WO2010010801A1 - 無方向性電磁鋼鋳片及びその製造方法 - Google Patents

無方向性電磁鋼鋳片及びその製造方法 Download PDF

Info

Publication number
WO2010010801A1
WO2010010801A1 PCT/JP2009/062193 JP2009062193W WO2010010801A1 WO 2010010801 A1 WO2010010801 A1 WO 2010010801A1 JP 2009062193 W JP2009062193 W JP 2009062193W WO 2010010801 A1 WO2010010801 A1 WO 2010010801A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
content
molten steel
rem
Prior art date
Application number
PCT/JP2009/062193
Other languages
English (en)
French (fr)
Inventor
雅文 宮嵜
洋介 黒崎
島津 高英
大貫 一雄
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to EP09800315.5A priority Critical patent/EP2316978B1/en
Priority to US12/997,800 priority patent/US8210231B2/en
Priority to RU2011106761/02A priority patent/RU2467826C2/ru
Priority to BRPI0916956-3A priority patent/BRPI0916956B1/pt
Priority to CN2009801288386A priority patent/CN102105615B/zh
Priority to KR1020117001610A priority patent/KR101266606B1/ko
Publication of WO2010010801A1 publication Critical patent/WO2010010801A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • C21C7/0043Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material into the falling stream of molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a non-oriented electrical steel slab suitable for a non-oriented electrical steel sheet used in a high frequency range and a method for manufacturing the same.
  • the nitrogen solubility of molten steel containing Cr is higher than the nitrogen solubility of molten steel not containing Cr.
  • the nitrogen solubility of molten steel containing about 5% by mass of Cr is several tens of percent higher than that of molten steel containing no Cr.
  • An object of the present invention is to provide a non-oriented electrical steel slab capable of improving the iron loss and strength in a high frequency region of a non-oriented electrical steel sheet and a method for manufacturing the same.
  • the gist of the present invention is as follows.
  • non-oriented electrical steel slab according to any one of (1) to (3), which contains at least one element selected from the group consisting of:
  • Mn content of the said molten steel is 2.0 mass% or less
  • the molten steel is further in mass%, Cu: 1.0% or less, Ca and Mg: 0.05% or less in total amount, Ni: 3.0% or less, and Sn and Sb: 0.3% or less in total amount,
  • FIG. 1 is a schematic view showing equipment for producing a non-oriented electrical steel slab.
  • FIG. 2 is a graph showing the results of Experiment 1.
  • FIG. 1 is a schematic view showing equipment for producing a non-oriented electrical steel slab.
  • a ladle 1 a tundish 2, a mold 3, a conveying roller 4, and the like are provided in a non-oriented electrical steel slab manufacturing facility.
  • the tundish 2 is provided with an immersion nozzle 2 a that extends to the mold 3.
  • a molten steel 11 of non-oriented electrical steel that has been subjected to refining in a converter and degassing treatment in a secondary refining apparatus is poured into a ladle 1.
  • the molten steel 11 is discharged
  • the molten steel 11 solidifies and the slab 12 of non-oriented electrical steel is discharged
  • the slab 12 is conveyed by the conveyance roller 4.
  • the surface of the molten steel 11 poured into the ladle 1 is preferably covered with a coating material such as a molten flux.
  • the tundish 2 is provided with a lid and the space in the tundish 2 is filled with an inert gas such as Ar gas. This is to suppress contact of the molten steel 11 with the atmosphere.
  • the contact of the molten steel 11 with the atmosphere cannot be prevented by these as well, and the molten steel 11 may absorb nitrogen.
  • a turbulent flow may occur in the flow of the molten steel 11 and the coating of the surface of the molten steel 11 with the coating material may be insufficient.
  • the amount of dissolved nitrogen in the molten steel of non-oriented electrical steel containing Cr is high.
  • the present inventors even when using such production equipment, after the degassing treatment, as described later, if the molten steel contains an appropriate amount of rare earth metal (REM) during casting. It was found that an increase in the amount of dissolved nitrogen was suppressed. That is, it has been found that by suppressing the increase in the amount of dissolved nitrogen, precipitation of AlN inclusions can be suppressed and crystal grains can be grown appropriately.
  • REM rare earth metal
  • the average grain size in the non-oriented electrical steel sheet is preferably about 50 ⁇ m to 200 ⁇ m.
  • the number density of fine AlN inclusions Is preferably 10 11 pieces / cm 3 or less.
  • the number density of fine AlN inclusions is 10 11. / Cm 3 or less, the amount of dissolved nitrogen in the slab needs to be 0.005% by mass or less.
  • the dissolved nitrogen in the slab can be broadly divided into those that existed before the degassing process and those that have been mixed after the degassing process.
  • the amount of dissolved nitrogen in the molten steel is 0.001% by mass due to the degassing treatment, the amount of dissolved nitrogen mixed in after the degassing treatment until casting is suppressed to 0.004% by mass or less. If possible, the amount of dissolved nitrogen in the slab becomes 0.005% by mass or less. That is, if the increase in the amount of dissolved nitrogen after degassing treatment can be suppressed to 0.004% by mass or less, the precipitation of AlN inclusions can be suppressed without performing degassing treatment that requires a great deal of cost. Grains can be grown sufficiently.
  • the molten steel contains an appropriate amount of REM.
  • REM is a generic name for a total of 17 elements including 15 elements from lanthanum having an atomic number of 57 to lutesium having an atomic number of 57 plus scandium having an atomic number of 21 and yttrium having an atomic number of 39.
  • REM is a strong deoxidizing element.
  • a part of the REM is combined with oxygen in the molten steel to become a REM oxide, and the other part is dissolved REM in the molten steel. Dissolve.
  • REM is dissolved in the molten steel at the time when it is easy to come into contact with the atmosphere after the degassing treatment.
  • the amount of dissolved oxygen in molten steel containing 0.2% by mass or more of Al is 0.002% by mass or less.
  • 0.0005 mass% or more of REM needs to be contained due to the deoxidation equilibrium relationship.
  • the amount of dissolved REM is not particularly limited, but 0.0002 mass% or more of dissolved REM is preferably present in the molten steel, and more preferably 0.0005 mass% or more of dissolved REM is present.
  • the content of REM is preferably 0.001% by mass or more, and more preferably 0.002% by mass or more. preferable.
  • C 0.005% by mass or less C is not only harmful to the magnetic properties, but also magnetic aging due to precipitation of C is remarkable. For this reason, the upper limit of the C content is set to 0.005% by mass. In addition, it is preferable that C content is 0.004 mass% or less, It is more preferable that it is 0.003 mass% or less, It is still more preferable that it is 0.0025 mass% or less. C may not be included at all.
  • Si 0.1% by mass to 7.0% by mass Si is an element that reduces iron loss.
  • the Si content is preferably 0.3% by mass or more, more preferably 0.7% by mass or more, and 1.0% by mass or more. Further preferred.
  • the Si content exceeds 7.0% by mass, the workability is remarkably lowered.
  • the upper limit of Si content shall be 7.0 mass%.
  • the Si content is preferably 4.0% by mass or less, more preferably 3.0% by mass or less, and further preferably 2.5% by mass or less. preferable.
  • Mn 0.1% by mass or more Mn increases the hardness of the non-oriented electrical steel sheet and improves the punchability.
  • the upper limit of Mn content shall be 0.1 mass% or more.
  • the Mn content is preferably 2.0% by mass or less.
  • P 0.2% by mass or less P increases the strength of the non-oriented electrical steel sheet and improves workability. This effect can be obtained even when the P content is very small. On the other hand, when P content exceeds 0.2 mass%, cold-rolling property will fall. For this reason, the upper limit of the P content is 0.2% by mass. There is no particular lower limit.
  • S 0.005 mass% or less S combines with Mn which is an essential element to generate MnS inclusions. Moreover, when Ti is contained, it couple
  • Al 0.2% by mass to 5.0% by mass
  • Al is an element that reduces iron loss.
  • the Al content is less than 0.2% by mass, good iron loss cannot be obtained.
  • the minimum of Al content shall be 0.2 mass%.
  • the Al content is preferably 0.3% by mass or more, more preferably 0.6% by mass or more, and 1.0% by mass or more. Further preferred.
  • the Al content exceeds 5.0% by mass, the cost increases remarkably. For this reason, the upper limit of Al content shall be 5.0 mass%.
  • the Al content is preferably low.
  • the Al content is preferably 4.0% by mass or less, and more preferably 3.0% by mass or less.
  • Cr 0.1% by mass to 10% by mass Cr increases the specific resistance to improve the iron loss and increases the strength of the non-oriented electrical steel sheet. If the Cr content is less than 0.1% by mass, these effects cannot be obtained sufficiently. For this reason, the minimum of Cr content shall be 0.1 mass%. In order to obtain higher strength, the Cr content is preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and 0.5% by mass or more. Is more preferable. In addition, since the nitrogen solubility of molten steel increases, so that Cr content is high, the effect which suppresses the absorption of nitrogen by REM becomes remarkable with this.
  • the effect becomes remarkable when the Cr content is 0.5% by mass or more, becomes more remarkable when the Cr content is 1.0% by mass, and becomes more remarkable when the Cr content is 2.0% by mass or more.
  • the Cr content exceeds 10% by mass, the nitrogen solubility of the molten steel is remarkably increased, and the rate at which nitrogen is absorbed by the molten steel is remarkably increased. For this reason, even if REM is contained, the absorption of nitrogen cannot be sufficiently suppressed, and the nitrogen content in the molten steel tends to increase. A large amount of AlN inclusions precipitate during annealing, and the growth of crystal grains is hindered. For this reason, the upper limit of Cr content shall be 10 mass%.
  • the Cr content is 5% by mass or less, the absorption rate of nitrogen is smaller, so that an increase in nitrogen can be suppressed more stably and a decrease in magnetic flux density can be suppressed. For this reason, it is preferable that Cr content is 5 mass% or less, and it is more preferable that it is 3 mass% or less.
  • N 0.005 mass% or less N becomes nitrides, such as AlN, and inhibits the growth of the crystal grain at the time of annealing by the pinning effect, and worsens iron loss.
  • the number density of fine AlN inclusions is preferably 10 11 pieces / cm 3 or less.
  • the upper limit of N content shall be 0.005 mass%.
  • the N content is preferably 0.003% by mass or less, and more preferably 0.0025% by mass or less. More preferably, it is 0.002 mass% or less. N may not be included at all.
  • the dissolved REM reacts with oxygen on the surface of the molten steel to become an oxide and suppresses absorption of nitrogen into the molten steel.
  • the minimum of REM content shall be 0.0005 mass%.
  • REM content is 0.001 mass% or more, and it is more preferable that it is 0.002 mass% or more.
  • the upper limit of the REM content is 0.03% by mass from the viewpoint of casting stability and the like as described above. Moreover, it is preferable that REM content is 0.01 mass% or less, and it is more preferable that it is 0.005 mass% or less.
  • REM may be added to molten steel in any form, for example, in the form of an alloy such as misch metal.
  • lanthanum and cerium are added as REM.
  • the book can obtain a filling effect even if only one element is added or two or more elements are added.
  • O 0.005% by mass or less
  • the following elements may be contained in the molten steel.
  • Ti 0.02 mass% or less Ti is combined with dissolved nitrogen contained slightly to generate TiN inclusions. Moreover, when S is contained, it couple
  • Cu 1.0% by mass or less
  • Cu improves the corrosion resistance of the non-oriented electrical steel sheet and increases the specific resistance to improve the iron loss. This effect can be obtained even when the Cu content is very small.
  • the Cu content exceeds 1.0% by mass, scabs or the like may occur on the surface of the non-oriented electrical steel sheet and the surface quality may deteriorate. For this reason, it is preferable that Cu content is 1.0 mass% or less. There is no particular lower limit.
  • Ca and Mg 0.05 mass% or less in total amount
  • Ca and Mg are desulfurization elements, react with S in the molten steel to become sulfides, and fix S.
  • the greater the content of Ca and Mg the higher the desulfurization effect. This effect can be obtained even when the Ca and Mg contents are very small.
  • the total content of Ca and Mg exceeds 0.05% by mass, the number of sulfides may increase and the growth of crystal grains may be inhibited. For this reason, it is preferable that content of Ca and Mg is 0.05 mass% or less in total. There is no particular lower limit.
  • Ni 3.0% by mass or less Ni develops a texture that is advantageous for magnetic properties and improves iron loss. This effect can be obtained even when the Ni content is very small. However, if it exceeds 3.0 mass%, the cost increases, while the effect of improving the iron loss starts to saturate. For this reason, it is preferable that Ni content is 3.0 mass% or less. There is no particular lower limit.
  • Sn and Sb are segregation elements, which inhibit the (111) plane texture that deteriorates the magnetic properties and improve the magnetic properties. In order to obtain this effect, it is sufficient that at least one of Sn or Sb is included. Further, this effect can be obtained even if the contents of Sn and Sb are very small. On the other hand, when the content of Sn and Sb exceeds 0.3% by mass, the cold rolling property is deteriorated. For this reason, it is preferable that content of Sn and Sb is 0.3 mass% or less in total amount. There is no particular lower limit.
  • Zr 0.01% by mass or less Zr inhibits the growth of crystal grains even in a small amount, and worsens the iron loss after strain relief annealing. For this reason, it is preferable that Zr content is as low as possible, and it is especially preferable that it is 0.01 mass% or less. Zr may not be contained at all.
  • V 0.01% by mass or less V becomes nitrides and carbides and inhibits domain wall movement and crystal grain growth. For this reason, it is preferable that V content is 0.01 mass% or less. V may not be included at all.
  • B 0.005% by mass or less
  • B is a grain boundary segregation element and also becomes a nitride.
  • B content is as low as possible, and it is especially preferable that it is 0.005 mass% or less. There is no particular lower limit.
  • a molten steel 11 containing elements excluding Al and REM from the above components is produced.
  • the amount of dissolved nitrogen after the degassing treatment is preferably 0.005% by mass or less, for example, about 0.001% by mass.
  • Al is added to the molten steel 11.
  • the reason for adding Al as a deoxidizing element after the degassing treatment is to obtain a high yield.
  • the amount of Al added is 0.2% by mass to 5.0% by mass as described above.
  • the amount of oxygen dissolved in the molten steel 11 becomes 0.002% by mass or less due to the deoxidation equilibrium of Al.
  • REM is added to the molten steel 11. As a result, a part of REM becomes an oxide and the other part becomes dissolved REM.
  • the molten steel 11 is poured into the ladle 1.
  • the molten steel 11 is discharged to the tundish 2.
  • the molten steel 11 is supplied into the mold 3 through the immersion nozzle 2a. Then, casting is performed using the mold 3 to form a cast piece 12.
  • the amount of dissolved nitrogen in the molten steel 11 at the time of casting is 0.005% by mass or less, and the amount of dissolved nitrogen in the resulting slab 12 is obtained. Is 0.005 mass% or less.
  • the content of other components remains unchanged before and after casting. Therefore, the Al content, the Si content, the Cr content, the REM content, and the like of the manufactured slab 12 are the same as those of the molten steel 11.
  • the tundish 2 is provided with a lid and the space in the tundish 2 is filled with an inert gas such as Ar gas.
  • the nitrogen concentration in the tundish 2 is preferably 1% by volume or less.
  • the amount of dissolved nitrogen in the molten steel 11 after the degassing treatment is 0.005 mass% or less.
  • the REM content in the molten steel may be adjusted as follows. First, the relationship between the REM content in the molten steel and the increased amount of dissolved nitrogen in the molten steel is determined by experiments or the like. And in the production of the slab, measure the amount of dissolved nitrogen in the molten steel after degassing using a secondary smelting furnace, etc., determine the amount of increase in dissolved nitrogen allowed before casting, The content of REM is adjusted based on this. By adjusting in this way, it is possible to avoid consuming expensive REM more than necessary.
  • the slab is hot-rolled and annealed as necessary. And cold rolling. Cold rolling may be performed only once, or may be performed twice or more while interposing intermediate annealing. And after cold rolling, finish annealing is performed and an insulating film is formed. According to such a method, crystal grains having a desired size can be obtained without being affected by dissolved nitrogen, and a non-oriented electrical steel sheet having a good iron loss can be manufactured.
  • the investigation method of the inclusion (precipitate) and the crystal grain size in the non-oriented electrical steel slab and the non-oriented electrical steel sheet is not particularly limited.
  • An example is as follows. In the investigation of precipitates, first, samples (non-oriented electrical steel slabs and non-oriented electrical steel sheets) were mirror-polished, and the method of Kurosawa et al. 1979), p.1068), the sample is electrolytically corroded in a non-aqueous solvent solution. As a result, only the base material is dissolved and AlN inclusions are extracted. Then, the extracted AlN inclusions are investigated using SEM (scanning electron microscope) -EDX (energy dispersive X-ray fluorescence analyzer). In addition, a replica is collected, and the inclusions transferred to the replica are examined by a field emission type transmission electron microscope. In the investigation of the crystal grain size, a mirror-polished sample is etched using nital and observed using an optical microscope.
  • Example 1 In Experiment 1, first, molten steel was produced using a converter and a vacuum degassing apparatus, and poured into a ladle. As molten steel, C: 0.002%, Si: 2.0%, Mn: 0.3%, P: 0.05%, S: 0.0019%, Al: 2.0% in mass%. A material containing Cr: 2.0% and O: 0.001%, further containing various amounts of REM, and the balance consisting of Fe and inevitable impurities was prepared. As REM, lanthanum and cerium were used. Table 1 shows the amount of REM in the molten steel. The nitrogen content of the molten steel in the ladle was 0.002% by mass.
  • molten steel was poured into the tundish where the atmospheric nitrogen concentration was 0.5 vol% by Ar gas purge. Thereafter, molten steel was supplied from the tundish into the mold using an immersion nozzle, and a slab was produced by a continuous casting method. Subsequently, the slab was hot-rolled, annealed, and cold-rolled to a thickness of 0.3 mm. Then, finish annealing was performed at 1000 ° C. for 30 seconds, and an insulating film was applied. In this way, a non-oriented electrical steel sheet was produced.
  • Example No. in which the REM content of molten steel is within the scope of the present invention Example No. in which the REM content of molten steel is within the scope of the present invention.
  • the nitrogen content of the non-oriented electrical steel sheet was 0.0028 mass% to 0.0044 mass%, which was 0.005 mass% or less.
  • the average grain size of the non-oriented electrical steel sheet was 120 ⁇ m to 160 ⁇ m, and the iron loss W 10/800 was sufficiently low, 38.7 W / kg to 39.5 W / kg.
  • continuous casting could be performed stably.
  • the nitrogen content of the non-oriented electrical steel sheet was as high as 0.0063 mass% and 0.0069 mass%.
  • many AlN inclusions having an equivalent circle diameter of 0.1 ⁇ m to 10 ⁇ m were observed, the crystal grain size was remarkably reduced, and the iron loss W 10/800 was remarkably increased. This is because the growth of crystal grains is inhibited by the pinning effect.
  • Example 2 In Experiment 2, first, molten steel was produced using a converter and a vacuum degassing apparatus, and poured into a ladle. As the molten steel, C: 0.002%, Si: 2.2%, Mn: 0.2%, P: 0.1%, S: 0.002%, Al: 2.0% in mass%. Further, various amounts of Cr and REM were contained, and the balance was made of Fe and inevitable impurities. As REM, lanthanum and cerium were used. Table 2 shows the amounts of Cr and REM in the molten steel. The nitrogen content of the molten steel in the ladle was 0.002% by mass.
  • molten steel was poured into the tundish where the atmospheric nitrogen concentration was 0.5 vol% by Ar gas purge. Thereafter, molten steel was supplied from the tundish into the mold using an immersion nozzle, and a slab was produced by a continuous casting method.
  • the slab was hot-rolled, annealed, and cold-rolled to a thickness of 0.3 mm. Then, finish annealing was performed at 1000 ° C. for 30 seconds, and an insulating film was applied. In this way, a non-oriented electrical steel sheet was produced. Then, as in Experiment 1, the crystal grain size, iron loss W 10/800, and N content were measured. The results are shown in Table 2.
  • Comparative Example No. in which the Cr content and / or the REM content of the molten steel depart from the scope of the present invention. 15-No. In No. 20, the nitrogen content of the non-oriented electrical steel sheet exceeded 0.005 mass%. For this reason, the average crystal grain size was reduced, and the iron loss W 10/800 was significantly increased.
  • the present invention can be used, for example, for the production of non-oriented electrical steel sheets used in a high frequency range such as motors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

 質量%で、Si:0.1%以上7.0%以下、Mn:0.1%以上、Al:0.2%以上5.0%以下、及びCr:0.1%以上10%以下、等を含有し、残部がFe及び不可避的不純物からなる溶鋼を作製する。前記溶鋼に、REM:0.0005%以上0.03%以下を添加する。前記REMが添加された溶鋼の鋳造を行う。このようにして、無方向性電磁鋼鋳片を製造する。

Description

無方向性電磁鋼鋳片及びその製造方法
 本発明は、高周波域で使用される無方向性電磁鋼板に好適な無方向性電磁鋼鋳片及びその製造方法に関する。
 近年、省エネルギのために、冷暖房器具のモータ及び電気自動車のメインモータ等に対して消費電力の低減が求められている。これらのモータは、高回転で使用されることが多い。このため、モータの鉄芯に用いられる無方向性電磁鋼板に対して、商用周波数である50Hz~60Hzよりも高い周波域における鉄損の改善及び強度の向上が要求されている。強度の向上は、高速回転時の変形及び破壊を避けるためである。
 無方向性電磁鋼板の高周波域での鉄損の改善には、Si又はAlの含有量の増加による電気抵抗の上昇、並びに、無方向性電磁鋼板自体の厚さの低減が有効であることが知られている。
 しかし、Si又はAlの含有量が増加すると、脆性が著しく悪化する。このため、製造時に鋼板の破断等の操業異常が多発して、生産性及びコストが著しく低下してしまう。また、無方向性電磁鋼板を薄くすると、強度を確保することが困難になって高速回転時に大きく変形することがある。
 また、無方向性電磁鋼板の高周波域での鉄損の改善のために、Crを添加して電気抵抗を上昇させることについても検討されている。
 しかしながら、Crを含有する無方向性電磁鋼板を、Crを含有しない無方向性電磁鋼板と同様の方法で製造すると、溶鋼中の溶存窒素量が増加して、焼鈍時に微細なAlN介在物が多量に析出しやすい。この結果、ピン止め効果により結晶粒の成長が阻害され、結晶粒が微細なものとなる。この結果、電気抵抗が上昇しても鉄損を十分に改善することができない。
 これは、Crを含有する溶鋼の窒素溶解度が、Crを含有しない溶鋼の窒素溶解度よりも高いからである。例えば、5質量%程度のCrを含有する溶鋼の窒素溶解度は、Crを含有しない溶鋼のそれよりも数10%高い。
 溶存窒素量の増加を抑制するためには、大気と溶鋼との接触を防止することが考えられる。しかし、Crを含有しない無方向性電磁鋼板の製造でも、溶鋼と大気との接触を防ぐための対策が採られているが、接触を完全に防止することは困難である。Crを含有しない無方向性電磁鋼板の製造設備及び製造方法に改良を加え、雰囲気の調整等を強化すれば接触をより抑制することは可能であるが、十分に抑制するためには多大なコストを要する。また、微細なAlN介在物の析出を抑制するために焼鈍温度を低温化することも考えられるが、長時間の焼鈍を行う必要が生じ、生産性の低下及びコストの上昇につながる。
特開平11-229095号公報 特開昭64-226号公報
日本鉄鋼協会編、鉄鋼便覧第3版I基礎編、p.159
 本発明は、無方向性電磁鋼板の高周波域での鉄損及び強度を良好なものにすることができる無方向性電磁鋼鋳片及びその製造方法を提供することを目的とする。
 本発明の要旨は次のとおりである。
 (1)
 質量%で、
 Si:0.1%以上7.0%以下、
 Mn:0.1%以上、
 Al:0.2%以上5.0%以下、
 Cr:0.1%以上10%以下、及び
 REM:0.0005%以上0.03%以下、
 を含有し、
 Cの含有量が0.005%以下、
 Pの含有量が0.2%以下、
 Sの含有量が0.005%以下、
 Nの含有量が0.005%以下、
 Oの含有量が0.005%以下、
 であり、
 残部がFe及び不可避的不純物からなることを特徴とする無方向性電磁鋼鋳片。
 (2)
 Mn含有量が2.0質量%以下であることを特徴とする(1)に記載の無方向性電磁鋼鋳片。
 (3)
 REMの含有量が0.001質量%以上であることを特徴とする(1)又は(2)に記載の無方向性電磁鋼鋳片。
 (4)
 REMの含有量が0.002質量%以上であることを特徴とする(1)又は(2)に記載の無方向性電磁鋼鋳片。
 (5)
 更に、質量%で、
 Cu:1.0%以下、
 Ca及びMg:総量で0.05%以下、
 Ni:3.0%以下、及び
 Sn及びSb:総量で0.3%以下、
 からなる群から選択される少なくとも1種の元素を含有することを特徴とする(1)乃至(3)のいずれか一つに記載の無方向性電磁鋼鋳片。
 (6)
 質量%で、
 Si:0.1%以上7.0%以下、
 Mn:0.1%以上、
 Al:0.2%以上5.0%以下、及び
 Cr:0.1%以上10%以下、
 を含有し、
 Cの含有量が0.005%以下、
 Pの含有量が0.2%以下、
 Sの含有量が0.005%以下、
 Nの含有量が0.005%以下、
 Oの含有量が0.005%以下、
 であり、
 残部がFe及び不可避的不純物からなる溶鋼を作製する工程と、
 前記溶鋼に、REM:0.0005%以上0.03%以下を添加する工程と、
 前記REMが添加された溶鋼の鋳造を行う工程と、
 を有することを特徴とする無方向性電磁鋼鋳片の製造方法。
 (7)
 前記溶鋼にREMを添加する工程と前記溶鋼の鋳造を行う工程との間に、前記REMが添加された溶鋼を取鍋からタンディッシュに移動させる工程を有することを特徴とする(6)に記載の無方向性電磁鋼鋳片の製造方法。
 (8)
 前記REMが添加された溶鋼を移動させる工程の前に、前記タンディッシュ内の窒素濃度を1体積%以下にしておくことを特徴とする(7)に記載の無方向性電磁鋼鋳片の製造方法。
 (9)
 前記溶鋼のMn含有量が2.0質量%以下であることを特徴とする(7)又は(8)に記載の無方向性電磁鋼鋳片の製造方法。
 (10)
 前記REMの添加量が0.001質量%以上であることを特徴とする(7)乃至(9)のいずれか一つに記載の無方向性電磁鋼鋳片の製造方法。
 (11)
 前記REMの添加量が0.002質量%以上であることを特徴とする(7)乃至(9)のいずれか一つに記載の無方向性電磁鋼鋳片の製造方法。
 (12)
 前記溶鋼は、更に、質量%で、
 Cu:1.0%以下、
 Ca及びMg:総量で0.05%以下、
 Ni:3.0%以下、及び
 Sn及びSb:総量で0.3%以下、
 からなる群から選択される少なくとも1種の元素を含有することを特徴とする(7)乃至(11)のいずれか一つに記載の無方向性電磁鋼鋳片の製造方法。
 本発明によれば、適量のCrが含有されているため電気抵抗の上昇により鉄損を低減することができる。また、Crが含有されていても、REMが含有されているため、製造過程における窒素の侵入が抑制されている。このため、この無方向性電磁鋼鋳片に焼鈍を行っても、結晶粒の成長を阻害するAlN介在物の生成を抑制することができる。従って、強度を損ねるような薄板化をせずとも良好な鉄損の無方向性電磁鋼板を得ることができる。
図1は、無方向性電磁鋼鋳片の製造設備を示す模式図である。 図2は、実験1の結果を示すグラフである。
 先ず、無方向性電磁鋼鋳片の製造に使用する設備について説明する。図1は、無方向性電磁鋼鋳片の製造設備を示す模式図である。図1に示すように、無方向性電磁鋼鋳片の製造設備には、取鍋1、タンディッシュ2、鋳型3及び搬送ローラ4等が設けられている。タンディッシュ2には、鋳型3まで延びる浸漬ノズル2aが設けられている。転炉における精錬、及び2次精錬装置における脱ガス処理等が行われた無方向性電磁鋼の溶鋼11が取鍋1に注入される。そして、取鍋1から溶鋼11がタンディッシュ2に排出され、タンディッシュ2から流量及び流速を調整しながら浸漬ノズル2aを介して溶鋼11が鋳型3に供給される。そして、鋳型3において、溶鋼11が凝固し無方向性電磁鋼の鋳片12が排出される。鋳片12は搬送ローラ4により搬送される。
 このような製造設備において、取鍋1に注入される溶鋼11の表面は溶融フラックス等の被覆材により覆われていることが好ましい。また、タンディッシュ2に蓋が設けられて、タンディッシュ2内の空間がArガス等の不活性ガスで充填されていることが好ましい。溶鋼11の大気との接触を抑制するためである。但し、これらによっても溶鋼11の大気との接触を防止することはできず、溶鋼11が窒素を吸収することがある。例えば、溶鋼11の流動に乱流が生じて被覆材による溶鋼11の表面の被覆が不十分になることがある。また、取鍋1とタンディッシュ2との間に僅かながらも隙間が存在して、ここからタンディッシュ2内に大気が混入し得る。
 このため、従来の方法では、Crを含有する無方向性電磁鋼の溶鋼中の溶存窒素量が高くなっているのである。
 特に、鉄損の改善のためにAlを0.2質量%以上含有する溶鋼を用いて無方向性電磁鋼板を製造する場合、焼鈍時にAlが溶存窒素と結合して、円相当径が0.1μmから10μm程度の微細なAlN介在物が析出する。0.2質量%以上というAl濃度は、AlN介在物の析出に十分な程度に高いため、AlN介在物の個数は、鋼中の溶存窒素量に支配的に影響される。そして、AlN介在物が多数析出すると、ピン止め効果により焼鈍時の結晶粒の成長が阻害される。
 これに対し、本発明者らは、このような製造設備を用いる場合であっても、後述のように、鋳造時に溶鋼に適量の希土類金属(REM)が含有されていれば、脱ガス処理後の溶存窒素量の増加が抑制されることを見出した。つまり、溶存窒素量の増加の抑制により、AlN介在物の析出を抑制し、結晶粒を適切に成長させることができることを見出した。
 良好な鉄損値を得るためには、無方向性電磁鋼板における平均結晶粒径が50μm~200μm程度であることが好ましい。ゼナー(Zener)によれば、750℃~1100℃、5秒間~5分間の一般的な焼鈍を行って50μm~200μm程度の平均結晶粒径を得るためには、微細なAlN介在物の個数密度は1011個/cm以下であることが好ましい。
 ここで、無方向性電磁鋼鋳片(圧延後のものも含む)中の溶存窒素のすべてが微細なAlN介在物の生成に用いられるとすると、微細なAlN介在物の個数密度を1011個/cm以下にするためには、鋳片中の溶存窒素量を0.005質量%以下とする必要がある。
 鋳片中の溶存窒素は、脱ガス処理前から存在していたものと、脱ガス処理以降に混入してきたものとに大別することができる。
 従来の技術によっても、脱ガス処理前から溶存している窒素の量を脱ガス処理によって著しく低くすることは可能である。しかし、0.001質量%未満まで下げるには、多大なコストが必要とされる。また、0.001質量%未満にしたとしても、前述のように、その後に溶鋼が大気に接触することは避けられない。特に、溶鋼がCrを含有している場合には、大気との接触によって溶存窒素が増加しやすい。このため、脱ガス処理によって溶鋼中の溶存窒素量を0.001質量%未満まで下げることは避けることが好ましい。
 その一方で、脱ガス処理によって溶鋼中の溶存窒素量が0.001質量%であっても、脱ガス処理後から鋳造までに混入してくる溶存窒素の量を0.004質量%以下に抑えることができれば、鋳片中の溶存窒素量は0.005質量%以下になる。つまり、脱ガス処理後の溶存窒素量の増加を0.004質量%以下に抑制することができれば、多大なコストをかけた脱ガス処理を行わずとも、AlN介在物の析出を抑えて、結晶粒を十分に成長させることができる。
 そこで、本発明者らは、脱ガス処理後の溶存窒素量の増加を0.004質量%以下に抑制すべく鋭意検討を行った結果、前述のように、溶鋼が適量のREMを含有させることに想到した。ここで、REMとは、原子番号が57のランタンから71のルテシウムまでの15元素に原子番号が21のスカンジウムと原子番号が39のイットリウムを加えた合計17元素の総称である。
 REMは強い脱酸元素であり、適量のREMが溶鋼に含有されている場合、REMの一部は溶鋼中の酸素と結合してREM酸化物となり、他の一部は溶存REMとして溶鋼中に溶存する。
 この溶鋼が大気と接触すると、溶存REMは溶鋼の表面において大気中の酸素と結合する。この結果、溶鋼の表面に酸化物皮膜が形成される。従って、溶融フラックス等の被覆材による被覆が不十分になった場合でも、大気中からの窒素の溶鋼11への侵入を抑制することができる。つまり、本発明では、このようなREMの作用により、脱ガス処理後の溶存窒素量の増加を抑制することができる。
 なお、このような作用を得るためには、脱ガス処理後の大気に接触しやすい時点で、溶鋼中にREMが溶存している必要がある。特に、取鍋1からタンディッシュ2に注入される時点で、溶鋼中にREMが溶存していることが好ましい。このため、溶鋼に含有されるREMの量には下限値が存在する。
 例えばAlを0.2質量%以上含有する溶鋼中の溶存酸素量は0.002質量%以下である。この場合、溶鋼中にREMを溶存させるためには、脱酸平衡関係により、0.0005質量%以上のREMが含有されている必要がある。溶存REMの量は特に限定されないが、溶鋼中に0.0002質量%以上の溶存REMが存在することが望ましく、0.0005質量%以上の溶存REMが存在することが更に望ましい。
 更に、溶存REMの量を増やして窒素の侵入を阻害する効果を向上するために、REMの含有量は0.001質量%以上であることが好ましく、0.002質量%以上であることがより好ましい。
 一方、REMが多すぎるとコストが高くなる。また、溶鋼の流動性が低下して浸漬ノズルの閉塞を引き起こし、鋳造の安定性が低下する。このため、REMの含有量は0.03質量%以下とする。また、REMの作用及びコストを考慮すると、REMの含有量は0.01質量%以下であることが好ましく、0.005質量%以下であることがより好ましい。
 次に、本発明に係る無方向性電磁鋼鋳片の製造に用いる溶鋼の鋳造時の成分組成の限定理由について説明する。
 C:0.005質量%以下
 Cは、磁気特性に有害となるばかりか、Cの析出による磁気時効が著しい。このため、C含有量の上限は0.005質量%とする。なお、C含有量は、0.004質量%以下であることが好ましく、0.003質量%以下であることがより好ましく、0.0025質量%以下であることが更に好ましい。Cが全く含まれていなくともよい。
 Si:0.1質量%~7.0質量%
 Siは、鉄損を減少させる元素であり、Si含有量が0.1質量%未満であると、良好な鉄損が得られない。このため、Si含有量の下限は0.1質量%とする。鉄損を更に減少させるためには、Si含有量は、0.3質量%以上であることが好ましく、0.7質量%以上であることがより好ましく、1.0質量%以上であることが更に好ましい。一方、Si含有量が7.0質量%を超えると、加工性が著しく低下する。このため、Si含有量の上限は7.0質量%とする。特に冷間圧延性を考慮すると、Si含有量は、4.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましく、2.5質量%以下であることが更に好ましい。
 Mn:0.1質量%以上
 Mnは、無方向性電磁鋼板の硬度を増加させ、打抜性を改善する。この効果を得るため、Mn含有量の上限は0.1質量%以上とする。なお、コストを考慮して、Mn含有量は2.0質量%以下であることが好ましい。
 P:0.2質量%以下
 Pは、無方向性電磁鋼板の強度を高め、加工性を改善する。この効果は、P含有量が微量でも得られる。一方、P含有量が0.2質量%を超えると、冷間圧延性が低下する。このため、P含有量の上限は0.2質量%とする。下限については、特に定めるものではない。
 S:0.005質量%以下
 Sは、必須元素であるMnと結合してMnS介在物を生成する。また、Tiが含まれている場合、Tiと結合してTiS介在物を生成する。また、他の金属元素と結合して硫化物介在物を生成することもある。この結果、焼鈍時の結晶粒の成長が阻害され、鉄損が大きくなる。このため、S含有量の上限は、0.005質量%とする。また、S含有量は、0.003質量%以下であることが好ましい。Sが全く含まれていなくともよい。
 Al:0.2質量%~5.0質量%
 Alは、Si同様に、鉄損を減少させる元素であり、Al含有量が0.2質量%未満であると、良好な鉄損が得られない。このため、Al含有量の下限は0.2質量%とする。鉄損を更に低減させるためには、Al含有量は、0.3質量%以上であることが好ましく、0.6質量%以上であることがより好ましく、1.0質量%以上であることが更に好ましい。一方、Al含有量が5.0質量%を超えると、コストの増加が著しい。このため、Al含有量の上限は5.0質量%とする。また、AlN介在物の析出を抑制するためには、Al含有量は低いことが好ましい。例えば、Al含有量は4.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましい。
 Cr:0.1質量%~10質量%
 Crは、固有抵抗を高めて鉄損を改善し、また、無方向性電磁鋼板の強度を増加させる。Cr含有量が0.1質量%未満であると、これらの効果を十分に得られない。このため、Cr含有量の下限は0.1質量%とする。また、より高い強度を得るためには、Cr含有量は、0.2質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましい。なお、Cr含有量が高いほど溶鋼の窒素溶解度が増加するため、これに伴ってREMによる窒素の吸収を抑制する効果が顕著になる。特に、Cr含有量が0.5質量%以上の場合に効果が顕著になり、1.0質量%の場合により顕著になり、2.0質量%以上の場合に更に顕著になる。一方、Cr含有量が10質量%を超えると、溶鋼の窒素溶解度が著しく増加して、溶鋼に窒素が吸収される速度が著しく増加する。このため、REMが含有されていても、窒素の吸収を十分に抑制することができなくなり、溶鋼中の窒素含有量が増加しやすくなる。そして、焼鈍時にAlN介在物が大量に析出して結晶粒の成長が阻害される。このため、Cr含有量の上限は10質量%とする。また、Cr含有量が5質量%以下であれば、窒素の吸収速度がより小さいため、窒素増加をより安定して抑制でき、かつ、磁束密度の低下を抑制することができる。このため、Cr含有量は5質量%以下であることが好ましく、3質量%以下であることがより好ましい。
 N:0.005質量%以下
 Nは、AlN等の窒化物となってピン止め効果により焼鈍時の結晶粒の成長を阻害し、鉄損を悪化させる。また、前述のように、微細なAlN介在物の個数密度は1011個/cm以下にすることが好ましい。このため、N含有量の上限は0.005質量%とする。また、AlN介在物の個数をより低減して結晶粒の成長を促進するために、N含有量は0.003質量%以下であることが好ましく、0.0025質量%以下であることがより好ましく、0.002質量%以下であることが更に好ましい。Nが全く含まれていなくともよい。
 REM:0.0005質量%~0.03質量%
 溶存REMは、前述のように、溶鋼の表面で酸素と反応して酸化物となり、溶鋼への窒素の吸収を抑制する。このため、前述のように、REM含有量の下限は0.0005質量%とする。また、REM含有量は、0.001質量%以上であることが好ましく、0.002質量%以上であることがより好ましい。また、溶鋼中に0.0002質量%以上の溶存REMが存在することが望ましく、0.0005質量%以上の溶存REMが存在することが更に望ましい。一方、REM含有量の上限は、前述のように、鋳造の安定性等の観点から、0.03質量%とする。また、REM含有量は、0.01質量%以下であることが好ましく、0.005質量%以下であることがより好ましい。
 なお、REMはどのような形態で溶鋼に添加されてもよく、例えば、ミッシュメタル等の合金の形態で添加してもよい。この場合、REMとして、例えばランタン及びセリウムが添加される。また、REMとしては、その量が適切な範囲内にあれば、1種の元素のみを添加しても、2種以上の元素を添加しても、本は詰めの効果を得ることができる。
 O:0.005質量%以下
 Oが溶鋼中に0.005質量%より多く含有されていると、多数の酸化物が生成し、この酸化物によって、磁壁の移動及び結晶粒の成長が阻害される。このため、O含有量の上限は0.005質量%とする。Oが全く含まれていなくともよい。
 また、以下に示す元素が溶鋼に含まれていてもよい。
 Ti:0.02質量%以下
 Tiは、僅かながら含まれる溶存窒素と結合してTiN介在物を生成する。また、Sが含まれている場合、Sと結合してTiS介在物を生成する。また、他の元素と結合して化合物介在物を生成することもある。この結果、焼鈍時の結晶粒の成長が阻害され、鉄損が大きくなることがある。このため、Ti含有量は0.02質量%以下であることが好ましく、0.01質量%であることがより好ましく、0.005質量%以下であることが更に好ましい。Tiが全く含まれていなくともよい。
 Cu:1.0質量%以下
 Cuは、無方向性電磁鋼板の耐食性を向上させ、また、固有抵抗を高めて鉄損を改善する。この効果は、Cu含有量が微量でも得られる。一方、Cu含有量が1.0質量%を超えると、無方向性電磁鋼板の表面にヘゲ疵等が発生して表面品位が低下することがある。このため、Cu含有量は1.0質量%以下であることが好ましい。下限については、特に定めるものではない。
 Ca及びMg:総量で0.05質量%以下
 Ca及びMgは、脱硫元素であり、溶鋼中のSと反応して硫化物となり、Sを固定する。Ca及びMgの含有量が多いほど脱硫効果が高くなる。この効果は、Ca及びMgの含有量が微量でも得られる。一方、Ca及びMgの総含有量が0.05質量%を超えると、硫化物の数が多くなって、結晶粒の成長が阻害されることがある。このため、Ca及びMgの含有量は総量で0.05質量%以下であることが好ましい。下限については、特に定めるものではない。
 Ni:3.0質量%以下
 Niは、磁気特性に有利な集合組織を発達させ、鉄損を改善する。この効果は、Ni含有量が微量でも得られる。但し、3.0質量%を超えると、コストが上昇する一方で、鉄損の改善の効果が飽和し始める。このため、Ni含有量は3.0質量%以下であることが好ましい。下限については、特に定めるものではない。
 Sn及びSb:総量で0.3質量%以下
 Sn及びSbは、偏析元素であり、磁気特性を悪化させる(111)面の集合組織を阻害し、磁気特性を改善する。この効果を得るためには、Sn又はSbの少なくとも一方が含まれていればよい。また、この効果は、Sn及びSbの含有量が微量でも得られる。一方、Sn及びSbの含有量が総量で0.3質量%を超えると、冷間圧延性が低下する。このため、Sn及びSbの含有量は総量で0.3質量%以下であることが好ましい。下限については、特に定めるものではない。
 Zr:0.01質量%以下
 Zrは、微量でも結晶粒の成長を阻害し、歪取り焼鈍後の鉄損を悪化させる。このため、Zr含有量はできるだけ低いことが好ましく、特に0.01質量%以下であることが好ましい。Zrが全く含まれていなくともよい。
 V:0.01質量%以下
 Vは、窒化物及び炭化物となり、磁壁の移動及び結晶粒の成長を阻害する。このため、V含有量は0.01質量%以下であることが好ましい。Vが全く含まれていなくともよい。
 B:0.005質量%以下
 Bは、粒界偏析元素であり、また、窒化物となる。窒化物が生じると、粒界の移動が妨げられ、鉄損が悪化する。このため、B含有量はできるだけ低いことが好ましく、特に0.005質量%以下であることが好ましい。下限については、特に定めるものではない。
 なお、本発明の効果を大きく妨げるものでなければ、これらの元素以外に種々の元素が含まれていてもよい。例えば、磁気特性を改善する元素であるBi及びGe等が溶鋼に含まれていてもよい。
 次に、前述の溶鋼を用いた無方向性電磁鋼鋳片の製造方法の一例について、図1を参照しながら説明する。
 先ず、例えば転炉を用いた精錬及び2次精錬炉を用いた脱ガス処理を行うことにより、上記の成分からAl及びREMを除いた元素を含有する溶鋼11を作製する。脱ガス処理後の溶存窒素量は0.005質量%以下とし、例えば0.001質量%程度とすることが好ましい。
 次いで、溶鋼11にAlを添加する。脱酸元素であるAlの添加を脱ガス処理後に行うのは、高い歩留まりを得るためである。Alの添加量は、前述のように、0.2質量%~5.0質量%である。この結果、溶鋼11中に溶存する酸素の量は、Alの脱酸平衡により0.002質量%以下となる。その後、溶鋼11にREMを添加する。この結果、REMの一部は酸化物となり、他の一部は溶存REMとなる。
 続いて、この溶鋼11を取鍋1に注入する。次いで、溶鋼11をタンディッシュ2に排出する。その後、浸漬ノズル2aを介して鋳型3内に溶鋼11を供給する。そして、鋳型3により鋳造を行い、鋳片12を形成する。
 このような処理を行うに際し、溶鋼11の組成が上記のものとなっていれば、鋳造時の溶鋼11中の溶存窒素量は0.005質量%以下となり、得られる鋳片12の溶存窒素量も0.005質量%以下となる。他の成分の含有量は鋳造の前後で不変である。従って、製造された鋳片12のAl含有量、Si含有量、Cr含有量及びREM含有量等は、溶鋼11のものと一致する。
 なお、前述のように、タンディッシュ2に蓋が設けられて、タンディッシュ2内の空間がArガス等の不活性ガスで充填されていることが好ましい。この場合、タンディッシュ2内の窒素濃度を1体積%以下にすることが好ましい。
 また、鋳片12中のN含有量を0.005質量%以下とするために、脱ガス処理後の溶鋼11中の溶存窒素量は0.005質量%以下とする。
 また、溶鋼中のREMの含有量は、次のように調整してもよい。先ず、実験等により、溶鋼中のREM含有量と当該溶鋼における溶存窒素の増加量との関係を求める。そして、鋳片の作製に当たり、2次精錬炉等を用いた脱ガス処理後の溶鋼中の溶存窒素量を測定し、鋳造までに許容される溶存窒素の増加量を求め、この許容増加量に基づいてREMの含有量を調整する。このように調整すれば、高価なREMを必要以上に消費することを回避することができる。
 また、上述のようにして得られた無方向性電磁鋼鋳片を用いて無方向性電磁鋼板を製造する場合には、例えば、先ず、鋳片を熱間圧延し、必要に応じて焼鈍を行い、冷間圧延を行う。冷間圧延は1回のみ行ってもよく、中間焼鈍を挟みながら2回以上行ってもよい。そして、冷間圧延後に、仕上げ焼鈍を行い、絶縁皮膜を形成する。このような方法によれば、溶存窒素の影響を受けずに所望の大きさの結晶粒を得ることができ、良好な鉄損を備えた無方向性電磁鋼板を製造することができる。
 なお、無方向性電磁鋼鋳片及び無方向性電磁鋼板における介在物(析出物)及び結晶粒径の調査方法は、特に限定されない。一例として、次のようなものが挙げられる。析出物の調査では、先ず、試料(無方向性電磁鋼鋳片及び無方向性電磁鋼板)を鏡面研磨し、黒沢らの方法(黒沢文夫、田口 勇、松本龍太郎:日本金属学会誌、43(1979),p.1068)により、非水溶溶媒液中で試料を電解腐食する。この結果、母材のみが溶解し、AlN介在物が抽出される。そして、抽出されたAlN介在物を、SEM(走査型電子顕微鏡)-EDX(エネルギ分散型蛍光X線分析装置)を用いて調査する。また、レプリカを採取し、レプリカに転写された介在物をフィールドエミッション型透過電子顕微鏡により調査する。結晶粒径の調査では、鏡面研磨した試料を、ナイタールを用いてエッチングして、光学顕微鏡を用いて観察する。
 次に、本発明者らが行った実験について説明する。
 (実験1)
 実験1では、先ず、転炉及び真空脱ガス装置を用いて溶鋼を作製し、取鍋に注入した。溶鋼としては、質量%で、C:0.002%、Si:2.0%、Mn:0.3%、P:0.05%、S:0.0019%、Al:2.0%、Cr:2.0%、及びO:0.001%を含有し、更に種々の量のREMを含有し、残部がFe及び不可避的不純物からなるものを作製した。なお、REMとしては、ランタン及びセリウムを用いた。溶鋼中のREMの量を表1に示す。取鍋内の溶鋼の窒素含有量は0.002質量%であった。
 次いで、Arガスパージにより雰囲気窒素濃度を0.5体積%にしたタンディッシュ内に溶鋼を注入した。その後、浸漬ノズルを用いて、溶鋼をタンディッシュから鋳型内に供給し、連続鋳造法により鋳片を製造した。続いて、鋳片を熱間圧延し、焼鈍を行い、0.3mmの厚さに冷間圧延した。その後、1000℃で30秒間の仕上げ焼鈍を行い、絶縁皮膜を塗布した。このようにして無方向性電磁鋼板を製造した。
 そして、無方向性電磁鋼板におけるAlN介在物及び結晶粒径の調査を、前述の方法により行った。また、無方向性電磁鋼板の鉄損の測定も行った。鉄損の測定では、無方向性電磁鋼板を25cmの長さに切断して、JIS-C-2550に示すエプスタイン法による測定を行った。また、無方向性電磁鋼板の窒素含有量をカントバック分析した。この結果を表1及び図2に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図1に示すように、溶鋼のREM含有量が本発明範囲内にある実施例No.1~No.4では、無方向性電磁鋼板の窒素含有量が、0.0028質量%~0.0044質量%と、0.005質量%以下となった。このため、無方向性電磁鋼板の平均結晶粒径は120μm~160μmとなり、鉄損W10/800が38.7W/kg~39.5W/kgと十分に低くなった。また、連続鋳造を安定して行うことができた。
 一方、溶鋼のREM含有量が本発明範囲の下限未満である比較例No.5及びNo.6では、無方向性電磁鋼板の窒素含有量が、0.0063質量%、0.0069質量%と高くなった。このため、円相当径が0.1μm~10μmのAlN介在物が多数観察され、結晶粒径が著しく小さくなり、鉄損W10/800が著しく大きくなった。ピン止め効果により結晶粒の成長が阻害されたためである。また、溶鋼のREM含有量が本発明範囲の上限を超える比較例No.7では、鋳造時に浸漬ノズルの閉塞が発生し、連続鋳造を中断した。
 (実験2)
 実験2では、先ず、転炉及び真空脱ガス装置を用いて溶鋼を作製し、取鍋に注入した。溶鋼としては、質量%で、C:0.002%、Si:2.2%、Mn:0.2%、P:0.1%、S:0.002%、Al:2.0%を含有し、更に種々の量のCr及びREMを含有し、残部がFe及び不可避的不純物からなるものを作製した。なお、REMとしては、ランタン及びセリウムを用いた。溶鋼中のCr及びREMの量を表2に示す。取鍋内の溶鋼の窒素含有量は0.002質量%であった。
 次いで、Arガスパージにより雰囲気窒素濃度を0.5体積%にしたタンディッシュ内に溶鋼を注入した。その後、浸漬ノズルを用いて、溶鋼をタンディッシュから鋳型内に供給し、連続鋳造法により鋳片を製造した。
 また、鋳片を熱間圧延し、焼鈍を行い、0.3mmの厚さに冷間圧延した。その後、1000℃で30秒間の仕上げ焼鈍を行い、絶縁皮膜を塗布した。このようにして無方向性電磁鋼板を製造した。そして、実験1と同様にして、結晶粒径、鉄損W10/800及びN含有量の測定を行った。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、溶鋼のCr含有量及びREM含有量が本発明範囲内にある実施例No.11~No.14では、無方向性電磁鋼板の窒素含有量が0.005質量%以下となった。このため、無方向性電磁鋼板の平均結晶粒径が大きくなり、鉄損W10/800が十分に低くなった。
 一方、溶鋼のCr含有量及び/又はREM含有量が本発明範囲から外れる比較例No.15~No.20では、無方向性電磁鋼板の窒素含有量が0.005質量%を超えた。このため、平均結晶粒径が小さくなり、鉄損W10/800が著しく大きくなった。
 本発明は、例えばモータ等の高周波域で使用される無方向性電磁鋼板の製造等に利用することができる。

Claims (12)

  1.  質量%で、
     Si:0.1%以上7.0%以下、
     Mn:0.1%以上、
     Al:0.2%以上5.0%以下、
     Cr:0.1%以上10%以下、及び
     REM:0.0005%以上0.03%以下、
     を含有し、
     Cの含有量が0.005%以下、
     Pの含有量が0.2%以下、
     Sの含有量が0.005%以下、
     Nの含有量が0.005%以下、
     Oの含有量が0.005%以下、
     であり、
     残部がFe及び不可避的不純物からなることを特徴とする無方向性電磁鋼鋳片。
  2.  Mn含有量が2.0質量%以下であることを特徴とする請求項1に記載の無方向性電磁鋼鋳片。
  3.  REMの含有量が0.001質量%以上であることを特徴とする請求項1に記載の無方向性電磁鋼鋳片。
  4.  REMの含有量が0.002質量%以上であることを特徴とする請求項1に記載の無方向性電磁鋼鋳片。
  5.  更に、質量%で、
     Cu:1.0%以下、
     Ca及びMg:総量で0.05%以下、
     Ni:3.0%以下、及び
     Sn及びSb:総量で0.3%以下、
     からなる群から選択される少なくとも1種の元素を含有することを特徴とする請求項1に記載の無方向性電磁鋼鋳片。
  6.  質量%で、
     Si:0.1%以上7.0%以下、
     Mn:0.1%以上、
     Al:0.2%以上5.0%以下、及び
     Cr:0.1%以上10%以下、
     を含有し、
     Cの含有量が0.005%以下、
     Pの含有量が0.2%以下、
     Sの含有量が0.005%以下、
     Nの含有量が0.005%以下、
     Oの含有量が0.005%以下、
     であり、
     残部がFe及び不可避的不純物からなる溶鋼を作製する工程と、
     前記溶鋼に、REM:0.0005%以上0.03%以下を添加する工程と、
     前記REMが添加された溶鋼の鋳造を行う工程と、
     を有することを特徴とする無方向性電磁鋼鋳片の製造方法。
  7.  前記溶鋼にREMを添加する工程と前記溶鋼の鋳造を行う工程との間に、前記REMが添加された溶鋼を取鍋からタンディッシュに移動させる工程を有することを特徴とする請求項6に記載の無方向性電磁鋼鋳片の製造方法。
  8.  前記REMが添加された溶鋼を移動させる工程の前に、前記タンディッシュ内の窒素濃度を1体積%以下にしておくことを特徴とする請求項7に記載の無方向性電磁鋼鋳片の製造方法。
  9.  前記溶鋼のMn含有量が2.0質量%以下であることを特徴とする請求項7に記載の無方向性電磁鋼鋳片の製造方法。
  10.  前記REMの添加量が0.001質量%以上であることを特徴とする請求項7に記載の無方向性電磁鋼鋳片の製造方法。
  11.  前記REMの添加量が0.002質量%以上であることを特徴とする請求項7に記載の無方向性電磁鋼鋳片の製造方法。
  12.  前記溶鋼は、更に、質量%で、
     Cu:1.0%以下、
     Ca及びMg:総量で0.05%以下、
     Ni:3.0%以下、及び
     Sn及びSb:総量で0.3%以下、
     からなる群から選択される少なくとも1種の元素を含有することを特徴とする請求項7に記載の無方向性電磁鋼鋳片の製造方法。
PCT/JP2009/062193 2008-07-24 2009-07-03 無方向性電磁鋼鋳片及びその製造方法 WO2010010801A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09800315.5A EP2316978B1 (en) 2008-07-24 2009-07-03 Cast slab of non-oriented magnetic steel and method for producing the same
US12/997,800 US8210231B2 (en) 2008-07-24 2009-07-03 Cast slab of non-oriented electrical steel and manufacturing method thereof
RU2011106761/02A RU2467826C2 (ru) 2008-07-24 2009-07-03 Литой сляб из нетекстурированной электротехнической стали и способ его изготовления
BRPI0916956-3A BRPI0916956B1 (pt) 2008-07-24 2009-07-03 Non-oriented electric steel plate and method of manufacture of the same
CN2009801288386A CN102105615B (zh) 2008-07-24 2009-07-03 无方向性电磁钢铸坯及其制造方法
KR1020117001610A KR101266606B1 (ko) 2008-07-24 2009-07-03 무방향성 전자기 강 주조편 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-190871 2008-07-24
JP2008190871A JP4510911B2 (ja) 2008-07-24 2008-07-24 高周波用無方向性電磁鋼鋳片の製造方法

Publications (1)

Publication Number Publication Date
WO2010010801A1 true WO2010010801A1 (ja) 2010-01-28

Family

ID=41570265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062193 WO2010010801A1 (ja) 2008-07-24 2009-07-03 無方向性電磁鋼鋳片及びその製造方法

Country Status (9)

Country Link
US (1) US8210231B2 (ja)
EP (1) EP2316978B1 (ja)
JP (1) JP4510911B2 (ja)
KR (1) KR101266606B1 (ja)
CN (1) CN102105615B (ja)
BR (1) BRPI0916956B1 (ja)
RU (1) RU2467826C2 (ja)
TW (1) TWI394183B (ja)
WO (1) WO2010010801A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540853A1 (en) * 2010-02-25 2013-01-02 Nippon Steel Corporation Non-oriented magnetic steel sheet

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556042B2 (en) * 2008-04-28 2013-10-15 Inventio Ag Elevator coupled to building door
EP2602335B1 (en) * 2010-08-04 2020-03-18 Nippon Steel Corporation Manufacturing method of non-oriented electrical steel sheet
JP2012036459A (ja) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
CN102443734B (zh) * 2010-09-30 2013-06-19 宝山钢铁股份有限公司 无瓦楞状缺陷的无取向电工钢板及其制造方法
US9728312B2 (en) 2011-11-11 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
CN103305659B (zh) * 2012-03-08 2016-03-30 宝山钢铁股份有限公司 磁性优良的无取向电工钢板及其钙处理方法
TWI487795B (zh) * 2012-10-12 2015-06-11 China Steel Corp Non - directional electromagnetic steel sheet for compressor motor and its manufacturing method
TWI504752B (zh) * 2012-10-12 2015-10-21 China Steel Corp Non - directional electromagnetic steel sheet with tissue - optimized and its manufacturing method
TWI487796B (zh) * 2012-10-12 2015-06-11 China Steel Corp Non - directional electromagnetic strip annealing method
US20170065460A1 (en) * 2015-09-03 2017-03-09 The Procter & Gamble Company Absorbent article comprising a three-dimensional substrate
CA2993594C (en) * 2015-10-02 2020-12-22 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
CN108463569B (zh) * 2016-01-15 2020-08-11 杰富意钢铁株式会社 无取向性电磁钢板及其制造方法
RU2715586C1 (ru) 2016-07-29 2020-03-02 Зальцгиттер Флахшталь Гмбх Стальная полоса для производства неориентированной электротехнической стали и способ изготовления такой стальной полосы
CN109890994A (zh) * 2016-10-27 2019-06-14 杰富意钢铁株式会社 无取向性电磁钢板及其制造方法
US11053574B2 (en) 2017-01-16 2021-07-06 Nippon Steel Corporation Non-oriented electrical steel sheet
KR102259136B1 (ko) * 2017-01-16 2021-06-01 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법
CN112789363B (zh) * 2018-10-02 2022-06-07 杰富意钢铁株式会社 无方向性电磁钢板和作为其材料的板坯铸片的制造方法
WO2021106484A1 (ja) * 2019-11-29 2021-06-03 Jfeスチール株式会社 溶鋼の鋳造方法、連続鋳造鋳片の製造方法及び軸受用鋼材の製造方法
KR20240048585A (ko) 2022-10-06 2024-04-16 현대제철 주식회사 무방향성 전기강판 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064226A (ja) 1992-06-23 1994-01-14 Kawasaki Steel Corp 外部記憶装置
JPH11229095A (ja) 1998-02-10 1999-08-24 Nippon Steel Corp 高周波用無方向性電磁鋼板およびその製造方法
JP2001303212A (ja) * 2000-04-20 2001-10-31 Kawasaki Steel Corp 高周波磁気特性に優れかつ占積率の高い無方向性電磁鋼板
WO2008050597A1 (fr) * 2006-10-23 2008-05-02 Nippon Steel Corporation Procédé de fabrication de tôle magnétique non orientée présentant d'excellentes propriétés magnétiques

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686625B2 (ja) 1987-03-11 1994-11-02 新日本製鐵株式会社 高抗張力無方向性電磁鋼板の製造方法
RU2092605C1 (ru) * 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
RU2154544C1 (ru) * 1999-01-19 2000-08-20 Акционерное общество "Новолипецкий металлургический комбинат" Способ непрерывной разливки электротехнической стали
KR100435480B1 (ko) * 1999-12-27 2004-06-10 주식회사 포스코 자성이 우수한 세미프로세스 무방향성 전기강판의 제조방법
KR100544750B1 (ko) * 2001-12-26 2006-01-24 주식회사 포스코 무방향성전기강판의 자장열처리방법
AU2003216420A1 (en) * 2002-05-08 2003-11-11 Ak Properties, Inc. Method of continuous casting non-oriented electrical steel strip
WO2004099457A1 (ja) * 2003-05-06 2004-11-18 Nippon Steel Corporation 鉄損に優れた無方向性電磁鋼板及びその製造方法
RU2362829C2 (ru) * 2004-11-04 2009-07-27 Ниппон Стил Корпорейшн Нетекстурированный электротехнический стальной лист, улучшенный по потерям в сердечнике
JP4280224B2 (ja) * 2004-11-04 2009-06-17 新日本製鐵株式会社 鉄損に優れた無方向性電磁鋼板
JP4280223B2 (ja) * 2004-11-04 2009-06-17 新日本製鐵株式会社 鉄損に優れた無方向性電磁鋼板
JP2006169577A (ja) 2004-12-15 2006-06-29 Jfe Steel Kk 鉄損特性に優れたセミプロセス無方向性電磁鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064226A (ja) 1992-06-23 1994-01-14 Kawasaki Steel Corp 外部記憶装置
JPH11229095A (ja) 1998-02-10 1999-08-24 Nippon Steel Corp 高周波用無方向性電磁鋼板およびその製造方法
JP2001303212A (ja) * 2000-04-20 2001-10-31 Kawasaki Steel Corp 高周波磁気特性に優れかつ占積率の高い無方向性電磁鋼板
WO2008050597A1 (fr) * 2006-10-23 2008-05-02 Nippon Steel Corporation Procédé de fabrication de tôle magnétique non orientée présentant d'excellentes propriétés magnétiques

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Steel Manual", THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 159
FUMIO KUROSAWA; ISAO TAGUCHI; RYUTARO MATSUMOTO, JOURNAL OF THE JAPAN INSTITUTE OF METALS, vol. 43, 1979, pages 1068
See also references of EP2316978A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540853A1 (en) * 2010-02-25 2013-01-02 Nippon Steel Corporation Non-oriented magnetic steel sheet
EP2540853A4 (en) * 2010-02-25 2013-10-30 Nippon Steel & Sumitomo Metal Corp NON-ORIENTED MAGNETIC STEEL SHEET
US8591671B2 (en) 2010-02-25 2013-11-26 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
TW201009861A (en) 2010-03-01
RU2011106761A (ru) 2012-08-27
BRPI0916956B1 (pt) 2017-12-26
CN102105615A (zh) 2011-06-22
EP2316978B1 (en) 2016-03-30
KR101266606B1 (ko) 2013-05-22
EP2316978A4 (en) 2014-04-30
JP2010024531A (ja) 2010-02-04
US8210231B2 (en) 2012-07-03
US20110094699A1 (en) 2011-04-28
EP2316978A1 (en) 2011-05-04
CN102105615B (zh) 2013-05-08
BRPI0916956A2 (pt) 2015-11-24
JP4510911B2 (ja) 2010-07-28
KR20110023890A (ko) 2011-03-08
RU2467826C2 (ru) 2012-11-27
TWI394183B (zh) 2013-04-21

Similar Documents

Publication Publication Date Title
WO2010010801A1 (ja) 無方向性電磁鋼鋳片及びその製造方法
JP4681689B2 (ja) 無方向性電磁鋼板及びその製造方法
CN113166869B (zh) 无方向性电磁钢板及其制造方法
JP5360336B1 (ja) 無方向性電磁鋼板
EP2910658A1 (en) Hot-rolled steel sheet for production of non-oriented electrical steel sheet and method of manufacturing same
CN110678568A (zh) 无方向性电磁钢板及其制造方法
JP5263012B2 (ja) 無方向性電磁鋼板およびその製造方法
JP3852419B2 (ja) 無方向性電磁鋼板
JP2005336503A (ja) 鉄損に優れた無方向性電磁鋼板およびその製造方法
JP4259177B2 (ja) 無方向性電磁鋼板およびその製造方法
JP4267437B2 (ja) 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板とその製造方法
WO2023149248A1 (ja) 無方向性電磁鋼板およびその製造方法
CN115491569B (zh) 无取向硅钢的生产方法和无取向硅钢
WO2022219742A1 (ja) 無方向性電磁鋼板用熱延鋼板及びその製造方法
JP3362077B2 (ja) 鉄損の低い無方向性電磁鋼板用溶鋼の溶製方法
JP4259011B2 (ja) 無方向性電磁鋼板
JP2009220175A (ja) 磁束密度の優れた無方向性電磁鋼板の製造方法
JP2000017404A (ja) 鉄損の低い無方向性電磁鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128838.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8692/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12997800

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117001610

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009800315

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011106761

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0916956

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110124