WO2010013515A1 - Process for producing display device - Google Patents

Process for producing display device Download PDF

Info

Publication number
WO2010013515A1
WO2010013515A1 PCT/JP2009/056440 JP2009056440W WO2010013515A1 WO 2010013515 A1 WO2010013515 A1 WO 2010013515A1 JP 2009056440 W JP2009056440 W JP 2009056440W WO 2010013515 A1 WO2010013515 A1 WO 2010013515A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display
insulating layer
layer
ink
Prior art date
Application number
PCT/JP2009/056440
Other languages
French (fr)
Japanese (ja)
Inventor
毅 宮林
豊和 井上
久美 別所
真吾 日比野
Original Assignee
ブラザー工業株式会社
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社, 東海ゴム工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010013515A1 publication Critical patent/WO2010013515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present invention relates to a method for manufacturing a display device including a plurality of display elements including a display composition such as an organic material.
  • Such a display device includes a pair of electrodes and a plurality of display elements inserted between the pair of electrodes as described in Non-Patent Document 1, for example.
  • Each display element is made of a display composition that is a substance that emits light or changes color when a voltage is applied between a pair of electrodes.
  • the display device includes a partition that insulates between the display composition of each display element and the display composition of another display element.
  • a method for manufacturing the display device will be described.
  • An insulating layer is formed using a material such as PVK (poly (N-vinylcarbazole)) so as to cover the first electrode.
  • An ink solution containing a solvent for dissolving the formed insulating layer and a display composition is dropped at a position facing the first electrode on the insulating layer (hereinafter, a method of dropping the ink solution is an inkjet method).
  • the insulating layer is dissolved until the ink solution reaches the first electrode by the action of the solvent contained in the dropped ink solution. As a result, the partition is formed.
  • the display composition emits light or changes color by applying a predetermined voltage between the first electrode and the second electrode.
  • various images can be displayed by controlling whether or not a predetermined voltage is applied between the first electrode and the second electrode.
  • Non-Patent Document 1 By manufacturing a display device by the method described in Non-Patent Document 1, a plurality of display compositions and partition walls can be formed substantially simultaneously. As a result, the manufacturing time of the display device can be shortened. Since the partition walls can be formed without complicated light exposure and etching processes, the cost can be reduced. A film-like second electrode is formed in advance, and the second electrode is bonded to the display composition and the partition by press-bonding the second electrode with heat. Therefore, the second electrode, the display composition and the partition can be easily joined. As a result, cost can be reduced. Japan Journal of Applied Physics Vol. 47, no. 1, 2008, pp. 472-475
  • step (IV) when the step (IV) is performed, there is a step between the surface of the display composition and the surface of the partition wall in the surface composed of the display composition and the partition wall to which the second electrode is bonded. Arise. That is, the surface composed of the display composition and the partition walls is not flat. As a result, the bonding between the surface composed of the display composition and the partition and the second electrode tends to be poor. When the bonding becomes poor, there is a problem that an image cannot be displayed satisfactorily.
  • This disclosure is intended to provide a method for manufacturing a display device that can display an image satisfactorily in a method for manufacturing a display device including a plurality of display elements including a display composition.
  • the first electrode, the second electrode spaced apart from and opposed to the first electrode, and the first electrode and the second electrode are inserted between the first electrode and the first electrode.
  • a first electrode supply charge that is a charge supplied from the first electrode and a second electrode supply charge that is a charge supplied from the second electrode
  • a plurality of display elements each having a display composition that is a substance that emits light or changes color, and further, the display composition of each display element and the display composition of another display element A method of manufacturing a display device having a partition that insulates between, a first electrode forming step of forming the first electrode on a substrate, and covering the first electrode formed in the first electrode forming step Insulating layer forming step for forming an insulating layer, and the insulating layer forming step An ink solution applying step of applying an ink solution containing a solvent for dissolving the insulating layer and the display composition at a position facing the first electrode on the insulating layer formed in the
  • the second electrode supply charge is displayed on the partition which is the insulating layer after being dissolved by the forming step, the display composition forming step, and the ink solution.
  • a manufacturing method of a display device including a second electrode bonding step of bonding two electrodes by heat and bonding the second electrode to the charge injection layer.
  • the organic EL display 1 includes a glass substrate 10, an organic EL element 11 (display element) disposed on the glass substrate 10, a current driving TFT 12, a horizontal driving circuit 13, a vertical driving circuit 14, and a sealing layer 16. Yes.
  • the organic EL element 11 is formed at the center of the glass substrate 10 and is divided into 15 pixels in a lattice shape.
  • Each pixel includes a light emitting layer 11c (composition for display), an anode 11a made of ITO (indium titanium oxide), a charge injection layer 11e, and a cathode 11f.
  • the light emitting layer 11c is sandwiched from above and below by the anode 11a and the charge injection layer 11e.
  • the cathode 11f is joined to the charge injection layer 11e.
  • the organic EL element 11 when a DC voltage is applied between the anode 11a and the cathode 11f, holes are supplied from the anode 11a to the light emitting layer 11c, and electrons are supplied from the cathode 11f to the light emitting layer 11c.
  • the holes supplied from the anode 11a and the electrons supplied from the cathode 11f are recombined in the light emitting layer 11c.
  • the light emitting layer 11c emits light, passes through the glass substrate 10, and irradiates light downward (downward in FIG. 1).
  • the voltage between the anode 11a and the cathode 11f is OFF, the light emitting layer 11c is quenched.
  • the electron injection layer 11e plays a role of efficiently injecting electrons supplied from the cathode 11f into the light emitting layer 11c. Furthermore, the electron injection layer 11e plays a role of favorably bonding the light emitting layer 11c and a surface formed of a partition wall described later and the cathode 11f.
  • the current driving TFT 12 is provided for each pixel of the organic EL element 11 and functions as a switch for controlling current supply to the corresponding pixel.
  • the horizontal drive circuit 13 and the vertical drive circuit 14 perform independent light emission and extinction control of each pixel by turning on or off the current drive TFT 12 corresponding to each pixel.
  • the sealing layer 16 covers and protects the organic EL element 11, the current driving TFT 12, the horizontal driving circuit 13, and the vertical driving circuit 14 from above.
  • the current driving TFT 12 will be described with reference to FIG. 1, FIG. 2, and FIG.
  • the organic EL display 1 is provided with a current drive TFT 12 for each pixel of the organic EL element 11.
  • the current driving TFT 12 functions as a switch that controls the supply of current to each pixel of the organic EL element 11.
  • the current driving TFT 12 includes a data line 12f, a scanning line 12e, a memory TFT 12b, a capacitor 12c, and a driving TFT 12a.
  • the data line 12f is connected to the vertical drive circuit 14.
  • the scanning line 12 e is connected to the horizontal drive circuit 13.
  • a scanning signal is supplied to the gate electrode of the memory TFT 12b through the scanning line 12e.
  • the capacitor 12c is supplied with electric charges (image signal) from the data line 12f via the memory TFT 12b and is held.
  • the image signal held by the capacitor 12c is supplied to the gate electrode of the driving TFT 12a.
  • a drive current flows into the anode 11a of the organic EL element 11 from the power supply line 12d via the drive TFT 12a.
  • the memory TFT 12b is activated and charges are accumulated in the capacitor 12c.
  • the driving TFT 12a operates for a time corresponding to the accumulated charge, and a current flows from the power supply line 12d to the cathode 11f through the driving TFT 12a, the anode 11a, the light emitting layer 11c, and the electron injection layer 11e.
  • the pixel corresponding to the activated current driving TFT 12 emits light.
  • the memory TFT 12b does not operate and no current flows through the light emitting layer 11c. Pixels corresponding to the non-operating current drive TFT 12 are extinguished.
  • FIG. 4 is a flowchart showing a method for manufacturing the film-like cathode 11 f of the organic EL element 11.
  • FIG. 5 is a flowchart showing a manufacturing process of only the portion of the organic EL element 11 in the organic EL display 1.
  • 6 to 12 are external views showing the organic EL element 11 in each step of FIG.
  • the manufacturing method of the organic EL element 11 which is a principal part is demonstrated especially.
  • the manufacturing method of the film-form cathode 11f is demonstrated with reference to FIG.
  • the film-like cathode 11f is formed in advance before the step S18 in FIG.
  • an Al / LiF layer is formed on the substrate by vapor deposition to form an electron supply metal 11f1 (see FIG. 12) layer.
  • the electron supply metal 11f1 is a metal that favorably supplies electrons to the light emitting layer 11c. Therefore, the work function of the electron supply metal 11f1 is small. Therefore, the electron supply metal 11f1 may be reduced unless it is in a vacuum or in an inert gas.
  • the Al layer and the LiF layer are continuously stacked to form a layer of the electron supply metal 11f1.
  • the thickness of the Al layer is 1000 mm as an example, and the thickness of the LiF layer is 10 mm as an example.
  • the layer of the electron supply metal 11f1 may be formed of any one of Al, LiF, Al / Ca, and Al / Ba instead of Al / LiF.
  • a surface covering insulating layer 11f2 (see FIG. 12) which is an insulating layer covering the surface of the layer of the electron supply metal 11f1 formed in S101 is formed by mask vacuum deposition.
  • the thickness of the surface covering insulating layer 11f2 is set to such a thin thickness that the electron supply metal 11f1 is not reduced. Note that, when a film composed of the layer of the electron supply metal 11f1 and the surface covering insulating layer 11f2 is peeled from the substrate, a film-like cathode 11f is obtained.
  • the film-like cathode 11f can be easily handled by covering the surface of the layer of the electron supply metal 11f1 with the surface covering insulating layer 11f2. Since the thickness of the surface covering insulating layer 11f2 is thin, the surface covering insulating film 11f2 does not hinder the supply of electrons from the electron supply metal 11f1 to the light emitting layer 11c. Before the step S18 of FIG. 5 described later, a film-like cathode 11f is formed in advance.
  • ITO is vapor-deposited with a thickness of 150 nm on the glass substrate 10 to form the anode 11a (see FIG. 6).
  • the surface resistance of the anode 11a was 500 to 600 ⁇ / cm, and the light transmittance was 81%.
  • an exposure resist is applied on the anode 11a formed in S11 by spin coating, and a desired electrode pattern is mask-exposed. Thereafter, the resist and the anode 11a that are not exposed are removed by etching using aqua regia, which is a mixture of concentrated nitric acid and concentrated hydrochloric acid, to form a desired electrode pattern (see FIG. 7).
  • aqua regia is a mixture of concentrated nitric acid and concentrated hydrochloric acid
  • the surface of the anode 11a is sequentially cleaned by neutral detergent cleaning, acetone cleaning, IPA (isopropyl alcohol) cleaning, and UV ozone cleaning.
  • the purpose of these cleanings is (i) removing dirt on the anode 11a, and (ii) reducing oxygen defects on the surface of the anode 11a and lowering the hole injection barrier.
  • UV ozone cleaning can remove organic contaminants that cannot be removed by wet cleaning.
  • a spin coat method, a dip method, a curtain coat method, a bar coat method, a printing method, or an ink jet method is used on the entire portion of the glass substrate 10 where the organic EL element 11 is to be formed.
  • an insulating layer 11b made of PVK is formed (see FIG. 8).
  • the thickness of the insulating layer 11b may be a thickness that can maintain insulation between the anodes 11a. A thinner thickness is preferable in terms of high resolution and high image quality in view of the droplet diameter (drop diameter) of the inkjet. Since the insulating layer 11b is dissolved in a process described later, a semi-cured state (a state in which it is not completely cured) is desirable.
  • an ink 21 comprising a component of an organic EL film (display composition) and a hydrocarbon solvent is prepared in advance. Specifically, it prepares by mixing the following components in a corresponding weight ratio, respectively.
  • PVK High molecular compound having a carbazole derivative in the main chain or side chain, which is a hole transporting polymer: 16 weight ratio Electron transport material (BND): 4 weight ratio Luminescent center forming compound (TPB): 1 weight ratio Hydrocarbon System solvent (tetralin): In ink 21, the weight ratio at which the total concentration of PVK, BND, and TPB is 2% wt
  • the viscosity of the ink 21 can be 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 Pa ⁇ s.
  • the viscosity of the ink 21 to be adjusted is in the range of 5 ⁇ 10 ⁇ 3 to 1.5 ⁇ 10 ⁇ 2 Pa ⁇ s, in order to control the drop diameter when the ink 21 is ejected using the ink jet method. Is desirable.
  • the surface tension of the ink 21 is preferably in the range of 20 to 50 mN / m. This is because it is possible to suppress the flight bending at the time of ink ejection by the ink jet method.
  • the prepared ink 21 is applied to 15 locations where pixels are to be formed. Specifically, the ink 21 is selectively applied on the insulating layer 11b at a position facing the anode 11a formed in a desired electrode pattern using the inkjet head 30 (see FIG. 9).
  • the ink jet head 30 is a piezoelectric element type ink jet head provided with a piezoelectric element 30a.
  • the inkjet head 30 ejects a drop of the ink 21 from the orifice 30b formed in the inkjet head body 30d in response to a signal from the driver 30c.
  • the ejection driving frequency is 1 KHz, and the appropriate amount of liquid for one drop is 50 ⁇ l.
  • the insulating layer 11b is dissolved by the solvent contained in the applied ink 21, and the ink 21 reaches the anode 11a (see FIG. 10).
  • the ink 21 is dried at 50 to 60 ° C. for 30 minutes to evaporate the solvent in the ink 21.
  • the display composition which is a non-volatile component of the ink 21 is solidified in a state of being electrically connected to the anode 11a.
  • the solidified display composition is referred to as a light emitting layer 11c.
  • Each of the solidified 15 light emitting layers 11c corresponds to one pixel.
  • the insulating layer 11 b dissolved by the ink 21 is segregated at the periphery of the portion where the ink 21 is dropped.
  • the display composition contained in the ink 21 is solidified at the center of the portion where the ink 21 is dropped. The reason may be that the display composition is larger than the insulating layer 11 b in the solubility in the solvent contained in the ink 21.
  • the portion of the insulating layer 11b where the ink 21 has not been applied remains undissolved and becomes a partition 11d separating the light emitting layer 11c.
  • the insulating layer 11b dissolved by the ink 21 is segregated in the periphery of the portion where the ink 21 is dropped, so that the surface composed of the light emitting layer 11c and the partition wall 11d is uneven.
  • the electron injection layer 11e which is any of an oxadiazole derivative, a triazole type, and an aluminum complex, is formed by coating on the surface composed of the light emitting layer 11c and the partition 11d ( FIG. 11).
  • a coating method a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method can be used.
  • the electron injection layer 11e is applied so that the surface opposite to the side in contact with the light emitting layer 11c and the partition wall 11d in the electron injection layer 11e after coating is flatter than the surface formed of the light emitting layer 11c and the partition wall 11d. To do.
  • the film-like cathode 11f is pressure-bonded to the electron injection layer 11e by heat to bond the cathode 11f and the electron injection layer 11e.
  • the cathode 11f is formed in advance in S101 and S102 of FIG. Since the surface of the electron injection layer 11e is flat, it is better to form the cathode 11f by bonding to the electron injection layer 11e than to form the cathode by bonding to the light emitting layer 11c and the partition wall 11d. 11e bonds well.
  • the organic EL element 11 is formed at the center of the glass substrate 10 as described above.
  • a horizontal drive circuit 13 and a vertical drive circuit 14 are formed on the periphery of the glass substrate 10. Furthermore, the organic EL display 1 is completed by covering the organic EL element 11, the horizontal drive circuit 13, and the vertical drive circuit 14 with the sealing layer 16.
  • the sealing layer 16 is made of a glass plate.
  • a desiccant is attached to the lower surface (the lower surface in FIG. 1) of the sealing layer 16 so that a gap of 0.3 to 0.5 mm is formed between the sealing layer 16 and the organic EL element 11.
  • nitrogen gas is sealed in the gap.
  • the ink 21 containing the display composition and the solvent is applied to the place where the pixel is to be formed, thereby forming the light emitting layer 11c and the light emitting layer 11c.
  • the partition 11d separating the two can be formed at the same time. That is, in the portion where the ink 21 is applied, the solvent contained in the ink 21 dissolves the insulating layer 11b, and the light emitting layer 11c is formed. In the portion where the ink 21 is not applied, the insulating layer 11b remains and becomes a partition wall 11d separating the pixels. Therefore, unlike the conventional method of manufacturing an organic EL element, it is not necessary to perform independent processes such as exposure and etching in order to form a partition between organic EL films. Therefore, the manufacturing process can be shortened and the manufacturing cost can be reduced.
  • the piezoelectric element type inkjet head 30 since the piezoelectric element type inkjet head 30 is used, a heat source for ink ejection is unnecessary as in the bubble jet (registered trademark) type. Therefore, the ink material does not deteriorate.
  • the selection range of the solvent of the ink 21 is wide. It is easy to control the droplet amount of the ink 21 to be discharged. Drive frequency can be increased. High durability.
  • the cathode 11f is formed on the electron injection layer 11e having a plane flatter than the plane formed by the light emitting layer 11c and the partition wall 11d. Therefore, the cathode 11f and the electron injection layer 11e are bonded better than the case where the surface composed of the light emitting layer 11c and the partition wall 11d and the cathode 11f are bonded. Thereby, an image can be displayed favorably.
  • the electron injection layer 11e injects electrons into the light emitting layer 11c. Therefore, inserting the electron injection layer 11e between the cathode 11f and the light emitting layer 11c does not prevent the light emitting layer 11c from emitting light or changing its color.
  • the oxadiazole derivative, triazole-based, and aluminum complex that are the electron injection layer 11e are any of aluminum (Al), lithium fluoride (LiF), Al / Ca, Al / LiF, and Al / Ba that are the cathode 11f. It is suitable as a material for injecting electrons supplied from the light emitting layer 11c. Furthermore, since the anode 11a has a large work function, holes can be supplied to the light emitting layer 11c satisfactorily. On the contrary, Al / LiF which is the cathode 11f has a small work function, and thus can supply electrons to the light emitting layer 11c satisfactorily. As a result, the light emitting layer 11c can emit light satisfactorily.
  • the electron supply metal 11f1 of the cathode 11f may be reduced unless it is in a vacuum or an inert gas. However, since the surface of the layer of the electron supply metal 11f1 is covered with the surface coating insulating film 11f2, the film-like cathode 11f is easy to handle.
  • an organic EL display will be described as in the first embodiment.
  • the anode (ITO) 11a is formed first (S11 to S13 in FIG. 5), and finally the cathode 11f is joined (S18 in FIG. 5).
  • the cathode is formed first and the anode is joined last.
  • the organic EL display 2 includes a glass substrate 50, an organic EL element 51 (display element) disposed on the glass substrate 50, a current driving TFT 12, a horizontal driving circuit 13, a vertical driving circuit 14, and a sealing layer that is a glass plate. 16 is provided.
  • the organic EL element 51 is formed at the center of the glass substrate 50 and is divided into 15 pixels in a lattice shape.
  • Each pixel includes a light emitting layer 11c (display composition), a cathode 51a, a hole injection layer 51e, and an anode 51f (ITO).
  • the light emitting layer 11c is sandwiched from above and below by the cathode 51a and the hole injection layer 51e.
  • the anode 51f is joined to the hole injection layer 51e.
  • the organic EL element 51 when a DC voltage is applied between the anode 51f and the cathode 51a, holes are supplied from the anode 51f to the light emitting layer 11c, and electrons are supplied from the cathode 51a to the light emitting layer 11c.
  • the holes supplied from the anode 51f and the electrons supplied from the cathode 51a are recombined in the light emitting layer 11c.
  • the light emitting layer 11c emits light, passes through the sealing layer 16, and irradiates light upward (upward in FIG. 7).
  • the voltage between the anode 51f and the cathode 51a is OFF, the light emitting layer 11c is quenched.
  • the hole injection layer 51e plays a role of efficiently injecting holes supplied from the anode 51f into the light emitting layer 11c. Further, the hole injection layer 51e plays a role in favorably bonding the surface formed of the light emitting layer 11c and a partition wall described later and the anode 51f.
  • FIG. 15 is a flowchart showing a manufacturing process of only the portion of the organic EL element 51 in the organic EL display 2.
  • 16 to 23 are external views showing the organic EL element 51 in each step of FIG.
  • the manufacturing method of the organic EL element 51 which is a principal part is demonstrated especially.
  • a film-like anode 51f is formed in advance. Specifically, ITO is vapor-deposited with a thickness of 150 nm on the substrate. When the deposited film-like ITO is peeled off from the substrate, a film-like anode 51f is obtained.
  • an Al / LiF layer is formed by mask vacuum deposition to form an electron supply metal 51a1 layer (see FIG. 16).
  • the electron supply metal 51a1 is a metal that favorably supplies electrons to the light emitting layer 11c. Therefore, the work function of the electron supply metal 51a1 is small. Therefore, the electron supply metal 51a1 may be reduced unless it is in a vacuum or in an inert gas.
  • the Al layer and the LiF layer are continuously stacked to form a layer of the electron supply metal 51a1.
  • the thickness of the Al layer is 1000 mm as an example, and the thickness of the LiF layer is 10 mm as an example.
  • the layer of the electron supply metal 51a1 may be formed of any one of Al, LiF, Al / Ca, and Al / Ba instead of Al / LiF.
  • the surface covering insulating layer 51a2 which is an insulating layer covering the surface of the layer of the electron supply metal 51a1 formed in S21 is formed by mask vacuum deposition (see FIG. 17).
  • the thickness of the surface covering insulating layer 51a2 is set to such a thin thickness that the electron supply metal 51a1 is not reduced.
  • the layer of the electron supply metal 51a1 and the surface coating insulating layer 51a2 are used as the cathode 51a.
  • an exposure resist is applied by spin coating on the cathode 51a formed in S21 and S22, and a desired electrode pattern is mask-exposed. Thereafter, by etching using aqua regia, which is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid, the resist and the cathode 51a that are not exposed are removed to form a desired electrode pattern (see FIG. 18).
  • aqua regia which is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid
  • a spin coat method, a dip method, a curtain coat method, a bar coat method, a printing method, or an ink jet method is used on the entire portion of the glass substrate 50 where the organic EL element 51 is formed.
  • an insulating layer 11b made of PVK is formed (see FIG. 19).
  • the thickness of the insulating layer 11b may be a thickness that can maintain insulation between the cathodes 51a. A thinner thickness is preferable in terms of high resolution and high image quality in view of the droplet diameter (drop diameter) of the inkjet. Since the insulating layer 11b is dissolved in a process described later, a semi-cured state (a state in which it is not completely cured) is desirable.
  • an ink 21 composed of components of the organic EL film (display composition) and a hydrocarbon solvent is prepared in advance.
  • the components of the ink 21 are the same as the ink 21 of the first embodiment.
  • the prepared ink 21 is applied to 15 locations where pixels are to be formed.
  • the ink 21 is selectively applied on the insulating layer 11b at a position facing the cathode 51a formed in a desired electrode pattern (see FIG. 20).
  • the ink jet head 30 is a piezoelectric element type ink jet head provided with a piezoelectric element 30a.
  • the inkjet head 30 ejects a drop of the ink 21 from the orifice 30b formed in the inkjet head body 30d in response to a signal from the driver 30c.
  • the ejection driving frequency is 1 KHz, and the appropriate amount of liquid for one drop is 50 ⁇ l.
  • the insulating layer 11b is dissolved by the solvent contained in the applied ink 21, and the ink 21 reaches the cathode 51a (see FIG. 21).
  • the ink 21 is dried at 50 to 60 ° C. for 30 minutes to evaporate the solvent in the ink 21.
  • the display composition which is a non-volatile component of the ink 21 is solidified in a state of being electrically connected to the cathode 51a.
  • the solidified display composition is referred to as a light emitting layer 11c.
  • Each of the solidified 15 light emitting layers 11c corresponds to one pixel.
  • the insulating layer 11 b dissolved by the ink 21 is segregated at the periphery of the portion where the ink 21 is dropped.
  • the display composition contained in the ink 21 is solidified at the center of the portion where the ink 21 is dropped. The reason may be that the display composition is larger than the insulating layer 11 b in the solubility in the solvent contained in the ink 21.
  • the portion of the insulating layer 11b where the ink 21 has not been applied remains undissolved and becomes a partition 11d separating the light emitting layer 11c.
  • the insulating layer 11b dissolved by the ink 21 is segregated in the periphery of the portion where the ink 21 is dropped, so that the surface composed of the light emitting layer 11c and the partition wall 11d is uneven.
  • PEDOT polyethylenedioxythiophene
  • a coating method a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method can be used.
  • the hole injection layer 51e is applied so that the surface opposite to the side in contact with the light emitting layer 11c and the partition wall 11d in the hole injection layer 11e after coating is flatter than the surface formed of the light emitting layer 11c and the partition wall 11d. To do.
  • anodic bonding step (S28) using the roller 200 heated to about 150 ° C., a film-shaped anode 51f formed in advance is pressure-bonded to the hole injection layer 51e by heat, so that the anode 51f and the hole injection layer 51e are bonded. Are joined together (see FIG. 23). Since the surface of the hole injection layer 51e is flat, the anode 51f is formed by bonding the hole injection layer 51e to the anode 51f, rather than forming the anode by bonding the light injection layer 11c and the partition wall 11d. Bond well.
  • the anode 51f may be formed by PEDOT instead of ITO.
  • the organic EL element 51 is formed at the center of the glass substrate 50 as described above.
  • the horizontal drive circuit 13 and the vertical drive circuit 14 are formed on the periphery of the glass substrate 50. Furthermore, the organic EL display 2 is completed by covering the organic EL element 51, the horizontal drive circuit 13, and the vertical drive circuit 14 with the sealing layer 16.
  • the sealing layer 16 is made of a glass plate.
  • a desiccant is attached to the lower surface of the sealing layer 16 (the lower surface in FIG. 14) so that a gap of 0.3 to 0.5 mm is formed between the sealing layer 16 and the organic EL element 51.
  • nitrogen gas is sealed in the gap.
  • the ink 21 containing the display composition and the solvent is applied to the place where the pixel is to be formed, thereby forming the light emitting layer 11c and the light emitting layer 11c.
  • the partition 11d separating the two can be formed at the same time. That is, in the portion where the ink 21 is applied, the solvent contained in the ink 21 dissolves the insulating layer 11b, and the light emitting layer 11c is formed. In the portion where the ink 21 is not applied, the insulating layer 11b remains and becomes a partition wall 11d separating the pixels. Therefore, unlike the conventional method of manufacturing an organic EL element, it is not necessary to perform independent processes such as exposure and etching in order to form a partition between organic EL films. Therefore, the manufacturing process can be shortened and the manufacturing cost can be reduced.
  • the piezoelectric element type inkjet head 30 since the piezoelectric element type inkjet head 30 is used, a heat source for ejecting ink is unnecessary as in the bubble jet (registered trademark) type. Therefore, the ink material does not deteriorate.
  • the selection range of the solvent of the ink 21 is wide. It is easy to control the droplet amount of the ink 21 to be discharged. Drive frequency can be increased. High durability.
  • the anode 51f is formed on the hole injection layer 51e having a surface flatter than the surface composed of the light emitting layer 11c and the partition wall 11d. Therefore, the anode 51f and the hole injection layer 51e are bonded better than the case where the surface including the light emitting layer 11c and the partition wall 11d and the anode 51f are bonded. Thereby, an image can be displayed favorably.
  • PEDOT which is the hole injection layer 51e
  • PEDOT is suitable as a material for injecting holes supplied from the ITO, which is the anode 51f, into the light emitting layer 11c.
  • Al / LiF which is the cathode 51a has a small work function
  • electrons can be favorably supplied to the light emitting layer 11c.
  • the ITO serving as the anode 51f has a large work function, holes can be satisfactorily supplied to the light emitting layer 11c. As a result, the light emitting layer 11c can emit light satisfactorily.
  • the surface of the electron supply metal 51a1 is covered with a surface coating insulating film 51a2. Therefore, it is not necessary to perform the process after forming the cathode 51a in a vacuum or in an inert gas. Therefore, a vacuum device that creates a vacuum state, a sealing device that seals an inert gas, and the like are not necessary, and thus a larger organic EL element 51 can be manufactured. Moreover, the organic EL element 51 can be manufactured at low cost.
  • the overall configuration of the electrochromic display is basically the same as that of the organic EL displays 1 and 2 of the first and second embodiments. It differs from the organic EL displays 1 and 2 in that an electrochromic element is provided instead of the organic EL elements 11 and 51.
  • the electrochromic element basically has the same configuration as the organic EL elements 11 and 51 of the first and second embodiments.
  • the display composition is different from the organic EL elements 11 and 51 in that an electrochromic film is provided.
  • the electrochromic element has a configuration in which an anode, an electrochromic film, an electron injection layer, and a cathode are sequentially laminated on a glass substrate.
  • An insulating layer is formed between the glass substrate and the cathode so as to fill a portion where the anode, the electrochromic film, and the electron injection layer are not formed.
  • the electrochromic film is composed of two layers of a polymer electrode and a polymer electrolyte.
  • the color mechanism of the electrochromic display will be explained.
  • a DC voltage is applied between the anode and cathode of the electrochromic element and the anode is set to the + side, an oxidation reaction occurs.
  • the electroluminescent element has a color different from that in the neutral state (voltage non-application state).
  • the anode is on the negative side, a reduction reaction takes place, resulting in a different color compared to during oxidation. In this way, display control is performed by controlling the potential of the anode.
  • a film-like cathode (second electrode) is formed in advance. Specifically, first, an Al / LiF layer is formed on the substrate by vapor deposition to form an electron supply metal layer.
  • the electron supply metal is a metal that satisfactorily supplies electrons to the electrochromic film. Therefore, the work function of the electron supply metal is small. Therefore, the electron supply metal may be reduced unless it is in a vacuum or in an inert gas.
  • the Al layer and the LiF layer are continuously stacked to form an electron supply metal layer.
  • the thickness of the Al layer is 1000 mm as an example, and the thickness of the LiF layer is 10 mm as an example.
  • the electron supply metal layer may be formed of any one of Al, LiF, Al / Ca, and Al / Ba.
  • a surface covering insulating layer which is an insulating layer covering the surface of the electron supply metal layer is formed by mask vacuum deposition.
  • the thickness of the surface covering insulating layer is set to such a thin thickness that the electron supply metal is not reduced.
  • a film-like cathode is obtained.
  • the film-like cathode can be easily handled. Since the thickness of the surface covering insulating layer is thin, the surface covering insulating film does not hinder the supply of electrons from the electron supply metal to the electrochromic film.
  • an anode made of ITO is formed in a predetermined pattern on a glass substrate.
  • an insulating layer made of PVK is formed on the entire portion of the glass substrate where the electrochromic element is to be formed.
  • First ink prepared from a polymer electrode component of an electrochromic film and a hydrocarbon solvent is prepared in advance.
  • PVK poly (N-vinylcarbazole)
  • PSNPhS poly (N-phenyl-2 (2'-thienyl) -5- (5 "-vinyl-2" thienyl) pyrrole)
  • 1 Mix at a ratio of 4.
  • Dissolve in tetralin so that the concentration of the mixture is 4 wt%, and use it as the first ink, and insulate the first ink as in S15 and S16 of the first embodiment.
  • a second ink comprising a polymer electrolyte component of the electrochromic film and a hydrocarbon solvent is prepared in advance. Specifically, the following components are mixed and dissolved in tetralin to prepare a second ink. At this time, the amount of tetralin is adjusted so that the viscosity of the second ink is 0.1 to 10 Pa ⁇ s.
  • Polymethyl methacrylate (molecular weight 120,000): 500 mg Propylene carbonate: 1ml Ethylene carbonate: 2g Lithium tetrafluoroborate: 100mg Acetonitrile: 3ml
  • the second ink is applied on the polymer electrode using an ink jet method to form a polymer electrolyte.
  • an electron injection layer that is one of an oxadiazole derivative, a triazole type, and an aluminum complex is formed by coating using a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an inkjet method.
  • the electron injection layer is applied so that the surface opposite to the side in contact with the electrochromic film and the partition in the electron injection layer after application is flatter than the surface formed of the electrochromic film and the partition.
  • a pre-formed film-like cathode is pressure-bonded to the electron injection layer by heat to join the cathode and the electron injection layer.
  • the surface of the electron injection layer is flat. Therefore, the cathode is bonded better when the cathode is bonded to the electron injection layer than when the cathode is bonded to the electrochromic film and the partition.
  • an electrochromic element is formed at the center of the glass substrate. Similar to the first and second embodiments, a horizontal drive circuit and a vertical drive circuit are formed in the peripheral portion of the glass substrate. Furthermore, the electrochromic element, the horizontal driving circuit, and the vertical driving circuit are covered with a sealing layer. This completes the electrochromic display.
  • the same effects as those of the organic EL displays 1 and 2 of the first and second embodiments are obtained.
  • the present disclosure is not limited to the above-described form, and can be implemented in various forms without departing from the gist of the present disclosure.
  • the insulating layer in the first to third embodiments instead of PVK, polystyrene, nylon (polyamide), polyacetal, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polyarylate, polysulfone, polyphenylene sulfide, Any of polyamideimide, polyimide, and fluororesin can be used.
  • the polymer constituting the ink is a high polymer having a triphenylamine derivative in the main chain or side chain instead of the polymer (PVK) having a carbazole derivative in the main chain or side chain.
  • Molecular compounds for example, PTPDES
  • polymer compounds having an oxadiazole derivative in the main chain or side chain for example, PVMOXD
  • PPV polyparaphenylene vinylene
  • PPF PPT
  • PPT polyparaphenylene vinylene
  • a solvent constituting the ink instead of a hydrocarbon solvent, a halogen hydrocarbon solvent, an alcohol solvent, a ketone, an aldehyde, dodecylbenzene, tetralin, dichloroethane, ethylene glycol, Either propylene glycol or ethylene glycol monoethyl ether can be used.
  • a hydrocarbon solvent instead of a hydrocarbon solvent, a halogen hydrocarbon solvent, an alcohol solvent, a ketone, an aldehyde, dodecylbenzene, tetralin, dichloroethane, ethylene glycol, Either propylene glycol or ethylene glycol monoethyl ether can be used.
  • luminescent center forming compound in the first and second embodiments perylene, coumarin, rubrene, Nile red, DCM, DCJTB, squarylium, aluminum complex (for example, AlQ3) or the like can be used instead of TPB.
  • the electrochromic film can be formed by other methods.
  • the ink is prepared by dissolving both the polymer electrode component and the polymer electrolyte component in an organic solvent such as tetralin.
  • the adjusted ink is applied by an inkjet method.
  • An electrochromic film can also be formed by this method.
  • the components of the polymer electrode are polyaniline, poly (N-methylpyrrole), poly (3- (3-thienylpropylsulfonate)), (poly (N-phenyl-2 (2′-thienyl)) It can be a polymer containing at least one of -5- (5 "-vinyl-2" thienyl) pyrrole, polyvinyl carbazole, and polyvinyl methyl ether.
  • the cathode may be formed first rather than the anode.
  • the anode is satisfactorily bonded to the hole injection layer. Therefore, an image can be displayed satisfactorily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Disclosed is a process for producing a display device comprising a plurality of display elements, which each comprise an anode, a cathode, and a display composition that can emit light or undergo a change in color by holes and electrons, and a partition wall for insulation between the display compositions. The production process comprises steps of forming an anode on a substrate (S11 to S13), an insulating layer forming step of forming an insulating layer that covers the anode (S14), an ink solution coating step of coating an ink solution containing a solvent, for dissolving an insulating layer, and a display composition onto a portion located opposite to the anode on the insulating layer (S15), a display composition forming step of evaporating the solvent contained in the ink solution to form the display composition (S16), an electron injection layer coating step of coating an electron injection layer, which injects electrons into the display composition, onto the display composition and a partition wall, which is the insulating layer after dissolution, so that the face opposite to the display composition is rendered flat (S17), and a cathode bonding step of bonding a film-shaped cathode to the electron injection layer by thermocompression bonding (S18).

Description

表示装置の製造方法Manufacturing method of display device
 本発明は、有機材料等の表示用組成物を含む複数の表示素子を備えた表示装置の製造方法に関する。 The present invention relates to a method for manufacturing a display device including a plurality of display elements including a display composition such as an organic material.
 近年、有機ELディスプレイ、エレクトロクロミックディスプレイなどの薄型の表示装置の開発が盛んに行われている。このような表示装置は、例えば非特許文献1に記載のように、一対の電極と、その一対の電極の間に挿入される複数の表示素子とを備えている。各表示素子は、一対の電極間に電圧が印加されると発光し又は呈色変化する物質である表示用組成物からなる。表示装置は、各表示素子の表示用組成物と他の表示素子の表示用組成物との間を絶縁する隔壁を備えている。 In recent years, thin display devices such as organic EL displays and electrochromic displays have been actively developed. Such a display device includes a pair of electrodes and a plurality of display elements inserted between the pair of electrodes as described in Non-Patent Document 1, for example. Each display element is made of a display composition that is a substance that emits light or changes color when a voltage is applied between a pair of electrodes. The display device includes a partition that insulates between the display composition of each display element and the display composition of another display element.
 上記表示装置の製造方法について説明する。(I)先ず、基板上に、上記一対の電極の一方(第1電極)を形成する。(II)第1電極を覆うように、PVK(ポリ(N-ビニルカルバゾール))などの材質を用いて絶縁層を形成する。(III)形成した絶縁層を溶解する溶媒と表示用組成物とを含有したインク溶液を、絶縁層上の第1電極に対向する位置に滴下させる(以下、インク溶液を滴下する方法をインクジェット法と言う。)。滴下されたインク溶液に含有されている上記溶媒の作用によって、インク溶液が第1電極に到達するまで絶縁層が溶解されていく。その結果、上記隔壁が形成される。(IV)第1電極に到達したインク溶液に含有されている上記溶媒を蒸発させ、残った表示用組成物を第1電極に電気的に接触させる。(V)表示用組成物及び隔壁と、予めフィルム状に形成された他方の電極(第2電極)とを、熱によって圧着させて接合させる。 A method for manufacturing the display device will be described. (I) First, one of the pair of electrodes (first electrode) is formed on a substrate. (II) An insulating layer is formed using a material such as PVK (poly (N-vinylcarbazole)) so as to cover the first electrode. (III) An ink solution containing a solvent for dissolving the formed insulating layer and a display composition is dropped at a position facing the first electrode on the insulating layer (hereinafter, a method of dropping the ink solution is an inkjet method). Say.) The insulating layer is dissolved until the ink solution reaches the first electrode by the action of the solvent contained in the dropped ink solution. As a result, the partition is formed. (IV) The solvent contained in the ink solution reaching the first electrode is evaporated, and the remaining display composition is brought into electrical contact with the first electrode. (V) The composition for display and the partition and the other electrode (second electrode) formed in advance in a film shape are bonded by heat pressure bonding.
 以上の方法によって製造された表示装置によると、第1電極と第2電極との間に所定の電圧を印加することで、表示用組成物が発光し又は呈色変化する。各表示素子について、第1電極と第2電極の間に所定の電圧を印加するか否かを制御することによって、様々な像を表示させることができる。 According to the display device manufactured by the above method, the display composition emits light or changes color by applying a predetermined voltage between the first electrode and the second electrode. For each display element, various images can be displayed by controlling whether or not a predetermined voltage is applied between the first electrode and the second electrode.
 非特許文献1に記載の方法で表示装置を製造することによって、複数の表示用組成物と隔壁とを略同時に形成できる。その結果、表示装置の製造時間を短縮できる。複雑な光露光、エッチングプロセスを経ずに隔壁を形成できるので、コストを削減できる。フィルム状の第2電極を予め形成しておき、第2電極を熱によって圧着させることによって、表示用組成物及び隔壁に接合させている。従って、第2電極と、表示用組成物及び隔壁とを、簡易に接合させることができる。その結果、コストを削減できる。
Japanese Journal of Applied Physics Vol.47、No.1、2008、pp.472-475
By manufacturing a display device by the method described in Non-Patent Document 1, a plurality of display compositions and partition walls can be formed substantially simultaneously. As a result, the manufacturing time of the display device can be shortened. Since the partition walls can be formed without complicated light exposure and etching processes, the cost can be reduced. A film-like second electrode is formed in advance, and the second electrode is bonded to the display composition and the partition by press-bonding the second electrode with heat. Therefore, the second electrode, the display composition and the partition can be easily joined. As a result, cost can be reduced.
Japan Journal of Applied Physics Vol. 47, no. 1, 2008, pp. 472-475
 ところで、上記(IV)の工程が実行されると、第2電極が接合される面である表示用組成物及び隔壁とからなる面において、表示用組成物における面と隔壁における面とに段差が生じる。すなわち、表示用組成物及び隔壁からなる面は、平らになっていない。その結果、表示用組成物及び隔壁からなる面と第2電極との接合が不良になりやすい。接合が不良になった場合、良好に像を表示させることができないという問題点がある。 By the way, when the step (IV) is performed, there is a step between the surface of the display composition and the surface of the partition wall in the surface composed of the display composition and the partition wall to which the second electrode is bonded. Arise. That is, the surface composed of the display composition and the partition walls is not flat. As a result, the bonding between the surface composed of the display composition and the partition and the second electrode tends to be poor. When the bonding becomes poor, there is a problem that an image cannot be displayed satisfactorily.
 本開示は、表示用組成物を含む複数の表示素子を備えた表示装置の製造方法において、良好に像を表示させることができる表示装置の製造方法を提供することを目的とする。 This disclosure is intended to provide a method for manufacturing a display device that can display an image satisfactorily in a method for manufacturing a display device including a plurality of display elements including a display composition.
 本開示によれば、第1電極と、前記第1電極と離間して、且つ対向して位置する第2電極と、前記第1電極と前記第2電極との間に挿入され、前記第1電極と前記第2電極との間に電圧が印加された場合、前記第1電極から供給される電荷である第1電極供給電荷及び前記第2電極から供給される電荷である第2電極供給電荷によって発光し又は呈色変化する物質である表示用組成物とを有する表示素子を複数備え、さらに、前記各表示素子の前記表示用組成物と他の前記表示素子の前記表示用組成物との間を絶縁する隔壁を備えた表示装置の製造方法であって、基板上に前記第1電極を形成する第1電極形成工程と、前記第1電極形成工程において形成された前記第1電極を覆う絶縁層を形成する絶縁層形成工程と、前記絶縁層形成工程において形成された前記絶縁層上の前記第1電極に対向する位置に、前記絶縁層を溶解する溶媒と前記表示用組成物とを含有するインク溶液を塗布するインク溶液塗布工程と、前記インク溶液塗布工程において塗布された前記インク溶液が前記絶縁層を溶解した後に、前記インク溶液の前記溶媒を蒸発させ、前記第1電極と接触するように前記表示用組成物を形成する表示用組成物形成工程と、前記表示用組成物形成工程において形成した前記表示用組成物、及び前記インク溶液によって溶解された後の前記絶縁層である前記隔壁の上に、前記第2電極供給電荷を前記表示用組成物に注入する電荷注入層を塗布する工程であって、塗布後の前記電荷注入層の、前記表示用組成物及び前記隔壁に接する側と反対側の面が、前記表示用組成物及び前記隔壁からなる面より平らになるように前記電荷注入層を塗布する電荷注入層塗布工程と、前記電荷注入層塗布工程において塗布された前記電荷注入層に、予めフィルム状に形成された前記第2電極を熱によって圧着して、前記第2電極を前記電荷注入層と接合させる第2電極接合工程とを備えた表示装置の製造方法が提供される。 According to the present disclosure, the first electrode, the second electrode spaced apart from and opposed to the first electrode, and the first electrode and the second electrode are inserted between the first electrode and the first electrode. When a voltage is applied between the electrode and the second electrode, a first electrode supply charge that is a charge supplied from the first electrode and a second electrode supply charge that is a charge supplied from the second electrode A plurality of display elements each having a display composition that is a substance that emits light or changes color, and further, the display composition of each display element and the display composition of another display element A method of manufacturing a display device having a partition that insulates between, a first electrode forming step of forming the first electrode on a substrate, and covering the first electrode formed in the first electrode forming step Insulating layer forming step for forming an insulating layer, and the insulating layer forming step An ink solution applying step of applying an ink solution containing a solvent for dissolving the insulating layer and the display composition at a position facing the first electrode on the insulating layer formed in the step, and the ink A display composition for forming the display composition so as to contact the first electrode by evaporating the solvent of the ink solution after the ink solution applied in the solution application process dissolves the insulating layer. The second electrode supply charge is displayed on the partition which is the insulating layer after being dissolved by the forming step, the display composition forming step, and the ink solution. A step of applying a charge injection layer to be injected into the composition for coating, wherein the surface of the charge injection layer after coating is opposite to the side in contact with the display composition and the partition wall, and the display composition and A charge injection layer coating step for coating the charge injection layer so as to be flatter than a surface comprising the partition wall; and the charge injection layer applied in the charge injection layer coating step, the film formed in advance in a film shape There is provided a manufacturing method of a display device including a second electrode bonding step of bonding two electrodes by heat and bonding the second electrode to the charge injection layer.
第1実施形態の有機ELディスプレイ1の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the organic electroluminescent display 1 of 1st Embodiment. 第1実施形態における有機EL素子11の1画素の回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of 1 pixel of the organic EL element 11 in 1st Embodiment. 第1実施形態における電流駆動回路12の構成を示す説明図である。It is explanatory drawing which shows the structure of the current drive circuit 12 in 1st Embodiment. 第1実施形態における陰極11fの製造プロセスを示すフローチャートである。It is a flowchart which shows the manufacturing process of the cathode 11f in 1st Embodiment. 第1実施形態における有機EL素子11の製造プロセスを示すフローチャートである。It is a flowchart which shows the manufacturing process of the organic EL element 11 in 1st Embodiment. 第1実施形態における有機EL素子11の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 11 in 1st Embodiment. 第1実施形態における有機EL素子11の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 11 in 1st Embodiment. 第1実施形態における有機EL素子11の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 11 in 1st Embodiment. 第1実施形態における有機EL素子11の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 11 in 1st Embodiment. 第1実施形態における有機EL素子11の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 11 in 1st Embodiment. 第1実施形態における有機EL素子11の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 11 in 1st Embodiment. 第1実施形態における有機EL素子11の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 11 in 1st Embodiment. 第1実施形態におけるインクジェットヘッド30の構成を示す説明図である。It is explanatory drawing which shows the structure of the inkjet head 30 in 1st Embodiment. 第2実施形態の有機ELディスプレイ2の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the organic electroluminescent display 2 of 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示すフローチャートである。It is a flowchart which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment. 第2実施形態における有機EL素子51の製造プロセスを示す説明図である。It is explanatory drawing which shows the manufacturing process of the organic EL element 51 in 2nd Embodiment.
 (第1実施形態)
 以下、本開示に係る表示装置の製造方法の第1実施形態について、図面を参照して説明する。ここでは、表示装置として、有機ELディスプレイを例に挙げて説明する。
(First embodiment)
Hereinafter, a first embodiment of a method for manufacturing a display device according to the present disclosure will be described with reference to the drawings. Here, an organic EL display will be described as an example of the display device.
 まず、有機ELディスプレイ1の全体構成を図1を用いて説明する。有機ELディスプレイ1は、ガラス基板10と、ガラス基板10上に配置された有機EL素子11(表示素子)、電流駆動TFT12、水平駆動回路13、垂直駆動回路14、及び封止層16を備えている。 First, the overall configuration of the organic EL display 1 will be described with reference to FIG. The organic EL display 1 includes a glass substrate 10, an organic EL element 11 (display element) disposed on the glass substrate 10, a current driving TFT 12, a horizontal driving circuit 13, a vertical driving circuit 14, and a sealing layer 16. Yes.
 上記有機EL素子11は、ガラス基板10の中央部に形成されており、格子状に、15の画素に分割されている。それぞれの画素は、発光層11c(表示用組成物)、ITO(インジウムチタンオキサイド)である陽極11a、電荷注入層11e、及び陰極11fを備えている。発光層11cは、陽極11a及び電荷注入層11eによって上下から挟まれている。陰極11fは、電荷注入層11eと接合する。 The organic EL element 11 is formed at the center of the glass substrate 10 and is divided into 15 pixels in a lattice shape. Each pixel includes a light emitting layer 11c (composition for display), an anode 11a made of ITO (indium titanium oxide), a charge injection layer 11e, and a cathode 11f. The light emitting layer 11c is sandwiched from above and below by the anode 11a and the charge injection layer 11e. The cathode 11f is joined to the charge injection layer 11e.
 有機EL素子11について、陽極11aと陰極11fとの間に直流電圧をかけると、陽極11aからホールが発光層11cに供給され、陰極11fから電子が発光層11cに供給される。陽極11aから供給されたホールと、陰極11fから供給された電子とが、発光層11cで再結合する。この際、発光層11cは発光し、ガラス基板10を透過して下方(図1における下方)に光を照射する。一方、陽極11aと陰極11fとの間の電圧がOFFの時には、発光層11cは消光する。電子注入層11eは、陰極11fから供給される電子を効率よく発光層11cに注入する役割を担っている。さらに、電子注入層11eは、発光層11c及び後述する隔壁からなる面と陰極11fとを良好に接合させる役割を担っている。 In the organic EL element 11, when a DC voltage is applied between the anode 11a and the cathode 11f, holes are supplied from the anode 11a to the light emitting layer 11c, and electrons are supplied from the cathode 11f to the light emitting layer 11c. The holes supplied from the anode 11a and the electrons supplied from the cathode 11f are recombined in the light emitting layer 11c. At this time, the light emitting layer 11c emits light, passes through the glass substrate 10, and irradiates light downward (downward in FIG. 1). On the other hand, when the voltage between the anode 11a and the cathode 11f is OFF, the light emitting layer 11c is quenched. The electron injection layer 11e plays a role of efficiently injecting electrons supplied from the cathode 11f into the light emitting layer 11c. Furthermore, the electron injection layer 11e plays a role of favorably bonding the light emitting layer 11c and a surface formed of a partition wall described later and the cathode 11f.
 上記電流駆動TFT12は、有機EL素子11の個々の画素ごとに1個ずつ設けられており、対応する画素への電流供給を制御するスイッチとして作用する。上記水平駆動回路13及び上記垂直駆動回路14は、各画素に対応する電流駆動TFT12をオン又はオフとすることにより、各画素の独立発光及び消灯制御を行う。上記封止層16は、有機EL素子11、電流駆動TFT12、水平駆動回路13、垂直駆動回路14を上から覆い、保護するものである。 The current driving TFT 12 is provided for each pixel of the organic EL element 11 and functions as a switch for controlling current supply to the corresponding pixel. The horizontal drive circuit 13 and the vertical drive circuit 14 perform independent light emission and extinction control of each pixel by turning on or off the current drive TFT 12 corresponding to each pixel. The sealing layer 16 covers and protects the organic EL element 11, the current driving TFT 12, the horizontal driving circuit 13, and the vertical driving circuit 14 from above.
 次に、上記電流駆動TFT12について、図1、図2、及び図3を用いて説明する。有機ELディスプレイ1には、図1に示す様に、有機EL素子11の1画素ごとに、電流駆動TFT12が設けられている。電流駆動TFT12は、図2に示す様に、有機EL素子11の個々の画素への電流の供給を制御するスイッチとして機能する。 Next, the current driving TFT 12 will be described with reference to FIG. 1, FIG. 2, and FIG. As shown in FIG. 1, the organic EL display 1 is provided with a current drive TFT 12 for each pixel of the organic EL element 11. As shown in FIG. 2, the current driving TFT 12 functions as a switch that controls the supply of current to each pixel of the organic EL element 11.
 電流駆動TFT12の構成を、図3の等価回路を用いて説明する。なお、図3は、6個の画素についての繰り返し図である。電流駆動TFT12は、図3に示す様に、データ線12f、走査線12e、メモリーTFT12b、コンデンサ12c、及び駆動TFT12aを備えている。データ線12fは、垂直駆動回路14に接続する。走査線12eは、水平駆動回路13に接続する。メモリーTFT12bのゲート電極には、走査信号が走査線12eを介して供給される。コンデンサ12cには、メモリーTFT12bを介してデータ線12fから電荷(画像信号)が供給され、保持される。駆動TFT12aのゲート電極には、コンデンサ12cによって保持された画像信号が供給される。有機EL素子11の陽極11aには、駆動TFT12aを介して電源線12dから駆動電流が流れ込む。 The configuration of the current drive TFT 12 will be described using the equivalent circuit of FIG. FIG. 3 is a repetition diagram for six pixels. As shown in FIG. 3, the current driving TFT 12 includes a data line 12f, a scanning line 12e, a memory TFT 12b, a capacitor 12c, and a driving TFT 12a. The data line 12f is connected to the vertical drive circuit 14. The scanning line 12 e is connected to the horizontal drive circuit 13. A scanning signal is supplied to the gate electrode of the memory TFT 12b through the scanning line 12e. The capacitor 12c is supplied with electric charges (image signal) from the data line 12f via the memory TFT 12b and is held. The image signal held by the capacitor 12c is supplied to the gate electrode of the driving TFT 12a. A drive current flows into the anode 11a of the organic EL element 11 from the power supply line 12d via the drive TFT 12a.
 電流駆動TFT12では、水平駆動回路13によって走査線12eがオンになり、垂直駆動回路14によってデータ線12fがオンになると、メモリーTFT12bが作動し、コンデンサ12cに電荷が蓄積される。蓄積された電荷に相当する時間だけ駆動TFT12aが作動し、電源線12dから、駆動TFT12a、陽極11a、発光層11c及び電子注入層11eを介して、陰極11fへ電流が流れる。作動した電流駆動TFT12に対応する画素が発光する。 In the current driving TFT 12, when the scanning line 12e is turned on by the horizontal driving circuit 13 and the data line 12f is turned on by the vertical driving circuit 14, the memory TFT 12b is activated and charges are accumulated in the capacitor 12c. The driving TFT 12a operates for a time corresponding to the accumulated charge, and a current flows from the power supply line 12d to the cathode 11f through the driving TFT 12a, the anode 11a, the light emitting layer 11c, and the electron injection layer 11e. The pixel corresponding to the activated current driving TFT 12 emits light.
 一方、水平駆動回路13によって走査線12dがオフとなるか、垂直駆動回路14によってデータ線12eがオフとなった場合には、メモリーTFT12bが作動せず、発光層11cには電流が流れない。作動しない電流駆動TFT12に対応する画素は消光する。 On the other hand, when the scanning line 12d is turned off by the horizontal driving circuit 13 or the data line 12e is turned off by the vertical driving circuit 14, the memory TFT 12b does not operate and no current flows through the light emitting layer 11c. Pixels corresponding to the non-operating current drive TFT 12 are extinguished.
 次に、有機ELディスプレイ1の製造方法を、図4~図12を用いて説明する。図4は、有機EL素子11のフィルム状の陰極11fの製造方法を示したフローチャートである。図5は、有機ELディスプレイ1のうち、有機EL素子11の部分のみの製造工程を示したフローチャートである。図6~図12は、図5の各工程における有機EL素子11を示した外観図である。ここでは、特に、要部である有機EL素子11の製造方法を説明する。先ず、フィルム状の陰極11fの製造方法について、図4を参照して説明する。フィルム状の陰極11fを、図5のS18の工程の前に予め形成しておく。 Next, a method for manufacturing the organic EL display 1 will be described with reference to FIGS. FIG. 4 is a flowchart showing a method for manufacturing the film-like cathode 11 f of the organic EL element 11. FIG. 5 is a flowchart showing a manufacturing process of only the portion of the organic EL element 11 in the organic EL display 1. 6 to 12 are external views showing the organic EL element 11 in each step of FIG. Here, the manufacturing method of the organic EL element 11 which is a principal part is demonstrated especially. First, the manufacturing method of the film-form cathode 11f is demonstrated with reference to FIG. The film-like cathode 11f is formed in advance before the step S18 in FIG.
 (フィルム状の陰極11fの製造プロセス)
 先ず、電子供給金属層形成工程(S101)では、基板上に蒸着によってAl/LiFの層を形成し、電子供給金属11f1(図12参照)の層とする。電子供給金属11f1は、電子を良好に発光層11cに供給する金属である。よって、電子供給金属11f1の仕事関数は小さい。したがって、電子供給金属11f1は、真空中若しくは不活性ガス中でないと還元する虞がある。Al層とLiF層とが連続的に積層して、電子供給金属11f1の層を形成する。Al層の厚みは一例として1000Åとし、LiF層の厚みは一例として10Åとする。なお、Al/LiFの代わりに、Al、LiF、Al/Ca、及びAl/Baのいずれかで電子供給金属11f1の層を形成してもよい。
(Manufacturing process of the film-like cathode 11f)
First, in the electron supply metal layer forming step (S101), an Al / LiF layer is formed on the substrate by vapor deposition to form an electron supply metal 11f1 (see FIG. 12) layer. The electron supply metal 11f1 is a metal that favorably supplies electrons to the light emitting layer 11c. Therefore, the work function of the electron supply metal 11f1 is small. Therefore, the electron supply metal 11f1 may be reduced unless it is in a vacuum or in an inert gas. The Al layer and the LiF layer are continuously stacked to form a layer of the electron supply metal 11f1. The thickness of the Al layer is 1000 mm as an example, and the thickness of the LiF layer is 10 mm as an example. Note that the layer of the electron supply metal 11f1 may be formed of any one of Al, LiF, Al / Ca, and Al / Ba instead of Al / LiF.
 次いで、表面被覆絶縁層形成工程(S102)では、マスク真空蒸着により、S101で形成した電子供給金属11f1の層の表面を覆う絶縁層である表面被覆絶縁層11f2(図12参照)を形成する。表面被覆絶縁層11f2の厚みは、電子供給金属11f1が還元しない程度の薄い厚さにする。なお、電子供給金属11f1の層と表面被覆絶縁層11f2とからなるフィルムを基板から剥がすと、フィルム状の陰極11fとなる。このように、電子供給金属11f1の層の表面を表面被覆絶縁層11f2で覆うことによって、フィルム状の陰極11fの取り扱いが容易になる。表面被覆絶縁層11f2の厚みは薄いので、表面被覆絶縁膜11f2は、電子供給金属11f1から発光層11cへの電子の供給の妨げにはならない。後述する図5のS18の工程の前に、フィルム状の陰極11fを予め形成しておく。 Next, in the surface covering insulating layer forming step (S102), a surface covering insulating layer 11f2 (see FIG. 12) which is an insulating layer covering the surface of the layer of the electron supply metal 11f1 formed in S101 is formed by mask vacuum deposition. The thickness of the surface covering insulating layer 11f2 is set to such a thin thickness that the electron supply metal 11f1 is not reduced. Note that, when a film composed of the layer of the electron supply metal 11f1 and the surface covering insulating layer 11f2 is peeled from the substrate, a film-like cathode 11f is obtained. Thus, the film-like cathode 11f can be easily handled by covering the surface of the layer of the electron supply metal 11f1 with the surface covering insulating layer 11f2. Since the thickness of the surface covering insulating layer 11f2 is thin, the surface covering insulating film 11f2 does not hinder the supply of electrons from the electron supply metal 11f1 to the light emitting layer 11c. Before the step S18 of FIG. 5 described later, a film-like cathode 11f is formed in advance.
 (有機EL素子11の製造プロセス)
 有機ELディスプレイ1のうち、有機EL素子11の部分のみの製造工程について、図5のフローチャート及び図6~図12を参照して説明する。
(Manufacturing process of organic EL element 11)
A manufacturing process of only the portion of the organic EL element 11 in the organic EL display 1 will be described with reference to the flowchart of FIG. 5 and FIGS.
 先ず、陽極製膜工程(S11)では、ガラス基板10上に、ITOを150nmの厚みで蒸着し、陽極11aを成膜する(図6参照)。陽極11aの表面抵抗は500~600μΩ/cmであり、光透過率は81%であった。 First, in the anode film forming step (S11), ITO is vapor-deposited with a thickness of 150 nm on the glass substrate 10 to form the anode 11a (see FIG. 6). The surface resistance of the anode 11a was 500 to 600 μΩ / cm, and the light transmittance was 81%.
 次いで、エッチング工程(S12)では、S11で成膜した陽極11a上に、露光用のレジストをスピンコートにより塗布し、所望の電極パターンをマスク露光する。その後、濃硝酸と濃塩酸の混合液である王水を用いたエッチングにより、露光されていない部分のレジスト及び陽極11aを取り除き、所望の電極パターンを形成する(図7参照)。 Next, in the etching step (S12), an exposure resist is applied on the anode 11a formed in S11 by spin coating, and a desired electrode pattern is mask-exposed. Thereafter, the resist and the anode 11a that are not exposed are removed by etching using aqua regia, which is a mixture of concentrated nitric acid and concentrated hydrochloric acid, to form a desired electrode pattern (see FIG. 7).
 次いで、洗浄工程(S13)では、陽極11aの表面を、中性洗剤洗浄、アセトン洗浄、IPA(イソプロピルアルコール)洗浄、及びUVオゾン洗浄により順次洗浄する。これらの洗浄の目的は、(i)陽極11a上の汚れを除去すること、(ii)陽極11a表面の酸素欠陥を減らし、ホール注入障壁を低下させること、である。中でも、UVオゾン洗浄によると、湿式洗浄ではとれない有機物の汚れを除去することができる。 Next, in the cleaning step (S13), the surface of the anode 11a is sequentially cleaned by neutral detergent cleaning, acetone cleaning, IPA (isopropyl alcohol) cleaning, and UV ozone cleaning. The purpose of these cleanings is (i) removing dirt on the anode 11a, and (ii) reducing oxygen defects on the surface of the anode 11a and lowering the hole injection barrier. In particular, UV ozone cleaning can remove organic contaminants that cannot be removed by wet cleaning.
 次いで、絶縁層形成工程(S14)では、ガラス基板10上の、有機EL素子11を形成する部分全体に、スピンコート法、ディップ法、カーテンコート法、バーコート法、印刷法もしくはインクジェット法を用いて、PVKから成る絶縁層11bを形成する(図8参照)。絶縁層11bの厚みは、陽極11a間の絶縁を保持できる厚みであればよい。厚みが薄い方が、インクジェットの液滴径(ドロップ径)を考えると、高分解能、高画質の点で好ましい。絶縁層11bは、後述する工程において溶解させるので、半キュアー状態(完全に硬化していない状態)が望ましい。 Next, in the insulating layer forming step (S14), a spin coat method, a dip method, a curtain coat method, a bar coat method, a printing method, or an ink jet method is used on the entire portion of the glass substrate 10 where the organic EL element 11 is to be formed. Then, an insulating layer 11b made of PVK is formed (see FIG. 8). The thickness of the insulating layer 11b may be a thickness that can maintain insulation between the anodes 11a. A thinner thickness is preferable in terms of high resolution and high image quality in view of the droplet diameter (drop diameter) of the inkjet. Since the insulating layer 11b is dissolved in a process described later, a semi-cured state (a state in which it is not completely cured) is desirable.
 また、有機EL膜(表示用組成物)の成分と炭化水素系溶媒とから成るインク21を予め調製しておく。具体的には、以下の成分を、それぞれ対応する重量比で混合することによって調製しておく。 Also, an ink 21 comprising a component of an organic EL film (display composition) and a hydrocarbon solvent is prepared in advance. Specifically, it prepares by mixing the following components in a corresponding weight ratio, respectively.
 ホール輸送性ポリマーである、カルバゾール誘導体を主鎖あるいは側鎖に有する高分子化合物(PVK):16重量比
 電子輸送材料(BND):4重量比
 発光中心形成化合物(TPB):1重量比
 炭化水素系溶媒(テトラリン):インク21において、PVK、BND、及びTPBの合計濃度が2%wtとなる重量比
High molecular compound (PVK) having a carbazole derivative in the main chain or side chain, which is a hole transporting polymer: 16 weight ratio Electron transport material (BND): 4 weight ratio Luminescent center forming compound (TPB): 1 weight ratio Hydrocarbon System solvent (tetralin): In ink 21, the weight ratio at which the total concentration of PVK, BND, and TPB is 2% wt
 上記インク21の粘度は、1×10-3~1×10Pa・sとすることができる。このうち、調整するインク21の粘度が5×10-3~1.5×10-2Pa・sの範囲にあることが、インクジェット法を用いてインク21を吐出する際のドロップ径を制御する上で望ましい。上記インク21の表面張力は、20~50mN/mの範囲にあることが好ましい。インクジェット法によるインクの吐出の際の飛行曲がりを抑えることができるからである。 The viscosity of the ink 21 can be 1 × 10 −3 to 1 × 10 Pa · s. Among these, the viscosity of the ink 21 to be adjusted is in the range of 5 × 10 −3 to 1.5 × 10 −2 Pa · s, in order to control the drop diameter when the ink 21 is ejected using the ink jet method. Is desirable. The surface tension of the ink 21 is preferably in the range of 20 to 50 mN / m. This is because it is possible to suppress the flight bending at the time of ink ejection by the ink jet method.
 次いで、インク溶液塗布工程(S15)では、調製したインク21を、画素を形成するべき15カ所に塗布する。詳細には、インクジェットヘッド30を用い、絶縁層11b上において、所望の電極パターンに形成された陽極11aに対向する位置に、インク21を選択的に塗布する(図9参照)。インクジェットヘッド30は、図13に示す様に、圧電素子30aを備えた圧電素子方式のインクジェットヘッドである。インクジェットヘッド30は、ドライバー30cからの信号に応じて、インクジェットヘッド本体30dに形成したオリフィス30bから、インク21のドロップを吐出する。吐出の駆動周波数は1KHzとし、ドロップ1個の液適量を50μlとする。インク21が塗布された場所では、塗布されたインク21の中に含まれる溶媒によって、絶縁層11bが溶解し、インク21は陽極11aに達する(図10参照)。 Next, in the ink solution application step (S15), the prepared ink 21 is applied to 15 locations where pixels are to be formed. Specifically, the ink 21 is selectively applied on the insulating layer 11b at a position facing the anode 11a formed in a desired electrode pattern using the inkjet head 30 (see FIG. 9). As shown in FIG. 13, the ink jet head 30 is a piezoelectric element type ink jet head provided with a piezoelectric element 30a. The inkjet head 30 ejects a drop of the ink 21 from the orifice 30b formed in the inkjet head body 30d in response to a signal from the driver 30c. The ejection driving frequency is 1 KHz, and the appropriate amount of liquid for one drop is 50 μl. In the place where the ink 21 is applied, the insulating layer 11b is dissolved by the solvent contained in the applied ink 21, and the ink 21 reaches the anode 11a (see FIG. 10).
 次いで、表示用組成物形成工程(S16)では、インク21を50~60℃で30分間乾燥させることにより、インク21中の溶媒を蒸発させる。インク21の不揮発成分である表示用組成物を、陽極11aと電気的接合を持った状態で固化させる。固化させた表示用組成物を発光層11cとする。 Next, in the display composition forming step (S16), the ink 21 is dried at 50 to 60 ° C. for 30 minutes to evaporate the solvent in the ink 21. The display composition which is a non-volatile component of the ink 21 is solidified in a state of being electrically connected to the anode 11a. The solidified display composition is referred to as a light emitting layer 11c.
 固化した15カ所の発光層11cは、それぞれが、1画素に対応する。この時、図10に示すように、インク21によって溶解された絶縁層11bは、インク21を滴下した部分の周辺部に偏析する。インク21に含まれていた表示用組成物は、インク21を滴下した部分の中央において固化する。理由としては、インク21に含まれる溶媒に対する溶解度において、表示用組成物の方が、絶縁層11bよりも大きいことが考えられる。 Each of the solidified 15 light emitting layers 11c corresponds to one pixel. At this time, as shown in FIG. 10, the insulating layer 11 b dissolved by the ink 21 is segregated at the periphery of the portion where the ink 21 is dropped. The display composition contained in the ink 21 is solidified at the center of the portion where the ink 21 is dropped. The reason may be that the display composition is larger than the insulating layer 11 b in the solubility in the solvent contained in the ink 21.
 インク21が塗布されなかった部分の絶縁層11bは、溶解されずに残り、発光層11cを隔てる隔壁11dとなる。また、上述したように、インク21によって溶解された絶縁層11bが、インク21を滴下した部分の周辺部に偏析することから、発光層11cと隔壁11dとからなる面は凹凸となっている。 The portion of the insulating layer 11b where the ink 21 has not been applied remains undissolved and becomes a partition 11d separating the light emitting layer 11c. In addition, as described above, the insulating layer 11b dissolved by the ink 21 is segregated in the periphery of the portion where the ink 21 is dropped, so that the surface composed of the light emitting layer 11c and the partition wall 11d is uneven.
 次いで、電子注入層塗布工程(S17)では、オキサジゾール誘導体、トリアゾール系、及びアルミニウム錯体のいずれかである電子注入層11eを、発光層11cと隔壁11dとからなる面に塗布することによって形成する(図11参照)。塗布の方法には、スピンコート法、ディップ法、カーテンコート法、バーコート法、印刷法もしくはインクジェット法を用いることができる。この際、塗布後の電子注入層11eにおいて、発光層11c及び隔壁11dに接する側と反対側の面が、発光層11c及び隔壁11dからなる面より平らになるように、電子注入層11eを塗布する。 Next, in the electron injection layer coating step (S17), the electron injection layer 11e, which is any of an oxadiazole derivative, a triazole type, and an aluminum complex, is formed by coating on the surface composed of the light emitting layer 11c and the partition 11d ( FIG. 11). As a coating method, a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method can be used. At this time, the electron injection layer 11e is applied so that the surface opposite to the side in contact with the light emitting layer 11c and the partition wall 11d in the electron injection layer 11e after coating is flatter than the surface formed of the light emitting layer 11c and the partition wall 11d. To do.
 次いで、陰極接合工程(S18)では、約150℃に加熱されたローラ200を用いて、フィルム状の陰極11fを電子注入層11eに熱によって圧着して、陰極11fと電子注入層11eとを接合させる(図12参照)。陰極11fは、図4のS101及びS102にてあらかじめ形成したものである。電子注入層11eの表面は平らとなっているので、発光層11c及び隔壁11dに接合させて陰極を形成する場合よりも、電子注入層11eに接合させて陰極11fを形成するほうが、電子注入層11eは良好に接合する。 Next, in the cathode bonding step (S18), using the roller 200 heated to about 150 ° C., the film-like cathode 11f is pressure-bonded to the electron injection layer 11e by heat to bond the cathode 11f and the electron injection layer 11e. (See FIG. 12). The cathode 11f is formed in advance in S101 and S102 of FIG. Since the surface of the electron injection layer 11e is flat, it is better to form the cathode 11f by bonding to the electron injection layer 11e than to form the cathode by bonding to the light emitting layer 11c and the partition wall 11d. 11e bonds well.
 上記のようにして有機EL素子11をガラス基板10の中心部に形成する。ガラス基板10の周辺部に、水平駆動回路13及び垂直駆動回路14を形成する。さらには、封止層16によって、有機EL素子11、水平駆動回路13及び垂直駆動回路14を覆うことで、有機ELディスプレイ1を完成する。 The organic EL element 11 is formed at the center of the glass substrate 10 as described above. A horizontal drive circuit 13 and a vertical drive circuit 14 are formed on the periphery of the glass substrate 10. Furthermore, the organic EL display 1 is completed by covering the organic EL element 11, the horizontal drive circuit 13, and the vertical drive circuit 14 with the sealing layer 16.
 封止層16は、ガラス板から成る。封止層16の下面(図1における下面)には、有機EL素子11との間に、0.3~0.5mmの隙間が生じるように、乾燥剤が取り付けられている。封止層16を取り付ける際には、その隙間に、窒素ガスを封入する。 The sealing layer 16 is made of a glass plate. A desiccant is attached to the lower surface (the lower surface in FIG. 1) of the sealing layer 16 so that a gap of 0.3 to 0.5 mm is formed between the sealing layer 16 and the organic EL element 11. When the sealing layer 16 is attached, nitrogen gas is sealed in the gap.
 以上、第1実施形態の表示装置の製造方法によれば、表示用組成物及び溶媒を含むインク21を、画素を形成すべき場所に塗布することにより、発光層11cの形成と、発光層11cを隔てる隔壁11dの形成とを、同時に行うことができる。つまり、インク21を塗布した部分においては、インク21に含まれる溶媒が絶縁層11bを溶解し、発光層11cが形成される。インク21が塗布されない部分では、絶縁層11bが残存し、画素間を隔てる隔壁11dとなる。そのため、従来の有機EL素子の製造方法のように、有機EL膜間の隔壁を形成するために、露光、エッチング等の独立した工程を行う必要がない。よって、製造工程を短縮することができ、製造コストを低くすることができる。 As described above, according to the manufacturing method of the display device of the first embodiment, the ink 21 containing the display composition and the solvent is applied to the place where the pixel is to be formed, thereby forming the light emitting layer 11c and the light emitting layer 11c. The partition 11d separating the two can be formed at the same time. That is, in the portion where the ink 21 is applied, the solvent contained in the ink 21 dissolves the insulating layer 11b, and the light emitting layer 11c is formed. In the portion where the ink 21 is not applied, the insulating layer 11b remains and becomes a partition wall 11d separating the pixels. Therefore, unlike the conventional method of manufacturing an organic EL element, it is not necessary to perform independent processes such as exposure and etching in order to form a partition between organic EL films. Therefore, the manufacturing process can be shortened and the manufacturing cost can be reduced.
 第1実施形態の表示装置の製造方法では、圧電素子方式のインクジェットヘッド30を用いているため、バブルジェット(登録商標)方式のように、インク吐出のための熱源が不用である。よって、インク材料の劣化が起こらない。インク21の溶媒の選択範囲が広い。吐出するインク21の液滴量の制御がしやすい。駆動周波数を高くできる。耐久性が高い。 In the manufacturing method of the display device according to the first embodiment, since the piezoelectric element type inkjet head 30 is used, a heat source for ink ejection is unnecessary as in the bubble jet (registered trademark) type. Therefore, the ink material does not deteriorate. The selection range of the solvent of the ink 21 is wide. It is easy to control the droplet amount of the ink 21 to be discharged. Drive frequency can be increased. High durability.
 陰極11fは、発光層11c及び隔壁11dからなる面より平らな面を有する電子注入層11e上に形成される。よって、発光層11c及び隔壁11dからなる面と陰極11fとが接合される場合よりも、陰極11fと電子注入層11eとは良好に接合される。これにより、良好に像を表示させることができる。なお、電子注入層11eは、電子を発光層11cに注入する。よって、電子注入層11eを、陰極11fと発光層11cとの間に挿入することによっては、発光層11cが発光し又は呈色変化することの妨げにはならない。 The cathode 11f is formed on the electron injection layer 11e having a plane flatter than the plane formed by the light emitting layer 11c and the partition wall 11d. Therefore, the cathode 11f and the electron injection layer 11e are bonded better than the case where the surface composed of the light emitting layer 11c and the partition wall 11d and the cathode 11f are bonded. Thereby, an image can be displayed favorably. The electron injection layer 11e injects electrons into the light emitting layer 11c. Therefore, inserting the electron injection layer 11e between the cathode 11f and the light emitting layer 11c does not prevent the light emitting layer 11c from emitting light or changing its color.
 また、電子注入層11eであるオキサジゾール誘導体、トリアゾール系、及びアルミニウム錯体は、陰極11fであるアルミニウム(Al)、フッ化リチウム(LiF)、Al/Ca、Al/LiF、及びAl/Baのいずれかから供給される電子を発光層11cに注入する材料として適している。さらに、陽極11aは、仕事関数が大きいので、ホールを良好に発光層11cに供給することができる。反対に、陰極11fであるAl/LiFは、仕事関数が小さいので、電子を良好に発光層11cに供給することができる。その結果、発光層11cを良好に発光させることができる。 The oxadiazole derivative, triazole-based, and aluminum complex that are the electron injection layer 11e are any of aluminum (Al), lithium fluoride (LiF), Al / Ca, Al / LiF, and Al / Ba that are the cathode 11f. It is suitable as a material for injecting electrons supplied from the light emitting layer 11c. Furthermore, since the anode 11a has a large work function, holes can be supplied to the light emitting layer 11c satisfactorily. On the contrary, Al / LiF which is the cathode 11f has a small work function, and thus can supply electrons to the light emitting layer 11c satisfactorily. As a result, the light emitting layer 11c can emit light satisfactorily.
 陰極11fの電子供給金属11f1は、真空中若しくは不活性ガス中でないと還元する虞があるが、電子供給金属11f1の層の表面は表面被覆絶縁膜11f2で覆われているよって、フィルム状の陰極11fの取り扱いは容易である。 The electron supply metal 11f1 of the cathode 11f may be reduced unless it is in a vacuum or an inert gas. However, since the surface of the layer of the electron supply metal 11f1 is covered with the surface coating insulating film 11f2, the film-like cathode 11f is easy to handle.
 (第2実施形態)
 続いて、本開示に係る表示装置の製造方法の第2実施形態について、図面を参照して説明する。ここでは、表示装置として、第1実施形態と同様に有機ELディスプレイを例に挙げて説明する。第1実施形態では、最初に陽極(ITO)11aを形成して(図5 S11~S13)、最後に陰極11fを接合していた(図5 S18)。これに対し、第2実施形態では、最初に陰極を形成して、最後に陽極を接合する。以下、第1実施形態と異なる部分を中心に説明する。
(Second Embodiment)
Next, a second embodiment of a method for manufacturing a display device according to the present disclosure will be described with reference to the drawings. Here, as an example of the display device, an organic EL display will be described as in the first embodiment. In the first embodiment, the anode (ITO) 11a is formed first (S11 to S13 in FIG. 5), and finally the cathode 11f is joined (S18 in FIG. 5). In contrast, in the second embodiment, the cathode is formed first and the anode is joined last. Hereinafter, a description will be given centering on differences from the first embodiment.
 有機ELディスプレイ2の全体構成を、図8を用いて説明する。第1実施形態と同じ機能を有するものには同じ符号を付し、説明を省略又は簡略化する。有機ELディスプレイ2は、ガラス基板50と、ガラス基板50上に配置された有機EL素子51(表示素子)、電流駆動TFT12、水平駆動回路13、垂直駆動回路14、及びガラス板である封止層16を備えている。 The overall configuration of the organic EL display 2 will be described with reference to FIG. Components having the same functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified. The organic EL display 2 includes a glass substrate 50, an organic EL element 51 (display element) disposed on the glass substrate 50, a current driving TFT 12, a horizontal driving circuit 13, a vertical driving circuit 14, and a sealing layer that is a glass plate. 16 is provided.
 上記有機EL素子51は、ガラス基板50の中央部に形成されており、格子状に、15の画素に分割されている。それぞれの画素は、発光層11c(表示用組成物)、陰極51a、ホール注入層51e、及び陽極51f(ITO)を備えている。発光層11cは、陰極51a及びホール注入層51eによって上下から挟まれている。陽極51fは、ホール注入層51eと接合する。 The organic EL element 51 is formed at the center of the glass substrate 50 and is divided into 15 pixels in a lattice shape. Each pixel includes a light emitting layer 11c (display composition), a cathode 51a, a hole injection layer 51e, and an anode 51f (ITO). The light emitting layer 11c is sandwiched from above and below by the cathode 51a and the hole injection layer 51e. The anode 51f is joined to the hole injection layer 51e.
 有機EL素子51について、陽極51fと陰極51aとの間に直流電圧をかけると、陽極51fからホールが発光層11cに供給され、陰極51aから電子が発光層11cに供給される。陽極51fから供給されたホールと、陰極51aから供給された電子とが、発光層11cで再結合する。この際、発光層11cは発光し、封止層16を透過して、上方(図7における上方)に光を照射する。一方、陽極51fと陰極51aとの間の電圧がOFFの時には、発光層11cは消光する。ホール注入層51eは、陽極51fから供給されるホールを効率よく発光層11cに注入する役割を担っている。さらに、ホール注入層51eは、発光層11c及び後述する隔壁とからなる面と陽極51fとを良好に接合させる役割を担っている。 In the organic EL element 51, when a DC voltage is applied between the anode 51f and the cathode 51a, holes are supplied from the anode 51f to the light emitting layer 11c, and electrons are supplied from the cathode 51a to the light emitting layer 11c. The holes supplied from the anode 51f and the electrons supplied from the cathode 51a are recombined in the light emitting layer 11c. At this time, the light emitting layer 11c emits light, passes through the sealing layer 16, and irradiates light upward (upward in FIG. 7). On the other hand, when the voltage between the anode 51f and the cathode 51a is OFF, the light emitting layer 11c is quenched. The hole injection layer 51e plays a role of efficiently injecting holes supplied from the anode 51f into the light emitting layer 11c. Further, the hole injection layer 51e plays a role in favorably bonding the surface formed of the light emitting layer 11c and a partition wall described later and the anode 51f.
 電流駆動TFT12、水平駆動回路13、垂直駆動回路14は第1実施形態と同じなので、説明を省略する。 Since the current drive TFT 12, the horizontal drive circuit 13, and the vertical drive circuit 14 are the same as those in the first embodiment, description thereof is omitted.
 次に、有機ELディスプレイ2の製造方法を、図15~図23を用いて説明する。図15は、有機ELディスプレイ2のうち、有機EL素子51の部分のみの製造工程を示したフローチャートである。図16~図23は、図15の各工程における有機EL素子51を示した外観図である。ここでは、特に、要部である有機EL素子51の製造方法を説明する。 Next, a method for manufacturing the organic EL display 2 will be described with reference to FIGS. FIG. 15 is a flowchart showing a manufacturing process of only the portion of the organic EL element 51 in the organic EL display 2. 16 to 23 are external views showing the organic EL element 51 in each step of FIG. Here, the manufacturing method of the organic EL element 51 which is a principal part is demonstrated especially.
 (フィルム状の陽極51fの製造プロセス)
 後述する図15のS28の工程を行う前に、予めフィルム状の陽極51fを形成しておく。具体的には、基板上に、ITOを150nmの厚みで蒸着する。蒸着したフィルム状のITOを基板から剥がすと、フィルム状の陽極51fとなる。
(Manufacturing process of the film-like anode 51f)
Before performing step S28 of FIG. 15 described later, a film-like anode 51f is formed in advance. Specifically, ITO is vapor-deposited with a thickness of 150 nm on the substrate. When the deposited film-like ITO is peeled off from the substrate, a film-like anode 51f is obtained.
 (有機EL素子51の製造プロセス)
 先ず、電子供給金属層形成工程(S21)では、マスク真空蒸着により、Al/LiFの層を形成し、電子供給金属51a1の層とする(図16参照)。電子供給金属51a1は、電子を良好に発光層11cに供給する金属である。そのため、電子供給金属51a1の仕事関数は小さい。したがって、電子供給金属51a1は、真空中若しくは不活性ガス中でないと還元する虞がある。Al層とLiF層とが連続的に積層して、電子供給金属51a1の層を形成する。Al層の厚みは一例として1000Åとし、LiF層の厚みは一例として10Åとする。なお、Al/LiFの代わりに、Al、LiF、Al/Ca、及びAl/Baのいずれかで電子供給金属51a1の層を形成してもよい。
(Manufacturing process of organic EL element 51)
First, in the electron supply metal layer forming step (S21), an Al / LiF layer is formed by mask vacuum deposition to form an electron supply metal 51a1 layer (see FIG. 16). The electron supply metal 51a1 is a metal that favorably supplies electrons to the light emitting layer 11c. Therefore, the work function of the electron supply metal 51a1 is small. Therefore, the electron supply metal 51a1 may be reduced unless it is in a vacuum or in an inert gas. The Al layer and the LiF layer are continuously stacked to form a layer of the electron supply metal 51a1. The thickness of the Al layer is 1000 mm as an example, and the thickness of the LiF layer is 10 mm as an example. Note that the layer of the electron supply metal 51a1 may be formed of any one of Al, LiF, Al / Ca, and Al / Ba instead of Al / LiF.
 次いで、表面被覆絶縁層形成工程(S22)では、マスク真空蒸着により、S21で形成した電子供給金属51a1の層の表面を覆う絶縁層である表面被覆絶縁層51a2を形成する(図17参照)。表面被覆絶縁層51a2の厚みは、電子供給金属51a1が還元しない程度の薄い厚さにする。なお、電子供給金属51a1の層及び表面被覆絶縁層51a2を陰極51aとする。このように、電子供給金属51a1の層の表面を表面被覆絶縁層51a2で覆うことによって、以下に示す工程を、真空中若しくは不活性ガス中で行う必要がなくなる。表面被覆絶縁層51a2の厚みは薄いので、表面被覆絶縁膜51a2は、電子供給金属51a1から発光層11cへの電子の供給の妨げにはならない。 Next, in the surface covering insulating layer forming step (S22), the surface covering insulating layer 51a2 which is an insulating layer covering the surface of the layer of the electron supply metal 51a1 formed in S21 is formed by mask vacuum deposition (see FIG. 17). The thickness of the surface covering insulating layer 51a2 is set to such a thin thickness that the electron supply metal 51a1 is not reduced. Note that the layer of the electron supply metal 51a1 and the surface coating insulating layer 51a2 are used as the cathode 51a. Thus, by covering the surface of the layer of the electron supply metal 51a1 with the surface covering insulating layer 51a2, it is not necessary to perform the following steps in vacuum or in an inert gas. Since the thickness of the surface covering insulating layer 51a2 is thin, the surface covering insulating film 51a2 does not hinder the supply of electrons from the electron supply metal 51a1 to the light emitting layer 11c.
 次いで、エッチング工程(S23)では、S21及びS22で形成した陰極51a上に、露光用のレジストをスピンコートにより塗布し、所望の電極パターンをマスク露光する。その後、濃硝酸と濃塩酸の混合液である王水を用いたエッチングにより、露光されていない部分のレジスト及び陰極51aを取り除き、所望の電極パターンを形成する(図18参照)。 Next, in the etching step (S23), an exposure resist is applied by spin coating on the cathode 51a formed in S21 and S22, and a desired electrode pattern is mask-exposed. Thereafter, by etching using aqua regia, which is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid, the resist and the cathode 51a that are not exposed are removed to form a desired electrode pattern (see FIG. 18).
 次いで、絶縁層形成工程(S24)では、ガラス基板50上の、有機EL素子51を形成する部分全体に、スピンコート法、ディップ法、カーテンコート法、バーコート法、印刷法もしくはインクジェット法を用いて、PVKから成る絶縁層11bを形成する(図19参照)。絶縁層11bの厚みは、陰極51a間の絶縁を保持できる厚みであればよい。厚みが薄い方が、インクジェットの液滴径(ドロップ径)を考えると、高分解能、高画質の点で好ましい。絶縁層11bは、後述する工程において溶解させるので、半キュアー状態(完全に硬化していない状態)が望ましい。 Next, in the insulating layer forming step (S24), a spin coat method, a dip method, a curtain coat method, a bar coat method, a printing method, or an ink jet method is used on the entire portion of the glass substrate 50 where the organic EL element 51 is formed. Then, an insulating layer 11b made of PVK is formed (see FIG. 19). The thickness of the insulating layer 11b may be a thickness that can maintain insulation between the cathodes 51a. A thinner thickness is preferable in terms of high resolution and high image quality in view of the droplet diameter (drop diameter) of the inkjet. Since the insulating layer 11b is dissolved in a process described later, a semi-cured state (a state in which it is not completely cured) is desirable.
 また、有機EL膜(表示用組成物)の成分及び炭化水素系溶媒から成るインク21を予め調製しておく。インク21の成分は、第1実施形態のインク21と同じである。 Also, an ink 21 composed of components of the organic EL film (display composition) and a hydrocarbon solvent is prepared in advance. The components of the ink 21 are the same as the ink 21 of the first embodiment.
 次いで、インク溶液塗布工程(S25)では、調製したインク21を、画素を形成するべき15カ所に塗布する。詳細には、インクジェットヘッド30を用い、絶縁層11b上において、所望の電極パターンに形成された陰極51aに対向する位置に、インク21を選択的に塗布する(図20参照)。インクジェットヘッド30は、図13に示す様に、圧電素子30aを備えた圧電素子方式のインクジェットヘッドである。インクジェットヘッド30は、ドライバー30cからの信号に応じて、インクジェットヘッド本体30dに形成したオリフィス30bから、インク21のドロップを吐出する。吐出の駆動周波数は1KHzとし、ドロップ1個の液適量を50μlとする。インク21が塗布された場所では、塗布されたインク21の中に含まれる溶媒によって、絶縁層11bが溶解し、インク21は陰極51aに達する(図21参照)。 Next, in the ink solution application step (S25), the prepared ink 21 is applied to 15 locations where pixels are to be formed. In detail, using the inkjet head 30, the ink 21 is selectively applied on the insulating layer 11b at a position facing the cathode 51a formed in a desired electrode pattern (see FIG. 20). As shown in FIG. 13, the ink jet head 30 is a piezoelectric element type ink jet head provided with a piezoelectric element 30a. The inkjet head 30 ejects a drop of the ink 21 from the orifice 30b formed in the inkjet head body 30d in response to a signal from the driver 30c. The ejection driving frequency is 1 KHz, and the appropriate amount of liquid for one drop is 50 μl. In the place where the ink 21 is applied, the insulating layer 11b is dissolved by the solvent contained in the applied ink 21, and the ink 21 reaches the cathode 51a (see FIG. 21).
 次いで、表示用組成物形成工程(S26)では、インク21を50~60℃で30分間乾燥させることにより、インク21中の溶媒を蒸発させる。インク21の不揮発成分である表示用組成物を、陰極51aと電気的接合を持った状態で固化させる。固化させた表示用組成物を発光層11cとする。 Next, in the display composition forming step (S26), the ink 21 is dried at 50 to 60 ° C. for 30 minutes to evaporate the solvent in the ink 21. The display composition which is a non-volatile component of the ink 21 is solidified in a state of being electrically connected to the cathode 51a. The solidified display composition is referred to as a light emitting layer 11c.
 固化した15カ所の発光層11cは、それぞれが、1画素に対応する。この時、図21に示すように、インク21により溶解された絶縁層11bは、インク21を滴下した部分の周辺部に偏析する。インク21に含まれていた表示用組成物は、インク21を滴下した部分の中央において固化する。理由としては、インク21に含まれる溶媒に対する溶解度において、表示用組成物の方が、絶縁層11bよりも大きいことが考えられる。 Each of the solidified 15 light emitting layers 11c corresponds to one pixel. At this time, as shown in FIG. 21, the insulating layer 11 b dissolved by the ink 21 is segregated at the periphery of the portion where the ink 21 is dropped. The display composition contained in the ink 21 is solidified at the center of the portion where the ink 21 is dropped. The reason may be that the display composition is larger than the insulating layer 11 b in the solubility in the solvent contained in the ink 21.
 インク21が塗布されなかった部分の絶縁層11bは、溶解されずに残り、発光層11cを隔てる隔壁11dとなる。また、上述したように、インク21によって溶解された絶縁層11bが、インク21を滴下した部分の周辺部に偏析することから、発光層11cと隔壁11dとからなる面は凹凸となっている。 The portion of the insulating layer 11b where the ink 21 has not been applied remains undissolved and becomes a partition 11d separating the light emitting layer 11c. In addition, as described above, the insulating layer 11b dissolved by the ink 21 is segregated in the periphery of the portion where the ink 21 is dropped, so that the surface composed of the light emitting layer 11c and the partition wall 11d is uneven.
 次いで、ホール注入層塗布工程(S27)では、ポリエチレンジオキシチオフェン(PEDOT)を、発光層11cと隔壁11dとからなる面に塗布し、ホール注入層51eを形成する(図22参照)。塗布の方法には、スピンコート法、ディップ法、カーテンコート法、バーコート法、印刷法もしくはインクジェット法を用いることができる。この際、塗布後のホール注入層11eにおいて、発光層11c及び隔壁11dに接する側と反対側の面が、発光層11c及び隔壁11dからなる面より平らになるように、ホール注入層51eを塗布する。 Next, in the hole injection layer application step (S27), polyethylenedioxythiophene (PEDOT) is applied to the surface composed of the light emitting layer 11c and the partition wall 11d to form the hole injection layer 51e (see FIG. 22). As a coating method, a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method can be used. At this time, the hole injection layer 51e is applied so that the surface opposite to the side in contact with the light emitting layer 11c and the partition wall 11d in the hole injection layer 11e after coating is flatter than the surface formed of the light emitting layer 11c and the partition wall 11d. To do.
 次いで、陽極接合工程(S28)では、約150℃に加熱されたローラ200を用いて、予め形成したフィルム状の陽極51fをホール注入層51eに熱によって圧着して、陽極51fとホール注入層51eとを接合させる(図23参照)。ホール注入層51eの表面は平らとなっているので、発光層11c及び隔壁11dに接合させて陽極を形成する場合よりも、ホール注入層51eに接合させて陽極51fを形成するほうが、陽極51fは良好に接合する。なお、ITOの代わりに、PEDOTで陽極51fを形成してもよい。 Next, in the anodic bonding step (S28), using the roller 200 heated to about 150 ° C., a film-shaped anode 51f formed in advance is pressure-bonded to the hole injection layer 51e by heat, so that the anode 51f and the hole injection layer 51e are bonded. Are joined together (see FIG. 23). Since the surface of the hole injection layer 51e is flat, the anode 51f is formed by bonding the hole injection layer 51e to the anode 51f, rather than forming the anode by bonding the light injection layer 11c and the partition wall 11d. Bond well. The anode 51f may be formed by PEDOT instead of ITO.
 上記のようにして有機EL素子51をガラス基板50の中心部に形成する。ガラス基板50の周辺部に、水平駆動回路13及び垂直駆動回路14を形成する。さらには、封止層16によって、有機EL素子51、水平駆動回路13及び垂直駆動回路14を覆うことで、有機ELディスプレイ2を完成する。 The organic EL element 51 is formed at the center of the glass substrate 50 as described above. The horizontal drive circuit 13 and the vertical drive circuit 14 are formed on the periphery of the glass substrate 50. Furthermore, the organic EL display 2 is completed by covering the organic EL element 51, the horizontal drive circuit 13, and the vertical drive circuit 14 with the sealing layer 16.
 封止層16は、ガラス板から成る。封止層16の下面(図14における下面)には、有機EL素子51との間に、0.3~0.5mmの隙間が生じるように、乾燥剤が取り付けられている。封止層16を取り付ける際には、その隙間に、窒素ガスを封入する。 The sealing layer 16 is made of a glass plate. A desiccant is attached to the lower surface of the sealing layer 16 (the lower surface in FIG. 14) so that a gap of 0.3 to 0.5 mm is formed between the sealing layer 16 and the organic EL element 51. When the sealing layer 16 is attached, nitrogen gas is sealed in the gap.
 以上、第2実施形態の表示装置の製造方法によれば、表示用組成物及び溶媒を含むインク21を、画素を形成すべき場所に塗布することにより、発光層11cの形成と、発光層11cを隔てる隔壁11dの形成とを、同時に行うことができる。つまり、インク21を塗布した部分においては、インク21に含まれる溶媒が絶縁層11bを溶解し、発光層11cが形成される。インク21が塗布されない部分では、絶縁層11bが残存し、画素間を隔てる隔壁11dとなる。そのため、従来の有機EL素子の製造方法のように、有機EL膜間の隔壁を形成するために、露光、エッチング等の独立した工程を行う必要がない。よって、製造工程を短縮することができ、製造コストを低くすることができる。 As described above, according to the method for manufacturing the display device of the second embodiment, the ink 21 containing the display composition and the solvent is applied to the place where the pixel is to be formed, thereby forming the light emitting layer 11c and the light emitting layer 11c. The partition 11d separating the two can be formed at the same time. That is, in the portion where the ink 21 is applied, the solvent contained in the ink 21 dissolves the insulating layer 11b, and the light emitting layer 11c is formed. In the portion where the ink 21 is not applied, the insulating layer 11b remains and becomes a partition wall 11d separating the pixels. Therefore, unlike the conventional method of manufacturing an organic EL element, it is not necessary to perform independent processes such as exposure and etching in order to form a partition between organic EL films. Therefore, the manufacturing process can be shortened and the manufacturing cost can be reduced.
 第2実施形態の表示装置の製造方法では、圧電素子方式のインクジェットヘッド30を用いているため、バブルジェット(登録商標)方式のように、インク吐出のための熱源が不用である。よって、インク材料の劣化が起こらない。インク21の溶媒の選択範囲が広い。吐出するインク21の液滴量の制御がしやすい。駆動周波数を高くできる。耐久性が高い。 In the manufacturing method of the display device of the second embodiment, since the piezoelectric element type inkjet head 30 is used, a heat source for ejecting ink is unnecessary as in the bubble jet (registered trademark) type. Therefore, the ink material does not deteriorate. The selection range of the solvent of the ink 21 is wide. It is easy to control the droplet amount of the ink 21 to be discharged. Drive frequency can be increased. High durability.
 陽極51fは、発光層11c及び隔壁11dからなる面より平らな面を有するホール注入層51e上に形成される。よって、発光層11c及び隔壁11dとからなる面と陽極51fとが接合される場合よりも、陽極51fとホール注入層51eとは良好に接合される。これにより、良好に像を表示させることができる。 The anode 51f is formed on the hole injection layer 51e having a surface flatter than the surface composed of the light emitting layer 11c and the partition wall 11d. Therefore, the anode 51f and the hole injection layer 51e are bonded better than the case where the surface including the light emitting layer 11c and the partition wall 11d and the anode 51f are bonded. Thereby, an image can be displayed favorably.
 ホール注入層51eであるPEDOTは、陽極51fであるITOから供給されるホールを発光層11cに注入する材料として適している。さらに、陰極51aであるAl/LiFは、仕事関数が小さいので、電子を良好に発光層11cに供給することができる。反対に、陽極51fであるITOは、仕事関数が大きいので、ホールを良好に発光層11cに供給することができる。その結果、発光層11cを良好に発光させることができる。 PEDOT, which is the hole injection layer 51e, is suitable as a material for injecting holes supplied from the ITO, which is the anode 51f, into the light emitting layer 11c. Furthermore, since Al / LiF which is the cathode 51a has a small work function, electrons can be favorably supplied to the light emitting layer 11c. On the other hand, since the ITO serving as the anode 51f has a large work function, holes can be satisfactorily supplied to the light emitting layer 11c. As a result, the light emitting layer 11c can emit light satisfactorily.
 電子供給金属51a1の表面は、表面被覆絶縁膜51a2で覆われている。よって、陰極51aを形成した後の工程を、真空中若しくは不活性ガス中で行う必要がない。従って、真空状態を作る真空装置、不活性ガスを密閉する密閉装置等が必要でないので、より大きな有機EL素子51を製造することができる。また、低コストで有機EL素子51を製造することができる。 The surface of the electron supply metal 51a1 is covered with a surface coating insulating film 51a2. Therefore, it is not necessary to perform the process after forming the cathode 51a in a vacuum or in an inert gas. Therefore, a vacuum device that creates a vacuum state, a sealing device that seals an inert gas, and the like are not necessary, and thus a larger organic EL element 51 can be manufactured. Moreover, the organic EL element 51 can be manufactured at low cost.
 (第3実施形態)
 続いて、本開示に係る表示装置の製造方法の第3実施形態について説明する。ここでは、表示装置として、エレクトロクロミックディスプレイを例に挙げて説明する。
(Third embodiment)
Subsequently, a third embodiment of a method for manufacturing a display device according to the present disclosure will be described. Here, an electrochromic display will be described as an example of the display device.
 エレクトロクロミックディスプレイの全体構成は、基本的には、上記第1、第2実施形態の有機ELディスプレイ1、2と同様である。有機EL素子11、51の代わりに、エレクトロクロミック素子を備えている点が、有機ELディスプレイ1、2と異なる。 The overall configuration of the electrochromic display is basically the same as that of the organic EL displays 1 and 2 of the first and second embodiments. It differs from the organic EL displays 1 and 2 in that an electrochromic element is provided instead of the organic EL elements 11 and 51.
 エレクトロクロミック素子は、基本的には、上記第1、第2実施形態の有機EL素子11、51と同じ構成を有する。表示用組成物として、エレクトロクロミック膜を備えている点が、有機EL素子11、51と異なる。 The electrochromic element basically has the same configuration as the organic EL elements 11 and 51 of the first and second embodiments. The display composition is different from the organic EL elements 11 and 51 in that an electrochromic film is provided.
 つまり、エレクトロクロミック素子は、ガラス基板上に、陽極、エレクトロクロミック膜、電子注入層及び陰極が順次積層された構成を有している。ガラス基板と陰極の間には、陽極、エレクトロクロミック膜及び電子注入層が形成されていない部分を埋めるように、絶縁層が形成されている。エレクトロクロミック膜は、ポリマー電極と、ポリマー電解質との2層から成る。 That is, the electrochromic element has a configuration in which an anode, an electrochromic film, an electron injection layer, and a cathode are sequentially laminated on a glass substrate. An insulating layer is formed between the glass substrate and the cathode so as to fill a portion where the anode, the electrochromic film, and the electron injection layer are not formed. The electrochromic film is composed of two layers of a polymer electrode and a polymer electrolyte.
 エレクトロクロミックディスプレイの呈色メカニズムについて説明する。エレクトロクロミック素子の陽極、陰極の間に直流電圧を印加し、陽極を+側にすると、酸化反応が起こる。これにより、エレクトロミック素子は、ニュートラル状態(電圧非印加状態)の時とは異なる色となる。陽極を-側にすると、還元反応が起こり、酸化時に比べて更に異なる色となる。このように、陽極の電位を制御して表示制御が行われる。 The color mechanism of the electrochromic display will be explained. When a DC voltage is applied between the anode and cathode of the electrochromic element and the anode is set to the + side, an oxidation reaction occurs. As a result, the electroluminescent element has a color different from that in the neutral state (voltage non-application state). When the anode is on the negative side, a reduction reaction takes place, resulting in a different color compared to during oxidation. In this way, display control is performed by controlling the potential of the anode.
 次に、エレクトロクロミックディスプレイの製造方法を説明する。ここでは、特に、要部であるエレクトロクロミック素子の製造方法を簡単に説明する。 Next, a method for manufacturing an electrochromic display will be described. Here, in particular, a method for manufacturing an electrochromic element as a main part will be briefly described.
 (フィルム状の陰極の製造プロセス)
 予め、フィルム状の陰極(第2電極)を形成しておく。具体的には、先ず、基板上に蒸着によってAl/LiFの層を形成し、電子供給金属の層とする。電子供給金属は、電子を良好にエレクトロクロミック膜に供給する金属である。そのため、電子供給金属の仕事関数は小さい。したがって、電子供給金属は、真空中若しくは不活性ガス中でないと還元する虞がある。Al層とLiF層とが連続的に積層して、電子供給金属の層を形成する。Al層の厚みは一例として1000Åとし、LiF層の厚みは一例として10Åとする。なお、Al/LiFの代わりに、Al、LiF、Al/Ca、及びAl/Baのいずれかで電子供給金属の層を形成してもよい。
(Process for producing film cathode)
A film-like cathode (second electrode) is formed in advance. Specifically, first, an Al / LiF layer is formed on the substrate by vapor deposition to form an electron supply metal layer. The electron supply metal is a metal that satisfactorily supplies electrons to the electrochromic film. Therefore, the work function of the electron supply metal is small. Therefore, the electron supply metal may be reduced unless it is in a vacuum or in an inert gas. The Al layer and the LiF layer are continuously stacked to form an electron supply metal layer. The thickness of the Al layer is 1000 mm as an example, and the thickness of the LiF layer is 10 mm as an example. Instead of Al / LiF, the electron supply metal layer may be formed of any one of Al, LiF, Al / Ca, and Al / Ba.
 次いで、マスク真空蒸着により、電子供給金属の層の表面を覆う絶縁層である表面被覆絶縁層を形成する。表面被覆絶縁層の厚みは、電子供給金属が還元しない程度の薄い厚さにする。電子供給金属の層と表面被覆絶縁層とからなるフィルムを基板から剥がすと、フィルム状の陰極となる。このように、電子供給金属の層の表面を表面被覆絶縁層で覆うことによって、フィルム状の陰極の取り扱いが容易になる。表面被覆絶縁層の厚みは薄いので、表面被覆絶縁膜は、電子供給金属からエレクトロクロミック膜への電子の供給の妨げにはならない。 Next, a surface covering insulating layer which is an insulating layer covering the surface of the electron supply metal layer is formed by mask vacuum deposition. The thickness of the surface covering insulating layer is set to such a thin thickness that the electron supply metal is not reduced. When the film composed of the electron supply metal layer and the surface covering insulating layer is peeled off from the substrate, a film-like cathode is obtained. Thus, by covering the surface of the electron supply metal layer with the surface covering insulating layer, the film-like cathode can be easily handled. Since the thickness of the surface covering insulating layer is thin, the surface covering insulating film does not hinder the supply of electrons from the electron supply metal to the electrochromic film.
 (エレクトロクロミック素子の製造プロセス)
 先ず、第1実施形態のS11~S13と同様に、ガラス基板上に、ITOからなる陽極を所定のパターンで形成する。次いで、第1実施形態のS14と同様に、ガラス基板上の、エレクトロクロミック素子を形成する部分全体に、PVKから成る絶縁層を形成する。
(Electrochromic device manufacturing process)
First, as in S11 to S13 of the first embodiment, an anode made of ITO is formed in a predetermined pattern on a glass substrate. Next, as in S14 of the first embodiment, an insulating layer made of PVK is formed on the entire portion of the glass substrate where the electrochromic element is to be formed.
 エレクトロクロミック膜のポリマー電極の成分と、炭化水素系溶媒とから成る第1のインクを予め調製しておく。具体的には、PVK(ポリ(N-ビニルカルバゾール))と、PSNPhS(ポリ(N-フェニル-2(2'-チエニル)-5-(5"-ビニル-2"チエニル)ピロール)とを1:4の割合で混合する。混合物の濃度が4wt%となるように、テトラリンに溶解し、第1のインクとする。第1のインクを、第1実施形態のS15、S16と同様に、絶縁層上に選択的に塗布し、ポリマー電極を形成する。 First ink prepared from a polymer electrode component of an electrochromic film and a hydrocarbon solvent is prepared in advance. Specifically, PVK (poly (N-vinylcarbazole)) and PSNPhS (poly (N-phenyl-2 (2'-thienyl) -5- (5 "-vinyl-2" thienyl) pyrrole)) are combined with 1 : Mix at a ratio of 4. Dissolve in tetralin so that the concentration of the mixture is 4 wt%, and use it as the first ink, and insulate the first ink as in S15 and S16 of the first embodiment. Selectively apply on the layer to form a polymer electrode.
 また、エレクトロクロミック膜のポリマー電解質の成分と、炭化水素系溶媒とから成る第2のインクを予め調製しておく。具体的には、以下の成分を混合し、テトラリンに溶解することにより、第2のインクを調製する。この時、第2のインクの粘度が0.1~10Pa・sになるように、テトラリンの量を調整する。 Also, a second ink comprising a polymer electrolyte component of the electrochromic film and a hydrocarbon solvent is prepared in advance. Specifically, the following components are mixed and dissolved in tetralin to prepare a second ink. At this time, the amount of tetralin is adjusted so that the viscosity of the second ink is 0.1 to 10 Pa · s.
 ポリメチルメタクリレート(分子量120000):500mg
 プロピレンカーボネート:1ml
 エチレンカーボネート:2g
 リチウムテトラフルオロボレート:100mg
 アセトニトリル:3ml
Polymethyl methacrylate (molecular weight 120,000): 500 mg
Propylene carbonate: 1ml
Ethylene carbonate: 2g
Lithium tetrafluoroborate: 100mg
Acetonitrile: 3ml
 第2のインクを、インクジェット法を用いて、ポリマー電極の上に塗布し、ポリマー電解質を形成する。 The second ink is applied on the polymer electrode using an ink jet method to form a polymer electrolyte.
 次いで、オキサジゾール誘導体、トリアゾール系、及びアルミニウム錯体のいずれかである電子注入層を、スピンコート法、ディップ法、カーテンコート法、バーコート法、印刷法もしくはインクジェット法を用いて塗布することによって形成する。この際、塗布後の電子注入層において、エレクトロクロミック膜及び隔壁に接する側と反対側の面が、エレクトロクロミック膜及び隔壁からなる面より平らになるように、電子注入層を塗布する。 Next, an electron injection layer that is one of an oxadiazole derivative, a triazole type, and an aluminum complex is formed by coating using a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an inkjet method. . At this time, the electron injection layer is applied so that the surface opposite to the side in contact with the electrochromic film and the partition in the electron injection layer after application is flatter than the surface formed of the electrochromic film and the partition.
 次いで、約150℃に加熱されたローラを用いて、予め形成したフィルム状の陰極を電子注入層に熱によって圧着して、陰極と電子注入層とを接合させる。電子注入層の表面は平らとなっている。よって、エレクトロクロミック膜及び隔壁に接合させて陰極を形成する場合よりも、電子注入層に接合させて陰極を形成するほうが、陰極は良好に接合する。 Next, using a roller heated to about 150 ° C., a pre-formed film-like cathode is pressure-bonded to the electron injection layer by heat to join the cathode and the electron injection layer. The surface of the electron injection layer is flat. Therefore, the cathode is bonded better when the cathode is bonded to the electron injection layer than when the cathode is bonded to the electrochromic film and the partition.
 このようにして、エレクトロクロミック素子をガラス基板の中心部に形成する。上記第1、第2実施形態と同様にして、ガラス基板の周辺部に、水平駆動回路及び垂直駆動回路を形成する。更には、封止層によって、エレクトロクロミック素子、水平駆動回路及び垂直駆動回路を覆う。これにより、エレクトロクロミックディスプレイを完成させる。 In this way, an electrochromic element is formed at the center of the glass substrate. Similar to the first and second embodiments, a horizontal drive circuit and a vertical drive circuit are formed in the peripheral portion of the glass substrate. Furthermore, the electrochromic element, the horizontal driving circuit, and the vertical driving circuit are covered with a sealing layer. This completes the electrochromic display.
 本実施形態のエレクトロクロミックディスプレイの製造方法によると、上記第1、第2実施形態の有機ELディスプレイ1、2と同様の効果を奏する。 According to the electrochromic display manufacturing method of the present embodiment, the same effects as those of the organic EL displays 1 and 2 of the first and second embodiments are obtained.
 なお、本開示は上記の形態に何等限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の形態で実施することができる。例えば、上記第1~第3実施形態における絶縁層としては、PVKの代わりに、ポリスチレン、ナイロン(ポリアミド)、ポリアセタール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンオキシド、ポリアリレート、ポリスルホン、ポリフェニレンスルフィド、ポリアミドイミド、ポリイミド、フッ素樹脂のいずれかを用いることができる。 It should be noted that the present disclosure is not limited to the above-described form, and can be implemented in various forms without departing from the gist of the present disclosure. For example, as the insulating layer in the first to third embodiments, instead of PVK, polystyrene, nylon (polyamide), polyacetal, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polyarylate, polysulfone, polyphenylene sulfide, Any of polyamideimide, polyimide, and fluororesin can be used.
 上記第1、第2実施形態において、インクを構成するポリマーとしては、カルバゾール誘導体を主鎖あるいは側鎖に有する高分子(PVK)の代わりに、トリフェニルアミン誘導体を主鎖あるいは側鎖に有する高分子化合物(例えばPTPDES)、電子輸送性ポリマーである、オキサジアゾール誘導体を主鎖あるいは側鎖に有する高分子化合物(例えばPVMOXD)、PPV(ポリパラフェニレンビニレン)、PPF、PPT、その他の誘導体を用いることができる。 In the first and second embodiments, the polymer constituting the ink is a high polymer having a triphenylamine derivative in the main chain or side chain instead of the polymer (PVK) having a carbazole derivative in the main chain or side chain. Molecular compounds (for example, PTPDES), polymer compounds having an oxadiazole derivative in the main chain or side chain (for example, PVMOXD), PPV (polyparaphenylene vinylene), PPF, PPT, and other derivatives that are electron transporting polymers Can be used.
 上記第1~第3実施形態において、インクを構成する溶媒としては、炭化水素系溶媒の代わりに、ハロゲン炭化水素系溶媒、アルコール系溶媒、ケトン、アルデヒド、ドデシルベンゼン、テトラリン、ジクロルエタン、エチレングリコール、プロピレングリコール、エチレングリコールモノエチルエーテルのいずれかを用いることができる。 In the first to third embodiments, as a solvent constituting the ink, instead of a hydrocarbon solvent, a halogen hydrocarbon solvent, an alcohol solvent, a ketone, an aldehyde, dodecylbenzene, tetralin, dichloroethane, ethylene glycol, Either propylene glycol or ethylene glycol monoethyl ether can be used.
 上記第1、第2実施形態における発光中心形成化合物としては、TPBの代わりに、ペリレン、クマリン、ルブレン、ナイルレッド、DCM、DCJTB、スクアリリウム、アルミニウム錯体(例えばAlQ3)等を用いることができる。 As the luminescent center forming compound in the first and second embodiments, perylene, coumarin, rubrene, Nile red, DCM, DCJTB, squarylium, aluminum complex (for example, AlQ3) or the like can be used instead of TPB.
 上記第3実施形態において、エレクトロクロミック膜は、他の方法でも形成することができる。例えば、ポリマー電極の成分と、ポリマー電解質の成分との両方を、テトラリン等の有機溶媒に溶解させて、インクを調整する。調整したインクを、インクジェット法によって塗布する。この方法でもエレクトロクロミック膜を形成することができる。 In the third embodiment, the electrochromic film can be formed by other methods. For example, the ink is prepared by dissolving both the polymer electrode component and the polymer electrolyte component in an organic solvent such as tetralin. The adjusted ink is applied by an inkjet method. An electrochromic film can also be formed by this method.
 上記第3実施形態において、ポリマー電極の成分は、ポリアニリン、ポリ(N-メチルピロール)、ポリ(3-(3-チエニルプロピルスルホネート))、(ポリ(N-フェニル-2(2'-チエニル)-5-(5"-ビニル-2"チエニル)ピロール、ポリビニルカルバゾール、ポリビニルメチルエーテルのうち少なくとも1種を含むポリマーとすることができる。 In the third embodiment, the components of the polymer electrode are polyaniline, poly (N-methylpyrrole), poly (3- (3-thienylpropylsulfonate)), (poly (N-phenyl-2 (2′-thienyl)) It can be a polymer containing at least one of -5- (5 "-vinyl-2" thienyl) pyrrole, polyvinyl carbazole, and polyvinyl methyl ether.
 また、上記第3実施形態において、第2実施形態と同様に、陽極よりも陰極を最初に形成してもよい。この場合、第2実施形態と同様に、PEDOTからなるホール注入層を陽極とエレクトロクロミック膜との間に挿入することにより、陽極はホール注入層と良好に接合する。したがって、良好に像を表示させることができる。 Further, in the third embodiment, as in the second embodiment, the cathode may be formed first rather than the anode. In this case, as in the second embodiment, by inserting a hole injection layer made of PEDOT between the anode and the electrochromic film, the anode is satisfactorily bonded to the hole injection layer. Therefore, an image can be displayed satisfactorily.

Claims (3)

  1.  第1電極と、前記第1電極と離間して、且つ対向して位置する第2電極と、前記第1電極と前記第2電極との間に挿入され、前記第1電極と前記第2電極との間に電圧が印加された場合、前記第1電極から供給される電荷である第1電極供給電荷及び前記第2電極から供給される電荷である第2電極供給電荷によって発光し又は呈色変化する物質である表示用組成物とを有する表示素子を複数備え、さらに、前記各表示素子の前記表示用組成物と他の前記表示素子の前記表示用組成物との間を絶縁する隔壁を備えた表示装置の製造方法であって、
     基板上に前記第1電極を形成する第1電極形成工程と、
     前記第1電極形成工程において形成された前記第1電極を覆う絶縁層を形成する絶縁層形成工程と、
     前記絶縁層形成工程において形成された前記絶縁層上の前記第1電極に対向する位置に、前記絶縁層を溶解する溶媒と前記表示用組成物とを含有するインク溶液を塗布するインク溶液塗布工程と、
     前記インク溶液塗布工程において塗布された前記インク溶液が前記絶縁層を溶解した後に、前記インク溶液の前記溶媒を蒸発させ、前記第1電極と接触するように前記表示用組成物を形成する表示用組成物形成工程と、
     前記表示用組成物形成工程において形成した前記表示用組成物、及び前記インク溶液によって溶解された後の前記絶縁層である前記隔壁の上に、前記第2電極供給電荷を前記表示用組成物に注入する電荷注入層を塗布する工程であって、塗布後の前記電荷注入層の、前記表示用組成物及び前記隔壁に接する側と反対側の面が、前記表示用組成物及び前記隔壁からなる面より平らになるように前記電荷注入層を塗布する電荷注入層塗布工程と、
     前記電荷注入層塗布工程において塗布された前記電荷注入層に、予めフィルム状に形成された前記第2電極を熱によって圧着して、前記第2電極を前記電荷注入層と接合させる第2電極接合工程とを備えることを特徴とする表示装置の製造方法。
    A first electrode; a second electrode positioned apart from and opposite to the first electrode; and the first electrode and the second electrode inserted between the first electrode and the second electrode. When a voltage is applied between the first electrode and the second electrode, the first electrode supply charge that is the charge supplied from the first electrode and the second electrode supply charge that is the charge supplied from the second electrode emit light or color. A plurality of display elements each having a display composition that is a changing substance; and a partition that insulates between the display composition of each display element and the display composition of another display element. A method for manufacturing a display device comprising:
    A first electrode forming step of forming the first electrode on a substrate;
    An insulating layer forming step of forming an insulating layer covering the first electrode formed in the first electrode forming step;
    Ink solution applying step of applying an ink solution containing the solvent for dissolving the insulating layer and the display composition at a position facing the first electrode on the insulating layer formed in the insulating layer forming step. When,
    After the ink solution applied in the ink solution application step dissolves the insulating layer, the solvent of the ink solution is evaporated to form the display composition so as to come into contact with the first electrode A composition forming step;
    The second electrode supply charge is applied to the display composition on the partition which is the insulating layer after being dissolved by the ink composition and the display composition formed in the display composition forming step. A step of applying a charge injection layer to be injected, wherein a surface of the charge injection layer after coating is opposite to the side in contact with the display composition and the partition wall, and comprises the display composition and the partition wall; A charge injection layer coating step of coating the charge injection layer so as to be flatter than the surface;
    Second electrode bonding in which the second electrode formed in advance in a film shape is pressure-bonded to the charge injection layer applied in the charge injection layer coating step by heat to bond the second electrode to the charge injection layer. A method for manufacturing a display device.
  2.  前記第1電極は、前記第1電極供給電荷としてホールを前記表示用組成物に供給するITO又はPEDOTであり、
     前記電荷注入層は、オキサジゾール誘導体、トリアゾール系、及びアルミニウム錯体のいずれかであり、
     前記第2電極は、
     前記第2電極供給電荷として電子を前記表示用組成物に供給する電子供給金属であるアルミニウム(Al)、フッ化リチウム(LiF)、Al/Ca、Al/LiF、及びAl/Baのいずれかの層を形成する電子供給金属層形成工程と、
     前記電子供給金属膜形成工程において形成された前記電子供給金属の層の表面を覆う絶縁層である表面被覆絶縁層を形成する表面被覆絶縁層形成工程と
     を経て、予めフィルム状に形成されていることを特徴とする請求項1に記載の表示装置の製造方法。
    The first electrode is ITO or PEDOT that supplies holes to the display composition as the first electrode supply charge,
    The charge injection layer is any one of an oxadizole derivative, a triazole type, and an aluminum complex,
    The second electrode is
    Any of aluminum (Al), lithium fluoride (LiF), Al / Ca, Al / LiF, and Al / Ba, which is an electron supply metal that supplies electrons to the display composition as the second electrode supply charge An electron supply metal layer forming step of forming a layer;
    A surface covering insulating layer forming step of forming a surface covering insulating layer that is an insulating layer covering the surface of the electron supplying metal layer formed in the electron supplying metal film forming step, and is formed in advance in a film shape The method for manufacturing a display device according to claim 1.
  3.  前記第1電極形成工程は、
     前記第1電極供給電荷として電子を前記表示用組成物に供給する電子供給金属であるアルミニウム(Al)、フッ化リチウム(LiF)、Al/Ca、Al/LiF、及びAl/Baのいずれかの層を前記基板上に形成する電子供給金属層形成工程と、
     前記電子供給金属層形成工程において形成された前記電子供給金属の層の表面を覆う絶縁層である表面被覆絶縁層を形成する表面被覆絶縁層形成工程とを有し、
     前記電荷注入層は、ポリエチレンジオキシチオフェン(PEDOT)であり、
     前記第2電極は、前記第2電極供給電荷としてホールを前記表示用組成物に供給するITO又はPEDOTであることを特徴とする請求項1に記載の表示装置の製造方法。
    The first electrode forming step includes
    Any of aluminum (Al), lithium fluoride (LiF), Al / Ca, Al / LiF, and Al / Ba, which is an electron supply metal that supplies electrons to the display composition as the first electrode supply charge An electron supply metal layer forming step of forming a layer on the substrate;
    A surface covering insulating layer forming step of forming a surface covering insulating layer that is an insulating layer covering the surface of the electron supplying metal layer formed in the electron supplying metal layer forming step;
    The charge injection layer is polyethylene dioxythiophene (PEDOT),
    The method for manufacturing a display device according to claim 1, wherein the second electrode is ITO or PEDOT that supplies holes to the display composition as the second electrode supply charge.
PCT/JP2009/056440 2008-07-29 2009-03-30 Process for producing display device WO2010013515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008194527A JP5235113B2 (en) 2008-07-29 2008-07-29 Manufacturing method of display device
JP2008-194527 2008-07-29

Publications (1)

Publication Number Publication Date
WO2010013515A1 true WO2010013515A1 (en) 2010-02-04

Family

ID=41610225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056440 WO2010013515A1 (en) 2008-07-29 2009-03-30 Process for producing display device

Country Status (2)

Country Link
JP (1) JP5235113B2 (en)
WO (1) WO2010013515A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086366A (en) * 2001-09-07 2003-03-20 Brother Ind Ltd Manufacturing method of display device
JP2005038816A (en) * 2003-06-25 2005-02-10 Morio Taniguchi Organic electroluminescent element, its manufacturing method, and electrode film
JP2005108626A (en) * 2003-09-30 2005-04-21 Brother Ind Ltd Manufacturing method of display element
JP2005108628A (en) * 2003-09-30 2005-04-21 Brother Ind Ltd Manufacturing method of display device
JP2006253632A (en) * 2005-02-10 2006-09-21 Brother Ind Ltd Organic photodiode, and manufacturing method thereof
JP2007157344A (en) * 2005-11-30 2007-06-21 Showa Denko Kk Method of manufacturing organic electro-luminescence element
JP2008165988A (en) * 2006-12-26 2008-07-17 Seiko Epson Corp Manufacturing method of light emitting device, light emitting device, and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086366A (en) * 2001-09-07 2003-03-20 Brother Ind Ltd Manufacturing method of display device
JP2005038816A (en) * 2003-06-25 2005-02-10 Morio Taniguchi Organic electroluminescent element, its manufacturing method, and electrode film
JP2005108626A (en) * 2003-09-30 2005-04-21 Brother Ind Ltd Manufacturing method of display element
JP2005108628A (en) * 2003-09-30 2005-04-21 Brother Ind Ltd Manufacturing method of display device
JP2006253632A (en) * 2005-02-10 2006-09-21 Brother Ind Ltd Organic photodiode, and manufacturing method thereof
JP2007157344A (en) * 2005-11-30 2007-06-21 Showa Denko Kk Method of manufacturing organic electro-luminescence element
JP2008165988A (en) * 2006-12-26 2008-07-17 Seiko Epson Corp Manufacturing method of light emitting device, light emitting device, and electronic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIKO OHMORI ET AL.: "Light-Emitting Seal Using Self-Aligned Organic Light-Emitting Structure", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 47, no. L, 22 January 2008 (2008-01-22), pages 472 - 475 *

Also Published As

Publication number Publication date
JP2010033874A (en) 2010-02-12
JP5235113B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP3900724B2 (en) Organic EL element manufacturing method and organic EL display device
KR100782619B1 (en) Display device and method of manufacturing the same
TWI453791B (en) Device, method for manufacturing device, and method for forming film
US8507928B2 (en) Organic EL device, method for manufacturing organic EL device, and electronic device
JP4311429B2 (en) Method for manufacturing organic electroluminescent device and organic electroluminescent device
US20130234121A1 (en) Method of manufacturing organic el apparatus, organic el apparatus, and electronic equipment
JP2006253443A (en) Organic el device, its manufacturing method, and electronic apparatus
JP5002553B2 (en) Self-luminous element and manufacturing method thereof
TW200539745A (en) Organic electroluminescence device, its manufacturing method, and electronic device
US20070019126A1 (en) Display device and method of manufacturing the same
JP2007095343A (en) Method of manufacturing printed material, and printed material
KR20070109927A (en) Display device and manufacturing method thereof
TW200417288A (en) Electroluminescent display device, manufacturing method thereof, and electronic apparatus
JP2009289474A (en) Light-emitting device, and manufacturing method of light-emitting device
JP2003332055A (en) Electro-optical device, its manufacturing method, and electronic apparatus
JP4648594B2 (en) Manufacturing method of display device
JP4760037B2 (en) Manufacturing method of organic EL device
JP2003249355A (en) Display device manufacturing method, display device, electronic equipment manufacturing method and electronic equipment
JP2019102337A (en) Organic el element and manufacturing method thereof
JP2011023668A (en) Liquid column coating ink, method of manufacturing organic el element, and organic el display device with organic el element
JP4120259B2 (en) Display device and electronic device
WO2010013515A1 (en) Process for producing display device
JP2004319118A (en) Method and apparatus for manufacturing display device
JP2005294124A (en) Organic electroluminescence device, manufacturing method of organic electroluminescence device and electronic device
JP2010032750A (en) Method of manufacturing display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802760

Country of ref document: EP

Kind code of ref document: A1