WO2010009851A2 - Procede de fabrication d'une composition auto-obturante - Google Patents

Procede de fabrication d'une composition auto-obturante Download PDF

Info

Publication number
WO2010009851A2
WO2010009851A2 PCT/EP2009/005244 EP2009005244W WO2010009851A2 WO 2010009851 A2 WO2010009851 A2 WO 2010009851A2 EP 2009005244 W EP2009005244 W EP 2009005244W WO 2010009851 A2 WO2010009851 A2 WO 2010009851A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
phr
hydrocarbon resin
process according
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2009/005244
Other languages
English (en)
French (fr)
Other versions
WO2010009851A3 (fr
Inventor
Frédéric PIALOT
Damien Fombelle
Bozena Voge
José Merino Lopez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Societe de Technologie Michelin SAS
Original Assignee
Michelin Recherche et Technique SA Switzerland
Societe de Technologie Michelin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Societe de Technologie Michelin SAS filed Critical Michelin Recherche et Technique SA Switzerland
Priority to JP2011519074A priority Critical patent/JP5572160B2/ja
Priority to US13/055,653 priority patent/US9556329B2/en
Priority to BRPI0916303A priority patent/BRPI0916303A8/pt
Priority to EP09777296.6A priority patent/EP2307489B1/fr
Priority to EA201170236A priority patent/EA025221B1/ru
Priority to CN2009801287627A priority patent/CN102105518A/zh
Publication of WO2010009851A2 publication Critical patent/WO2010009851A2/fr
Publication of WO2010009851A3 publication Critical patent/WO2010009851A3/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/402Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft using a rotor-stator system with intermeshing elements, e.g. teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/405Mixing heads
    • B29B7/408Mixing heads with mixing elements on a rotor co-operating with mixing elements, perpendicular to the axis of the rotor, fixed on a stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/421Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw and additionally other mixing elements on the same shaft, e.g. paddles, discs, bearings, rotor blades of the Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/428Parts or accessories, e.g. casings, feeding or discharging means
    • B29B7/429Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/16Auto-repairing or self-sealing arrangements or agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/16Auto-repairing or self-sealing arrangements or agents
    • B29C73/163Sealing compositions or agents, e.g. combined with propellant agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/12Puncture preventing arrangements
    • B60C19/122Puncture preventing arrangements disposed inside of the inner liner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/12Materials for stopping leaks, e.g. in radiators, in tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/52Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices with rollers or the like, e.g. calenders
    • B29B7/523Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices with rollers or the like, e.g. calenders co-operating with casings
    • B29B7/526Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices with rollers or the like, e.g. calenders co-operating with casings with two or more rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0681Parts of pneumatic tyres; accessories, auxiliary operations
    • B29D2030/0682Inner liners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0681Parts of pneumatic tyres; accessories, auxiliary operations
    • B29D30/0685Incorporating auto-repairing or self-sealing arrangements or agents on or into tyres
    • B29D2030/0686Incorporating sealants on or into tyres not otherwise provided for; auxiliary operations therefore, e.g. preparation of the tyre
    • B29D2030/0695Incorporating sealants on or into tyres not otherwise provided for; auxiliary operations therefore, e.g. preparation of the tyre the sealant being in the form of one wide strip, e.g. a patch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2407/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2421/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to self-sealing compositions useful as anti-puncture layers in any type of "pneumatic" object, that is to say, by definition, any object which takes its usable form when it is inflated with air.
  • Self-sealing compositions capable of achieving such an objective, by definition capable of ensuring automatically, that is to say without any external intervention, the sealing of a tire in case of perforation of the latter by a foreign body such as a nail, are particularly difficult to develop.
  • a self-sealing layer In order to be usable, a self-sealing layer must satisfy many conditions of a physical and chemical nature. In particular, it must be effective over a very wide range of operating temperatures throughout the life of the tires. It must be able to close the hole when the piercing object remains in place; at the expulsion of the latter, it must be able to fill the hole and make the tire tight.
  • the level of liquid elastomer is reduced or if it is completely eliminated, another major manufacturing problem may arise: in the absence of a charge such as carbon black, or at least a significant amount of such a filler (otherwise undesirable, in known manner, for this type of application), the composition is weakly cohesive. This lack of cohesion can be such that the stickiness of the composition, resulting from the high rate of tackifying resin used, is no longer compensated and prevails. It then follows a risk of parasitic bonding on the mixing tools, unacceptable under conditions of industrial implementation.
  • the present invention relates to a method of manufacturing a self-sealing elastomer composition, said method comprising at least the following steps:
  • a masterbatch comprising at least one diene elastomer and more than 30 phr of a hydrocarbon resin is first produced by mixing these various components in a mixer at a temperature or up to so-called "hot mixing" temperature which is higher than the softening temperature of the hydrocarbon resin;
  • FIG. 1 an example of an extrusion-mixing device that can be used for carrying out a process according to the invention
  • FIG. 2 an example of a pneumatic tire using a self-sealing composition prepared according to the process according to the invention
  • any range of values designated by the expression “between a and b” represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the expression “from a to b” means the range of values from terminal "a" to terminal "b", that is to say including the strict limits "a” and "b".
  • the process according to the invention therefore has the following two essential steps: a) a masterbatch comprising at least one diene elastomer and more than 30 phr of a hydrocarbon resin is first produced by mixing these different components in a mixer at a temperature or a temperature called “mixing temperature”; hot “or” first temperature "which is higher than the softening temperature of the hydrocarbon resin; b) then incorporating at least one cross-linking system into said masterbatch, by mixing the whole, in the same mixer or in a different mixer, at a temperature or a so-called “second temperature” which is kept below 100 ° C, for obtaining said self-sealing composition.
  • the first and second temperatures above are of course those of the masterbatch and the self-sealing composition, respectively, measurable in situ and not the set temperatures of the mixers themselves.
  • masterbatch (or “masterbatch”) is to be understood here, by definition, the mixture of at least one diene elastomer and more than 30 phr of the hydrocarbon resin, a precursor mixture of the final self-sealing composition, ready to work.
  • additives may be incorporated in this masterbatch, whether they are intended for the actual masterbatch (for example a stabilizing agent, a coloring or anti-UV agent, an antioxidant, etc.) or for the final self-sealing composition at which is the masterbatch.
  • the masterbatch can be manufactured in any mixing tool, in particular in a paddle mixer, a roller mixer, an extruder, any mixer capable of mixing, kneading its various components sufficiently until a homogeneous and homogeneous mixture of said components is obtained. components.
  • a mixer-screw extruder constant pitch or not, able in known manner to introduce significant shear of the mixture (diene elastomer and resin) being formed.
  • the hydrocarbon resin In the initial state, that is to say before contact with the elastomer, the hydrocarbon resin may be in the solid state or in the liquid state.
  • the diene elastomer (solid) When the diene elastomer (solid) is brought into contact with the hydrocarbon resin, the latter may be in the solid state or, in a more preferred embodiment, already in the liquid state; it suffices for this to heat the resin at a temperature above its softening temperature.
  • the maximum temperature (or first temperature) of hot mixing is typically greater than 70 ° C., preferably greater than 80 ° C., for example between 100 ° C. and 150 ° C.
  • the hydrocarbon resin is preferably injected in the liquid state, under pressure, into the mixer.
  • the step a) hot mixing is conducted away from oxygen.
  • Step b) of incorporating the crosslinking system is in turn conducted at a temperature or a maximum temperature (or second temperature) which is maintained below 100 ° C, preferably below 80 ° C.
  • the second temperature is kept below the softening temperature of the resin.
  • the mixing temperature of step b) is preferably less than 50 ° C., more preferably between 20 ° C. and 40 ° C.
  • an intermediate cooling step of the masterbatch to bring its temperature to a value less than 100 0 C, preferably less than 80 0 C, especially less than softening temperature of the resin, this before introduction (step b)) of the crosslinking system in the previously prepared masterbatch.
  • composition or self-sealing material capable of being prepared according to the process of the invention is therefore an elastomer composition comprising at least one diene elastomer, more than 30 phr of a hydrocarbon resin and a crosslinking system; in addition to various possible additives, it may or may not include a small fraction of reinforcing filler. Its formulation is described in more detail below.
  • the diene elastomers in known manner, can be classified in two categories, saturated or unsaturated.
  • a diene elastomer of the unsaturated type is preferably used here, that is to say by definition a diene elastomer derived at least in part from conjugated diene monomers and having a proportion of units or units derived from conjugated dienes which is greater than 30%. (% in moles)
  • the diene elastomer of the composition of the invention is by definition solid.
  • its number-average molecular weight (Mn) is between 100,000 and 5,000,000, more particularly between 200,000 and 4,000,000 g / mol.
  • the diene elastomer is chosen from the group consisting of polybutadienes (BR), natural rubber (NR), synthetic polyisoprenes (IR), copolymers of butadienes (for example of butadiene-styrene or SBR), copolymers of isoprene and mixtures of such elastomers.
  • the diene elastomer (preferably unsaturated) of the composition of the invention is an isoprene elastomer, preferentially chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), copolymers of butadiene-isoprene (BIR), styrene-isoprene copolymers (SIR), styrene-butadiene-isoprene copolymers (SBIR) and mixtures of these elastomers.
  • This isoprene elastomer is preferably natural rubber or a synthetic cis-1,4 polyisoprene.
  • the diene elastomer (preferably unsaturated) above, in particular isoprenic elastomer such as natural rubber, may constitute the entire elastomer matrix or the majority by weight (preferably for more than 50%, more preferably for more than 70%) of the latter when it comprises one or more other elastomer (s), diene or non-dienic, for example of the thermoplastic type.
  • the level of diene elastomer (preferably unsaturated), in particular of isoprene elastomer such as natural rubber is greater than 50 phr, more preferably greater than 70 pce (pce meaning in known manner parts by weight per hundred parts of solid elastomer). More preferably still, this level of diene elastomer (preferably unsaturated), in particular of isoprene elastomer such as natural rubber, is greater than 80 phr.
  • the above diene elastomer especially when it is an isoprene diene elastomer such as natural rubber, is the only elastomer present in the self-sealing composition of the invention.
  • this isoprene elastomer could be associated with other elastomers (solid) minority by weight, whether unsaturated diene elastomers (eg BR or SBR) or even saturated (For example butyl), or elastomers other than diene, especially thermoplastic styrene elastomers (so-called "TPS”), for example selected from the group consisting of styrene / butadiene / styrene block copolymers (SBS), styrene / isoprene styrene / styrene (SIS), styrene / butadiene / isoprene
  • SBS styrene / butad
  • Hydrocarbon resin is reserved in the present application, by definition known to those skilled in the art, to a compound that is solid at room temperature (23 0 C), as opposed to a liquid plasticizer such as an oil.
  • Hydrocarbon resins are polymers well known to those skilled in the art, essentially based on carbon and hydrogen, which can be used in particular as plasticizers or tackifying agents in polymer matrices. They are inherently miscible (i.e., compatible) with the levels used with the polymer compositions for which they are intended, so as to act as true diluents. They have been described, for example, in the book "Hydrocarbon Resins” by R. Mildenberg, M. Zander and G. Collin (New York, VCH, 1997, ISBN 3-527-28617-9), chapter 5 of which is devoted their applications, in particular pneumatic rubber (5.5 “Rubber Tires and Mechanical Goods”).
  • They can be aliphatic, cycloaliphatic, aromatic, hydrogenated aromatic, aliphatic / aromatic type that is to say based on aliphatic and / or aromatic monomers. They may be natural or synthetic, whether or not based on petroleum (if so, also known as petroleum resins).
  • Tg glass transition temperature
  • these hydrocarbon resins can also be described as thermoplastic resins in that they soften by heating and can thus be molded. They can also be defined by a point or softening point, the temperature at which the product, for example in the form of powder, agglutinates; this datum tends to replace the melting point, which is rather poorly defined, of resins in general.
  • the softening temperature of a hydrocarbon resin is generally greater by about 50 to 60 ° C. than the value of Tg.
  • the softening temperature of the resin is preferably greater than 40 ° C. (in particular between 40 ° C. and 140 ° C.), more preferably greater than 50 ° C. (especially between 50 ° C. C and 135 ° C).
  • the level of resin is preferably between 40 and 80 phr, more preferably still at least equal to 45 phr, in particular within a range of 45 to 75 phr.
  • the hydrocarbon resin has at least one, more preferably all of the following characteristics:
  • Tg greater than 25 ° C .
  • softening point greater than 50 ° C. (in particular between 50 ° C. and
  • this hydrocarbon resin has at least one, more preferably all of the following characteristics:
  • Tg of between 25 ° C. and 100 ° C. (in particular between 30 ° C. and 90 ° C.); a softening point of 60 0 C, in particular between 60 0 C and 135 ° C; an average mass M n of between 500 and 1500 g / mol; a polymolecularity index Ip of less than 2.
  • Tg is measured according to ASTM D3418 (1999).
  • the softening point is measured according to ISO 4625 ("Ring and Bail” method).
  • the macrostructure (Mw, Mn and Ip) is determined by steric exclusion chromatography (SEC): solvent tetrahydrofuran; temperature 35 ° C; concentration 1 g / 1; flow rate 1 ml / min; filtered solution on 0.45 ⁇ m porosity filter before injection; Moore calibration with polystyrene standards; set of 3 "WATERS” columns in series (“STYRAGEL” HR4E, HR1 and HR0.5); differential refractometer detection (“WATERS 2410") and its associated operating software (“WATERS EMPOWER”).
  • hydrocarbon resins By way of examples of such hydrocarbon resins, mention may be made of those selected from the group consisting of homopolymer or copolymer resins of cyclopentadiene (abbreviated as CPD) or dicyclopentadiene (abbreviated to DCPD), terpene homopolymer or copolymer resins. C5 homopolymer or copolymer resins, and mixtures of these resins.
  • CPD cyclopentadiene
  • DCPD dicyclopentadiene
  • copolymer resins mention may be made more particularly of those selected from the group consisting of (D) CPD / vinylaromatic copolymer resins, (D) CPD / terpene copolymer resins, (D) copolymer resins CPD / C5 cut, terpene / vinylaromatic copolymer resins, C5 / vinylaromatic cut copolymer resins, and mixtures of these resins.
  • pene here combines in a known manner the alpha-pinene, beta-pinene and limonene monomers; preferably, a limonene monomer is used which is present in a known manner in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer), or the dipentene, racemic of the dextrorotatory and levorotatory enantiomers. .
  • Suitable vinylaromatic monomers are, for example, styrene, alpha-methylstyrene, ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, vinyl-toluene, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, hydroxystyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene, any vinylaromatic monomer resulting from a C 9 cut (or more generally from a C 8 to C 10 cut).
  • the resins selected from the group consisting of homopolymer resins (D) CPD, copolymer resins (D) CPD / styrene, polylimonene resins, limonene / styrene copolymer resins, resins of limonene / D copolymer (CPD), C5 / styrene cut copolymer resins, C5 / C9 cut copolymer resins, and mixtures of these resins.
  • D homopolymer resins
  • D copolymer resins
  • D copolymer resins
  • polylimonene resins limonene / styrene copolymer resins
  • resins of limonene / D copolymer (CPD) resins of limonene / D copolymer
  • C5 / styrene cut copolymer resins C5 / C9 cut copolymer resins
  • the self-sealing composition further comprises a system for crosslinking the diene elastomer, this crosslinking system being preferentially a sulfur-based crosslinking system, in other words a so-called "vulcanization" system.
  • the sulfur vulcanization system preferably comprises, as vulcanization activator, a guanidine derivative, ie a substituted guanidine.
  • a guanidine derivative ie a substituted guanidine.
  • the substituted guanidines are well known to a person skilled in the art (see, for example, WO 00/05300): non-limiting examples are N, N'-diphenylguanidine (abbreviated as "DPG"), triphenylguanidine or else di-o-tolylguanidine. DPG is preferably used.
  • the sulfur content is preferably between 0.1 and 1.5 phr, in particular between 0.2 and 1.2 phr. (for example between 0.2 and 1.0 phr) and the level of guanidine derivative is itself between 0 and 1.5 phr, in particular between 0 and 1.0 phr (especially in a range of 0.2 at 0.5 phr).
  • the composition may therefore be devoid of such an accelerator, or at most comprise less than 1 phr, more preferably less than 0.5 phr.
  • an accelerator there may be mentioned as an example any compound (primary or secondary accelerator) capable of acting as an accelerator for vulcanizing diene elastomers in the presence of sulfur, in particular thiazole accelerators and their derivatives, accelerators thiuram types, zinc dithiocarbamates.
  • the above vulcanization system may be devoid of zinc or zinc oxide (known as vulcanization activators).
  • sulfur donors are well known to those skilled in the art.
  • the amount of such a sulfur donor will preferably be adjusted between 0.5 and 10 phr, more preferably between 1 and 5 phr, so as to reach the preferential equivalent sulfur levels indicated above (ie between 0.1 and 1.5 phr, in particular between 0.2 and 1.2 phr of sulfur).
  • a vulcanization system as described above provides sufficient cohesion to the composition, without giving it true vulcanization: the measurable crosslinking, via a conventional swelling method known to those skilled in the art, is in fact close to detection limit.
  • composition prepared according to the method of the invention has the other characteristic of being unloaded or very weakly charged, that is to say of having from 0 to less than 30 phr of charge.
  • charge here is meant any type of charge, whether it is reinforcing (typically with nanometric particles, of average size by weight preferably less than 500 nm, in particular between 20 and 200 nm) or that it is non-reinforcing or inert (typically with micrometric particles, of average size in weight greater than 1 micron, for example between 2 and 200 microns).
  • fillers reinforcing or not, are essentially there to give dimensional stability, that is to say a minimum mechanical strength to the final composition.
  • the filler is known as a reinforcing agent with respect to an elastomer, especially an isoprene elastomer such as natural rubber.
  • the self-sealing composition preferably comprises 0 to less than 20 phr, more preferably 0 to less than 10 phr of charge.
  • fillers known to be reinforcing by those skilled in the art, mention will in particular be made of nanoparticles of carbon black or of a reinforcing inorganic filler, or a blend of these two types of filler.
  • carbon blacks for example, all carbon blacks are suitable, in particular blacks of the HAF, ISAF, SAF type conventionally used in tires (so-called pneumatic grade blacks).
  • HAF HAF
  • ISAF SAF type conventionally used in tires
  • pneumatic grade blacks carbon blacks of (ASTM) grade 300, 600 or 700 (for example N326, N330, N347, N375, N683, N772).
  • inorganic fillers are in particular mineral fillers like silica (SiO 2), especially precipitated or pyrogenic silica having a BET surface below 450 m 2 / g, preferably from 30 to 400 m 2 / g.
  • silica SiO 2
  • precipitated or pyrogenic silica having a BET surface below 450 m 2 / g, preferably from 30 to 400 m 2 / g.
  • fillers By way of examples of fillers known to be non-reinforcing or inert by those skilled in the art, mention will in particular be made of microparticles of natural (chalk) or synthetic calcium carbonates, of synthetic or natural silicates (such as kaolin, talc, mica). ), milled silicas, titanium oxides, aluminas or aluminosilicates. As examples of lamellar fillers, mention may also be made of graphite particles. Coloring or colored fillers may advantageously be used to color the composition according to the desired color.
  • the physical state under which the charge is presented is indifferent, whether in the form of powder, microbeads, granules, beads or any other suitable densified form.
  • charge is also understood to mean mixtures of different fillers, reinforcing and / or non-reinforcing.
  • a reinforcing filler is present in the self-sealing composition, its content is preferably less than 5 phr (ie between 0 and 5 phr), in particular less than 2 phr ( between 0 and 2 phr).
  • Such levels have been found to be particularly favorable to the manufacturing process of the invention, while providing excellent self-sealing properties to the composition.
  • a rate of between 0.5 and 2 phr is more preferably used, in particular when it is carbon black.
  • a filler such as carbon black
  • it may be introduced during step a), that is to say at the same time as the unsaturated diene elastomer and the hydrocarbon resin, or during of step b) that is to say, at the same time as the crosslinking system. It has been found that a very small proportion of carbon black, preferably between 0.5 and 2 phr, further improves the mixing and the manufacture of the composition, as well as its final extrudability.
  • the basic constituents described above are sufficient on their own for the self-sealing composition to fully fulfill its anti-puncture function vis-à-vis the pneumatic objects in which it is used.
  • various other additives may be added, typically in small amounts (preferably at levels of less than 20 phr, more preferably less than 15 phr), such as, for example, protective agents such as anti-UV, anti-oxidants or anti-oxidants.
  • ozonants various other stabilizers, coloring agents advantageously used for coloring the self-sealing composition.
  • fibers in the form of short fibers or pulp, could possibly be added to give more cohesion to the self-sealing composition.
  • the self-sealing composition could also comprise, still in a minority weight fraction relative to the unsaturated diene elastomer, polymers other than elastomers, such as, for example, thermoplastic polymers compatible with the diene elastomer. unsaturated.
  • the step a) of manufacturing the masterbatch is preferably carried out in a screw mixer-extruder as schematized in a simple manner in FIG.
  • FIG. 1 shows a screw extruder-mixer (10) essentially comprising a screw (for example a single-screw) for extrusion (11), a first dosing pump (12) for the diene elastomer (solid) and a second metering pump (13) for the resin.
  • the dosing pumps (12, 13) allow to increase the pressure while maintaining the control of the dosage and the initial characteristics of the materials, the dissociation of the dosing functions (elastomer and resin) and mixing also providing better control of the process.
  • the masterbatch thus extruded, ready to be used, is then transferred and cooled for example on an external cylinder mixer for introduction of the crosslinking system and the optional charge, the temperature inside said external mixer being kept below 100 ° C, preferably below 80 ° C, and moreover preferably being lower than the softening temperature of the resin.
  • the above cylinders are cooled, for example by circulation of water, at a temperature below 40 ° C., preferably below 30 ° C., so as to avoid any parasitic bonding of the composition onto the walls of the mixer. .
  • composition or self-sealing material prepared according to the process of the invention is a solid and elastic compound, which is characterized in particular, thanks to its specific formulation, by a very high flexibility and high deformability. It can be used as a puncture-resistant layer in any type of "pneumatic" object, that is to say, by definition, any object that takes its usable form when it is inflated with air. Examples of such pneumatic objects include pneumatic boats, balls or balls used for play or sport.
  • ElIe is particularly well suited for use as a puncture-resistant layer in a pneumatic object, finished or semi-finished product, of rubber, in particular in tires for a motor vehicle such as two-wheeled vehicles, tourism or industrial, or not automobiles such as bicycles, more particularly in passenger car tires likely to run at very high speeds or tires for industrial vehicles such as heavy goods vehicles capable of driving and operating under conditions of particularly high internal temperatures.
  • Such an anti-puncture layer is preferably disposed on the inner wall of the pneumatic object, covering it completely or at least in part, but it can also be completely integrated into its internal structure.
  • the self-sealing composition described here has the advantage of not presenting, in a very wide range of tire operating temperatures, virtually no penalty in terms of rolling resistance compared to a tire having no such layer. self-sealing.
  • the risks of excessive creep during use at a relatively high temperature typically greater than 60 ° C.
  • the risks of excessive creep during use at a relatively high temperature typically greater than 60 ° C.
  • FIG. 2 shows very schematically (without respecting a specific scale) a radial section of a tire according to the invention.
  • This tire 20 comprises an apex 21 reinforced by a crown reinforcement or belt 25, two sidewalls 22 and two beads 23, each of these beads 23 being reinforced with a bead wire 24.
  • the crown 21 is topped with a non-corrugated tread. represented in this schematic figure.
  • a carcass reinforcement 26 is wound around the two rods 24 in each bead 23, the upturn 27 of this armature 26 being for example disposed towards the outside of the tire 20 which is shown here mounted on its rim 28.
  • the carcass reinforcement 26 is known per se consists of at least one sheet reinforced by so-called "radial” cables, for example textile or metal, that is to say that these cables are arranged substantially parallel to each other and s' extend from one bead to the other so as to form an angle of between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is located halfway between the two beads 23 and goes through the middle of the 25 vertex frame).
  • radial cables for example textile or metal
  • the tire 20 is characterized in that its inner wall comprises a multi-layer laminate (30) having two layers (30a, 30b), self-sealing thanks to its first layer (30a) and airtight thanks to its second layer (30b), for example based on butyl rubber.
  • the two layers (30a, 30b) substantially cover the entire inner wall of the tire, extending from one side to the other, at least to the level of the rim hook when the tire is in the mounted position.
  • the laminate is here arranged in such a way that the first self-sealing layer (30a) is radially outermost in the tire, with respect to the other layer (30b). In other words, the self-sealing layer (30a) covers the airtight layer (30b) on the side of the internal cavity 29 of the tire 20.
  • the layer 30b (0.7 to 0.8 mm thick) is based on butyl rubber having a conventional formulation for an "innerliner” ⁇ "inner liner ⁇ r) which usually defines, in a bandage conventional pneumatic tire, the radially inner face of said tire intended to protect the carcass reinforcement from the diffusion of air coming from the internal space to the tire, this air-tight layer 30b thus allows the inflation and the pressure maintenance of the tire.
  • bandage 20 its sealing properties allow it to ensure a relatively low rate of pressure loss, to maintain the swollen bandage, in normal operating condition, for a sufficient duration, normally several weeks or months.
  • a self-sealing composition prepared according to the process according to the invention, comprising the two essential constituents that are natural rubber (100 pce) and a hydrocarbon resin "Escorez 2101" from Exxon Mobil (softening point equal to about 90 ° C) at a weight of about 50 phr.
  • the extruder used comprised two different feeds (hoppers) (NR on the one hand, resin on the other hand) and a liquid injection pump under pressure for the resin (injected at a temperature of about 130 ° C.); when the elastomer and the resin are thus intimately mixed, it has been found that the parasitic tackiness of the composition decreases very significantly.
  • the above extruder was provided with a die for extruding the masterbatch to the desired dimensions to an external cylinder mixer for final incorporation of the other components, namely the sulfur vulcanization system (e.g. 5 or 1.2 phr) and DPG (for example 0.3 phr) and carbon black (N772, at a rate of 1 phr), at a low temperature maintained at a value of less than + 30 ° C. (cooling of the cylinders by circulation of water).
  • the layer 30a thus disposed between the layer 30b and the cavity 29 of the tire, provides the tire with an effective protection against pressure loss due to accidental perforations, allowing the automatic closure of these perforations.
  • this tire withstood rolling at 150 km / h at a rated load of 400 kg, without loss of pressure for more than 1500 km, beyond which the roll was stopped.
  • the tire thus perforated loses its pressure in less than a minute, becoming totally unfit for rolling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Sealing Material Composition (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
PCT/EP2009/005244 2008-07-24 2009-07-20 Procede de fabrication d'une composition auto-obturante Ceased WO2010009851A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011519074A JP5572160B2 (ja) 2008-07-24 2009-07-20 セルフシーリング組成物の製造方法
US13/055,653 US9556329B2 (en) 2008-07-24 2009-07-20 Method for making a self-sealing composition
BRPI0916303A BRPI0916303A8 (pt) 2008-07-24 2009-07-20 Processo de fabricação de uma composição de elastômero auto-selante
EP09777296.6A EP2307489B1 (fr) 2008-07-24 2009-07-20 Procede de fabrication d'une composition auto-obturante
EA201170236A EA025221B1 (ru) 2008-07-24 2009-07-20 Способ получения самозатягивающейся композиции
CN2009801287627A CN102105518A (zh) 2008-07-24 2009-07-20 用于制造自密封组合物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855040 2008-07-24
FR0855040A FR2938263B1 (fr) 2008-07-24 2008-07-24 Procede de fabrication d'une composition auto-obturante

Publications (2)

Publication Number Publication Date
WO2010009851A2 true WO2010009851A2 (fr) 2010-01-28
WO2010009851A3 WO2010009851A3 (fr) 2010-03-18

Family

ID=40342572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005244 Ceased WO2010009851A2 (fr) 2008-07-24 2009-07-20 Procede de fabrication d'une composition auto-obturante

Country Status (9)

Country Link
US (1) US9556329B2 (enExample)
EP (1) EP2307489B1 (enExample)
JP (1) JP5572160B2 (enExample)
KR (1) KR101622423B1 (enExample)
CN (1) CN102105518A (enExample)
BR (1) BRPI0916303A8 (enExample)
EA (1) EA025221B1 (enExample)
FR (1) FR2938263B1 (enExample)
WO (1) WO2010009851A2 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113712A1 (fr) 2010-03-15 2011-09-22 Societe De Technologie Michelin Procede et dispositif de fabrication d'une bande continue d'un produit fortement collant emballe dans un film thermoplastique
US20130172474A1 (en) * 2010-01-28 2013-07-04 Michelin Recherche Et Technique S.A. Method for Manufacturing an Elastomeric Composition Having a Self-Sealing Property
JP2013544698A (ja) * 2010-10-18 2013-12-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン 軸方向クリープ勾配付きの自己シール層を有するタイヤ
US9593266B2 (en) 2010-01-28 2017-03-14 Compagnie Generale Des Etablissements Michelin Method of manufacturing a self-sealing composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934603B1 (fr) 2008-08-01 2012-12-14 Michelin Soc Tech Composition auto-obturante pour objet pneumatique.
KR102102104B1 (ko) * 2012-11-28 2020-04-20 미츠비시 가스 가가쿠 가부시키가이샤 방향족 폴리카보네이트 수지 조성물 및 그 제조 방법, 그 수지 조성물로 이루어지는 성형품
JP6429446B2 (ja) * 2013-10-23 2018-11-28 住友ゴム工業株式会社 高性能ウェットタイヤ
JP6474225B2 (ja) * 2014-10-15 2019-02-27 株式会社ブリヂストン 空気入りタイヤ
US9651372B1 (en) * 2015-01-08 2017-05-16 Jose Antonio Lopez Piping leveling systems
JP7182849B2 (ja) * 2016-10-21 2022-12-05 住友ゴム工業株式会社 空気入りタイヤ製造装置
CN107323180A (zh) * 2017-06-21 2017-11-07 太仓轮达汽车配件有限公司 一种具有自我保护功能的轮胎
US12006436B2 (en) * 2020-11-13 2024-06-11 The Goodyear Tire & Rubber Company Rubber composition and a tire

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161201A2 (en) 1984-05-02 1985-11-13 The Goodyear Tire & Rubber Company Pneumatic tire having puncture sealing feature
US4616048A (en) 1985-04-29 1986-10-07 The Firestone Tire & Rubber Company Solution compounding process for achieving uniform, fine particle size dispersion of curing agents
US4913209A (en) 1985-01-22 1990-04-03 The Uniroyal Goodrich Tire Company Sealant product, laminate thereof, and pneumatic tire constructed therewith
US5085942A (en) 1985-01-22 1992-02-04 The Uniroyal Goodrich Tire Company Sealant product, laminate thereof, and pneumatic tire constructed therewith
US5295525A (en) 1992-06-22 1994-03-22 Michelin Recherche Et Technique S.A. Puncture sealant formulation
US5914364A (en) 1996-03-11 1999-06-22 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and tire with tread
WO2001085837A2 (en) 2000-05-11 2001-11-15 Exxonmobil Chemical Patents Inc. Isobutylene-based elastomer blends
US20020115767A1 (en) 2000-12-15 2002-08-22 Cruse Richard W. Mineral-filled elastomer compositions
FR2866028A1 (fr) 2004-02-11 2005-08-12 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc
FR2877348A1 (fr) 2004-10-28 2006-05-05 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687794A (en) * 1986-08-01 1987-08-18 The Kendall Company Novel system for preparing rubber compositions employing a cavity transfer mixer
KR100272125B1 (ko) * 1996-05-29 2000-11-15 하기와라 세이지 저투과성 열가소성 엘라스토머 조성물을 기체 투과 방지층에 사용하는 공기 주입 타이어 및 이에 사용하는 열가소성 엘라스토머 조성물
WO1997035462A2 (en) * 1997-06-27 1997-10-02 Bridgestone Corporation Improved high-aromatic oil, and rubber composition and oil extended synthetic rubber both prepared by using said high aromatic oil
US6156822A (en) * 1998-11-12 2000-12-05 The Goodyear Tire & Rubber Company Prepared reinforced elastomer, elastomer composite and tire having component thereof
US6242523B1 (en) * 1999-03-08 2001-06-05 The Goodyear Tire & Rubber Company Rubber composition with liquid high Tg polymer and tire with tread thereof
JP3418761B2 (ja) * 1999-08-06 2003-06-23 東洋ゴム工業株式会社 樹脂製フレキシブルブーツ
US6303694B1 (en) * 2000-02-18 2001-10-16 Bridgestone Corporation Compounding process for achieving uniform, fine particle size dispersion of curing agents in the substantial absence of solvents and a sealant produced thereby
FR2821849A1 (fr) * 2001-03-12 2002-09-13 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique et enveloppe de pneumatique l'incorporant
JP4404764B2 (ja) * 2002-05-31 2010-01-27 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 自己シールタイヤ、およびその製造方法
AU2003286509A1 (en) * 2002-11-07 2004-06-03 Exxonmobil Chemical Patents Inc. Elastomeric blend for air barriers comprising low glass transition temperature petroleum hydrocarbon resins
US7073550B2 (en) * 2004-03-17 2006-07-11 The Goodyear Tire & Rubber Company Pneumatic tire having built-in colored sealant layer and preparation thereof
EP1809693B1 (en) * 2004-10-22 2016-05-11 Compagnie Générale des Etablissements Michelin Tire comprising a carcass with a barrier layer
FR2910906B1 (fr) * 2006-12-27 2009-03-06 Michelin Soc Tech Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161201A2 (en) 1984-05-02 1985-11-13 The Goodyear Tire & Rubber Company Pneumatic tire having puncture sealing feature
US4913209A (en) 1985-01-22 1990-04-03 The Uniroyal Goodrich Tire Company Sealant product, laminate thereof, and pneumatic tire constructed therewith
US5085942A (en) 1985-01-22 1992-02-04 The Uniroyal Goodrich Tire Company Sealant product, laminate thereof, and pneumatic tire constructed therewith
US4616048A (en) 1985-04-29 1986-10-07 The Firestone Tire & Rubber Company Solution compounding process for achieving uniform, fine particle size dispersion of curing agents
US5295525A (en) 1992-06-22 1994-03-22 Michelin Recherche Et Technique S.A. Puncture sealant formulation
US5914364A (en) 1996-03-11 1999-06-22 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and tire with tread
WO2001085837A2 (en) 2000-05-11 2001-11-15 Exxonmobil Chemical Patents Inc. Isobutylene-based elastomer blends
US20020115767A1 (en) 2000-12-15 2002-08-22 Cruse Richard W. Mineral-filled elastomer compositions
FR2866028A1 (fr) 2004-02-11 2005-08-12 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc
FR2877348A1 (fr) 2004-10-28 2006-05-05 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172474A1 (en) * 2010-01-28 2013-07-04 Michelin Recherche Et Technique S.A. Method for Manufacturing an Elastomeric Composition Having a Self-Sealing Property
US9593266B2 (en) 2010-01-28 2017-03-14 Compagnie Generale Des Etablissements Michelin Method of manufacturing a self-sealing composition
US9944775B2 (en) * 2010-01-28 2018-04-17 Compagnie Generale Des Etablissements Michelin Method for manufacturing an elastomeric composition having a self-sealing property
WO2011113712A1 (fr) 2010-03-15 2011-09-22 Societe De Technologie Michelin Procede et dispositif de fabrication d'une bande continue d'un produit fortement collant emballe dans un film thermoplastique
US9102101B2 (en) 2010-03-15 2015-08-11 Compagnie Generale Des Etablissements Michelin Method and device for making a continuous strip of a highly adhesive product packaged in a thermoplastic film
JP2013544698A (ja) * 2010-10-18 2013-12-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン 軸方向クリープ勾配付きの自己シール層を有するタイヤ

Also Published As

Publication number Publication date
WO2010009851A3 (fr) 2010-03-18
KR20110043613A (ko) 2011-04-27
EP2307489A2 (fr) 2011-04-13
JP5572160B2 (ja) 2014-08-13
BRPI0916303A8 (pt) 2018-07-31
US20120115984A1 (en) 2012-05-10
JP2011528736A (ja) 2011-11-24
FR2938263A1 (fr) 2010-05-14
EA201170236A1 (ru) 2011-10-31
EP2307489B1 (fr) 2015-03-25
FR2938263B1 (fr) 2013-01-04
CN102105518A (zh) 2011-06-22
US9556329B2 (en) 2017-01-31
EA025221B1 (ru) 2016-12-30
BRPI0916303A2 (pt) 2018-06-12
KR101622423B1 (ko) 2016-05-18

Similar Documents

Publication Publication Date Title
EP2310444B1 (fr) Procédé de fabrication d'une composition auto-obturante
EP2321118B1 (fr) Composition auto-obturante pour objet pneumatique
EP2318202B1 (fr) Composition auto-obturante pour objet pneumatique
EP2307489B1 (fr) Procede de fabrication d'une composition auto-obturante
EP2736708B2 (fr) Composition d'elastomere pour objet pneumatique, a propriete auto-obturante
EP2528753B1 (fr) Composition d'elastomere pour objet pneumatique, a propriete auto-obturante
EP2477803B1 (fr) Bandage pneumatique avec couche auto-obturante et couche de protection integrees
EP2459400B1 (fr) Bandage pneumatique avec couche auto-obturante integree
EP2512836B1 (fr) Bandage pneumatique avec couche auto-obturante integree
EP2528965B1 (fr) Procédé de facrication d'une composition d'élastomère à propriété auto-obturante
FR2955587A1 (fr) Composition d'elastomere pour objet pneumatique, a propriete auto-obturante
EP2456626B1 (fr) Bandage pneumatique avec couche auto-obturante integree
FR2955581A1 (fr) Procede de fabrication d'une composition d'elastomere a propriete auto-obturante
EP2834090A1 (fr) Pneumatique et ensemble pneumatique-roue a mobilite etendue
FR2955583A1 (fr) Procede de fabrication d'une composition auto-obturante
FR2948606A1 (fr) Bandage pneumatique avec couche auto-obturante integree.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128762.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777296

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 306/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117001638

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011519074

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009777296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201170236

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 13055653

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0916303

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110121