WO2010010252A2 - Procede d'obtention d'acide formique par electroreduction du co2 en milieu aprotique - Google Patents

Procede d'obtention d'acide formique par electroreduction du co2 en milieu aprotique Download PDF

Info

Publication number
WO2010010252A2
WO2010010252A2 PCT/FR2009/000900 FR2009000900W WO2010010252A2 WO 2010010252 A2 WO2010010252 A2 WO 2010010252A2 FR 2009000900 W FR2009000900 W FR 2009000900W WO 2010010252 A2 WO2010010252 A2 WO 2010010252A2
Authority
WO
WIPO (PCT)
Prior art keywords
electroreduction
formic acid
aprotic
ionic liquid
medium
Prior art date
Application number
PCT/FR2009/000900
Other languages
English (en)
Other versions
WO2010010252A3 (fr
Inventor
David Pasquier
Babette Innocent
François Ropital
Original Assignee
Ifp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifp filed Critical Ifp
Publication of WO2010010252A2 publication Critical patent/WO2010010252A2/fr
Publication of WO2010010252A3 publication Critical patent/WO2010010252A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a process for selectively obtaining formic acid by direct electrochemical reduction of carbon dioxide in an aprotic medium, such as an aprotic solvent or an ionic liquid.
  • an aprotic medium such as an aprotic solvent or an ionic liquid.
  • the reaction is carried out in a compartmentalized electrochemical cell, separated by ion exchange membrane (cation), to isolate the anode compartment (oxidation) of the cathode compartment, place of the electrochemical reduction of CO 2 in formic acid.
  • the catholyte is a conductive aprotic medium and the anolyte is a protic medium, preferably an acidic aqueous solution.
  • the subject of the invention relates to a new process for the direct production of formic acid.
  • the invention makes it possible to completely get rid of problems related to the aqueous medium (acid-base equilibria with CO 2 , parasitic reaction of proton reduction in hydrogen). It concerns the electrochemical reduction of carbon dioxide in an aprotic organic medium, in a compartmentalized electrochemical cell. Description Objects of the invention
  • the invention relates to a process for obtaining formic acid by electroreduction of CO 2 in a conductive aprotic medium.
  • the invention relates to a process for the electrochemical reduction of CO2 carbon dioxide for the production of formic acid, wherein: the CO 2 is contacted with at least one catholyte of an electrolyzer containing at least one cathode and a catholyte, at minus one anode and an anolyte, and at least one separation membrane, the CO 2 is reduced to formic acid at the cathode, said cathode being a substrate having a low CO2 adsorption, and wherein said catholyte is a conductive aprotic medium and said anolyte is a protic medium.
  • the conductive aprotic medium comprises a polar aprotic solvent and a carrier electrolyte salt.
  • the conductive aprotic medium comprises an ionic liquid.
  • the conductive aprotic medium comprises a polar aprotic solvent and an ionic liquid acting as a supporting electrolyte.
  • the support electrolyte salt is chosen from organic salts soluble in the selected aprotic solvent or ionic liquids, stable under the conditions of the electroreduction process.
  • the cation of the organic salt or of the ionic liquid is chosen from tetraalkylammonium, cations derived from aromatic cyclic amines (di- and trialkylimidazolium, dialkylpyridinium, pyrrolidinium) or from aliphatic cyclic amines (di and trialkylpiperidinium), or from tetraalkylphosphonium, trialkylsulfonium.
  • the anion of the organic salt or of the ionic liquid is preferably chosen from halides (F “ , Cl “ , Br “ , I “ 7), nitrate ions, phosphate, sulfate, perchlorate [CIO 4 ] “ [BF 4 ] “ , [PF 6 ] -, [AsF 6 ] “ , [N (CN) 2 ] “ , [C (CN) 3 ] - or among other organic anions such as ions [C 4 F 9 SO] 3 ] " , trifluoroacetate [CF 3 CO 2 ] " , triflate [CF 3 SO 3 ] " , amides [N (CF 3 SO 2 ) 2 ] - , [CF 3 CONCF 3 SO 2 ] -, [C (CF 3 SO 2 ) 3 ] - acetate
  • the ionic liquid is chosen from ionic liquids whose cation is a trialkylimidazolium, dialkylpyridinium or tetraalkylammonium ion.
  • the aprotic solvent is chosen from dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, tetramethylurea, acetonitrile or carbonates, such as propylene carbonate or diethylcarbonate.
  • the protic medium is an acidic aqueous solution.
  • Preferably is performed at a temperature between -20 and 80 0 C, preferably -5 to 60 0 C.
  • the product formic acid can be separated from the catholyte by washing with water or distillation at ambient or reduced pressure.
  • a device for carrying out the method according to the invention comprises at least one electrochemical cell, of filter press type, connected to a potentiostat, via a two-electrode system (working electrode, counter-electrode) with an imposed current.
  • the electrochemical cell comprises:
  • the cathode is a substrate having a low adsorption of CO2 and the catholyte consists of a conductive aprotic medium
  • At least one anode compartment containing the anode and the anolyte, said anolyte consisting of an acidic aqueous solution;
  • the carbon dioxide pure or in a mixture, is brought into contact with the catholyte so as to solubilize the CO 2 .
  • a pressure of CO 2 (1-10 bar) is imposed in the cathode compartment and an equivalent counterpressure in the anode compartment (mechanical or gaseous pressure (N 2 , O 2 )) so as to prevent the migration of CO 2 even the catholyte within the anolyte, and the migration of the anolyte into the catholyte and to ensure a good solubilization of CO 2 .
  • Electrochemistry in an aprotic environment is often delicate.
  • an aprotic and polar solvent dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, acetonitrile or carbonates, such as propylene carbonate or diethylcarbonate or tetramethylurea
  • a carrier salt which must be soluble in the solvent considered, playing the role of electrolyte, so as to ensure the conductivity of the medium.
  • carbonates are widely used in the battery industry because of their low toxicity, their wide electrochemical window and their ability to solubilize various organic salts, such as quaternary ammonium salts.
  • the conductive aprotic medium comprises a polar aprotic solvent and a carrier electrolyte salt.
  • the aprotic medium consists of an ionic liquid. Indeed, one can advantageously replace the system consisting of the aprotic solvent and the carrier salt with an ionic liquid.
  • the conductive aprotic medium comprises a polar organic solvent mixed with an ionic liquid.
  • the ionic liquid can act as a supporting electrolyte.
  • aprotic polar organic solvent is advantageously carried out as a function of its electrochemical stability, of the solubility of organic carrier salts (necessary to make this type of electrically conductive medium) in said solvent, of its character. solvent of carbon dioxide, its vapor pressure, and its toxicity.
  • the solvent is preferably chosen from carbonates, especially propylene carbonate or diethylcarbonate or from the group formed by dimethylformamide and N-methylpyrrolidone, because carbon dioxide is highly soluble in these solvents. Moreover, these solvents also have good electrochemical stability, especially at high cathodic potential, and have a high boiling point.
  • the function of the support electrolyte salt is to make the aprotic polar solvent conductive. It is chosen from the organic salts soluble in the selected aprotic solvent and stable under the electroreduction conditions (cation stability, especially for cathodic reactions) or among the ionic liquids, so as to be inert with respect to CO 2 and the formed product (formic acid).
  • the cation of the soluble organic salt or the ionic liquid is preferably selected, but not limited to the group consisting of tetraalkyl ammonium, cyclic ammonium (alkylpyridinium, alkylimidazolium, alkylpiperidinium, alkylpyrrolidinium) cations.
  • the anion of the soluble organic salt or ionic liquid is selected preferably, but not exclusively, from the following anions: CI “, CIO 4 ', BF 4", and PF 5 ".
  • the ionic liquid can be used pure, or in admixture with an aprotic solvent.
  • An ionic liquid is a salt which has the property of being liquid at a temperature below 100 ° C.
  • S. Zhang et al. Zhang, SJ., Sun, N., He, XZ, Lu, XM, & Zhang, XP Physical Properties of Ionic Liquids: Database and Evaluation, Journal of Physical and Chemical Reference Data 35, 1475-1517
  • ionic liquids that can be used in the process according to the invention.
  • the choice of the ionic liquid is made according to the chemical and electrochemical stability of said ionic liquid at high cathodic potentials, including in the presence of CO 2 , the solubility of CO 2 , the viscosity and the electrical conductivity of this liquid.
  • Ionic liquids are distinguished according to the nature of their cation and anion.
  • the ionic liquids commonly used in electrochemistry are composed of a combination of a cation and an anion of which a non-limiting list is presented below.
  • the cation is preferably selected from tetraalkylammonium, cations from aromatic cyclic amines (di- and trialkylimidazolium, dialkylpyridinium, pyrrolidinium) or from aliphatic cyclic amines (di and tri alkyl piperidinium). Tetraalkylphosphonium or trialkylsulfonium may also be mentioned.
  • the anion is preferably chosen from halides (F “ , Cl “ , Br “ , I “ %), nitrate, phosphate, sulfate, perchlorate ions [CIO 4 ] “ [BF 4 ] “ , [PF 6 ] “ , [AsF 6 ] “ ,
  • the ionic liquid must have a large window of electrochemical stability, that is to say a good stability of the cation with respect to the reduction at high cathodic potentials and a good stability of the anion at the anode potentials. In addition, it must not evaporate under the conditions of the process and must be easy to recycle.
  • ionic liquids whose cation is chosen from trialkylimidazolium, dialkylpyridinium, and tetraalkylammonium.
  • stability The electrochemical character of the ionic liquid with anode potentials is not the paramount criterion.
  • the choice of the anion is preferentially made with respect to the physicochemical properties of the ionic liquid, in particular melting point, electrical conductivity, solubility of CO 2 in this liquid, viscosity.
  • the material of the cathode must be chosen from substrates having a low CO 2 adsorption, so as to guard against the formation of carbon monoxide or carbonates, which may be encountered for example on Au-based cathodes, Ag, Cu, Zn, Cd).
  • the substrate of the cathode may for example consist of metals such as Pb, Bi, Sn, Ti, In, Hg, or alloys comprising predominantly one of these metals or in the form of alloys, coatings or inclusions. on another substrate, such as carbon, polymers or other metal substrate. It can be an electrode composed of vitreous carbon or graphite, or even an electrode or a coating of BDD (Boron Doped Diamond) type.
  • the material of the cathode may also be porous, for example using a gas diffusion electrode (made of porous carbon for example).
  • the substrate of the anode is advantageously chosen so as to limit the anodic overvoltage in an aqueous medium. It may consist of carbon, graphite, metals, such as Ti, Pt, Rh, Pd, platinum titanium, platinum, rhodium, or preferably iridium (in the form of IrO 2 ) or a DSA anode ( Dimensionally Stable Anode).
  • the role of the separation membrane is to ensure a transfer of the protons necessary for the production of formic acid, while preventing the mixing of the catholyte and the anolyte.
  • This is generally a membrane composed of polymers comprising patterns sulfonic acids that transfer protons.
  • a membrane Nafion ® type or based on another sulfonated fluoropolymer, or a sulfonated polysulfone, may be suitable for carrying out the method according to the invention.
  • the anolyte is composed of an aprotic medium, preferably an acidic aqueous solution (for example: sulfuric acid, hydrochloric acid, perchloric acid or phosphoric acid 0.05 to 0.5 mol / L).
  • an acidic aqueous solution for example: sulfuric acid, hydrochloric acid, perchloric acid or phosphoric acid 0.05 to 0.5 mol / L.
  • the role of the anolyte is notably to allow the migration of the protons and the conduction.
  • the protic medium for example the acidic aqueous solution, allows the oxidation of the water at the anode and the transfer of the protons to the catholyte via the cation exchange membrane.
  • the protons required for the cathodic reaction are derived from the anolyte by migration through the ion exchange membrane.
  • the formic acid produced directly during the cathodic reaction is miscible in the solvent (ionic liquid and / or aprotic solvent).
  • an ionic liquid BMI / TFSI (1-butyl-3-methylimidazolium bis ((trifluoromethyl) sulfonyl) imide is circulated with the aid of a peristaltic pump.
  • BMI / TFSI (1-butyl-3-methylimidazolium bis ((trifluoromethyl) sulfonyl) imide
  • in the cathode compartment saturated with CO 2 at 20 0 C and atmospheric pressure.
  • an aqueous solution of 0.5 M sulfuric acid In the anode compartment is an aqueous solution of 0.5 M sulfuric acid.
  • a pressure of 1 bar of CO 2 is maintained at the level of the catholyte.
  • a pressure of 1 bar of nitrogen is maintained at the level of the anolyte.
  • a cathode current of -250 mA is imposed for 3 h 00.
  • the process yield of formic acid is 80%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé d'obtention sélective d'acide formique par réduction électrochimique directe du dioxyde de carbone dans un milieu aprotique conducteur. La réaction est réalisée en cellule électrochimique compartimentée, séparée par membrane échangeuse d'ions (de cations), permettant d'isoler le compartiment anodique (oxydation) du compartiment cathodique, lieu de la réduction électrochimique du CO2 en acide formique. Le catholyte est un milieu aprotique conducteur, contenant par exemple un solvant aprotique ou un liquide ionique. L'anolyte est un milieu protique, préférentiellement une solution aqueuse acide.

Description

PROCÉDÉ D'OBTENTION D'ACIDE FORMIQUE PAR
ELECTROREDUCTION DU CO2 EN MILIEU APROTIQUE
La présente invention concerne un procédé d'obtention sélective d'acide formique par réduction électrochimique directe du dioxyde de carbone dans un milieu aprotique, comme par exemple un solvant aprotique ou un liquide ionique.
La réaction est réalisée en cellule électrochimique compartimentée, séparée par membrane échangeuse d'ions (de cations), permettant d'isoler le compartiment anodique (oxydation) du compartiment cathodique, lieu de la réduction électrochimique du CO2 en acide formique. Le catholyte est un milieu aprotique conducteur et l'anolyte est un milieu protique, préférentiellement une solution aqueuse acide.
État de l'art
L'électroréduction du CO2 en milieu aqueux est largement décrite dans la littérature. Le principal inconvénient de travailler dans l'eau réside dans l'existence d'une réaction parasite : la réduction des protons, liée à la fois à la surtension d'hydrogène de la cathode et à l'acidité de la solution apportée par le CO2. Le dioxyde de carbone réagit avec l'eau par réaction acide/base, diminuant ainsi le pH et favorisant la réaction de réduction des H+ en H2 plutôt que celle du CO2 en acide formique. Aussi, les rendements faradiques obtenus en acide formique sont-ils mauvais. Le brevet WO 2007/041872 décrit un procédé de ce type. Pour obtenir un bon rendement, il est nécessaire de contrôler le pH de la solution à un pH supérieur à 7, ce qui induit que le produit formé n'est pas directement l'acide formique, mais un sel de cet acide, puisque le pKa de l'acide formique est de 3,75. On consomme alors autant de base (hydroxyde de sodium par exemple) que de CO2. L'obtention d'acide formique est effectuée par neutralisation successive du sel avec un acide, puis séparation.
L'objet de l'invention concerne un nouveau procédé pour l'obtention directe d'acide formique. L'invention permet de s'affranchir totalement des problèmes liés au milieu aqueux (équilibres acido-basiques avec le CO2, réaction parasite de réduction des protons en hydrogène). Elle concerne la réduction électrochimique du dioxyde de carbone en milieu organique aprotique, dans une cellule électrochimique compartimentée. Description Objets de l'invention
L'invention concerne un procédé d'obtention d'acide formique par électroréduction du CO2 en milieu aprotique conducteur.
Résumé de l'invention
L'invention concerne un procédé de réduction électrochimique du dioxyde de carbone CO2 pour la production d'acide formique , dans lequel : on met en contact le CO2 avec au moins un catholyte d'un électrolyseur contenant au moins une cathode et un catholyte, au moins une anode et un anolyte, et au moins une membrane de séparation, on réduit le CO2 en acide formique à la cathode, ladite cathode étant un substrat présentant une faible adsorption du CO2, et dans lequel ledit catholyte est un milieu aprotique conducteur et ledit anolyte est un milieu protique.
Dans un mode de réalisation, le milieu aprotique conducteur comprend un solvant aprotique polaire et un sel électrolyte support.
Dans un deuxième mode de réalisation, le milieu aprotique conducteur comprend un liquide ionique.
Dans une variante, le milieu aprotique conducteur comprend un solvant aprotique polaire et un liquide ionique jouant le rôle d'électrolyte support. De préférence, le sel électrolyte support est choisi parmi les sels organiques solubles dans le solvant aprotique sélectionné ou les liquides ioniques, stables dans les conditions du procédé d'électroréduction. Avantageusement, le cation du sel organique ou du liquide ionique est choisi parmi les tetraalkylammonium, les cations provenant d'aminés cycliques aromatiques (di- et trialkylimidazolium, dialkylpyridinium, pyrrolidinium) ou provenant d'aminés cycliques aliphatiques (di et tri alkyl pipéridinium), ou parmi les tétraalkylphosphonium, les trialkylsulfonium.
L'anion du sel organique ou du liquide ionique est de préférence choisi parmi les halogénures (F", CI", Br", I"...), les ions nitrate, phosphate, sulfate, perchlorate [CIO4]" [BF4]", [PF6]-, [AsF6]", [N(CN)2]", [C(CN)3]- ou parmi d'autres anions organiques tels que les ions [C4F9SO3]", trifluoroacétate [CF3CO2]", triflate [CF3SO3]", amidures [N(CF3SO2)2]", [CF3CONCF3SO2]-, [C(CF3SO2)3]-, acétate
[CH3CO2]- et formiate [HCO2]".
De manière très préférée, le liquide ionique est choisi parmi les liquides ioniques dont le cation est un ion trialkylimidazolium, dialkylpyridinium, ou tetraalkylammonium.
De manière préférée, le solvant aprotique est choisi parmi le diméthylformamide, le diméthylsulfoxyde, la N-méthyl pyrrolidone, la tétraméthylurée, l'acétonitrile ou bien des carbonates, tels que le carbonate de propylène ou le diéthylcarbonate.
De manière avantageuse, le milieu protique (anolyte) est une solution aqueuse acide.
De préférence, on impose une densité de courant comprise entre 10 et 5000 A/m2, préférentiellement entre 25 et 2000 A/m2.
De préférence, on opère à une température comprise entre -20 et 800C, préférentiellement -5 et 600C.
On peut séparer l'acide formique produit du catholyte par lavage à l'eau ou distillation à pression ambiante ou réduite.
Avantageusement le procédé selon l'invention permet l'obtention directe d'acide formique. Description détaillée
Cellule électrochimique
Un dispositif permettant de mettre en oeuvre le procédé selon l'invention comprend au moins une cellule électrochimique, de type filtre presse, reliée à un potentiostat, via un système à deux électrodes (électrode de travail, contre- électrode) à courant imposé. La cellule électrochimique comprend :
o au moins un compartiment cathodique contenant la cathode et le catholyte, dans lequel la cathode est un substrat présentant une faible adsorption du CO2 et le catholyte est constitué d'un milieu aprotique conducteur,
o au moins un compartiment anodique, contenant l'anode et l'anolyte, ledit anolyte étant constitué d'une solution aqueuse acide ;
et au moins une membrane de séparation.
Dans le compartiment cathodique, le dioxyde de carbone, pur ou au sein d'un mélange, est mis en contact avec le catholyte de manière à assurer la solubilisation du CO2.
Avantageusement, on impose une pression de CO2 ( 1-10 bar) dans le compartiment cathodique et une contre pression équivalente dans le compartiment anodique (pression mécanique ou gazeuse (N2, O2)) de manière à empêcher la migration du CO2 voire du catholyte au sein de l'anolyte, et la migration de l'anolyte dans le catholyte et afin d'assurer une bonne solubilisation du CO2.
Caractéristiques du milieu aprotique conducteur
L'électrochimie en milieu aprotique est souvent délicate.
Généralement, on utilise un solvant aprotique et polaire (diméthylformamide, diméthylsulfoxyde, N-méthyl pyrrolidone, acétonitrile ou bien des carbonates, tels que le carbonate de propylène ou le diéthylcarbonate, ou encore la tétraméthylurée) auquel il convient d'ajouter un sel support qui doit être soluble dans le solvant considéré, jouant le rôle d'électrolyte, de manière à assurer la conductivité du milieu. Les carbonates sont par exemple très utilisés dans l'industrie des piles ou batteries pour leur faible toxicité, leur large fenêtre électrochimique et leur aptitude à solubiliser divers sels organiques, tels que les sels d'ammonium quaternaires.
Dans un premier mode de réalisation de l'invention, le milieu aprotique conducteur comprend un solvant aprotique polaire et un sel électrolyte support.
Dans un deuxième mode de réalisation de l'invention, le milieu aprotique est constitué d'un liquide ionique. En effet, on peut avantageusement remplacer le système constitué par le solvant aprotique et le sel support, par un liquide ionique.
Dans une variante du premier mode de réalisation, le milieu aprotique conducteur comprend un solvant organique polaire en mélange avec un liquide ionique. Dans ce cas, le liquide ionique peut jouer le rôle d'électrolyte support.
Dans le cadre de l'invention, le choix du solvant organique polaire aprotique est avantageusement effectué en fonction de sa stabilité électrochimique, de la solubilité des sels supports organiques (nécessaires pour rendre ce type de milieu conducteur électrique) dans ledit solvant, de son caractère solvant du dioxyde de carbone, de sa tension de vapeur, et de sa toxicité.
Le solvant est préférentiellement choisi parmi les carbonates, notamment le carbonate de propylène ou le diéthylcarbonate ou dans le groupe formé par le diméthylformamide et la N-méthyl pyrrolidone, car le dioxyde de carbone est fortement soluble dans ces solvants. Par ailleurs, ces solvants présentent également une bonne stabilité électrochimique, aux forts potentiels cathodiques notamment, et possèdent un point d'ébullitioπ élevé.
Le sel électrolyte support a pour fonction de rendre conducteur le solvant polaire aprotique. Il est choisi parmi les sels organiques solubles dans le solvant aprotique sélectionné et stables dans les conditions d'électroréduction (stabilité du cation notamment pour des réactions cathodiques) ou parmi les liquides ioniques, de manière à être inerte vis-à-vis du CO2 et du produit formé (acide formique). Le cation du sel organique soluble ou du liquide ionique est choisi de manière préférentielle, mais non limitative dans le groupe formé par les cations de type tétraalkyl ammonium, ammonium cyclique (alkylpyridinium, alkylimidazolium, alkylpipéridinium, alkylpyrrolidinium). L'anion du sel organique soluble ou du liquide ionique est choisi de manière préférentielle, mais non limitative, parmi les anions suivants : CI", CIO4 ', BF4 ", et PF5 ". Comme décrit précédemment, dans le milieu aprotique conducteur, le liquide ionique peut-être utilisé pur, ou en mélange avec un solvant aprotique.
Un liquide ionique est un sel qui possède la propriété d'être liquide à une température inférieure à 1000C. L'article de S. Zhang et al. (Zhang,SJ., Sun, N., He,X.Z., Lu, X. M. & Zhang, X. P. Physical properties of ionic liquids: Database and évaluation. Journal of Physical and Chemical Référence Data 35, 1475-1517
(2006).) présente une revue de liquides ioniques pouvant être utilisés dans le procédé selon l'invention. Le choix du liquide ionique est effectué en fonction de la stabilité chimique et électrochimique dudit liquide ionique aux forts potentiels cathodiques, y compris en présence de CO2, de la solubilité du CO2, de la viscosité et de la conductivité électrique de ce liquide.
On distingue les liquides ioniques selon la nature de leur cation et de leur anion. Les liquides ioniques couramment utilisés en électrochimie sont composés d'une association d'un cation et d'un anion dont une liste non limitative est présentée ci-dessous.
Le cation est préférentiellement choisi parmi les tetraalkylammonium, les cations provenant d'aminés cycliques aromatiques (di- et trialkylimidazolium, dialkylpyridinium, pyrrolidinium) ou provenant d'aminés cycliques aliphatiques (di et tri alkyl pipéridinium). On peut également citer les tétraalkylphosphonium, les trialkylsulfonium.
L'anion est préférentiellement choisi parmi les halogénures (F", Cl", Br", I"...), les ions nitrate, phosphate, sulfate, perchlorate [CIO4]" [BF4]", [PF6]", [AsF6]",
[N(CN)2]", [C(CN)3]" ou parmi d'autres anions organiques tels que les ions
[C4F9SO3]", trifluoroacétate [CF3CO2]", triflate [CF3SO3]", amidures [N(CF3SO2J2]", [CF3CONCF3SO2]", [C(CF3SO2)3]", acétate [CH3CO2]" et formiate [HCO2]".
Le liquide ionique doit présenter une grande fenêtre de stabilité électrochimique, c'est-à-dire une bonne stabilité du cation vis-à-vis de la réduction aux forts potentiels cathodiques et une bonne stabilité de l'anion aux potentiels anodiques. Par ailleurs il ne doit pas s'évaporer dans les conditions du procédé et doit être facile à recycler.
Pour les potentiels cathodiques élevés, on choisira préférentiellement des liquides ioniques dont le cation est choisi parmi les trialkylimidazolium, les dialkylpyridinium, et les tetraalkylammonium. Pour l'invention, la stabilité électrochimique du liquide ionique aux potentiels anodiques n'est pas le critère prépondérant. Le choix de l'anion se fait préférentiellement par rapport aux propriétés physico-chimiques du liquide ionique, notamment point de fusion, conductivité électrique, solubilité du CO2 dans ce liquide, viscosité.
Cathode
Le matériau de la cathode doit être choisi parmi les substrats présentant une faible adsorption du CO2, de façon à se prémunir de la formation de monoxyde de carbone ou de carbonates, qui peut être rencontrée par exemple sur des cathodes à base d'Au, Ag, Cu, Zn, Cd). Le substrat de la cathode peut par exemple être constitué de métaux tels que Pb, Bi, Sn, Tl, In, Hg, ou d'alliages comprenant majoritairement un de ces métaux ou bien sous forme d'alliages, de revêtements ou d'inclusions sur un autre substrat, tel que du carbone, des polymères ou un autre substrat métallique. Il peut s'agir d'une électrode composée de carbone vitreux ou de graphite, ou même d'une électrode ou d'un revêtement de type BDD (Boron Doped Diamond). Le matériau de la cathode peut également être poreux, en utilisant par exemple une électrode à diffusion de gaz (en carbone poreux par exemple).
Anode
Le substrat de l'anode est avantageusement choisi de manière à limiter la surtension anodique en milieu aqueux. Il peut être constitué de carbone, de graphite, de métaux, tels que Ti, Pt, Rh, Pd, du titane platiné, du platine, du rhodium, ou préférentiellement de l'iridium (sous forme IrO2) ou une anode DSA (Dimensionally Stable Anode).
Membrane de séparation
Le rôle de la membrane de séparation (membrane échangeuse de protons) est d'assurer un transfert des protons nécessaires à la production d'acide formique, tout en empêchant le mélange du catholyte et de l'anolyte. Il s'agit de manière générale d'une membrane composée de polymères comprenant des motifs sulfoniques qui assurent le transfert des protons. Typiquement une membrane de type Nafion®, ou à base d'un autre polymère fluoré sulfoné, ou encore d'un polysulfone sulfoné, peut convenir pour la mise en oeuvre du procédé selon l'invention. Anolyte
L'anolyte est composé d'un milieu aprotique, préférentiellement une solution aqueuse acide (par exemple : acide sulfurique, chlorhydrique, perchlorique ou phosphorique 0,05 à 0,5 mol/L). Le rôle de l'anolyte est notamment de permettre la migration des protons et la conduction. Réactions électrochimiques
Dans le cadre de l'invention, le milieu protique, par exemple la solution aqueuse acide, permet l'oxydation de l'eau à l'anode et le transfert des protons vers le catholyte via la membrane échangeuse de cations.
Si l'on prend l'exemple d'un système présentant une cathode au plomb et une solution d'acide sulfurique 0,5M à l'anode, dans lequel on impose une densité de courant de 10 à 5000 A/m2, préférentiellement de 25 à 2000 A/m2, les réactions qui ont lieu à l'anode et à la cathode peuvent s'écrire comme suit :
Réaction cathodique
CO2 + 2H+ + 2 e~ → HCOOH Réaction anodique
H2O → 2H+ + V2 O2 + 2 e~
Les protons nécessaires à la réaction cathodique sont issus de l'anolyte par migration au travers de la membrane échangeuse d'ions.
L'acide formique produit directement au cours de la réaction cathodique est miscible dans le solvant (liquide ionique et/ou solvant aprotique).
Afin d'obtenir l'acide formique pur, il convient de séparer l'acide formique, par exemple par distillation à pression atmosphérique, le point d'ébullition de l'acide formique étant situé à une température de 1070C, ou bien à pression réduite. Dans le cas d'un milieu aprotique constitué d'un liquide ionique hydrophobe, il est avantageux d'effectuer la séparation par rinçage du liquide ionique à l'eau et ainsi d'obtenir une solution aqueuse d'acide formique.
Exemple 1
Dans une cellule électrochimique compartimentée avec une surface d'électrode de 20 cm2, on fait circuler à l'aide d'une pompe péristaltique un liquide ionique BMI/TFSI (l-butyl-3-méthylimidazolium bis((trifluorométhyl)sulfonyl)imide) dans le compartiment cathodique saturé en CO2 à 200C et pression atmosphérique. Dans le compartiment anodique se trouve une solution aqueuse d'acide sulfurique 0,5 M. Une pression de 1 bar de CO2 est maintenue au niveau du catholyte. Une pression de 1 bar d'azote est maintenue au niveau de l'anolyte.
Un courant cathodique de -250 mA est imposé pendant 3 h 00. Le rendement du procédé en acide formique est de 80%.

Claims

Revendications
1. Procédé de réduction électrochimique du dioxyde de carbone CO2 pour la production d'acide formique , dans lequel : o on met en contact le CO2 avec au moins un catholyte d'un électrolyseur contenant au moins une cathode et un catholyte, au moins une anode et un anolyte, et au moins une membrane de séparation, o on réduit le CO2 en acide formique à la cathode, ladite cathode étant un substrat présentant une faible adsorption du CO2, le procédé étant caractérisé en ce que ledit catholyte est un milieu aprotique conducteur et ledit anolyte est un milieu protique.
2. Procédé d'électroréduction du CO2 selon la revendication 1 dans lequel le milieu aprotique conducteur comprend un solvant aprotique polaire et un sel électrolyte support.
3. Procédé d'électroréduction selon la revendication 1 dans lequel le milieu aprotique conducteur comprend un liquide ionique.
4. Procédé d'électroréduction selon la revendication 2 dans lequel le sel électrolyte support est choisi parmi les sels organiques solubles dans le solvant aprotique sélectionné ou les liquides ioniques, stables dans les conditions du procédé d'électroréduction.
5. Procédé d'électroréduction selon la revendication 3 ou 4 dans lequel le cation du sel organique ou du liquide ionique est choisi parmi les tetraalkylammonium, les cations provenant d'aminés cycliques aromatiques (di- et trialkylimidazolium, dialkylpyridinium, pyrrolidinium) ou provenant d'aminés cycliques aliphatiques (di et tri alkyl pipéridinium), ou parmi les tétraalkylphosphonium, les trialkylsulfonium.
L'anion du sel organique ou du liquide ionique est choisi parmi les halogénures (F", CI", Br', I"...), les ions nitrate, phosphate, sulfate, perchlorate [CIO4]" [BF4]", [PF6]", [AsF6]", [N(CN)2]", [C(CN)3]" ou parmi d'autres anions organiques tels que les ions [C4F9SO3]", trifluoroacétate [CF3CO2]", triflate [CF3SO3]", amidures [N(CF3SO2)2]", [CF3CONCF3SO2]-, [C(CF3SO2)3]", acétate [CH3CO2]" et formiate [HCO2]".
6. Procédé d'électroréduction selon la revendication 5 dans lequel le liquide ionique est choisi parmi les liquides ioniques dont le cation est un ion trialkylimidazolium, dialkylpyridinium, ou tetraalkylammonium.
7. Procédé d'électroréduction du CO2 selon l'une des revendications 1 à 6 dans lequel le solvant aprotique est choisi parmi le diméthylformamide, le diméthylsulfoxyde, la N-méthyl pyrrolidone, la tétraméthylurée, l'acétonitrile ou bien des carbonates, tels que le carbonate de propylène ou le diéthylcarbonate
8. Procédé de réduction électrochimique du CO2 selon l'une des revendications 1 à 7 dans lequel le milieu protique (anolyte) est une solution aqueuse acide.
9. Procédé d'électroréduction selon l'une des revendications 1 à 8 dans lequel on impose une densité de courant comprise entre 10 et 5000 A/m2, préférentiellement entre 25 et 2000 A/m2.
10. Procédé d'électroréduction selon l'une des revendications 1 à 9 dans lequel on opère à une température comprise entre -20 et 800C, préférentiellement -5 et 600C.
11. Procédé d'électroréduction selon l'une des revendications 1 à 10 dans lequel on sépare l'acide formique produit du catholyte par lavage à l'eau ou distillation à pression ambiante ou réduite.
12. Procédé d'électroréduction selon l'une des revendications 1 à 11 pour l'obtention directe d'acide formique.
PCT/FR2009/000900 2008-07-22 2009-07-21 Procede d'obtention d'acide formique par electroreduction du co2 en milieu aprotique WO2010010252A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0804152A FR2934281B1 (fr) 2008-07-22 2008-07-22 Procede d'obtention d'acide formique par electroreduction du co2 en milieu aprotique
FR08/04152 2008-07-22

Publications (2)

Publication Number Publication Date
WO2010010252A2 true WO2010010252A2 (fr) 2010-01-28
WO2010010252A3 WO2010010252A3 (fr) 2010-03-18

Family

ID=40404827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/000900 WO2010010252A2 (fr) 2008-07-22 2009-07-21 Procede d'obtention d'acide formique par electroreduction du co2 en milieu aprotique

Country Status (2)

Country Link
FR (1) FR2934281B1 (fr)
WO (1) WO2010010252A2 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190573A (zh) * 2011-03-30 2011-09-21 昆明理工大学 一种电化学催化还原二氧化碳制备甲酸的方法
WO2012050436A1 (fr) 2010-10-14 2012-04-19 Universiteit Leiden Complexe métallique et son utilisation comme catalyseur à électrons multiples
US8313634B2 (en) 2009-01-29 2012-11-20 Princeton University Conversion of carbon dioxide to organic products
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8524066B2 (en) 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8592633B2 (en) 2010-07-29 2013-11-26 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
US8658016B2 (en) 2011-07-06 2014-02-25 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
CN104204301A (zh) * 2012-03-06 2014-12-10 液体光有限公司 还原二氧化碳成产物
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
CN108385129A (zh) * 2018-03-29 2018-08-10 碳能科技(北京)有限公司 一种甲酸的制备方法
CN114540847A (zh) * 2022-02-15 2022-05-27 中国科学院过程工程研究所 一种含腈基和酚羟基离子液体强化co2电还原制草酸盐的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2301032A1 (de) * 1973-01-10 1974-07-25 Dechema Verfahren und vorrichtung zur herstellung von oxalsaeure durch elektrochemische reduktion von kohlendioxid
US4608133A (en) * 1985-06-10 1986-08-26 Texaco Inc. Means and method for the electrochemical reduction of carbon dioxide to provide a product
US4673473A (en) * 1985-06-06 1987-06-16 Peter G. Pa Ang Means and method for reducing carbon dioxide to a product
FR2863911A1 (fr) * 2003-12-23 2005-06-24 Inst Francais Du Petrole Procede de sequestration de carbone sous la forme d'un mineral dans lequel le carbone est au degre d'oxydation +3

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2301032A1 (de) * 1973-01-10 1974-07-25 Dechema Verfahren und vorrichtung zur herstellung von oxalsaeure durch elektrochemische reduktion von kohlendioxid
US4673473A (en) * 1985-06-06 1987-06-16 Peter G. Pa Ang Means and method for reducing carbon dioxide to a product
US4608133A (en) * 1985-06-10 1986-08-26 Texaco Inc. Means and method for the electrochemical reduction of carbon dioxide to provide a product
FR2863911A1 (fr) * 2003-12-23 2005-06-24 Inst Francais Du Petrole Procede de sequestration de carbone sous la forme d'un mineral dans lequel le carbone est au degre d'oxydation +3

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAPLIN R P S ET AL: "Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation" JOURNAL OF APPLIED ELECTROCHEMISTRY, SPRINGER, DORDRECHT, NL, vol. 33, 1 janvier 2003 (2003-01-01), pages 1107-1123, XP003010982 ISSN: 0021-891X *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663447B2 (en) 2009-01-29 2014-03-04 Princeton University Conversion of carbon dioxide to organic products
US8313634B2 (en) 2009-01-29 2012-11-20 Princeton University Conversion of carbon dioxide to organic products
US8986533B2 (en) 2009-01-29 2015-03-24 Princeton University Conversion of carbon dioxide to organic products
US10119196B2 (en) 2010-03-19 2018-11-06 Avantium Knowledge Centre B.V. Electrochemical production of synthesis gas from carbon dioxide
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US9970117B2 (en) 2010-03-19 2018-05-15 Princeton University Heterocycle catalyzed electrochemical process
US9222179B2 (en) 2010-03-19 2015-12-29 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8592633B2 (en) 2010-07-29 2013-11-26 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
US8524066B2 (en) 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
WO2012050436A1 (fr) 2010-10-14 2012-04-19 Universiteit Leiden Complexe métallique et son utilisation comme catalyseur à électrons multiples
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9309599B2 (en) 2010-11-30 2016-04-12 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
CN102190573A (zh) * 2011-03-30 2011-09-21 昆明理工大学 一种电化学催化还原二氧化碳制备甲酸的方法
CN102190573B (zh) * 2011-03-30 2013-11-27 昆明理工大学 一种电化学催化还原二氧化碳制备甲酸的方法
US8658016B2 (en) 2011-07-06 2014-02-25 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
CN104204301A (zh) * 2012-03-06 2014-12-10 液体光有限公司 还原二氧化碳成产物
CN108385129A (zh) * 2018-03-29 2018-08-10 碳能科技(北京)有限公司 一种甲酸的制备方法
CN114540847A (zh) * 2022-02-15 2022-05-27 中国科学院过程工程研究所 一种含腈基和酚羟基离子液体强化co2电还原制草酸盐的方法
CN114540847B (zh) * 2022-02-15 2024-06-04 中国科学院过程工程研究所 一种含腈基和酚羟基离子液体强化co2电还原制草酸盐的方法

Also Published As

Publication number Publication date
FR2934281B1 (fr) 2010-08-27
WO2010010252A3 (fr) 2010-03-18
FR2934281A1 (fr) 2010-01-29

Similar Documents

Publication Publication Date Title
WO2010010252A2 (fr) Procede d'obtention d'acide formique par electroreduction du co2 en milieu aprotique
Ogumi et al. Gas permeation in SPE method: I. Oxygen permeation through Nafion and NEOSEPTA
Tomita et al. Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile‐water mixtures
US10287696B2 (en) Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
Bonfatti et al. Electrochemical incineration of glucose as a model organic substrate. II. Role of active chlorine mediation
FR2807072A1 (fr) Electrolyse a basse temperature de metaux alcalins
US3361653A (en) Organic electrolytic reactions
CA1247047A (fr) Procede pour la production electrolytique d'hydrogene sur une cathode
EP2977488A1 (fr) Solution de métal filmogène et procédé de formation de film métallique
US7211177B2 (en) Electrode for electrolysis in acidic media
Spichiger-Ulmann et al. Electrochemical reduction of bicarbonate ions at a bright palladium cathode
US6790339B2 (en) Process for the electrochemical preparation of chlorine from aqueous solutions of hydrogen chloride
EP3263744B1 (fr) Procédé de récupération de platine, par voie électrochimique, à partir d'un matériau dans lequel il est contenu
CA1308688C (fr) Procede electrochimique pour recuperer le rhodium metallique a partirde solutions aqueuses de catalyseurs usages
US20080317662A1 (en) Molten Salts, Method of Their Production and Process for Generating Hydrogen Peroxide
Hori et al. Electrochemical dechlorination of chlorinated hydrocarbons–electrochemical reduction of chloroform in acetonitrile/water mixtures at high current density
US4652351A (en) Electrochemical restoration of cyanide solutions
Portis et al. Anodic background reaction in moist acetonitrile
JP4303215B2 (ja) 水素化ホウ素を製造するための電解方法
Vasudevan et al. Synthesis of 5-amino salicylic acid at a Ti/TiO 2 electrode
US4544459A (en) Process for obtaining hydrogen and oxygen from water
Inaba et al. Application of the Solid Polymer Electrolyte Method to Organic Electrochemistry: XIV. Effects of Solvents on the Electroreduction of Nitrobenzene on Cu, Pt‐Nafion
US20050224365A1 (en) One-step electrosynthesis of borohydride
Ravichandran et al. Electrocatalytic reduction of o and m-nitroanilines at a Ti/ceramic TiO 2 cathode
FR3043095A1 (fr) Procede et reacteur d'electro-reduction du gaz sf6

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09748824

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09748824

Country of ref document: EP

Kind code of ref document: A2