is reduced, the ambient temperature of the semiconductor integrated circuit D may be raised by the temperature control device TC to lower the circuit performance. For the temperature control device TC, for example, a temperature control element such as a Peltier element, a heater, a heat sink, or the like can be used.
(21st embodiment)
FIG. 35 is a block diagram showing the configuration of the semiconductor integrated circuit of the twenty-first embodiment.
 図35に示すように、第21実施例の半導体集積回路は、図33Aに示した第20実施例の半導体集積回路に加えて、不揮発メモリMEMを備えた構成である。半導体集積回路Dは、第1実施例~第18実施例で示した半導体集積回路であり、クロック制御回路CC、クロック生成回路CGおよび電源制御回路PMの構成および動作は第19実施例および第20実施例に示した半導体集積回路と同様である。 As shown in FIG. 35, the semiconductor integrated circuit of the 21st embodiment has a configuration including a nonvolatile memory MEM in addition to the semiconductor integrated circuit of the 20th embodiment shown in FIG. 33A. The semiconductor integrated circuit D is the semiconductor integrated circuit shown in the first to eighteenth embodiments. The configurations and operations of the clock control circuit CC, the clock generation circuit CG, and the power supply control circuit PM are the nineteenth embodiment and the twentieth embodiment. This is the same as the semiconductor integrated circuit shown in the embodiment.
 不揮発メモリMEMは、クロック制御回路CCに接続され、クロック制御回路CCで実行したクロック生成回路CGや電源制御回路PMに対する制御指示(制御内容)が保存される。 The nonvolatile memory MEM is connected to the clock control circuit CC, and stores control instructions (control contents) for the clock generation circuit CG and the power supply control circuit PM executed by the clock control circuit CC.
 クロック制御回路CCは、動作中および/または動作停止前に不揮発性メモリMEMに制御内容を保存し、次に動作を開始する前または動作中、不揮発性メモリMEMに保存された制御内容を読み込み、その内容にしたがってクロック生成回路CGや電源制御回路PMを制御する。このように制御内容を保存することで、クロック制御回路CCは、動作停止前と同じ条件のクロック信号を生成できる。
(第22実施例)
 図36は第22実施例の半導体集積回路の構成を示すブロック図である。
The clock control circuit CC stores the control content in the nonvolatile memory MEM during operation and / or before the operation is stopped, and reads the control content stored in the nonvolatile memory MEM before or during the next operation. The clock generation circuit CG and the power supply control circuit PM are controlled according to the contents. By saving the control contents in this way, the clock control circuit CC can generate a clock signal under the same conditions as before the operation stop.
(Twenty-second embodiment)
FIG. 36 is a block diagram showing the configuration of the semiconductor integrated circuit of the twenty-second embodiment.
 第1実施例~第18実施例で示した半導体集積回路は、高い信頼性が要求されない状況で動作させる場合、必ずしも二重化された論理回路の両方を動作させる必要はない。 When the semiconductor integrated circuits shown in the first to eighteenth embodiments are operated in a situation where high reliability is not required, it is not always necessary to operate both of the duplicated logic circuits.
 第22実施例は、半導体集積回路Dが備える2つの論理回路のうち、一方の論理回路に対するクロック信号および電源電圧の供給をそれぞれ停止する例である。本実施例の半導体集積回路の構成は、図33A、Bに示した第20実施例や図35に示した第21実施例と同様であるため、その説明は省略する。 The twenty-second embodiment is an example in which the supply of the clock signal and the power supply voltage to one of the two logic circuits provided in the semiconductor integrated circuit D is stopped. The configuration of the semiconductor integrated circuit of this embodiment is the same as that of the twentieth embodiment shown in FIGS. 33A and 33B and the twenty-first embodiment shown in FIG.
 図36では、各論理回路が備える複数の記憶回路および演算回路を、模式的に二つの記憶回路と一つの演算回路とによって示している。 In FIG. 36, a plurality of memory circuits and arithmetic circuits included in each logic circuit are schematically shown by two memory circuits and one arithmetic circuit.
 図36に示すように、第22実施例の半導体集積回路では、クロック制御回路CCの制御により、クロック生成回路CGから記憶回路FF0A,FF1Aに供給するクロック信号CKA,CKA’を停止させると共に、電源制御回路PMから該記憶回路FF0A,FF1A及び演算回路L1Aに供給する電源電を停止する。なお、本実施例では、クロック信号及び電源電圧をそれぞれ停止しているが、クロック信号または電源電圧のいずれか一方のみを停止してもよい。 As shown in FIG. 36, in the semiconductor integrated circuit of the twenty-second embodiment, the clock signals CKA and CKA ′ supplied from the clock generation circuit CG to the memory circuits FF0A and FF1A are stopped and the power supply is controlled by the clock control circuit CC. The power supply supplied from the control circuit PM to the memory circuits FF0A and FF1A and the arithmetic circuit L1A is stopped. In this embodiment, the clock signal and the power supply voltage are stopped, but only one of the clock signal and the power supply voltage may be stopped.
 本実施例のように、半導体集積回路Dが備える2つの論理回路のうち、一方の論理回路に対するクロック信号を停止すれば、該論理回路が備える記憶回路や演算回路の動作が停止するため、半導体集積回路Dの消費電流を低減できる。 As in this embodiment, when the clock signal for one of the two logic circuits included in the semiconductor integrated circuit D is stopped, the operation of the memory circuit and the arithmetic circuit included in the logic circuit is stopped. The current consumption of the integrated circuit D can be reduced.
 また、論理回路に対するクロック信号を停止すると共に該論理回路に対する電源電圧を停止することで、記憶回路や演算回路の静止状態(動作を停止している状態)における消費電流も無くなるため、半導体集積回路Dの消費電力をさらに低減できる。
(第23実施例)
 図37は第23実施例の半導体集積回路の試験手順を示すフローチャートである。
In addition, since the clock signal to the logic circuit is stopped and the power supply voltage to the logic circuit is stopped, the current consumption in the stationary state (the operation is stopped) of the memory circuit and the arithmetic circuit is eliminated. The power consumption of D can be further reduced.
(23rd embodiment)
FIG. 37 is a flowchart showing the test procedure of the semiconductor integrated circuit of the 23rd embodiment.
 第23実施例では、第19実施例~第22実施例で示した半導体集積回路のセットアップ時間やホールド時間が所定の仕様値を満たすか否かを判定するための試験方法の例を示す。 The twenty-third embodiment shows an example of a test method for determining whether the setup time and hold time of the semiconductor integrated circuit shown in the nineteenth embodiment to the twenty-second embodiment satisfy a predetermined specification value.
 図37に示すように、本実施例では、まず第19実施例~第22実施例で示したクロック制御回路CCにより、被試験対象となる半導体集積回路のセットアップ時間の仕様値を満たすようにクロック信号の周期差(例えば、図4に示したクロック信号CKAの第1の周期T1Aと第2の周期T2Aの差)を所要の値に設定する。また、クロック制御回路CCにより、被試験対象となる半導体集積回路のホールド時間の仕様値を満たすようにクロック信号の位相差(例えば、図4に示したクロック信号CKAの第1の周期T1Aとクロック信号CKA'の第1の周期T1A'との差)を所要の値に設定する(ステップB1)。 As shown in FIG. 37, in this embodiment, first, the clock control circuit CC shown in the nineteenth embodiment to the twenty-second embodiment uses the clock so as to satisfy the specification value of the setup time of the semiconductor integrated circuit to be tested. The signal cycle difference (for example, the difference between the first cycle T1A and the second cycle T2A of the clock signal CKA shown in FIG. 4) is set to a required value. Further, the clock control circuit CC causes the clock signal phase difference (for example, the first cycle T1A of the clock signal CKA shown in FIG. 4 and the clock so as to satisfy the hold time specification value of the semiconductor integrated circuit to be tested). The difference between the signal CKA ′ and the first period T1A ′ is set to a required value (step B1).
 この条件の基で、予め作成されたテストパターンのうち、任意のテストベクトルを被試験対象の半導体集積回路へ入力し、クロック制御回路CCにより、比較回路または比較記憶回路の出力値を観測する(ステップB2)。 Under this condition, an arbitrary test vector of test patterns created in advance is input to the semiconductor integrated circuit to be tested, and the output value of the comparison circuit or comparison storage circuit is observed by the clock control circuit CC ( Step B2).
 ここで、比較回路または比較記憶回路の出力値に「不一致」を示す値が発生した場合、クロック制御回路CCは、第1実施例~第18実施例で示した各種の条件に基づき誤動作の原因がセットアップ違反(セットアップエラー)であるか否かを判定する(ステップB3)。該原因がセットアップ違反、すなわち演算回路の遅延時間の増大である場合、被試験対象の半導体集積回路はセットアップ時間の仕様値を満たしていないと判断できる。 Here, when a value indicating “mismatch” occurs in the output value of the comparison circuit or the comparison storage circuit, the clock control circuit CC causes the malfunction based on various conditions shown in the first to eighteenth embodiments. Is a setup violation (setup error) (step B3). If the cause is a setup violation, that is, an increase in the delay time of the arithmetic circuit, it can be determined that the semiconductor integrated circuit to be tested does not satisfy the setup time specification value.
 次に、クロック制御回路CCは、第1実施例~第18実施例で示した各種の条件に基づき誤動作の原因がホールド違反(ホールドエラー)であるか否かを判定する(ステップB4)。該原因がホールド違反、すなわち演算回路の遅延時間の減少である場合、被試験対象の半導体集積回路はホールド時間の仕様値を満たしていないと判断できる。 Next, the clock control circuit CC determines whether or not the cause of the malfunction is a hold violation (hold error) based on the various conditions shown in the first to eighteenth embodiments (step B4). If the cause is a hold violation, that is, a decrease in the delay time of the arithmetic circuit, it can be determined that the semiconductor integrated circuit to be tested does not satisfy the hold time specification value.
 比較回路または比較記憶回路の出力値に「不一致」を示す値が発生しない場合、クロック制御回路CCは、予め作成されたテストパターンに含まれる全てのテストベクトルに対する処理を実施したか否かを判定する(ステップB5)。全てのテストベクトルに対する処理を実施していない場合は、ステップB2に戻ってステップB2~B5の処理を繰り返す。 When the value indicating “mismatch” does not occur in the output value of the comparison circuit or the comparison storage circuit, the clock control circuit CC determines whether or not the processing for all the test vectors included in the previously created test pattern has been performed. (Step B5). If all the test vectors have not been processed, the process returns to step B2 and the processes of steps B2 to B5 are repeated.
 全てのテストベクトルに対する処理を終了し、全てのテストベクトルの入力に対して「不一致」を示す値が発生していない場合、被試験対象の半導体集積回路はセットアップ時間の仕様値およびホールド時間の仕様値をそれぞれ満たしていると判断できる。 When the processing for all test vectors is completed and no value indicating “mismatch” has occurred for all test vector inputs, the semiconductor integrated circuit under test has a setup time specification value and a hold time specification value. It can be determined that each value is satisfied.
 一般に、半導体集積回路のセットアップ時間やホールド時間を専用の試験装置を用いてテストする場合、該半導体集積回路に供給するクロックの周期や位相を細かく設定できる高価な試験装置が必要となる。本実施例で示すテスト方法によれば、半導体集積回路に予め備えるクロック制御回路CCおよびクロック生成回路CGを用いてクロック信号の周期や位相を変更できるため、安価な試験装置で被試験対象の半導体集積回路が所要のセットアップ時間やホールド時間を満たすか否かを判定できる。 Generally, when testing the setup time and hold time of a semiconductor integrated circuit using a dedicated test device, an expensive test device capable of finely setting the cycle and phase of a clock supplied to the semiconductor integrated circuit is required. According to the test method shown in this embodiment, the cycle and phase of the clock signal can be changed using the clock control circuit CC and the clock generation circuit CG provided in advance in the semiconductor integrated circuit. It can be determined whether or not the integrated circuit satisfies a required setup time and hold time.
 通常、複数のクロック信号で動作しない半導体集積回路では、それらクロック信号どうしの位相差を制御できないためホールド時間の試験を実施できない。それに対して本実施例の半導体集積回路では、複数のクロック信号の位相差を制御できるため、ホールド時間のテストが可能である。 Usually, in a semiconductor integrated circuit that does not operate with a plurality of clock signals, the phase difference between the clock signals cannot be controlled, so the hold time cannot be tested. On the other hand, in the semiconductor integrated circuit of this embodiment, the phase difference between a plurality of clock signals can be controlled, so that the hold time can be tested.
 なお、図37に示した処理は、例えば図33Aに示した電源制御回路PMにより半導体集積回路Dに供給する電源電圧をその動作保証範囲内の最小電圧や最大電圧に設定して実行してもよく、図33Bに示した温度制御装置TCにより半導体集積回路Dの周囲温度をその動作保証範囲内の最低温度や最高温度に設定して実行してもよい。このように半導体集積回路Dに供給する電源電圧や半導体集積回路Dの周囲温度を変更して半導体集積回路Dの試験を実施すれば、非試験対象の半導体集積回路が、電源電圧や温度の動作保証範囲内で動作するか否かも合わせて判定することができる。
(第24実施例)
 図38は第24実施例の半導体集積回路の試験手順を示すフローチャートである。
The processing shown in FIG. 37 may be executed by setting the power supply voltage supplied to the semiconductor integrated circuit D by the power supply control circuit PM shown in FIG. 33A, for example, to the minimum voltage or the maximum voltage within the guaranteed operation range. Alternatively, the temperature control device TC shown in FIG. 33B may be executed by setting the ambient temperature of the semiconductor integrated circuit D to the lowest temperature or the highest temperature within the guaranteed operating range. As described above, if the semiconductor integrated circuit D is tested by changing the power supply voltage supplied to the semiconductor integrated circuit D and the ambient temperature of the semiconductor integrated circuit D, the non-test target semiconductor integrated circuit operates at the power supply voltage and temperature. Whether or not to operate within the guaranteed range can also be determined.
(24th embodiment)
FIG. 38 is a flowchart showing the test procedure of the semiconductor integrated circuit of the twenty-fourth embodiment.
 第24実施例では、第19実施例~第22実施例で示した半導体集積回路のセットアップ時間やホールド時間を求めるための試験方法の例を示す。 The twenty-fourth embodiment shows an example of a test method for obtaining the setup time and hold time of the semiconductor integrated circuit shown in the nineteenth embodiment to the twenty-second embodiment.
 図38に示すように、本実施例では、まず第19実施例~第23実施例で示したクロック制御回路CCにより、クロック信号の周期差(例えば、図4に示したクロック信号CKAの第1の周期T1Aと第2の周期T2Aの差)およびクロック信号の位相差(例えば、図4に示したクロック信号CKAの第1の周期T1Aとクロック信号CKA'の第1の周期T1A'との差)をそれぞれ仮の値に設定する(ステップC1)。ここで、クロック信号の周期差は被試験対象となる半導体集積回路のセットアップ時間を測定するためのものであり、クロック信号の位相差は被試験対象となる半導体集積回路のホールド時間を測定するためのものである。 As shown in FIG. 38, in this embodiment, first, the clock control circuit CC shown in the nineteenth embodiment to the twenty-third embodiment uses the clock signal cycle difference (for example, the first difference of the clock signal CKA shown in FIG. 4). Difference between the period T1A and the second period T2A) and the phase difference between the clock signals (for example, the difference between the first period T1A of the clock signal CKA shown in FIG. 4 and the first period T1A ′ of the clock signal CKA ′). ) Are set to temporary values (step C1). Here, the clock signal period difference is for measuring the setup time of the semiconductor integrated circuit to be tested, and the clock signal phase difference is for measuring the hold time of the semiconductor integrated circuit to be tested. belongs to.
 この条件の基で、予め作成されたテストパターンのうち、任意のテストベクトルを被試験対象の半導体集積回路へ入力し、クロック制御回路CCにより、比較回路または比較記憶回路の出力値を観測する(ステップC2)。 Under this condition, an arbitrary test vector of test patterns created in advance is input to the semiconductor integrated circuit to be tested, and the output value of the comparison circuit or comparison storage circuit is observed by the clock control circuit CC ( Step C2).
 ここで、比較回路または比較記憶回路の出力値に「不一致」を示す値が発生した場合、クロック制御回路CCは、第1実施例~第18実施例で示した各種の条件から誤動作の原因がセットアップ違反(セットアップエラー)であるか否かを判定する(ステップC3)。該原因がセットアップ違反、すなわち演算回路の遅延時間の増大である場合、仮に設定した周期差をもつクロック信号ではセットアップ違反が起きると判断できる。その場合、クロック制御回路CCは、被試験対象の半導体集積回路に供給する複数のクロック信号の周期差を小さくし(ステップC6)、ステップC2の処理に戻ってステップC2~C3の処理を繰り返す。 Here, when a value indicating “mismatch” occurs in the output value of the comparison circuit or the comparison memory circuit, the clock control circuit CC may cause a malfunction due to various conditions described in the first to eighteenth embodiments. It is determined whether or not it is a setup violation (setup error) (step C3). When the cause is a setup violation, that is, an increase in the delay time of the arithmetic circuit, it can be determined that a setup violation occurs with a clock signal having a temporarily set period difference. In that case, the clock control circuit CC reduces the period difference between the plurality of clock signals supplied to the semiconductor integrated circuit to be tested (step C6), returns to the process of step C2, and repeats the processes of steps C2 to C3.
 誤動作の原因がセットアップ違反でない場合、クロック制御回路CCは、第1実施例~第18実施例で示した各種の条件から誤動作の原因がホールド違反(ホールドエラー)であるか否かを判定する(ステップC4)。該原因がホールド違反、すなわち演算回路の遅延時間の減少である場合、仮に設定した位相差をもつクロック信号ではホールド違反が起きると判断できる。その場合、クロック制御回路CCは、被試験対象の半導体集積回路に供給する複数のクロック信号の位相差を小さくし(ステップC7)、ステップC2に戻ってステップC2~C4の処理を繰り返す。 When the cause of the malfunction is not a setup violation, the clock control circuit CC determines whether the cause of the malfunction is a hold violation (hold error) from the various conditions shown in the first to eighteenth embodiments ( Step C4). When the cause is a hold violation, that is, a reduction in the delay time of the arithmetic circuit, it can be determined that a hold violation occurs in a clock signal having a temporarily set phase difference. In that case, the clock control circuit CC reduces the phase difference between the plurality of clock signals supplied to the semiconductor integrated circuit to be tested (step C7), returns to step C2, and repeats the processing of steps C2 to C4.
 比較回路または比較記憶回路の出力値に「不一致」を示す値が発生しない場合、クロック制御回路CCは、予め作成されたテストパターンに含まれる全てのテストベクトルに対する判定処理を実施したか否かを判定する(ステップC5)。全てのテストベクトルに対する判定処理を実施していない場合は、ステップC2に戻ってステップC2~C5の処理を繰り返す。 When a value indicating “mismatch” does not occur in the output value of the comparison circuit or the comparison storage circuit, the clock control circuit CC determines whether or not the determination process has been performed for all the test vectors included in the test pattern created in advance. Determine (step C5). If the determination process for all the test vectors has not been performed, the process returns to step C2 and the processes of steps C2 to C5 are repeated.
 全てのテストベクトルに対するステップC2~C5の処理を実施している場合、クロック制御回路CCは、クロック生成回路CGで生成している各クロック信号の周期が所定の精度(以下、時間精度と称す)を満たしているか否かを判定する(ステップC8)。 When the processing of steps C2 to C5 is performed on all test vectors, the clock control circuit CC has a predetermined accuracy (hereinafter referred to as time accuracy) for the period of each clock signal generated by the clock generation circuit CG. Is determined (step C8).
 クロック生成回路CGで生成している各クロック信号が所定の時間精度を満たしている場合、クロック制御回路CCは処理を終了する。このとき、被試験対象の半導体集積回路に供給している複数のクロック信号の周期差が被試験対象の半導体集積回路のセットアップ時間であり、クロック信号間の位相差が被試験対象の半導体集積回路のホールド時間である。 When each clock signal generated by the clock generation circuit CG satisfies a predetermined time accuracy, the clock control circuit CC ends the process. At this time, the period difference between the plurality of clock signals supplied to the semiconductor integrated circuit under test is the setup time of the semiconductor integrated circuit under test, and the phase difference between the clock signals is the semiconductor integrated circuit under test. Hold time.
 クロック生成回路CGで生成している各クロック信号が所定の時間精度を満たしていない場合、クロック制御回路CCは、被試験対象の半導体集積回路に供給している複数のクロック信号の周期差を大きくする(ステップC9)。また、クロック制御回路CCは、被試験対象の半導体集積回路に供給している複数のクロック信号の位相差を大きくし(ステップC10)、ステップC2に戻ってステップC2~C10の処理を繰り返す。 When each clock signal generated by the clock generation circuit CG does not satisfy the predetermined time accuracy, the clock control circuit CC increases the period difference between the plurality of clock signals supplied to the semiconductor integrated circuit to be tested. (Step C9). Further, the clock control circuit CC increases the phase difference between the plurality of clock signals supplied to the semiconductor integrated circuit to be tested (step C10), returns to step C2, and repeats the processing of steps C2 to C10.
 本実施例で示す試験方法によれば、半導体集積回路が備えるクロック制御回路CCおよびクロック生成回路CGを用いてクロック信号の周期や位相を変更できるため、安価な試験装置で被試験対象となる半導体集積回路のセットアップ時間やホールド時間を測定できる。 According to the test method shown in this embodiment, since the clock signal cycle and phase can be changed using the clock control circuit CC and the clock generation circuit CG included in the semiconductor integrated circuit, the semiconductor to be tested with an inexpensive test apparatus The setup time and hold time of integrated circuits can be measured.
 通常、複数のクロック信号で動作しない半導体集積回路では、それらクロック信号どうしの位相差を制御できないためホールド時間の試験を実施できない。それに対して本実施例の半導体集積回路では、複数のクロック信号の位相差を制御できるため、ホールド時間のテストが可能である。 Usually, in a semiconductor integrated circuit that does not operate with a plurality of clock signals, the phase difference between the clock signals cannot be controlled, so the hold time cannot be tested. On the other hand, in the semiconductor integrated circuit of this embodiment, the phase difference between a plurality of clock signals can be controlled, so that the hold time can be tested.
 なお、本実施例においても、第23実施例と同様に、図38に示した処理は、例えば図33Aに示した電源制御回路PMにより半導体集積回路Dに供給する電源電圧をその動作保証範囲内の最小電圧や最大電圧に設定して実行してもよく、図33Bに示した温度制御装置TCにより半導体集積回路Dの周囲温度をその動作保証範囲内の最低温度や最高温度に設定して実行してもよい。このように半導体集積回路Dに供給する電源電圧や半導体集積回路Dの周囲温度を変更して半導体集積回路Dの試験を実施すれば、非試験対象の半導体集積回路が、電源電圧や温度の動作保証範囲内で動作するか否かも合わせて判定することができる。 In the present embodiment, as in the twenty-third embodiment, the processing shown in FIG. 38 is performed within the guaranteed operating range for the power supply voltage supplied to the semiconductor integrated circuit D by the power supply control circuit PM shown in FIG. 33A, for example. The minimum voltage or the maximum voltage may be set, and the temperature control device TC shown in FIG. 33B may be used to set the ambient temperature of the semiconductor integrated circuit D to the minimum or maximum temperature within the guaranteed operating range. May be. As described above, if the semiconductor integrated circuit D is tested by changing the power supply voltage supplied to the semiconductor integrated circuit D and the ambient temperature of the semiconductor integrated circuit D, the non-test target semiconductor integrated circuit operates at the power supply voltage and temperature. Whether or not to operate within the guaranteed range can also be determined.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。 As mentioned above, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2008年8月1日に出願された特願2008-199483号及び2009年2月9日に出願された特願2009-027420号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-199483 filed on August 1, 2008 and Japanese Patent Application No. 2009-027420 filed on February 9, 2009. Get everything here.

Claims (53)

  1.  所定の演算処理を実行する第1の演算回路、前記第1の演算回路の入力に接続された、第1のクロック信号に同期して入力値を保持して出力する第1の記憶回路、および前記第1の演算回路の出力に接続された、第2のクロック信号に同期して入力値を保持して出力する第2の記憶回路を備えた第1の論理回路と、
     前記第1の演算回路と同一の演算処理を実行する第2の演算回路、前記第2の演算回路の入力に接続された、第3のクロック信号に同期して入力値を保持して出力する第3の記憶回路、および前記第2の演算回路の出力に接続された、第4のクロック信号に同期して入力値を保持して出力する第4の記憶回路を備えた第2の論理回路と、
     前記第2の記憶回路の出力値と前記第4の記憶回路の出力値とが一致しているか否かの比較結果を出力する第1の比較回路と、
    を有し、
     前記第1、第2、第3及び第4のクロック信号は、第1の周期と第2の周期とを交互に繰り返す信号であり、それぞれの前記第1の周期の開始が一致し、かつ前記第2の周期の終了が一致し、
     前記第1、第2、第3及び第4のクロック信号のうち、少なくとも一つは前記第1の周期と前記第2の周期とが異なる長さであり、少なくとも一つは他のクロック信号と異なる信号パターンである半導体集積回路。
    A first arithmetic circuit that executes predetermined arithmetic processing, a first memory circuit that is connected to an input of the first arithmetic circuit and holds and outputs an input value in synchronization with a first clock signal; and A first logic circuit including a second memory circuit connected to an output of the first arithmetic circuit and holding and outputting an input value in synchronization with a second clock signal;
    A second arithmetic circuit that executes the same arithmetic processing as the first arithmetic circuit, and holds and outputs an input value in synchronization with a third clock signal connected to the input of the second arithmetic circuit. A second logic circuit comprising a third memory circuit and a fourth memory circuit connected to the output of the second arithmetic circuit and holding and outputting an input value in synchronization with a fourth clock signal When,
    A first comparison circuit that outputs a comparison result as to whether or not the output value of the second storage circuit and the output value of the fourth storage circuit match;
    Have
    The first, second, third, and fourth clock signals are signals that alternately repeat a first period and a second period, and the start of each of the first periods coincides, and The end of the second cycle coincides,
    At least one of the first, second, third, and fourth clock signals has a length different from the first period and the second period, and at least one of the other clock signals and Semiconductor integrated circuit with different signal patterns.
  2.  所定のクロック信号に同期して前記第1の比較回路の出力値を保持して出力する第1の比較記憶回路をさらに有する請求項1記載の半導体集積回路。 2. The semiconductor integrated circuit according to claim 1, further comprising a first comparison memory circuit that holds and outputs an output value of the first comparison circuit in synchronization with a predetermined clock signal.
  3.  前記第1、2、3または第4のクロック信号を所定の時間だけ遅延させた信号を前記第1の比較記憶回路へクロック信号として供給する遅延回路をさらに有する請求項2記載の半導体集積回路。 3. The semiconductor integrated circuit according to claim 2, further comprising a delay circuit that supplies a signal obtained by delaying the first, second, third, or fourth clock signal by a predetermined time to the first comparison memory circuit as a clock signal.
  4.  前記第1、2、3または第4のクロック信号を反転させた信号を前記第1の比較記憶回路へクロック信号として供給する反転回路をさらに有する請求項2記載の半導体集積回路。 3. The semiconductor integrated circuit according to claim 2, further comprising an inverting circuit that supplies a signal obtained by inverting the first, second, third, or fourth clock signal to the first comparison memory circuit as a clock signal.
  5.  前記第1の記憶回路の出力値と前記第3の記憶回路の出力値とが一致しているか否かの比較結果を出力する第2の比較回路をさらに有する請求項1記載の半導体集積回路。 2. The semiconductor integrated circuit according to claim 1, further comprising: a second comparison circuit that outputs a comparison result as to whether or not an output value of the first storage circuit and an output value of the third storage circuit match.
  6.  所定のクロック信号に同期して前記第1の比較回路の出力値を保持して出力する第1の比較記憶回路と、
     所定のクロック信号に同期して前記第2の比較回路の出力値を保持して出力する第2の比較記憶回路と、
    をさらに有する請求項5記載の半導体集積回路。
    A first comparison storage circuit that holds and outputs an output value of the first comparison circuit in synchronization with a predetermined clock signal;
    A second comparison storage circuit that holds and outputs an output value of the second comparison circuit in synchronization with a predetermined clock signal;
    The semiconductor integrated circuit according to claim 5, further comprising:
  7.  前記第1、2、3または第4のクロック信号を所定の時間だけ遅延させた信号を前記第1の比較記憶回路及び前記第2の比較記憶回路へクロック信号として供給する遅延回路をさらに有する請求項6記載の半導体集積回路。 And a delay circuit that supplies a signal obtained by delaying the first, second, third, or fourth clock signal by a predetermined time to the first comparison memory circuit and the second comparison memory circuit as a clock signal. Item 7. The semiconductor integrated circuit according to Item 6.
  8.  前記第1、2、3または第4のクロック信号を反転させた信号を前記第1の比較記憶回路及び前記第2の比較記憶回路へクロック信号として供給する反転回路をさらに有する請求項6記載の半導体集積回路。 7. The inverter circuit according to claim 6, further comprising an inverting circuit that supplies a signal obtained by inverting the first, second, third, or fourth clock signal to the first comparison memory circuit and the second comparison memory circuit as a clock signal. Semiconductor integrated circuit.
  9.  所定の演算処理を実行する複数の第1の演算回路及び複数の前記第1の演算回路と交互に接続される複数の第1の記憶回路を備えた第1の論理回路と、
     前記第1の演算回路と同一の演算処理を実行する第2の演算回路及び複数の前記第2の演算回路と交互に接続される複数の第2の記憶回路を備えた第2の論理回路と、
     前記第1の記憶回路の出力値と前記第2の記憶回路の出力値とが一致しているか否かの比較結果をそれぞれ出力する複数の比較回路と、
    を有し、
     複数の前記第1の記憶回路に第1のクロック信号及び第2のクロック信号が交互に供給され、
     複数の前記第2の記憶回路に第3のクロック信号及び第4のクロック信号が交互に供給され、
     前記第1、第2、第3及び第4のクロック信号は、第1の周期と第2の周期とを交互に繰り返す信号であり、それぞれの前記第1の周期の開始が一致し、かつ前記第2の周期の終了が一致し、
     前記第1、第2、第3及び第4のクロック信号のうち、少なくとも一つは前記第1の周期と前記第2の周期とが異なる長さであり、少なくとも一つは他のクロック信号と異なる信号パターンである半導体集積回路。
    A first logic circuit including a plurality of first arithmetic circuits that execute predetermined arithmetic processing and a plurality of first memory circuits that are alternately connected to the plurality of first arithmetic circuits;
    A second logic circuit including a second arithmetic circuit that executes the same arithmetic processing as the first arithmetic circuit and a plurality of second memory circuits that are alternately connected to the plurality of second arithmetic circuits; ,
    A plurality of comparison circuits each outputting a comparison result as to whether or not the output value of the first storage circuit and the output value of the second storage circuit match;
    Have
    The first clock signal and the second clock signal are alternately supplied to the plurality of first memory circuits,
    A third clock signal and a fourth clock signal are alternately supplied to the plurality of second memory circuits,
    The first, second, third, and fourth clock signals are signals that alternately repeat a first period and a second period, and the start of each of the first periods coincides, and The end of the second cycle coincides,
    At least one of the first, second, third, and fourth clock signals has a length different from the first period and the second period, and at least one of the other clock signals and Semiconductor integrated circuit with different signal patterns.
  10.  所定のクロック信号に同期して前記比較回路の出力値を保持して出力する複数の第1の比較記憶回路をさらに有する請求項9記載の半導体集積回路。 10. The semiconductor integrated circuit according to claim 9, further comprising a plurality of first comparison storage circuits that hold and output the output value of the comparison circuit in synchronization with a predetermined clock signal.
  11.  前記第1の比較記憶回路の出力が次段の第1の比較記憶回路の入力と接続されることでスキャンパスが形成された請求項10記載の半導体集積回路。 11. The semiconductor integrated circuit according to claim 10, wherein a scan path is formed by connecting an output of the first comparison memory circuit to an input of a first comparison memory circuit in the next stage.
  12.  前記第1、2、3または第4のクロック信号を所定の時間だけ遅延させた信号を前記第1の比較記憶回路へクロック信号として供給する遅延回路をさらに有する請求項10記載の半導体集積回路。 11. The semiconductor integrated circuit according to claim 10, further comprising a delay circuit that supplies a signal obtained by delaying the first, second, third, or fourth clock signal by a predetermined time as a clock signal to the first comparison memory circuit.
  13.  前記第1、2、3または第4のクロック信号を反転させた信号を前記第1の比較記憶回路へクロック信号として供給する反転回路をさらに有する請求項10記載の半導体集積回路。 11. The semiconductor integrated circuit according to claim 10, further comprising an inverting circuit that supplies a signal obtained by inverting the first, second, third, or fourth clock signal to the first comparison memory circuit as a clock signal.
  14.  複数の前記比較回路の出力値のうち、少なくとも一つの出力値が他の出力値と一致しないとき、不一致を示す信号を出力する多入力比較回路を有する請求項9記載の半導体集積回路。 10. The semiconductor integrated circuit according to claim 9, further comprising a multi-input comparison circuit that outputs a signal indicating a mismatch when at least one of the output values of the comparison circuit does not match another output value.
  15.  前記多入力比較回路の出力値を保持する第2の比較記憶回路をさらに有する請求項14記載の半導体集積回路。 15. The semiconductor integrated circuit according to claim 14, further comprising a second comparison memory circuit that holds an output value of the multi-input comparison circuit.
  16.  前記第1、2、3または第4のクロック信号を所定の時間だけ遅延させた信号を前記第2の比較記憶回路へクロック信号として供給する遅延回路をさらに有する請求項15記載の半導体集積回路。 16. The semiconductor integrated circuit according to claim 15, further comprising a delay circuit that supplies a signal obtained by delaying the first, second, third, or fourth clock signal by a predetermined time to the second comparison memory circuit as a clock signal.
  17.  前記第1、2、3または第4のクロック信号を反転させた信号を前記第2の比較記憶回路へクロック信号として供給する反転回路をさらに有する請求項15記載の半導体集積回路。 16. The semiconductor integrated circuit according to claim 15, further comprising an inverting circuit that supplies a signal obtained by inverting the first, second, third, or fourth clock signal to the second comparison memory circuit as a clock signal.
  18.  前記第1の比較回路の出力値及び故障診断対象及び故障要因の種類を指定するための情報である故障診断情報が入力される第1の故障判定回路と、
     所定のクロック信号に同期して前記第1の故障判定回路の出力値を保持して出力する第1の故障判定記憶回路と、
    を有する請求項1記載の半導体集積回路。
    A first failure determination circuit to which failure diagnosis information, which is information for designating the output value of the first comparison circuit, the failure diagnosis target, and the type of failure cause, is input;
    A first failure determination storage circuit that holds and outputs an output value of the first failure determination circuit in synchronization with a predetermined clock signal;
    The semiconductor integrated circuit according to claim 1, comprising:
  19.  前記第1、2、3または第4のクロック信号を所定の時間だけ遅延させた信号を前記第1の故障判定記憶回路へクロック信号として供給する遅延回路を有する請求項18記載の半導体集積回路。 19. The semiconductor integrated circuit according to claim 18, further comprising a delay circuit that supplies a signal obtained by delaying the first, second, third, or fourth clock signal by a predetermined time as a clock signal to the first failure determination storage circuit.
  20.  前記第1、2、3または第4のクロック信号を反転させた信号を前記第1の故障判定記憶回路へクロック信号として供給する反転回路をさらに有する請求項18記載の半導体集積回路。 19. The semiconductor integrated circuit according to claim 18, further comprising an inverting circuit that supplies a signal obtained by inverting the first, second, third, or fourth clock signal to the first failure determination storage circuit as a clock signal.
  21.  前記第1の記憶回路の出力値と前記第3の記憶回路の出力値とが一致しているか否かの比較結果を出力する第2の比較回路と、
     前記第2の比較回路の出力値及び故障診断対象及び故障要因の種類を指定するための情報である故障診断情報入力が入力される第2の故障判定回路と、
     所定のクロック信号に同期して前記第2の故障判定回路の出力値を保持して出力する第2の故障判定記憶回路と、
    をさらに有する請求項18記載の半導体集積回路。
    A second comparison circuit that outputs a comparison result as to whether or not the output value of the first storage circuit and the output value of the third storage circuit match;
    A second failure determination circuit to which a failure diagnosis information input, which is information for designating the output value of the second comparison circuit, the failure diagnosis target, and the type of failure cause, is input;
    A second failure determination storage circuit that holds and outputs an output value of the second failure determination circuit in synchronization with a predetermined clock signal;
    The semiconductor integrated circuit according to claim 18, further comprising:
  22.  前記1の故障判定回路に前記第2の故障判定記憶回路の出力値が入力される請求項21記載の半導体集積回路。 The semiconductor integrated circuit according to claim 21, wherein an output value of the second failure determination storage circuit is input to the first failure determination circuit.
  23.  前記第1の故障判定記憶回路及び第2の故障判定記憶回路の出力値にしたがって、前記第1の演算回路の出力値を前記第2の記憶回路へ出力すると共に前記第2の演算回路の出力値を前記第4の記憶回路へ出力する、前記第1の演算回路の出力値を前記第2の記憶回路及び前記第4の記憶回路へ出力する、または前記第2の演算回路の出力値を前記第2の記憶回路及び前記第4の記憶回路へ出力する選択回路をさらに有する請求項21記載の半導体集積回路。 According to the output values of the first failure determination storage circuit and the second failure determination storage circuit, the output value of the first arithmetic circuit is output to the second storage circuit and the output of the second arithmetic circuit Output the value to the fourth memory circuit, output the output value of the first arithmetic circuit to the second memory circuit and the fourth memory circuit, or output the value of the second arithmetic circuit 22. The semiconductor integrated circuit according to claim 21, further comprising a selection circuit that outputs to the second memory circuit and the fourth memory circuit.
  24.  前記第1、2、3または第4のクロック信号を所定の時間だけ遅延させた信号を前記第1の故障判定記憶回路及び前記第2の故障判定記憶回路へクロック信号として供給する遅延回路を有する請求項21記載の半導体集積回路。 A delay circuit for supplying a signal obtained by delaying the first, second, third, or fourth clock signal by a predetermined time as a clock signal to the first failure determination storage circuit and the second failure determination storage circuit; The semiconductor integrated circuit according to claim 21.
  25.  前記第1、2、3または第4のクロック信号を反転させた信号を前記第1の故障判定記憶回路及び前記第2の故障判定記憶回路へクロック信号として供給する反転回路をさらに有する請求項21記載の半導体集積回路。 22. An inverting circuit for supplying a signal obtained by inverting the first, second, third, or fourth clock signal to the first failure determination storage circuit and the second failure determination storage circuit as a clock signal. The semiconductor integrated circuit as described.
  26.  前記比較回路の出力値及び故障診断対象及び故障要因の種類を指定するための情報である故障診断情報が入力される故障判定回路と、
     所定のクロック信号に同期して前記故障判定回路の出力値を保持して出力する故障判定記憶回路と、
    をさらに有する請求項9記載の半導体集積回路。
    A failure determination circuit to which failure diagnosis information, which is information for designating the output value of the comparison circuit, the failure diagnosis target, and the type of failure cause, is input;
    A failure determination storage circuit that holds and outputs an output value of the failure determination circuit in synchronization with a predetermined clock signal;
    The semiconductor integrated circuit according to claim 9, further comprising:
  27.  前記故障判定記憶回路の出力が次段の故障判定記憶回路の入力と接続されることでスキャンパスが形成された請求項26記載の半導体集積回路。 27. The semiconductor integrated circuit according to claim 26, wherein a scan path is formed by connecting an output of the failure determination storage circuit to an input of a failure determination storage circuit of a next stage.
  28.  前記第1、2、3または第4のクロック信号を所定の時間だけ遅延させた信号を前記故障判定記憶回路へクロック信号として供給する遅延回路を有する請求項26記載の半導体集積回路。 27. The semiconductor integrated circuit according to claim 26, further comprising a delay circuit that supplies a signal obtained by delaying the first, second, third, or fourth clock signal by a predetermined time to the failure determination storage circuit as a clock signal.
  29.  前記第1、2、3または第4のクロック信号を反転させた信号を前記故障判定記憶回路へクロック信号として供給する反転回路をさらに有する請求項26記載の半導体集積回路。 27. The semiconductor integrated circuit according to claim 26, further comprising an inverting circuit that supplies a signal obtained by inverting the first, second, third, or fourth clock signal to the failure determination storage circuit as a clock signal.
  30.  前記故障判定回路に次段の故障判定記憶回路の出力値が入力される請求項26記載の半導体集積回路。 27. The semiconductor integrated circuit according to claim 26, wherein an output value of a next-stage failure determination storage circuit is input to the failure determination circuit.
  31.  前記故障判定記憶回路の出力値にしたがって、前記第1の演算回路の出力値を前記第1の記憶回路へ出力すると共に前記第2の演算回路の出力値を前記第2の記憶回路へ出力する、前記第1の演算回路の出力値を前記第1の記憶回路及び前記第2の記憶回路へ出力する、または前記第2の演算回路の出力値を前記第1の記憶回路及び前記第2の記憶回路へ出力する選択回路をさらに有する請求項26記載の半導体集積回路。 According to the output value of the failure determination storage circuit, the output value of the first arithmetic circuit is output to the first storage circuit and the output value of the second arithmetic circuit is output to the second storage circuit. The output value of the first arithmetic circuit is output to the first storage circuit and the second storage circuit, or the output value of the second arithmetic circuit is output to the first storage circuit and the second storage circuit. 27. The semiconductor integrated circuit according to claim 26, further comprising a selection circuit for outputting to the memory circuit.
  32.  前記第1、2、3または第4のクロック信号を所定の時間だけ遅延させた信号を前記故障判定記憶回路へクロック信号として供給する遅延回路を有する請求項26記載の半導体集積回路。 27. The semiconductor integrated circuit according to claim 26, further comprising a delay circuit that supplies a signal obtained by delaying the first, second, third, or fourth clock signal by a predetermined time to the failure determination storage circuit as a clock signal.
  33.  前記第1、2、3または第4のクロック信号を反転させた信号を前記故障判定記憶回路へクロック信号として供給する反転回路をさらに有する請求項26記載の半導体集積回路。 27. The semiconductor integrated circuit according to claim 26, further comprising an inverting circuit that supplies a signal obtained by inverting the first, second, third, or fourth clock signal to the failure determination storage circuit as a clock signal.
  34.  前記第1のクロック信号の前記第1の周期は、前記第2のクロック信号の前記第1の周期以上であり、かつ
     前記第3のクロック信号の前記第1の周期は、前記第4のクロック信号の前記第1の周期以上である請求項1から33のいずれか1項記載の半導体集積回路。
    The first cycle of the first clock signal is greater than or equal to the first cycle of the second clock signal, and the first cycle of the third clock signal is the fourth clock. The semiconductor integrated circuit according to any one of claims 1 to 33, which is equal to or longer than the first period of the signal.
  35.  前記第1のクロック信号の前記第1の周期は、前記第2のクロック信号の前記第1の周期よりも長く、かつ
     前記第3のクロック信号の前記第1の周期は、前記第4のクロック信号の前記第1の周期よりも長い請求項1から33のいずれか1項記載の半導体集積回路。
    The first cycle of the first clock signal is longer than the first cycle of the second clock signal, and the first cycle of the third clock signal is the fourth clock. The semiconductor integrated circuit according to claim 1, wherein the semiconductor integrated circuit is longer than the first period of the signal.
  36.  前記第1のクロック信号の前記第1の周期は、前記第3のクロック信号の前記第1の周期よりも長く、かつ
     前記第2のクロック信号の前記第1の周期は、前記第4のクロック信号の前記第1の周期よりも長い請求項34または35記載の半導体集積回路。
    The first period of the first clock signal is longer than the first period of the third clock signal, and the first period of the second clock signal is the fourth clock 36. The semiconductor integrated circuit according to claim 34 or 35, which is longer than the first period of the signal.
  37.  前記第3のクロック信号の前記第1の周期は、前記第1のクロック信号の前記第1の周期よりも長く、かつ
     前記第4のクロック信号の前記第1の周期は、前記第2のクロック信号の前記第1の周期よりも長い請求項34または35記載の半導体集積回路。
    The first cycle of the third clock signal is longer than the first cycle of the first clock signal, and the first cycle of the fourth clock signal is the second clock. 36. The semiconductor integrated circuit according to claim 34 or 35, which is longer than the first period of the signal.
  38.  前記第1、第2及び第3のクロック信号が同一である請求項1から33のいずれか1項記載の半導体集積回路。 34. The semiconductor integrated circuit according to claim 1, wherein the first, second and third clock signals are the same.
  39.  前記第1及び第2のクロック信号が同一であり、かつ前記第3及び第4のクロック信号が同一である請求項1から33のいずれか1項記載の半導体集積回路。 34. The semiconductor integrated circuit according to claim 1, wherein the first and second clock signals are the same, and the third and fourth clock signals are the same.
  40.  前記第1のクロック信号の前記第1の周期及び第2の周期が異なり、前記第4のクロック信号の前記第1の周期及び第2の周期が異なる請求項38または39記載の半導体集積回路。 40. The semiconductor integrated circuit according to claim 38 or 39, wherein the first cycle and the second cycle of the first clock signal are different, and the first cycle and the second cycle of the fourth clock signal are different.
  41.  前記第1のクロック信号の前記第1の周期が前記第2の周期よりも短く、前記第4のクロック信号の前記第1の周期が前記第2の周期よりも長い請求項40記載の半導体集積回路。 41. The semiconductor integrated circuit according to claim 40, wherein the first period of the first clock signal is shorter than the second period, and the first period of the fourth clock signal is longer than the second period. circuit.
  42.  前記第1のクロック信号の前記第1の周期と、前記第4のクロック信号の前記第2の周期とが等しい請求項40または41記載の半導体集積回路。 42. The semiconductor integrated circuit according to claim 40, wherein the first cycle of the first clock signal is equal to the second cycle of the fourth clock signal.
  43.  前記第1、第2、第3及び第4のクロック信号を生成するクロック生成回路と、
     前記第1の論理回路と前記第2の論理回路の出力の比較結果に応じて、前記クロック生成回路に、前記第1、第2、第3及び第4のクロック信号の周期または位相の少なくともいずれか一方を変更させるクロック制御回路と、
    を有する請求項1から42のいずれか1項記載の半導体集積回路。
    A clock generation circuit for generating the first, second, third and fourth clock signals;
    In accordance with the comparison result of the outputs of the first logic circuit and the second logic circuit, the clock generation circuit has at least one of the period or phase of the first, second, third and fourth clock signals. A clock control circuit for changing one of them,
    43. The semiconductor integrated circuit according to claim 1, further comprising:
  44.  前記第1の論理回路及び前記第2の論理回路に電源電圧を変更可能に供給する電源制御回路を有し、
     前記クロック制御回路は、
     前記第1の論理回路と前記第2の論理回路の出力の比較結果に応じて、前記電源制御回路に、前記第1の論理回路及び前記第2の論理回路に供給する電源電圧を変更させる請求項43記載の半導体集積回路。
    A power control circuit for supplying a power supply voltage to the first logic circuit and the second logic circuit in a changeable manner;
    The clock control circuit includes:
    The power supply control circuit is caused to change a power supply voltage supplied to the first logic circuit and the second logic circuit in accordance with a comparison result of outputs of the first logic circuit and the second logic circuit. Item 44. The semiconductor integrated circuit according to Item 43.
  45.  前記第1の論理回路及び前記第2の論理回路の周囲温度を変更する温度制御装置を有し、
     前記クロック制御回路は、
     前記第1の論理回路と前記第2の論理回路の出力の比較結果に応じて、前記温度制御装置に、前記第1の論理回路または前記第2の論理回路の少なくともいずれか一方の周囲温度を変更させる請求項43または44記載の半導体集積回路。
    A temperature control device for changing an ambient temperature of the first logic circuit and the second logic circuit;
    The clock control circuit includes:
    In accordance with the comparison result of the outputs of the first logic circuit and the second logic circuit, the temperature controller is provided with the ambient temperature of at least one of the first logic circuit or the second logic circuit. 45. The semiconductor integrated circuit according to claim 43 or 44, which is changed.
  46.  前記クロック制御回路による制御内容を保持するための不揮発メモリを有する請求項43から45のいずれか1項記載の半導体集積回路。 46. The semiconductor integrated circuit according to any one of claims 43 to 45, further comprising a non-volatile memory for holding contents of control by the clock control circuit.
  47.  前記クロック制御回路は、
     動作中または停止前にて前記制御内容を前記不揮発メモリに保存し、次に動作を開始する前または動作中にて前記不揮発メモリで保存された制御内容を読み込む請求項46記載の半導体集積回路。
    The clock control circuit includes:
    47. The semiconductor integrated circuit according to claim 46, wherein the control content is stored in the nonvolatile memory during operation or before stopping, and the control content stored in the nonvolatile memory is read before or during the next operation.
  48.  前記クロック制御回路は、
     前記クロック生成回路に、前記第1の論理回路または前記第2の論理回路のいずれか一方に供給するクロック信号を停止させる請求項43記載の半導体集積回路。
    The clock control circuit includes:
    44. The semiconductor integrated circuit according to claim 43, wherein the clock generation circuit stops a clock signal supplied to either the first logic circuit or the second logic circuit.
  49.  前記クロック制御回路は、
     前記電源制御回路に、前記第1の論理回路または前記第2の論理回路のいずれか一方に供給する電源電圧を停止させる請求項44記載の半導体集積回路。
    The clock control circuit includes:
    45. The semiconductor integrated circuit according to claim 44, wherein the power supply control circuit stops a power supply voltage supplied to either the first logic circuit or the second logic circuit.
  50.  請求項43から49のいずれか1項記載の半導体集積回路のセットアップ時間およびホールド時間を測定するための試験方法であって、
     前記半導体集積回路のセットアップ時間の仕様値に合わせて設定された周期差または前記半導体集積回路のホールド時間の仕様値に合わせて設定された位相差の少なくともいずれか一方を持つ複数クロック信号を該半導体集積回路に供給し、
     前記半導体集積回路に所定のテストパターンを入力したときの前記第1の論理回路と前記第2の論理回路の出力の比較結果を観測し、
     前記第1の論理回路と前記第2の論理回路の出力の比較結果が一致または不一致であるかに応じて前記半導体集積回路が前記セットアップ時間の仕様値を満たしているか否か、または前記半導体集積回路が前記ホールド時間の仕様値を満たしているか否かを判定する半導体集積回路の試験方法。
    A test method for measuring a setup time and a hold time of a semiconductor integrated circuit according to any one of claims 43 to 49,
    A plurality of clock signals having at least one of a period difference set in accordance with a specification value of a setup time of the semiconductor integrated circuit and a phase difference set in accordance with a specification value of a hold time of the semiconductor integrated circuit To the integrated circuit,
    Observing a comparison result of outputs of the first logic circuit and the second logic circuit when a predetermined test pattern is input to the semiconductor integrated circuit;
    Whether the semiconductor integrated circuit satisfies the set-up time specification value depending on whether the comparison results of the outputs of the first logic circuit and the second logic circuit match or do not match, or the semiconductor integrated circuit A test method for a semiconductor integrated circuit, which determines whether or not a circuit satisfies a specification value of the hold time.
  51.  請求項43から49のいずれか1項記載の半導体集積回路のセットアップ時間およびホールド時間を測定するための試験方法であって、
     所定の周期差および所定の位相差に設定された複数クロック信号を該半導体集積回路に供給する第1の工程と、
     前記半導体集積回路に所定のテストパターンを入力したときの前記第1の論理回路と前記第2の論理回路の出力の比較結果を観測する第2の工程と、
     前記第1の論理回路と前記第2の論理回路の出力の比較結果が不一致を示すとき、前記半導体集積回路に供給する複数のクロック信号の前記周期差または前記位相差を再設定する第3の工程と、
     前記前記第1の論理回路と前記第2の論理回路の出力の比較結果が一致するまで、前記第1の工程から前記第3の工程を繰り返し、該比較結果が一致したとき、前記周期差に相当する前記セットアップ時間および前記位相差に相当する前記ホールド時間を求める第4の工程と、
    を有する半導体集積回路の試験方法。
    A test method for measuring a setup time and a hold time of a semiconductor integrated circuit according to any one of claims 43 to 49,
    A first step of supplying a plurality of clock signals set to a predetermined period difference and a predetermined phase difference to the semiconductor integrated circuit;
    A second step of observing a comparison result of outputs of the first logic circuit and the second logic circuit when a predetermined test pattern is input to the semiconductor integrated circuit;
    When the comparison result of the outputs of the first logic circuit and the second logic circuit indicates a mismatch, a third difference for resetting the period difference or the phase difference of a plurality of clock signals supplied to the semiconductor integrated circuit Process,
    The third step is repeated from the first step until the comparison results of the outputs of the first logic circuit and the second logic circuit match, and when the comparison results match, the period difference is A fourth step of determining the corresponding setup time and the hold time corresponding to the phase difference;
    A method for testing a semiconductor integrated circuit comprising:
  52.  前記半導体集積回路に供給する電源電圧を、該半導体集積回路の動作保証範囲内の最小電圧または最大電圧に設定する請求項50または51記載の半導体集積回路の試験方法。 52. The test method for a semiconductor integrated circuit according to claim 50, wherein a power supply voltage supplied to the semiconductor integrated circuit is set to a minimum voltage or a maximum voltage within an operation guarantee range of the semiconductor integrated circuit.
  53.  前記半導体集積回路の周囲温度を、該半導体集積回路の動作保証範囲内の最低温度または最高温度に設定する請求項50または51記載の半導体集積回路の試験方法。 52. The test method for a semiconductor integrated circuit according to claim 50, wherein the ambient temperature of the semiconductor integrated circuit is set to a minimum temperature or a maximum temperature within an operation guarantee range of the semiconductor integrated circuit.
PCT/JP2009/062409 2008-08-01 2009-07-08 Semiconductor integrated circuit WO2010013587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010522669A JPWO2010013587A1 (en) 2008-08-01 2009-07-08 Semiconductor integrated circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-199483 2008-08-01
JP2008199483 2008-08-01
JP2009-027420 2009-02-09
JP2009027420 2009-02-09

Publications (1)

Publication Number Publication Date
WO2010013587A1 true WO2010013587A1 (en) 2010-02-04

Family

ID=41610286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062409 WO2010013587A1 (en) 2008-08-01 2009-07-08 Semiconductor integrated circuit

Country Status (2)

Country Link
JP (1) JPWO2010013587A1 (en)
WO (1) WO2010013587A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803064A (en) * 2019-01-02 2019-05-24 晶晨半导体(深圳)有限公司 Enhance the method and device of camera module stability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181590A (en) * 1995-12-21 1997-07-11 Hitachi Ltd Logic circuit and data processor using same
JPH1011309A (en) * 1996-06-19 1998-01-16 Hitachi Ltd Processor output comparing method and computer system
JPH1056369A (en) * 1996-08-09 1998-02-24 Hitachi Ltd Logic circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181590A (en) * 1995-12-21 1997-07-11 Hitachi Ltd Logic circuit and data processor using same
JPH1011309A (en) * 1996-06-19 1998-01-16 Hitachi Ltd Processor output comparing method and computer system
JPH1056369A (en) * 1996-08-09 1998-02-24 Hitachi Ltd Logic circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803064A (en) * 2019-01-02 2019-05-24 晶晨半导体(深圳)有限公司 Enhance the method and device of camera module stability

Also Published As

Publication number Publication date
JPWO2010013587A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
US20100153896A1 (en) Real-time critical path margin violation detector, a method of monitoring a path and an ic incorporating the detector or method
US20170163268A1 (en) Delay circuit, dll circuit, and fault recovery method of delay circuit
JP5032395B2 (en) Test condition generation method and test condition generation apparatus
JP2014185981A (en) Semiconductor integrated circuit and self-test method of semiconductor integrated circuit
JP5148615B2 (en) Electronic device and diagnostic apparatus
WO2010013587A1 (en) Semiconductor integrated circuit
US20040260975A1 (en) Semiconductor integrated circuit
US9256504B2 (en) Semiconductor integrated circuit including a state machine
JP2011171666A (en) Semiconductor device, and method of testing the same
US7847574B2 (en) Semiconductor device
US20070061654A1 (en) Semiconductor integrated circuit and test method
JP4685036B2 (en) Semiconductor device and test method thereof
JP2000091506A (en) Semiconductor integrated circuit
JP2009156761A (en) Semiconductor device
JP5727358B2 (en) Semiconductor device
JP2001319494A (en) Built-in self-test device for memory circuit
US20180259578A1 (en) Method and apparatus for dynamic controller bist
US10026502B2 (en) Method and memory controller
JP6084535B2 (en) Memory chip test circuit
JPH11174125A (en) Semiconductor test circuit
JP2009053130A (en) Semiconductor device
JP6469598B2 (en) Integrated circuit
JP2012007910A (en) Semiconductor integrated circuit device
Sämrow et al. Functional enhancements of TMR for power efficient and error resilient ASIC designs
JP2011191261A (en) Semiconductor integrated circuit and control method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010522669

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802830

Country of ref document: EP

Kind code of ref document: A1