WO2010010217A2 - Superficie de control de aeronave - Google Patents

Superficie de control de aeronave Download PDF

Info

Publication number
WO2010010217A2
WO2010010217A2 PCT/ES2009/070291 ES2009070291W WO2010010217A2 WO 2010010217 A2 WO2010010217 A2 WO 2010010217A2 ES 2009070291 W ES2009070291 W ES 2009070291W WO 2010010217 A2 WO2010010217 A2 WO 2010010217A2
Authority
WO
WIPO (PCT)
Prior art keywords
control surface
primary
aircraft
supporting
along
Prior art date
Application number
PCT/ES2009/070291
Other languages
English (en)
French (fr)
Other versions
WO2010010217A3 (es
Inventor
Raúl Carlos LLAMAS SANDÍN
Pablo Timoteo SANZ MARTÍNEZ
Original Assignee
Airbus España S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus España S.L. filed Critical Airbus España S.L.
Priority to CA2731787A priority Critical patent/CA2731787C/en
Priority to EP09784130.8A priority patent/EP2319759B1/en
Priority to CN200980128895.4A priority patent/CN102105355B/zh
Priority to ES09784130.8T priority patent/ES2562675T3/es
Publication of WO2010010217A2 publication Critical patent/WO2010010217A2/es
Publication of WO2010010217A3 publication Critical patent/WO2010010217A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/10Adjustable control surfaces or members, e.g. rudders one surface adjusted by movement of another, e.g. servo tabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/02Mounting or supporting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/04Adjustable control surfaces or members, e.g. rudders with compound dependent movements

Definitions

  • the present invention relates to an aircraft control surface configuration, in particular a control surface for aircraft stabilizing surface.
  • the supporting surfaces of an aircraft mainly the wings and the stabilizers, comprise control surfaces (flaps, ailerons, slats and spoilers on the wings and steering rudders and elevators on the stabilizers) that are moving parts capable of causing different effects on the course of the flight of said aircraft.
  • control surfaces flaps, ailerons, slats and spoilers on the wings and steering rudders and elevators on the stabilizers
  • the most common configuration of these control surfaces is that of simple hinge, in such a way that the control surface rotates with respect to the supporting surface on which it is arranged.
  • control surfaces for aircraft bearing surfaces called double hinge are known, in which the control surfaces comprise two surfaces, a primary control surface and a secondary control surface, movable with each other and with respect to the surface support of the aircraft.
  • one of these designs of double hinge control surfaces comprise two moving surfaces, in which the rotation of the secondary control surface occurs in the opposite direction to the rotation. of the primary control surface, in such a way that the moment of hinge produced by the aerodynamic loads of the aircraft is reduced, thus reducing the force necessary to move the control surface, since the rotation of the primary control surface help to turn the control surface high school.
  • the problem posed by such control surfaces is that they do not allow to increase the command power, that is, the aerodynamic force produced by the control surface, in fact they reduce it by reducing the effective curvature.
  • Configurations of double hinge control surfaces are also known for aircraft bearing surfaces in which the rotation of the primary and secondary control surfaces is performed in the same direction.
  • control surfaces are usually of a total size configuration, the entire control surface of the supporting surface covering the control surface, that is, the secondary control surface covers the entire size of the primary control surface.
  • This configuration poses problems of loss of the supporting surface when the angle of attack on it is high, as well as problems derived from the lack of rigidity of the secondary element.
  • configurations of control surfaces of double-hinged aircraft in which the rotation of the primary and secondary control surfaces is carried out in the same direction, and which have partial wingspan, the secondary control surface occupying only partially the wingspan of The primary control surface. In these cases, the operation of the primary control surface is carried out through actuators normally located behind the beam of the supporting surface.
  • the present invention is oriented to the solution of the inconveniences that have just been raised.
  • the present invention develops a double hinge control surface for an aircraft bearing surface, in particular for a stabilizing surface, said control surface comprising a primary control surface and a secondary control surface, occupying the secondary control surface so only partially the wingspan of the primary control surface, the primary control surface being moved, either through a torsion bar integral to said primary control surface, said torsion bar being actuated by one or more actuating elements located within the fuselage of the aircraft, or through actuators located behind the rear beam of the supporting surface, rotating the secondary control surface around a fixed hinge axis with respect to the primary control surface, said surface being in turn of secondary control mechanically connected to Ia bearing surface through one or more connection elements, in such a way that the movement of the secondary control surface is kinematically linked to the movement of the primary control surface, so that the rotation of the secondary control surface occurs in the same sense as that of the primary control surface, thus increasing the command power, that is, the aerodynamic force produced by the control surface as a whole.
  • the length of the secondary control surface along its hinge axis is significantly shorter than the length of the primary control surface, the width or chord of said secondary control surface being also significantly narrowed along the direction of its hinge axis and towards the tip of the supporting surface, such that a very advantageous distribution of aerodynamic load on the supporting surface is achieved , thereby achieving greater effective curvature in the inner zone, close to the fuselage, of the control surface and therefore a greater angle of loss of aerodynamic lift due to deflection of the control surface.
  • Figure 1 is a schematic front view of the control surface configuration for aircraft bearing surface according to the present invention.
  • Figure 2 is a schematic view of the control surface configuration for aircraft bearing surface according to the present invention.
  • Figure 3 is a schematic view of the control surface configuration with double flap of total size according to the state of the art.
  • Figure 4 is a schematic view of the mechanism of kinematic ligation of control surface with double flap of partial wingspan according to the present invention.
  • the present invention relates to a double hinge control surface 1, 10 and 11, for an aircraft bearing surface 2, in particular for a stabilizing surface, comprising ribs 3, rear beam 5 and front beam 4, said control surface 1 comprising a primary control surface 6 which in turn comprises a hinge axis 10, and a secondary control surface 7, which in turn comprises a hinge axis 11, occupying the secondary control surface 7 only partially the wingspan of the primary control surface 6, the primary control surface 6 being moved through a torsion bar 8 integral with said primary control surface 6, said torsion bar 8 being operated by one or more actuator elements 9 located within the fuselage of the aircraft, or alternatively through actuators (not shown) located between the rear beam 5 and the primary control surface 6, the secondary control surface 7 rotating around its fixed hinge axis 11 with respect to the primary control surface 6, said secondary control surface 7 being connected mechanically to the supporting surface 2 through one or more connecting elements 12, such that the movement of the secondary control surface 7 is kinematically linked to the movement of the primary control surface 6, so that the rotation of the Secondary control
  • An essential feature of the present invention is that the narrowing of the secondary control surface 7 inside it is such that its chord or local width tends to zero at its outer end 21, with the limitations inherent in the manufacturing process, so that The distribution of curvature between the secondary control surface 7 and the primary control surface 6 along the direction of the wingspan of the control surface
  • connection elements 12 are preferably rigid and articulated bars at their ends , by way of connecting rods, which kinematically link the secondary control surface 7 with the supporting surface 2.
  • the actuator elements 9 of the torsion bar 8 are preferably servo actuators comprising a lever system.
  • the plan form of the control surface 1 that develops the present invention has great narrowing, that is, reduction of the rope or width of the stabilizing and control surface seen in plan view along the length, with respect to the known solutions used at present, contributing this configuration to produce a distribution of aerodynamic load along the wingspan of the control surface 1 of the supporting surface 2 particularly suitable for a control surface 1, for the following reasons:
  • the length of the secondary control surface 7 along its hinge axis 11 is significantly shorter than the length of the primary control surface 6 along its hinge axis 10.
  • the width or chord of the secondary control surface 7 narrows significantly along the direction of its hinge axis 11 towards the tip of the bearing surface 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transmission Devices (AREA)
  • Tires In General (AREA)
  • Toys (AREA)
  • Bridges Or Land Bridges (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

Superficie de control (1) de aeronave, en particular para superficie sustentadora (2) de aeronave, que comprende una superficie de control primaria (6) que comprende un eje de charnela (10), y una superficie de control secundaria (7) que comprende un eje de charnela (11), girando la superficie de control secundaria (7) a través de su eje de charnela (11) con respecto a la superficie de control primaria (6), ocupando la citada superficie de control secundaria (7) tan sólo parcialmente la envergadura de la superficie de control primaria (6), siendo la longitud de la superficie de control secundaria (7) a lo largo de su eje de charnela (11) significativamente menor que la longitud de la superficie de control primaria (6) a lo largo de su eje de charnela (10), estrechándose además significativamente la anchura o cuerda de la citada superficie de control secundaria (7) a lo largo de la dirección de su eje de charnela (11) hacia la punta de la superficie sustentadora (2) mediante una ley de estrechamiento diseñada expresamente para adaptar la distribución de rigidez a torsión a lo largo de la envergadura de la superficie sustentadora (2) a la distribución de carga aerodinámica en la misma, a la vez que la distribución de curvatura efectiva debida a la deflexión de la citada superficie de control (1) es tal que aumenta el ángulo de entrada en pérdida aerodinámica de la superficie sustentadora (2).

Description

SUPERFICIE DE CONTROL DE AERONAVE
CAMPO DE LA INVENCIÓN
La presente invención se refiere a una configuración de superficie de control de aeronave, en particular a una superficie de control para superficie estabilizadora de aeronave.
ANTECEDENTES DE LA INVENCIÓN
Las superficies sustentadoras de una aeronave, principalmente las alas y los estabilizadores, comprenden superficies de control (flaps, alerones, slats y spoilers en las alas y timones de dirección y elevadores en los estabilizadores) que son partes móviles capaces de provocar distintos efectos en el curso del vuelo de dicha aeronave. La configuración más habitual de estas superficies de control es Ia de simple charnela, de tal forma que Ia superficie de control gira con respecto a Ia superficie sustentadora sobre Ia que está dispuesta.
Son conocidos diseños avanzados de superficies de control para superficies sustentadoras de aeronave denominados de doble charnela, en los cuales las superficies de control comprenden dos superficies, una superficie de control primaria y una superficie de control secundaria, móviles entre sí y con respecto a Ia superficie sustentadora de Ia aeronave.
Así, uno de estos diseños de superficies de control de doble charnela, denominadas tabs, que suelen estar situadas en los estabilizadores de una aeronave, comprenden dos superficies móviles, en las cuales el giro de Ia superficie de control secundaria ocurre en sentido opuesto al giro de Ia superficie de control primaria, de tal forma que se reduce el momento de charnela producido por las cargas aerodinámicas de Ia aeronave, reduciéndose de este modo Ia fuerza necesaria para mover Ia superficie de control, ya que el giro de Ia superficie de control primaria ayuda al giro de Ia superficie de control secundaria. El problema que plantean superficies de control tales es que no permiten aumentar Ia potencia de mando, es decir, Ia fuerza aerodinámica que produce Ia superficie de control, de hecho Ia reducen al reducir Ia curvatura efectiva. Se conocen también configuraciones de superficies de control de doble charnela para superficies sustentadoras de aeronave en las cuales el giro de las superficies de control primaria y secundaria se realiza en el mismo sentido. Estas superficies de control suelen ser de configuración tipo envergadura total, abarcando Ia superficie de control toda Ia envergadura de Ia superficie sustentadora, es decir, Ia superficie de control secundaria abarca toda Ia envergadura de Ia superficie de control primaria. Esta configuración plantea problemas de entrada en pérdida de Ia superficie sustentadora cuando el ángulo de ataque sobre Ia misma es elevado, así como problemas derivados de Ia falta de rigidez del elemento secundario. También son conocidas configuraciones de superficies de control de aeronave de doble charnela en las que el giro de las superficies de control primaria y secundaria se realiza en el mismo sentido, y que tienen envergadura parcial, ocupando Ia superficie de control secundaria sólo parcialmente Ia envergadura de Ia superficie de control primaria. En estos casos, Ia actuación de Ia superficie de control primaria se realiza a través de actuadores situados normalmente detrás del larguero de Ia superficie sustentadora. El problema que plantea esta configuración, que es por ejemplo Ia utilizada por el timón de dirección del Boeing 777, es que el salto de curvatura efectiva al deflectarse Ia superficie secundaria produce un torbellino de aire desprendido que aumenta Ia resistencia aerodinámica de Ia superficie de control.
La presente invención está orientada a Ia solución de los inconvenientes que acaban de plantearse. SUMARIO DE LA INVENCIÓN
Así, Ia presente invención desarrolla una superficie de control de doble charnela para superficie sustentadora de aeronave, en particular para una superficie estabilizadora, comprendiendo dicha superficie de control una superficie de control primaria y una superficie de control secundaria, ocupando Ia superficie de control secundaria tan sólo parcialmente Ia envergadura de Ia superficie de control primaria, estando Ia superficie de control primaria movida, bien a través de una barra de torsión solidaria a dicha superficie de control primaria, estando dicha barra de torsión actuada por uno o varios elementos actuadores situados dentro del fuselaje de Ia aeronave, o bien a través de unos actuadores situados detrás del larguero posterior de Ia superficie sustentadora, girando Ia superficie de control secundaria alrededor de un eje de charnela fijo con respecto a Ia superficie de control primaria, estando a su vez dicha superficie de control secundaria conectada mecánicamente a Ia superficie sustentadora a través de uno o varios elementos de conexión, de tal forma que el movimiento de Ia superficie de control secundaria está ligado cinemáticamente al movimiento de Ia superficie de control primaria, de modo que el giro de Ia superficie de control secundaria ocurre en el mismo sentido que el de Ia superficie de control primaria, consiguiéndose así aumentar Ia potencia de mando, es decir, Ia fuerza aerodinámica que produce Ia superficie de control en su conjunto.
Además, en Ia superficie de control de doble charnela para superficie sustentadora de aeronave desarrollada por Ia presente invención, Ia longitud de Ia superficie de control secundaria a Io largo de su eje de charnela es significativamente menor que Ia longitud de Ia superficie de control primaria, estrechándose significativamente además Ia anchura o cuerda de dicha superficie de control secundaria a Io largo de Ia dirección de su eje de charnela y hacia Ia punta de Ia superficie sustentadora, de tal forma que se consiga una distribución muy ventajosa de carga aerodinámica en Ia superficie sustentadora, lográndose de este modo una mayor curvatura efectiva en Ia zona interior, cercana al fuselaje, de Ia superficie de control y por tanto un mayor ángulo de pérdida de sustentación aerodinámica por deflexión de Ia superficie de control.
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que Ie acompañan.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es una vista frontal esquemática de Ia configuración de superficie de control para superficie sustentadora de aeronave según Ia presente invención.
La Figura 2 es una vista esquemática de Ia configuración de superficie de control para superficie sustentadora de aeronave según Ia presente invención. La Figura 3 es una vista esquemática de Ia configuración de superficie de control con doble charnela de envergadura total según el estado del arte.
La Figura 4 es una vista esquemática del mecanismo de ligadura cinemática de superficie de control con doble charnela de envergadura parcial según Ia presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En una realización preferente, Ia presente invención se refiere a una superficie de control 1 de doble charnela, 10 y 11 , para una superficie sustentadora 2 de aeronave, en particular para una superficie estabilizadora, que comprende costillas 3, larguero posterior 5 y larguero delantero 4, comprendiendo dicha superficie de control 1 una superficie de control primaria 6 que comprende a su vez un eje de charnela 10, y una superficie de control secundaria 7, que comprende a su vez un eje de charnela 11 , ocupando Ia superficie de control secundaria 7 tan sólo parcialmente Ia envergadura de Ia superficie de control primaria 6, estando Ia superficie de control primaria 6 movida a través de una barra de torsión 8 solidaria a dicha superficie de control primaria 6, estando dicha barra de torsión 8 actuada por uno o varios elementos actuadores 9 situados dentro del fuselaje de Ia aeronave, o alternativamente a través de actuadores (no mostrados) situados entre el larguero posterior 5 y Ia superficie de control primaria 6, girando Ia superficie de control secundaria 7 alrededor de su eje de charnela 11 fijo con respecto a Ia superficie de control primaria 6, estando a su vez dicha superficie de control secundaria 7 conectada mecánicamente a Ia superficie sustentadora 2 a través de uno o varios elementos de conexión 12, de tal forma que el movimiento de Ia superficie de control secundaria 7 está ligado cinemáticamente al movimiento de Ia superficie de control primaria 6, de modo que el giro de Ia superficie de control secundaria 7 ocurre en el mismo sentido que el de Ia superficie de control primaria 6 y con una relación de ángulos de giro entre las superficies primaria y secundaria determinada por Ia configuración geométrica del mecanismo, cuyo diseño se realiza con Ia intención específica de obtener las características aerodinámicas deseadas, consiguiéndose así aumentar Ia potencia de mando, es decir, Ia fuerza aerodinámica que produce Ia superficie de control 1 en su conjunto para un ángulo de giro dado de las superficies de control. Según Ia invención, Ia distancia 20 entre Ia superficie de control primaria
6 y Ia superficie de control secundaria 7 es Io menor posible, siempre con una limitación debida a las inherencias del proceso de fabricación de Ia superficie de control 1 , de tal forma que Ia distribución de curvatura de Ia superficie de control 1 tenga una mayor continuidad a Io largo de Ia dirección de Ia cuerda. Una característica esencial de Ia presente invención es que el estrechamiento de Ia superficie de control secundaria 7 por su interior es tal que su cuerda o anchura local tiende a cero en su extremo exterior 21 , con las limitaciones inherentes al proceso de fabricación, de manera que Ia distribución de curvatura entre Ia superficie de control secundaria 7 y Ia superficie de control primaria 6 a Io largo de Ia dirección de Ia envergadura de Ia superficie de control
1 tiende a ser continua. En Ia presente invención, Ia relación de deflexión de Ia superficie de control secundaria 7 con respecto a Ia superficie de control primaria 6 está a su vez comprendida entre 1 y 3. Los elementos de conexión 12 anteriores son preferiblemente barras rígidas y articuladas en sus extremos, a modo de bielas, que ligan cinemáticamente Ia superficie de control secundaria 7 con Ia superficie sustentadora 2.
Los elementos actuadores 9 de Ia barra de torsión 8 son preferiblemente servoactuadores que comprenden un sistema de palancas.
La forma en planta de Ia superficie de control 1 que desarrolla Ia presente invención tiene gran estrechamiento, es decir, reducción de Ia cuerda o anchura de Ia superficie estábil izadora y de control en vista en planta a Io largo de Ia envergadura, con respecto a las soluciones conocidas empleadas en Ia actualidad, contribuyendo esta configuración a producir una distribución de carga aerodinámica a Io largo de Ia envergadura de Ia superficie de control 1 de Ia superficie sustentadora 2 particularmente adecuada para una superficie de control 1 , por las siguientes razones:
- Ia deflexión de Ia superficie de control secundaria 7 con respecto a Ia superficie de control primaria 6 produce una mayor curvatura efectiva en el perfil aerodinámico de Ia superficie sustentadora 2 en Ia zona más cercana al fuselaje, de manera que las fuerzas aerodinámicas son mayores en Ia zona interior de Ia superficie de control 1 , siendo además esta superficie de control 1 Ia que tiene mayor rigidez a torsión al ser su sección transversal mayor debido a Ia forma en planta con estrechamiento de Ia configuración desarrollada por Ia invención, Io que es deseable para reducir las deformaciones detrimentales de Ia superficie de control debidos a las cargas aerodinámicas; y
- Ia distribución de curvatura efectiva a Io largo de Ia envergadura de Ia superficie sustentadora 2, siendo dicha curvatura menor hacia Ia punta, contribuye a aumentar el ángulo de pérdida de sustentación aerodinámica al deflectar Ia superficie de control 1 , debido a que al ser mayor Ia curvatura efectiva del perfil aerodinámico en Ia zona interior, Ia distribución de coeficientes de sustentación locales es también más alta en Ia zona interior en comparación con el caso de superficie de control conocida de simple charnela o en el caso de superficie de control conocida de doble charnela con envergadura completa o con poco estrechamiento de Ia superficie de control, casos en los cuales Ia entrada en pérdida de sustentación se produce al alcanzar el coeficiente máximo de sustentación en Ia punta debido al efecto del incremento de ángulo de ataque aerodinámico inducido por el torbellino de Ia punta de Ia superficie sustentadora 2.
Según Ia invención, Ia longitud de Ia superficie de control secundaria 7 a Io largo de su eje de charnela 11 es significativamente menor que Ia longitud de Ia superficie de control primaria 6 a Io largo de su eje de charnela 10. Por otro lado, Ia anchura o cuerda de Ia superficie de control secundaria 7 se estrecha significativamente a Io largo de Ia dirección de su eje de charnela 11 hacia Ia punta de Ia superficie sustentadora 2. Con esta configuración se consigue una distribución muy ventajosa de carga aerodinámica en Ia superficie sustentadora 2, lográndose de este modo una mayor curvatura efectiva y un mayor ángulo de pérdida de sustentación aerodinámica en dicha superficie sustentadora 2 gracias a Ia configuración de Ia superficie de control 1 desarrollada por Ia invención.
En Ia realización preferente que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave que comprende una superficie de control primaria (6) que comprende un eje de charnela (10), y una superficie de control secundaria (7) que comprende un eje de charnela (11 ), girando Ia superficie de control secundaria (7) a través de su eje de charnela (11 ) con respecto a Ia superficie de control primaria (6), ocupando Ia citada superficie de control secundaria (7) tan sólo parcialmente Ia envergadura de Ia superficie de control primaria (6), caracterizada porque Ia longitud de Ia superficie de control secundaria (7) a Io largo de su eje de charnela (11 ) es significativamente menor que Ia longitud de Ia superficie de control primaria (6) a Io largo de su eje de charnela (10), estrechándose además significativamente Ia anchura o cuerda de Ia citada superficie de control secundaria (7) a Io largo de Ia dirección de su eje de charnela (11 ) hacia Ia punta de Ia superficie sustentadora (2) mediante una ley de estrechamiento diseñada expresamente para adaptar Ia distribución de rigidez a torsión a Io largo de Ia envergadura de Ia superficie sustentadora (2) a Ia distribución de carga aerodinámica en Ia misma, a Ia vez que Ia distribución de curvatura efectiva debida a Ia deflexión de Ia citada superficie de control (1 ) es tal que aumenta el ángulo de entrada en pérdida aerodinámica de Ia superficie sustentadora (2).
2.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según Ia reivindicación 1 caracterizada porque Ia distancia (20) entre Ia superficie de control primaria (6) y Ia superficie de control secundaria (7) es Io menor posible, de tal forma que Ia distribución de curvatura de Ia superficie de control (1 ) tenga una mayor continuidad a Io largo de Ia dirección de Ia cuerda.
3.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según las reivindicaciones 1 y 2 caracterizada porque el estrechamiento de Ia superficie de control secundaria (7) a Io largo de su envergadura es tal que en su extremo exterior (21 ) su cuerda o anchura local es Io menor posible, de tal forma que Ia distribución de curvatura de Ia superficie de control (1 ) en configuración de superficies de control primaria y secundaria (6 y 7) deflectadas sea Io más continua posible a Io largo de Ia dirección de Ia envergadura dentro de las limitaciones impuestas por el proceso de fabricación.
4.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según cualquiera de las reivindicaciones anteriores caracterizada porque Ia superficie de control secundaria (7) está conectada mecánicamente a Ia superficie sustentadora (2) a través de al menos un elemento de conexión (12), estando así el movimiento de Ia superficie de control secundaria (7) ligado cinemáticamente al movimiento de Ia superficie de control primaria (6), de modo que el giro de Ia superficie de control secundaria (7) ocurre en el mismo sentido que el de Ia superficie de control primaria (6) y con una relación de ángulos de giro entre las superficies primaria y secundaria determinada por Ia configuración geométrica del mecanismo.
5.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según cualquiera de las reivindicaciones anteriores caracterizada porque Ia relación de deflexión de Ia superficie de control secundaria (7) con respecto a Ia superficie de control primaria (6) está comprendida entre 1 y 3.
6.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según cualquiera de las reivindicaciones anteriores caracterizada porque el elemento de conexión (12) es una barra rígida y articulada en sus extremos a modo de biela.
7.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según cualquiera de las reivindicaciones anteriores caracterizada porque Ia superficie de control primaria (6) es movida a través de una barra de torsión (8) solidaria a Ia citada superficie de control primaria (6).
8.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según Ia reivindicación 7 caracterizada porque Ia barra de torsión (8) es actuada por al menos un elemento actuador (9) situado dentro del fuselaje de Ia aeronave.
9.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según Ia reivindicación 8 caracterizada porque el elemento actuador (9) es un servoactuador que comprende un sistema de palancas.
10.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según cualquiera de las reivindicaciones 1 -6 caracterizada porque Ia superficie de control primaria (6) es movida mediante al menos un actuador situado entre el larguero posterior (5) de Ia superficie sustentadora (2) y Ia citada superficie de control primaria (6).
11.- Superficie de control (1 ) para superficie sustentadora (2) de aeronave según cualquiera de las reivindicaciones anteriores caracterizada porque Ia superficie sustentadora (2) es una superficie estabilizadora.
12.- Aeronave que comprende una superficie de control (1 ) para superficie sustentadora (2) según cualquiera de las reivindicaciones anteriores.
PCT/ES2009/070291 2008-07-23 2009-07-15 Superficie de control de aeronave WO2010010217A2 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2731787A CA2731787C (en) 2008-07-23 2009-07-15 Control surface of aircraft
EP09784130.8A EP2319759B1 (en) 2008-07-23 2009-07-15 Aircraft control surface
CN200980128895.4A CN102105355B (zh) 2008-07-23 2009-07-15 飞机的控制表面
ES09784130.8T ES2562675T3 (es) 2008-07-23 2009-07-15 Superficie de control de aeronave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802197 2008-07-23
ES200802197 2008-07-23

Publications (2)

Publication Number Publication Date
WO2010010217A2 true WO2010010217A2 (es) 2010-01-28
WO2010010217A3 WO2010010217A3 (es) 2010-03-18

Family

ID=41443856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070291 WO2010010217A2 (es) 2008-07-23 2009-07-15 Superficie de control de aeronave

Country Status (6)

Country Link
US (1) US7992825B2 (es)
EP (1) EP2319759B1 (es)
CN (1) CN102105355B (es)
CA (1) CA2731787C (es)
ES (1) ES2562675T3 (es)
WO (1) WO2010010217A2 (es)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933383B2 (en) * 2010-09-01 2015-01-13 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for correcting the trajectory of a fin-stabilized, ballistic projectile using canards
DE102010051216A1 (de) * 2010-11-12 2012-05-16 Airbus Operations Gmbh Seitenrudersystem an einem Flugzeug
GB201209666D0 (en) * 2012-05-31 2012-07-18 Airbus Operations Ltd A hinge assembly for rotatably mounting a control surface on an aircraft
US9429402B2 (en) * 2013-04-24 2016-08-30 Simmonds Precision Products, Inc. Multi-stage drive mechanisms
EP2805879B1 (en) * 2013-05-22 2017-07-05 Airbus Operations GmbH Flap arrangement for a wing of an aircraft and an aircraft with a wing comprising such a flap arrangement
US10017243B2 (en) * 2013-09-24 2018-07-10 The Boeing Company Adaptive trailing edge actuator system and method
CN104648657A (zh) * 2013-11-22 2015-05-27 中国航空工业集团公司西安飞机设计研究所 一种可抑制振动的带调整片操纵面
EP2886450B1 (en) * 2013-12-23 2019-09-18 Airbus Operations S.L. Aircraft control surface
US9643716B2 (en) * 2014-04-01 2017-05-09 The Boeing Company Air vehicle, actuator assembly and associated method of manufacture
CN105015762B (zh) * 2014-04-21 2016-12-07 哈尔滨飞机工业集团有限责任公司 一种变传动比的飞机随动调整片机构
US20170106970A1 (en) * 2015-10-15 2017-04-20 The Boeing Company Composite failsafe torque tube
EP3170742B1 (en) * 2015-11-18 2018-02-21 Airbus Operations GmbH Foldable wing for an aircraft and aircraft having a foldable wing
US10487744B2 (en) 2016-05-23 2019-11-26 United Technologies Corporation Fence for duct tone mitigation
US10464667B2 (en) * 2016-09-29 2019-11-05 Ampaire, Inc. Oblique rotor-wing aircraft
CN106986004A (zh) * 2017-03-02 2017-07-28 中国航空研究院 一种飞机方向舵的随动增效器
CN107512384B (zh) * 2017-08-01 2020-04-21 中国航空工业集团公司西安飞机设计研究所 一种升降舵
CN108033012A (zh) * 2017-12-13 2018-05-15 四川宝天智控系统有限公司 Vtol固定翼无人机及其固定翼结构
CN108248825B (zh) * 2018-03-02 2020-12-08 西北工业大学 一种飞行器翼面结构
US10597141B2 (en) * 2018-03-30 2020-03-24 The Boeing Company Wing flap with torque member and method for forming thereof
US10759516B2 (en) * 2018-03-30 2020-09-01 The Boeing Company Wing flap with torque member and method for forming thereof
US10647407B2 (en) * 2018-03-30 2020-05-12 The Boeing Company Wing flap with torque member and method for forming thereof
CN208429234U (zh) * 2018-06-25 2019-01-25 深圳市大疆创新科技有限公司 固定翼无人机及其尾翼
CN109592012A (zh) * 2018-11-02 2019-04-09 中国航空工业集团公司西安飞机设计研究所 一种有调整片的通用飞机复合材料方向舵及制造方法
CN111003150A (zh) * 2019-12-26 2020-04-14 中国航空工业集团公司西安飞机设计研究所 大中型飞机的双铰链方向舵结构
US11661175B2 (en) 2020-03-05 2023-05-30 Ruben Leon Wireless autopilot system
US11247767B2 (en) * 2020-03-05 2022-02-15 Ruben Leon Wireless autopilot system
US11623734B2 (en) 2020-12-02 2023-04-11 The Boeing Company Apparatus, system and method for supporting a wing flap of an aircraft

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958779A (en) * 1975-05-27 1976-05-25 Fairchild Industries Inc. Aircraft control system with a jam isolating coupling
US4479620A (en) * 1978-07-13 1984-10-30 The Boeing Company Wing load alleviation system using tabbed allerons
US5651513A (en) * 1995-03-01 1997-07-29 Northrop Grumman Corporation Linear flap drive system
US6257528B1 (en) * 1999-07-20 2001-07-10 The Boeing Company Vehicle control system and method employing control surface and geared tab
US6598834B2 (en) * 2000-02-14 2003-07-29 Aerotech Services Inc. Method for reducing fuel consumption in aircraft
DE10147827A1 (de) * 2001-09-27 2003-04-24 Airbus Gmbh Vorrichtung zur Änderung der Quertriebsgröße eines Flugzeughauptelementes mit vorzugsweise flächenförmiger Hinterkante
DE10156733B4 (de) * 2001-11-19 2006-04-20 Eads Deutschland Gmbh Aerodynamisches Profil mit verstellbarer Klappe
DE102004045732A1 (de) * 2004-09-21 2006-03-30 Airbus Deutschland Gmbh Flugzeug mit Flügeln, deren maximaler Auftrieb durch steuerbare Flügelkomponenten veränderbar ist
US7367530B2 (en) * 2005-06-21 2008-05-06 The Boeing Company Aerospace vehicle yaw generating systems and associated methods
US7708231B2 (en) * 2005-11-21 2010-05-04 The Boeing Company Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods
ES2345584B1 (es) * 2007-12-21 2011-07-18 Airbus Operations, S.L. Superficie de control de aeronave.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
CN102105355B (zh) 2014-04-16
CN102105355A (zh) 2011-06-22
US20100019083A1 (en) 2010-01-28
WO2010010217A3 (es) 2010-03-18
US7992825B2 (en) 2011-08-09
CA2731787C (en) 2016-11-22
EP2319759A2 (en) 2011-05-11
ES2562675T3 (es) 2016-03-07
EP2319759B1 (en) 2015-11-25
CA2731787A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
WO2010010217A2 (es) Superficie de control de aeronave
ES2345584B1 (es) Superficie de control de aeronave.
CA2857892C (en) Adaptive trailing edge actuator system and method
US8056865B2 (en) Mechanism for changing the shape of a control surface
US10343763B2 (en) Lifting surfaces and associated method
US9079655B2 (en) System for increasing controllability for an aircraft
ES2318632T3 (es) Ala de avion con aleron de borde de ataque extensible.
WO2010063868A2 (es) Superficie estabilizadora y de control direccional de aeronave.
ES2644063T3 (es) Dispositivo y método para incrementar la elevación aerodinámica de un avión
EP1531126B1 (en) Wing tip device
US8282038B2 (en) Bi-directional flight control surface utilizing a split-track mechanism
ES2904842T3 (es) Una cometa
US20100303630A1 (en) Variable chord morphing helicopter rotor
EP3498595B1 (en) Aircraft wing comprising cruise mini flaps
GB2486876A (en) Wind turbine blade flap
ES2780853T3 (es) Cuerpo perfilado aerodinámico para una aeronave
US11214354B2 (en) Control surface actuation mechanism
KR102634680B1 (ko) 변형 가능한 날개 및 이를 포함하는 비행체
DK201270436A (en) Wind turbine blade having a flap

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128895.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784130

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2731787

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009784130

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0916836

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110124