WO2010007755A1 - 銅の表面処理剤および表面処理方法、並びに銅表面の皮膜 - Google Patents

銅の表面処理剤および表面処理方法、並びに銅表面の皮膜 Download PDF

Info

Publication number
WO2010007755A1
WO2010007755A1 PCT/JP2009/003275 JP2009003275W WO2010007755A1 WO 2010007755 A1 WO2010007755 A1 WO 2010007755A1 JP 2009003275 W JP2009003275 W JP 2009003275W WO 2010007755 A1 WO2010007755 A1 WO 2010007755A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
copper
ppm
surface treatment
treatment agent
Prior art date
Application number
PCT/JP2009/003275
Other languages
English (en)
French (fr)
Inventor
印部俊雄
宇都宮朗
西田真也
Original Assignee
日本ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント株式会社 filed Critical 日本ペイント株式会社
Publication of WO2010007755A1 publication Critical patent/WO2010007755A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to a copper surface treatment agent and a surface treatment method, a copper surface coating, a copper-clad material, a multilayer wiring board, and a wiring board. More specifically, the copper surface treatment agent and surface treatment method capable of treating the copper surface in a smooth (flat) state without roughening such as etching, and the surface treatment method are used.
  • the present invention relates to a copper surface film, a copper-clad material, a multilayer wiring board, and a wiring board.
  • a general multilayer wiring board (build-up wiring board) is manufactured by laminating and pressing an inner layer substrate having a conductive layer made of copper on the surface portion with another inner layer substrate with an insulating material such as resin interposed therebetween. ing.
  • the conductive layers are electrically connected by a through hole called a through hole whose hole wall is plated with copper.
  • the copper used for the surface portion of the inner layer substrate as the wiring of the multilayer wiring substrate is required to have adhesiveness with an insulating material such as a resin. Therefore, in order to improve the adhesion between the copper surface used for the surface portion of the inner layer substrate and an insulating material such as a resin, a copper surface treatment is generally performed.
  • Examples of the copper surface treatment method include a method of roughening the copper surface by etching the copper surface with copper chloride, sulfuric acid / hydrogen peroxide, etc., and attaching an uneven oxide film to the copper surface. It is done. According to this method, the concavo-convex-shaped oxide film is difficult to insulate with an insulating material such as a resin, and an anchor effect is produced, thereby improving the adhesion between copper and an insulating material such as a resin.
  • a method of treating the roughened copper surface with tin, a silane coupling agent or the like has been developed (for example, a patent). Reference 1 to 3).
  • Patent Document 11 discloses a method of treating a roughened copper surface with tin to form alloyed tin, and peeling off the tin film after forming the alloyed tin. Although the method of forming is described, even if those methods are used, the adhesion between copper and an insulating material such as a resin is insufficient.
  • a method of replacing the method using the roughening treatment such as etching a method of forming a tin film by tin plating or the like on the surface of copper used for the surface portion of the inner layer substrate is shown (for example, (See Patent Document 4). Furthermore, in order to improve the adhesion between copper and an insulating material such as resin, a method of treating with nitric acid, silane coupling agent, etc. after tin plating on the copper surface used for the surface part of the inner layer substrate is shown. (For example, see Patent Documents 5 to 9).
  • Patent Documents 5 and 10 a method of adding an acid and a reaction accelerator simultaneously with a tin compound is disclosed (for example, Patent Documents 5 and 10). reference). Furthermore, in order to improve the adhesion between copper and an insulating material such as resin, a method of forming a metal layer having high adhesion with an insulating material such as resin by adding a copper salt to the surface of copper is shown. (For example, see Patent Document 10).
  • Japanese Patent Publication “Patent No. 3135516 Japanese Patent Laid-Open No. 10-46359, published on Feb. 17, 1998)
  • Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-201585” Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-109111 (published May 8, 2008)”
  • Japanese Patent Publication “JP 2000-340948 A Japanese Patent Publication “JP 2000-340948 A (published on Dec. 8, 2000)”
  • Patent Documents 1 to 3 have been put to practical use because performance, particularly adhesion between copper and an insulating material such as resin, is insufficient. Furthermore, in these methods, since the roughening treatment dissolves copper, the copper width is reduced, and it becomes difficult to refine the copper-clad material surface-treated by these methods, and the electrical loss increases. Furthermore, in these methods, since an oxide film grows with a change with time after the roughening treatment, passivation becomes insufficient, and the performance deteriorates in all cases. Therefore, a rust prevention treatment as a post treatment is generally performed.
  • the copper surface treatment method disclosed in Patent Document 4 has a problem that the adhesion between copper and an insulating material such as a resin is not sufficient as compared with a method of roughening the surface of copper such as etching. Has a point.
  • the copper surface treatment method disclosed in Patent Document 10 has a problem in that sufficient adhesion cannot be maintained, and it is difficult to uniformly adhere a metal layer to the copper surface. Since the coating is also coated, there is a problem that there is a concern about inhibition of plating property, electric conductivity, etc. during mounting.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to process the surface of copper in a smooth state without increasing the number of processing steps and without performing roughening treatment such as etching.
  • An object of the present invention is to provide a copper surface treatment agent and a surface treatment method capable of maintaining adhesion between copper and an insulating material such as a resin, and a film on the copper surface.
  • the present inventor has found that a surface treatment agent and a surface treatment method used for copper surface treatment, and a film on the surface of copper, a tin compound and a complexing agent (chelating agent) are added to the surface treatment agent. ) And a pH adjuster to control the balance of their concentrations, thereby changing the physical properties of crystals existing on the copper surface, and a Cu-Sn alloy film (uneven ultra-micro As a result, the surface area is drastically improved, and sufficient adhesion between copper and an insulating material such as resin can be uniquely found and the present invention has been completed. It was.
  • the present inventor reduced the copper potential with a complexing agent to make the copper easily reactive, controls the copper dissolution rate, and promotes copper dissolution with a pH adjuster. It was found that the tin film can be formed, and as a result, the crystal properties of the deposited film can be changed and the film shape can be freely designed and controlled. Furthermore, when the concentration of the tin compound is low, the present inventor does not catch up with the dissolution of the tin on the copper surface, and the dissolved copper co-deposits with the tin to form a copper-rich tin film. I also found it easy to do.
  • the usual tin treatment is treated with a treatment solution of a concentration on the order of percent, and it is common that tin is often left and discarded in wastewater in addition to being used for filming,
  • tin is often left and discarded in wastewater in addition to being used for filming.
  • the present invention not only a significant improvement in performance but also a drastic reduction in drainage load, it is extremely excellent as an environmental measure.
  • the copper surface coating of the present invention contains an alloy of copper and tin in order to solve the above problems, and the weight of tin in the copper surface coating is 1 mg / m 2 or more and 2,000 mg / m 2.
  • the molar ratio of copper to tin in the composition on the outermost surface of the film is in the range of 0.2 or more and 2.0 or less.
  • the weight of tin in the copper surface coating is preferably in the range of 20 mg / m 2 to 2,000 mg / m 2 .
  • the coating of the copper surface of the present invention contains an alloy of copper and tin, the weight of tin in the coating of the copper surface is 1 mg / m 2 or more, 2,000 mg / m 2 or less of the range And the molar ratio of copper to tin in the outermost surface of the coating on the copper surface is in the range of 0.2 or more and 2.0 or less, so that the alloy has voids and micropores generated on the copper surface. It fills and becomes a film (uneven ultra-micro roughened film) having bamboo shoot-like projections.
  • Cu 6 Sn 5 which is the main component of the Cu—Sn alloy in the present invention is a hexagonal crystal
  • the crystallinity is high, and if adjacent crystals collide with each other in the growth process, they attempt to grow in the vertical direction. It is thought that a film having a bamboo shoot-like protrusion (uneven ultra-micro roughened film) can be formed.
  • the size of the unevenness of the film having the bamboo shoot-like protrusion is about 1/10 of the size of the unevenness by the current etching, it is considered that the film is not affected by the electrical loss due to the skin effect at high frequency.
  • the unevenness control according to the present invention compared to the unevenness control by etching which is the current technology, is the formation of an uneven super micro roughening film of 1/10 or less by a crystal film, so that not only the surface area is dramatically improved, In order to eliminate the loss of wiring, it is considered that this technology can greatly contribute to the refinement of copper wires while maintaining and improving adhesion.
  • the coating on the copper surface of the present invention has a tin weight in the coating of 1 mg / m 2 or more and 2,000 mg / m 2 or less, and a molar ratio of copper to tin on the outermost surface of the coating. By setting it within the range of 0.2 or more and 2.0 or less, copper and tin can be efficiently alloyed.
  • the coating on the copper surface of the present invention contains an alloy of copper and tin, and since the tin coating in the coating is excellent in adhesion to an insulating material such as a resin, an insulating material such as copper and a resin Adhesiveness can be improved.
  • the film on the copper surface in the present invention is capable of handling high frequencies and fines, and is an environmentally friendly technology.
  • a resin-adhesive layer made of copper or a copper alloy for adhering a resin and a copper or copper alloy layer Alternatively, a technique of “corrosion-like metal layers in which copper alloy particles gather, voids exist between the particles, and a plurality of micropores exist on the surface” is shown.
  • the film on the copper surface of the present invention is a film (uneven ultra-micro roughened film) having bamboo stalk-like projections without voids and fine holes.
  • the reason why the shape of the film on the copper surface in the present invention is different from the shape of the adhesive layer against resin shown in Patent Document 10 is that the composition of the surface of the coating (resin adhesive layer) is different.
  • the film on the copper surface in the present invention and the resin-adhesive layer shown in Patent Document 10 are considered to have different effects such as adhesion to an insulating material such as a resin.
  • the technical idea is different between the film on the copper surface of the present invention and the adhesive layer for resin shown in Patent Document 10 above.
  • the copper surface treatment agent of the present invention forms a film on the copper surface, contains a tin compound, a complexing agent, and a pH adjuster, and the concentration of the tin compound relative to the entire surface treatment agent is 20 ppm. As mentioned above, it is in the range of 8,000 ppm or less, the concentration of the complexing agent relative to the entire surface treatment agent is in the range of 10,000 ppm to 300,000 ppm, and the concentration of the pH adjuster relative to the entire surface treatment agent. Is within the range of 100 ppm or more and 300,000 ppm or less.
  • the copper surface treating agent of the present invention preferably satisfies any one of the following conditions (a) to (f).
  • (A) The concentration of the tin compound with respect to the entire surface treatment agent is 500 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the concentration of the pH adjusting agent is 300 ppm or more.
  • (B) The concentration of the tin compound with respect to the entire surface treatment agent is higher than 500 ppm and within a range of 1,000 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the concentration of the pH adjuster. Is 3,000 ppm or more.
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 1,000 ppm and within a range of 2,000 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the pH adjuster. The concentration of is 20,000 ppm or more.
  • the concentration of the tin compound with respect to the entire surface treatment agent is 500 ppm or less, the concentration of the complexing agent is 60,000 ppm or more, and the concentration of the pH adjusting agent is 200 ppm or more.
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 500 ppm and within a range of 1,000 ppm or less, the concentration of the complexing agent is 60,000 ppm or more, and the concentration of the pH adjuster Is 500 ppm or more.
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 1,000 ppm and within a range of 2,000 ppm or less, the concentration of the complexing agent is 60,000 ppm or more, and the pH adjuster. The concentration of is 5,000 ppm or more.
  • the copper surface treatment agent of the present invention contains a complexing agent, the dissolution rate of copper can be controlled. Specifically, when the copper surface treatment agent is used in a solution, the complexing agent forms a complex with copper and the surface potential of the copper is lowered, so that the copper easily reacts with the tin compound. React with. Thereby, tin in the tin compound is precipitated. As a result, substitution plating reaction of copper and tin proceeds. Furthermore, since the copper surface treatment agent of the present invention contains a complexing agent, the solution of the surface treatment agent forms a copper chelate in which the complexing agent is dissolved, thereby forming copper and tin. There is a possibility that the uniformity of the film containing the above alloy is improved.
  • the copper surface treatment agent of the present invention contains a pH adjuster
  • the function of the complexing agent is promoted by adjusting the pH in the solution of the surface treatment agent, and the dissolution of copper is promoted. Can be made.
  • the smaller the pH value in the solution of the surface treatment agent is the more active the complexing agent is activated and the more the copper is dissolved.
  • the concentration of the pH adjusting agent is lower than the lower limit, the function of the complexing agent may not be sufficiently activated.
  • the concentration of the pH adjusting agent exceeds the upper limit, the amount of copper dissolved becomes excessive, and the ratio of copper to tin in the film increases, which may result in insufficient film adhesion.
  • the copper surface treatment agent of the present invention has a low concentration of tin compounds and the like, the environmental load after use is small.
  • the copper surface treatment agent of the present invention contains a tin compound, a complexing agent, and a pH adjusting agent, and a coating (crystal) containing tin and copper is prepared by adjusting the balance of the concentrations thereof. Can be formed.
  • the copper surface treatment agent of the present invention can change the composition of the copper surface.
  • the copper surface treatment agent of the present invention as the concentration of the tin compound is lower, the deposition of tin on the copper surface does not catch up with the dissolution of copper, and a film containing tin and copper is formed by the dissolved copper. Cheap.
  • the copper surface treatment agent of the present invention preferably further contains a metal compound.
  • the copper surface treatment agent of the present invention can uniformly and stably form a film containing an alloy of copper and tin on the surface of copper by the buffering action of metal ions.
  • the metal compound is a copper compound, and the ratio of the concentration of the copper compound to the concentration of the tin compound is in the range of 0.2 to 2.0. Is preferred.
  • the metal compound preferably further contains silver or palladium.
  • the copper surface treating agent of the present invention preferably satisfies any one of the following conditions (g) to (i).
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 500 ppm and within a range of 2,000 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the concentration of the copper compound is more than 100 ppm. In the range of 4,000 ppm or less, and the concentration of the pH adjusting agent is 300 ppm or more.
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 2,000 ppm and within a range of 5,000 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the concentration of the copper compound Is higher than 400 ppm and in the range of 10,000 ppm or less, and the concentration of the pH adjusting agent is 1,000 ppm or more.
  • the concentration of the tin compound with respect to the whole surface treatment agent is higher than 5,000 ppm, the concentration of the complexing agent is 40,000 ppm or more, the concentration of the copper compound is 1,000 ppm or more, and The concentration of the pH adjusting agent is 2,000 ppm or more.
  • the copper surface treating agent of the present invention contains a copper compound, copper ions are generated. As a result, the reaction between the copper ion and the tin compound proceeds.
  • the copper surface treatment agent of the present invention contains a tin compound, a complexing agent, a copper compound, and a pH adjuster, and contains an alloy of copper and tin by adjusting the balance of their concentrations.
  • a film (crystal) can be formed.
  • the copper surface treatment agent of the present invention can change the composition of the copper surface.
  • the copper surface treating agent of the present invention contains a copper compound, even if the content of the pH adjuster is small, that is, even if the amount of copper dissolved from the copper surface is small, copper and tin It is possible to form a film containing any of these alloys.
  • the copper surface treatment agent of the present invention preferably satisfies the following conditions (j) or (k).
  • the concentration of the tin compound with respect to the entire surface treatment agent is in the range of 2,000 ppm or more and less than 5,000 ppm, and the concentration of the complexing agent is in the range of 20,000 ppm or more and less than 40,000 ppm.
  • the concentration of the copper compound is 400 ppm or more, and the concentration of the pH adjuster is 50,000 ppm or more.
  • the concentration of the tin compound with respect to the entire surface treatment agent is 5,000 ppm or more, the concentration of the complexing agent is in the range of 20,000 ppm or more and less than 40,000 ppm, and the concentration of the copper compound is 1 , And the concentration of the pH adjusting agent is 50,000 ppm or more.
  • the copper surface treatment agent of the present invention can reduce the concentration of the complexing agent as the concentration of the pH adjusting agent is increased.
  • the solubility of copper is improved, and the reaction for forming a film containing tin and copper on the surface of copper can be promoted.
  • the copper surface treatment agent of the present invention preferably contains at least thiourea or a derivative thereof as the complexing agent.
  • the copper surface treating agent of the present invention contains thiourea or a derivative thereof
  • the thiourea or the derivative mainly functions as a complexing agent, and forms a complex with copper to form a copper surface. Reduce the potential to improve the reduction.
  • thiourea or a derivative thereof also acts as a secondary reducing agent, and can promote a reaction for forming a film containing an alloy of copper and tin on the surface of copper.
  • the copper surface treatment agent of the present invention preferably contains at least sulfuric acid, nitric acid, hydrochloric acid, methanesulfonic acid or phosphoric acid as the pH adjuster.
  • the copper surface treatment agent of the present invention contains a strong acid, and facilitates the dissolution of copper.
  • the copper surface treating agent of the present invention further comprises at least one functional group selected from the group consisting of amino groups, epoxy groups, thiol groups, carboxyl groups, sulfonic acid groups, hydroxyl groups, phosphoric acid groups, imino groups, and silanol groups. It is preferable to contain a water-soluble polymer having a group or a water-dispersible polymer.
  • the water-soluble polymer or water-dispersible polymer having the above functional group forms a crosslinked structure with tin deposited on the copper surface, and is embraced by the tin.
  • the functional group can form a hydrogen bond or a covalent bond with an insulating material such as a resin, and the adhesion between copper and an insulating material such as a resin can be further improved.
  • the water-soluble polymer or water-dispersible polymer preferably has a molecular weight of 2,000 or more.
  • the copper surface treatment agent of the present invention can more efficiently improve the adhesion between copper and an insulating material such as a resin.
  • the water-soluble polymer is preferably a silane coupling agent.
  • the silane coupling agent preferably contains a silane coupling agent condensate of a trimer or more.
  • both copper and the insulating material contain a mercaptosilane-containing silane coupling agent condensate having good adhesion.
  • the copper surface treating agent of the present invention can deposit (adhere) the silane compound on the surface of copper. Therefore, the surface treatment agent for copper of the present invention can impart sufficient adhesion between copper and an insulating material such as a resin by the action of a silane compound having an adhesive functional group with an insulating material such as a resin. .
  • the copper surface treatment agent of the present invention preferably contains at least polyacrylic acid or a derivative thereof as the water-soluble polymer.
  • the copper surface treating agent of the present invention can further improve the adhesion between copper and an insulating material such as a resin.
  • the copper surface treating agent of the present invention may further contain a fluorine compound.
  • the copper surface treating agent of the present invention when used in a solution, fluorine liberated from the fluorine compound stabilizes tin ions. Although the mechanism of stabilization is not clear, it is considered that a stable solution with less turbidity may be obtained by forming a complex between tin ions and free fluorine. Furthermore, since the solution containing the copper surface treating agent of the present invention becomes a stable solution with little turbidity, a film containing an alloy of copper and tin can be uniformly formed on the surface of copper. Adhesion with an insulating material such as resin can be improved.
  • the copper surface treatment agent of the present invention preferably further contains a reducing agent.
  • the copper surface treating agent of the present invention can promote a reaction for forming a film containing an alloy of copper and tin on the surface of copper.
  • the copper surface treatment agent of the present invention preferably further contains a rust preventive agent.
  • the copper surface treatment agent of the present invention improves the adhesion between copper and an insulating material such as a resin, and makes it difficult to change the performance of the copper even if the copper is stored for a long time after the surface treatment. Can do.
  • the copper surface treating agent of the present invention is preferably at least one compound selected from the group consisting of tetrazole, triazole, imidazole and thiol.
  • the copper surface treatment agent of the present invention can make the copper performance more difficult to change even if the copper is stored for a long time after the surface treatment.
  • the copper surface treatment agent is preferably brought into contact with the copper surface.
  • the copper surface treatment method of the present invention can reduce the number of treatment steps by one step compared to the surface treatment method of treating the surface of the copper with tin and then treating with nitric acid, a silane coupling agent, or the like.
  • the copper surface treatment method of the present invention can ensure sufficient adhesion without roughening the surface of the copper, such as etching, the surface of the copper can be treated in a smooth state.
  • the copper surface treatment method of the present invention is suitable for dealing with downsizing, thinning, high frequency, high density and the like of a multilayer wiring board.
  • the improvement in adhesion using a conventionally known silane coupling agent is a mechanism in which a silane coupling agent is formed by applying a silane coupling agent after the tin treatment and drying it without washing with water, thereby forming a silane film with a siloxane bond.
  • a silane coupling agent is formed by applying a silane coupling agent after the tin treatment and drying it without washing with water, thereby forming a silane film with a siloxane bond.
  • the resist part other than copper is coated with a silane film.
  • the reaction film is deposited only on copper and then washed with water, there is no adverse effect as described above.
  • the copper surface treatment method of the present invention is at least one selected from the group consisting of pickling treatment, roughening treatment (unevenness treatment), rust prevention treatment, oxidation treatment, surface conditioning treatment and degreasing treatment on the surface of copper. After the pretreatment, it is preferable to contact the surface treatment agent.
  • the copper surface treatment method of the present invention can remove stains, oxides, etc. on the copper surface by pickling treatment and degreasing treatment, and by roughening treatment, rust prevention treatment, oxidation treatment, surface conditioning treatment. It is possible to improve the chemical conversion on the copper surface and improve the copper performance.
  • the surface treatment agent is brought into contact with the copper surface, and then the rust preventive agent, the post-treatment agent or the pH adjuster is brought into contact therewith.
  • the surface treatment method for copper according to the present invention further improves the performance of the copper even if the copper is stored for a long period of time after the surface treatment by bringing the surface treatment agent into contact with the surface of the copper and then bringing the antirust agent into contact therewith. It can be made difficult to change.
  • the copper surface treatment method of the present invention further improves the adhesion between copper and an insulating material such as a resin by bringing the surface treatment agent into contact with the copper surface and then bringing the post-treatment agent and pH adjuster into contact. Can be improved.
  • the film on the copper surface of the present invention is formed by the above copper surface treatment method, and preferably contains tin and copper.
  • the coating on the copper surface of the present invention contains an alloy of copper and tin.
  • the film on the copper surface of the present invention becomes a film having a bump-like protrusion (uneven micro-roughened film), which improves the adhesion between copper and an insulating material such as resin. it can.
  • the film on the copper surface of the present invention contains one or more crystals containing copper and tin per 1 ⁇ m 2 of the copper surface, and the average crystal diameter of the crystals is in the range of 50 nm to 1000 nm. Is preferred.
  • the average crystal diameter can be calculated from the crystal diameter obtained by measurement by the X-ray micronucleus scattering method.
  • the film on the copper surface of the present invention crystallizes an alloy containing copper and tin, and further includes one or more crystals having an average crystal diameter in the range of 50 nm or more and 1000 nm or less.
  • a film (uneven ultra-micro roughened film) having a bamboo shoot-like protrusion is surely obtained.
  • the film on the copper surface of the present invention can more reliably improve the adhesion between copper and an insulating material such as a resin.
  • the film on the copper surface of the present invention preferably has a thickness in the range of 0.02 ⁇ m to 2 ⁇ m.
  • the film on the copper surface of the present invention can form micro level unevenness more reliably.
  • the film on the copper surface of the present invention can more reliably improve the adhesion between copper and an insulating material such as a resin.
  • the copper-clad material of the present invention includes a film on the copper surface.
  • the multilayer wiring board of the present invention preferably includes the copper-clad material.
  • the wiring board of the present invention preferably includes the copper-clad material in the outermost layer.
  • the copper-clad material, multilayer wiring board, and wiring board of the present invention are made of copper and resin, etc., compared with the copper-clad material, multilayer wiring board, and wiring board surface-treated by the conventional copper surface treatment method. It becomes possible to maintain sufficient adhesion with the insulating material.
  • the copper surface film of the present invention contains an alloy of copper and tin, and the weight of tin in the copper surface film is within the range of 1 mg / m 2 or more and 2,000 mg / m 2 or less.
  • the molar ratio of copper to tin is in the range of 0.2 or more and 2.0 or less.
  • the coating on the copper surface of the present invention can process the copper surface in a smooth state without increasing the number of processing steps, without roughening such as etching, and insulating copper and resin. There exists an effect that the adhesiveness between materials can be maintained.
  • the substance surface-treated with the copper surface treatment agent in the present invention is not particularly limited as long as it contains 50% or more of copper. That is, as long as it contains 50% or more of copper, it is included in the present invention even if a substance other than copper is included. Examples thereof include copper alone, copper alloy material containing copper, surface-treated copper such as chromate, and plated copper.
  • foil electrolytic copper foil, rolled copper foil
  • plating film electroless copper plating film, electrolysis
  • wires, rods, tubes, plates, and the like can be used for various purposes.
  • the said copper may contain other elements according to the objective, such as brass, bronze, white copper, arsenic copper, silicon copper, titanium copper, chromium copper.
  • the copper surface is preferably a smooth surface having an average roughness of 0.1 ⁇ m or less.
  • examples of the insulating material such as a resin that adheres to copper include thermosetting resins such as epoxy resin, phenol resin, polyimide, polyurethane, bismaleimide / triazine resin, modified polyphenylene ether, and cyanate ester. These resins may be modified with functional groups, and may be reinforced with glass fibers, aramid fibers, other fibers, and the like.
  • the copper surface treatment agent of the present invention contains a tin compound, a complexing agent, and a pH adjusting agent. Furthermore, the copper surface treating agent of the present invention preferably contains a reducing agent. Furthermore, the copper surface treating agent of the present invention is at least one functional group selected from the group consisting of an amino group, an epoxy group, a thiol group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, an imino group, and a silanol group. It is preferable to contain a water-soluble polymer having water content or a water-dispersible polymer.
  • the copper surface treating agent of the present invention may contain a fluorine compound. Furthermore, the copper surface treatment agent of the present invention preferably contains a rust inhibitor. Furthermore, the copper surface treating agent of the present invention preferably contains a metal compound. Moreover, the copper surface treating agent of the present invention may contain an additive as necessary.
  • the copper surface treatment agent of the present invention may contain a substance other than the above substances (hereinafter referred to as “other substances”) as long as the properties of the surface treatment agent are not impaired. It does not specifically limit as a method of including another substance.
  • the copper surface treating agent of the present invention contains a tin compound.
  • a tin compound if it is soluble with respect to the solvent mentioned later, Salts with an acid are preferable from the solubility.
  • stannous sulfate, stannic sulfate, stannous borofluoride, stannous fluoride, stannic fluoride, stannous nitrate, stannic nitrate, stannous chloride, stannic chloride examples thereof include stannous salts such as stannous formate, stannic formate, stannous acetate, and stannic acetate, and stannic salts.
  • stannous salts are preferred because of the high formation rate of tin-containing coatings, which are highly stable in solutions with solvents described below, and can form uniform tin-containing coatings. For this reason, stannous salts are preferred. Furthermore, stannous sulfate is particularly preferred because it does not adversely affect copper etching.
  • the concentration of the tin compound with respect to the entire surface treatment agent is preferably 10 ppm or more, more preferably 25 ppm or more, and particularly preferably 100 ppm or more. If the concentration of the tin compound relative to the entire surface treatment agent is less than 10 ppm, the adhesion with an insulating material such as copper and resin may be lowered, which is not preferable.
  • the upper limit of the concentration of the tin compound is described in detail below, but is determined from the viewpoint of bath stability, economy, and drainage treatment of the surface treatment liquid after use, and preferably does not exceed 70%. .
  • the copper surface treating agent of the present invention contains a pH adjuster.
  • the pH adjuster is not particularly limited as long as it is soluble in the solvent described later.
  • the acid pH adjuster at least one acid selected from inorganic acids and organic acids can be used.
  • the acid that can be used in the present invention include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, borofluoric acid, and phosphoric acid; carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, and acrylic acid; and methanesulfone.
  • organic acids such as alkane sulfonic acid such as acid and ethane sulfonic acid, and aromatic sulfonic acid such as benzene sulfonic acid, phenol sulfonic acid and cresol sulfonic acid.
  • strong acids such as sulfuric acid, nitric acid, hydrochloric acid, methanesulfonic acid, and phosphoric acid are preferable because the pH can be adjusted to 5 or less.
  • concentration of the said pH adjuster is mentioned later.
  • the concentration of free acid relative to the entire surface treatment agent can be evaluated as follows. 10 ml is sampled from the prepared surface treatment agent, 3 drops of bromophenol blue (reagent) are dropped, and 1 / 10N NaOH (reagent) is further dropped, so that the solution of the surface treatment agent turns blue. The concentration of free acid is evaluated by the amount of NaOH.
  • the concentration of the free acid with respect to the whole surface treatment agent is preferably in the range of 2 ml to 250 ml, more preferably 3 ml to 100 ml, particularly preferably 5 ml to 30 ml.
  • the upper limit of the concentration of the pH adjusting agent is determined from the viewpoint of bath stability, economic efficiency, and drainage treatment of the surface treatment liquid after use, but preferably does not exceed 70%.
  • the copper surface treating agent of the present invention contains a complexing agent.
  • the complexing agent as used in the present specification means coordination with copper to form a chelate, lowering the potential of the copper surface, making it easy to reduce, and providing an insulating material adhesion layer such as a resin on the tin surface. It means something that is easy to form.
  • the complexing agent include thiourea derivatives such as thiourea, ethylenethiourea, diethylthiourea, and dibutylthiourea, thiosulfuric acid, and cyanides.
  • the surface treatment agent when used in a solution, it can be made a stable solution with less turbidity, and more easily forms a complex with copper, and further lowers the potential on the surface of copper. It is preferable to contain at least thiourea for the purpose of facilitating the formation of a film containing tin and copper.
  • Some complexing agents also work as a reducing agent, which will be described later.
  • thiourea also functions as a reducing agent which will be described later.
  • the concentration of the complexing agent with respect to the whole surface treatment agent is preferably 500,000 ppm or less, more preferably 300,000 ppm or less, still more preferably 150,000 ppm or less, particularly preferably 100,000. It is within the range of 000 ppm or less.
  • concentration of the complexing agent with respect to the entire surface treatment agent exceeds 500,000 ppm, the solubility of copper is deteriorated, and there is a risk of inhibiting the reaction of forming a film containing tin and copper on the surface of copper, It is not preferable.
  • the lower limit of the complexing agent concentration will be described later.
  • the copper surface treating agent of the present invention preferably contains a reducing agent.
  • the reducing agent include thiourea, diethylthiourea, potassium borohydride, dimethylaminoborane, sodium hypophosphite, hydrazine, formaldehyde and the like.
  • the concentration of the reducing agent with respect to the whole surface treatment agent is preferably 100 ppm or more and 500,000 ppm or less, more preferably 1,000 ppm or more and 300,000 ppm or less, and particularly preferably 10,000 ppm or more and 150 or more. Within the range of 1,000 ppm or less. If the concentration of the reducing agent relative to the entire surface treatment agent is less than 100 ppm, a film containing tin and copper may not be formed, which is not preferable. On the other hand, if it exceeds 500,000 ppm, it is difficult to form a film containing tin and copper on the surface of copper because it is difficult to dissolve tin, which is not preferable.
  • the copper surface treatment agent of the present invention has at least one functional group selected from the group consisting of amino groups, epoxy groups, thiol groups, carboxyl groups, sulfonic acid groups, hydroxyl groups, phosphoric acid groups, imino groups, and silanol groups. It preferably contains a water-soluble polymer or a water-dispersible polymer.
  • the molecular weight of the water-soluble polymer or water-dispersible polymer is preferably 2,000 or more and 500,000 or less, and more preferably 20,000 or more.
  • the molecular weight of the water-soluble polymer or water-dispersible polymer is less than 2,000, the crosslinked structure with tin deposited on the copper surface may be insufficient. If the molecular weight of the water-soluble polymer or water-dispersible polymer exceeds 500,000, crystal formation may be inhibited.
  • the molecular weight of the water-soluble polymer or water-dispersible polymer means the weight average molecular weight. The weight average molecular weight can be measured by a gel permeation chromatography (GPC) method using polystyrene as a standard.
  • GPC gel permeation chromatography
  • water-soluble polymer or water-dispersible polymer examples include aminosilane condensate, mercaptosilane condensate, epoxysilane condensate, polyacrylic acid, phenol resin, epoxy resin, polyamine resin, and the like.
  • the concentration of the water-soluble polymer or water-dispersible polymer with respect to the whole surface treatment agent is preferably 10 ppm or more and 100,000 ppm or less, more preferably 20 ppm or more and 10,000 ppm or less, particularly preferably. Is in the range of 50 ppm to 2,000 ppm. If the concentration of the water-soluble polymer or water-dispersible polymer relative to the entire surface treatment agent is less than 10 ppm, it may not be deposited on the copper surface, which is not preferable. On the other hand, if it exceeds 100,000 ppm, the crystal formation may be hindered, which is not preferable.
  • the copper surface treatment agent of the present invention preferably contains a rust inhibitor.
  • the rust preventive include aminotetrazole, methyl mercaptotetrazole, benzotriazole, carboxybenzotriazole, aminomercaptotriazole, imidazole, methylimidazole, triazine thiol, trimercaptotriazine or a salt thereof, or a similar compound thereof; mercaptosilane Thioglycolic acid; thioglycerol; guanylthiourea; thioureas; Among them, tetrazole, triazole, imidazole, and thiol rust preventives are preferred because they have both a rust preventive function on the copper surface and chemical conversion.
  • the copper surface treating agent of the present invention preferably contains a metal compound.
  • the copper surface treating agent of the present invention can uniformly and stably form a film containing an alloy of copper and tin on the surface of copper by the buffering action of metal ions.
  • the metal compound include metal salts.
  • the metal compound include aluminum compounds, zirconyl compounds, titanium compounds, calcium compounds, sodium compounds, magnesium compounds, strontium compounds, manganese compounds, vanadium compounds, yttrium compounds, niobium compounds, zinc compounds, indium compounds, silver compounds. , Iron compounds, palladium compounds, cobalt compounds, copper compounds and the like.
  • silver compounds, palladium compounds, zinc compounds, cobalt compounds, and copper compounds are preferred because they are considered to be easily precipitated with tin and give a denser tin film.
  • a copper compound is particularly preferable because an alloy with tin can be formed.
  • These metal compounds can be used alone or in combination. When combining a plurality, it is preferable to use a combination of copper and silver or copper and palladium.
  • the concentration of the metal compound relative to the whole surface treatment agent is preferably 1 ppm to 10,000 ppm, more preferably 10 ppm to 2,000 ppm, and particularly preferably 100 ppm to 1,000 ppm. Within range. If the concentration of the metal compound relative to the entire surface treatment agent is less than 1 ppm, the effect cannot be expected, which is not preferable. On the other hand, if it exceeds 10,000 ppm, the reaction of forming a film containing tin and copper on the surface of copper may be inhibited, which is not preferable.
  • the copper surface treatment agent of the present invention is a surfactant for forming a uniform adhesion layer with an insulating material such as a resin, a polymerization initiator for promoting the formation of an adhesion layer with an insulating material such as a resin, etc. If necessary, various additives that do not inhibit the reaction of forming a film containing tin and copper on the surface of copper may be contained.
  • the copper surface treating agent of the present invention may contain a fluorine compound.
  • the fluorine compound include hydrogen fluoride, borohydrofluoric acid, acidic sodium fluoride, acidic ammonium fluoride, sodium fluoride, ammonium fluoride, and hydrogen silicofluoride.
  • the surface treatment agent is used in a solution and the pH is in the range of 0.1 or more and 5 or less, tin ions are stably present, and a stable solution with less turbidity can be obtained. For this reason, hydrogen fluoride and sodium acid fluoride are preferred.
  • the concentration of the fluorine compound with respect to the entire surface treatment agent is preferably in the range of 10 ppm to 200,000 ppm, more preferably 25 ppm to 5000 ppm, and particularly preferably 100 ppm to 2000 ppm. . If the concentration of the fluorine compound relative to the entire surface treatment agent is less than 10 ppm, tin ions may be difficult to stabilize, which is not preferable. On the other hand, if it exceeds 200,000 ppm, the reaction of forming a tin-containing film on the copper surface may be hindered, which is not preferable.
  • the concentration of the fluorine compound with respect to the entire surface treatment agent is 5,000 ppm or less, the film containing tin formed on the surface of copper becomes thick, becomes porous (porous), etc. Since there is no possibility of becoming, it is more preferable.
  • the concentration of free fluorine derived from the fluorine compound with respect to the whole surface treatment agent is preferably 0.1 ppm to 100 ppm, more preferably 1 ppm to 50 ppm, and particularly preferably 2 ppm to 20 ppm. Is within the range. If the concentration of free fluorine in the fluorine compound relative to the entire surface treatment agent is less than 0.1 ppm, tin ions may not be stably present, which is not preferable. On the other hand, when it exceeds 100 ppm, there is a possibility of inhibiting the reaction that forms a film containing tin on the surface of copper, which is not preferable.
  • the concentration of free fluorine can be measured with an ordinary ion meter as the amount of fluorine ions.
  • free fluorine fluorine ion
  • a fluorine compound is included in the surface treatment agent.
  • the said free fluorine has the effect
  • the free fluorine also has an action of promoting the reaction of the tin compound with respect to copper which is a target of the surface treatment with the solution of the surface treatment agent.
  • the concentration of the tin compound relative to the entire surface treatment agent is in the range of 20 ppm or more and 8,000 ppm or less, and the concentration of the complexing agent relative to the entire surface treatment agent is 10,000 ppm or more.
  • the concentration of the pH adjusting agent with respect to the entire surface treatment agent is within the range of 100 ppm or more and 300,000 ppm or less.
  • the ratio of the copper compound concentration to the tin compound concentration is preferably in the range of 0.2 to 2.0, more preferably 0.4 to 1.2. Within the following range, particularly preferably within the range of 0.7 to 1.0.
  • the copper surface treating agent of the present invention preferably satisfies any one of the following conditions (a) to (k).
  • the concentration of the tin compound with respect to the entire surface treatment agent is 500 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the concentration of the pH adjusting agent is 300 ppm or more.
  • the concentration of free acid with respect to the entire surface treatment agent was obtained by sampling 10 ml of the surface treatment agent, dropping 3 drops of bromophenol blue (reagent), and further dropping 1/10 N NaOH (reagent). It can be evaluated by the amount of NaOH when the solution of the agent turns blue.
  • the concentration of the free acid in the surface treatment agent is 3.0 ml or more as 1/10 N NaOH (reagent).
  • B The concentration of the tin compound with respect to the entire surface treatment agent is higher than 500 ppm and within a range of 1,000 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the concentration of the pH adjuster. Is 3,000 ppm or more. Here, the concentration of the free acid is 20 ml or more as 1/10 N NaOH (reagent).
  • C The concentration of the tin compound with respect to the entire surface treatment agent is higher than 1,000 ppm and within a range of 2,000 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the pH adjuster.
  • the concentration of is 20,000 ppm or more.
  • the concentration of the free acid is 100 ml or more as 1/10 N NaOH (reagent).
  • the concentration of the tin compound with respect to the entire surface treatment agent is 500 ppm or less, the concentration of the complexing agent is 60,000 ppm or more, and the concentration of the pH adjusting agent is 200 ppm or more.
  • the concentration of the free acid is 1.5 ml or more as 1/10 N NaOH (reagent).
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 500 ppm and within a range of 1,000 ppm or less, the concentration of the complexing agent is 60,000 ppm or more, and the concentration of the pH adjuster Is 500 ppm or more.
  • the concentration of the free acid is 6.0 ml or more as 1/10 N NaOH (reagent).
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 1,000 ppm and within a range of 2,000 ppm or less, the concentration of the complexing agent is 60,000 ppm or more, and the pH adjuster. The concentration of is 5,000 ppm or more.
  • the concentration of the free acid is 20 ml or more as 1/10 N NaOH (reagent).
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 500 ppm and within a range of 2,000 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the concentration of the copper compound is more than 100 ppm. In the range of 4,000 ppm or less, and the concentration of the pH adjusting agent is 300 ppm or more.
  • the concentration of the tin compound with respect to the entire surface treatment agent is higher than 2,000 ppm and within a range of 5,000 ppm or less, the concentration of the complexing agent is 40,000 ppm or more, and the concentration of the copper compound Is higher than 400 ppm and in the range of 10,000 ppm or less, and the concentration of the pH adjusting agent is 1,000 ppm or more.
  • the concentration of the tin compound with respect to the whole surface treatment agent is higher than 5,000 ppm, the concentration of the complexing agent is 40,000 ppm or more, the concentration of the copper compound is 1,000 ppm or more, and The concentration of the pH adjusting agent is 2,000 ppm or more.
  • the concentration of the tin compound with respect to the entire surface treatment agent is in the range of 2,000 ppm or more and less than 5,000 ppm, and the concentration of the complexing agent is in the range of 20,000 ppm or more and less than 40,000 ppm.
  • the concentration of the copper compound is 400 ppm or more, and the concentration of the pH adjuster is 50,000 ppm or more.
  • K The concentration of the tin compound with respect to the entire surface treatment agent is 5,000 ppm or more, the concentration of the complexing agent is in the range of 20,000 ppm or more and less than 40,000 ppm, and the concentration of the copper compound is 1 , And the concentration of the pH adjusting agent is 50,000 ppm or more.
  • the copper surface treating agent of the present invention can form a film containing tin and copper by satisfying any one of the above conditions (a) to (f). Furthermore, the copper surface treatment agent of the present invention, as the concentration of the tin compound is lower, the deposition of tin on the copper surface does not catch up with the dissolution of copper, and a film containing tin and copper is formed by the dissolved copper. Cheap.
  • the copper surface treating agent of the present invention can form a film containing an alloy of copper and tin by satisfying any one of the above conditions (g) to (i). Furthermore, the copper surface treatment agent of the present invention forms a film containing an alloy of copper and tin even if the content of the pH adjusting agent is small, that is, the amount of copper dissolved from the copper surface is small. be able to.
  • the copper surface treatment agent of the present invention satisfies the above condition (j) or (k), so that the concentration of the complexing agent is decreased as the concentration of the pH adjusting agent is increased. Can do. As a result, the solubility of copper is improved, and the reaction for forming a film containing tin and copper on the surface of copper can be promoted.
  • the copper surface treatment agent of the present invention is mixed by a conventionally known mixing method / mixing apparatus.
  • the order of mixing the substances contained in the copper surface treating agent of the present invention is not particularly limited. Moreover, the said substance may be mixed at once, and may be divided and mixed.
  • the surface treatment agent is preferably brought into contact with the surface of copper as a solution.
  • the solution is composed of the surface treatment agent as a solute and a solvent.
  • the solvent used in the present invention is not particularly limited as long as it can dissolve the surface treatment agent.
  • water, an organic solvent, etc. are mentioned. Among these, water is preferable in terms of solubility of the composition of the surface treatment agent and disposal after using the surface treatment agent.
  • the copper surface treating agent in the present invention is superior to the conventional copper surface treating agent in that the copper surface is not subjected to roughening treatment such as etching.
  • the copper surface treatment method in the present invention forms a film containing an alloy of copper and tin on the copper surface, and the weight of tin in the film is 1 mg / m 2 or more. 2,000 mg / m 2 or less, preferably 20 mg / m 2 or more and 2,000 mg / m 2 or less, and the molar ratio of copper to tin on the outermost surface of the coating is 0.2 or more, This is a method of making it within a range of 2.0 or less.
  • the alloy of copper and tin is not particularly limited as long as it contains 6% or more of copper and 10% or more of tin. That is, as long as it contains 6% or more of copper and 10% or more of tin, it is included in the present invention even if substances other than copper and tin are contained.
  • the weight of tin in the film is in the range of 1 mg / m 2 to 2,000 mg / m 2 , preferably 20 mg / m 2 to 2,000 mg / m 2 , more preferably 50 mg / m 2 to 1 , 500 mg / m 2 or less, particularly preferably in the range of 10 mg / m 2 or more and 1,000 mg / m 2 or less.
  • the molar ratio of copper to tin on the outermost surface of the coating is in the range of 0.2 to 2.0, preferably 0.4 to 1.6, more preferably 0.5 to 1.2. Is within the range.
  • an alloy of copper and tin fills voids and micropores generated on the surface of the copper to form a film having a bamboo shoot-like protrusion (uneven ultra-micro roughened film).
  • the micro roughening means a state having micro level unevenness.
  • the surface treatment agent is preferably brought into contact with the copper surface.
  • the method for bringing the surface treatment agent into contact with the copper surface is not particularly limited.
  • a method of immersing copper in a solution containing the surface treatment agent a method of spraying a solution containing the surface treatment agent on the surface of copper by spraying, a method of applying a solution containing the surface treatment agent on the copper surface, etc.
  • a method of performing strong stirring by immersing copper in a solution containing the surface treatment agent because the replacement of the solution containing the surface treatment agent on the copper surface is preferable, the surface on the copper surface
  • a method of spraying a solution containing a treatment agent by spraying is preferred.
  • the said surface treating agent when stirring the solution containing the said surface treating agent, it is preferable to stir within the range of 50 rpm or more and 3000 rpm or less, for example.
  • the said surface treating agent may be made to contact at once, and may be divided and made to contact.
  • the temperature at which the surface treatment agent is brought into contact with the surface of copper is not particularly limited depending on the components of the surface treatment agent, but is preferably 10 ° C. or higher because of excellent reactivity. It is 60 ° C. or less, more preferably 20 ° C. or more and 50 ° C. or less, particularly preferably 30 ° C. or more and 40 ° C. or less.
  • the time for which the surface treatment agent is brought into contact with the surface of copper is not particularly limited depending on the components of the surface treatment agent, but is preferably 1 second or more and 600 seconds because of excellent reactivity. In the following, it is more preferably 5 seconds to 300 seconds, further preferably 15 seconds to 180 seconds, still more preferably 60 seconds to 180 seconds, and particularly preferably 60 seconds to 120 seconds.
  • the copper surface treatment method in the present invention is at least one selected from the group consisting of pickling treatment, roughening treatment, rust prevention treatment, oxidation treatment, and degreasing treatment before bringing the surface treatment agent into contact with the copper surface.
  • Pre-processing may be performed.
  • the copper treatment may be further performed with the surface treatment agent or the like.
  • the post-treatment it may be washed with water and dried, or may be dried without washing.
  • the surface treatment agent may be brought into contact with the copper surface, and then heat treatment or the like may be performed.
  • the surface treatment agent may be brought into contact with the copper surface, and then a rust inhibitor, a post-treatment agent or a pH adjuster may be brought into contact therewith.
  • the post-treatment agent examples include silane coupling agents such as mercaptosilane, vinyl silane, epoxy silane, styryl silane, methacryloxy silane, acryloxy silane, amino silane, ureido silane, chloropropyl silane, sulfide silane, isocyanate silane, and the like. Preference is given to mixtures, silane coupling agent condensates and mixtures thereof, and water-soluble polymers having at least one functional group as described above.
  • the post-treatment agent after the chemical conversion treatment, the post-treatment agent may be contacted by spraying, dipping, coating, or the like, and then washed with water or dried without washing with water to form a coating film.
  • the copper surface film in the present invention contains an alloy of copper and tin, and the weight of tin in the copper surface film is 1 mg / m 2 or more and 2,000 mg / m 2. Within the following range, preferably within the range of 20 mg / m 2 or more and 2,000 mg / m 2 or less, and the molar ratio of copper to tin on the outermost surface of the coating is in the range of 0.2 or more and 2.0 or less. It is what is inside.
  • the outermost surface of the film means an extremely thin layer on the surface of the film, and specifically means a layer having a depth of about 10 nm from the surface of the film.
  • the composition of tin or copper on the outermost surface of the film can be measured by narrow scan.
  • the weight of tin in the film is in the range of 1 mg / m 2 to 2,000 mg / m 2 , preferably 20 mg / m 2 to 2,000 mg / m 2 , more preferably 50 mg / m 2 to 1 , 500 mg / m 2 or less, particularly preferably in the range of 10 mg / m 2 or more and 1,000 mg / m 2 or less.
  • the molar ratio of copper to tin on the outermost surface of the coating is in the range of 0.2 to 2.0, preferably 0.4 to 1.6, more preferably 0.5 to 1.2. Is within the range.
  • the film on the copper surface in the present invention is formed by the above-described copper surface treatment method, and preferably contains tin and copper.
  • the film on the copper surface in the present invention preferably contains one or more, more preferably 10 or more crystals containing copper and tin per 1 ⁇ m 2 of the copper surface.
  • the average crystal diameter of the crystal is 50 nm or more and 1,000 nm or less, preferably 100 nm or more and 500 nm or less.
  • the number of crystals containing copper and tin per 1 ⁇ m 2 of the copper surface can be counted by SEM observation, and the average crystal diameter can be calculated from the crystal diameter obtained by measurement by the X-ray micronucleus scattering method.
  • the film on the copper surface in the present invention has a thickness of preferably 0.02 ⁇ m to 2 ⁇ m, more preferably 0.04 ⁇ m to 1 ⁇ m, and particularly preferably 0.06 ⁇ m to 0.2 ⁇ m. .
  • Copper-clad material in the present invention is surface-treated by the above-described copper surface treatment method, and includes a film on the copper surface.
  • Examples of the copper-clad material before the surface treatment by the copper surface treatment method include electronic parts such as general electronic boards and lead frames, ornaments, and building materials.
  • the copper-clad material of the present invention is not limited to those in which the entire copper surface is surface-treated by the above-mentioned surface treatment method, and those in which a part of the copper surface is surface-treated by the above-mentioned surface treatment method include.
  • the multilayer wiring board (build-up wiring board) of the present invention comprises the above copper-clad material.
  • the multilayer wiring board of the present invention is manufactured by a conventionally known method for manufacturing a multilayer wiring board. Specifically, an inner layer substrate having a conductive layer whose surface is made of copper is manufactured by being laminated and pressed with another inner layer substrate with an insulating material such as resin interposed therebetween.
  • the multilayer wiring board (build-up wiring board) includes a batch lamination type build-up board and a sequential build-up type build-up board.
  • the multilayer wiring board in the present invention includes an outer layer board and a single layer board provided with the copper-clad material in the outermost layer.
  • the outer layer substrate includes a single-sided or double-sided outer layer substrate having the copper-clad material on one or both sides on the outermost layer surface.
  • Example 1 ⁇ Copper surface treatment process> Sulfuric acid and hydrogen peroxide aqueous solution (sulfuric acid concentration 4%, peroxidation) obtained by diluting 35 ⁇ m or 18 ⁇ m thick electrolytic copper foil (Furukawa Circuit Foil Co., Ltd., trade name: “F-WS foil”) with tap water After being immersed in hydrogen at a concentration of 1% at 30 ° C. for 60 seconds, it was washed with tap water.
  • the electrolytic copper foil subjected to the above treatment was immersed in a solution of a predetermined surface treatment agent (components will be described later) under conditions of 40 ° C. and 60 seconds, then washed with tap water, and 80 ° C. -Dried for 5 minutes.
  • a predetermined surface treatment agent components will be described later
  • the predetermined surface treatment agent includes stannous sulfate as a tin compound (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm, reagent) and thiourea as a complexing agent (thio with respect to the whole surface treatment agent).
  • sulfuric acid as pH adjuster
  • hydrogen fluoride as a fluorine compound
  • the insulating material for build-up wiring boards [A material (manufactured by Hitachi Chemical Co., Ltd., FR-5) is formed on both sides of the electrolytic copper foil.
  • Material B (Matsushita Electric Works, R-1661T), Material C (Ajinomoto Co., Inc., AGF-GX13 for packaging)]
  • 150 ° C. 20 kg / m 2 ⁇ 150 ° C., 30 kg / m was heated under the conditions of 2-0.5 h ⁇ 180 °C ⁇ 30kg / m 2 ⁇ 1.5 hours while laminating press, then, cooled under conditions of 80 ° C.-1.5 h. Thereafter, the press was terminated, and cooling was performed at 20 ° C. for 20 minutes. Further, the A material and the B material were measured with a 35 ⁇ m copper foil, and the C material was measured with an 18 ⁇ copper foil because the insulating material had high adhesion.
  • the etching amount of the electrolytic copper foil after the copper surface treatment was obtained by measuring the weight change before and after the etching with a precision balance. As a result, the state where the etching amount is less than 0.1 g / m 2 is set as “ ⁇ ”, the state where the etching amount is 0.1 g / m 2 or more and 1 g / m 2 or less is set as “ ⁇ ”, and the state exceeding 1 g / m 2 Was marked “x”.
  • Tin coating amount of electrolytic copper foil after copper surface treatment was measured by fluorescent X-ray (manufactured by Shimadzu Corporation, trade name: “XRF1700”). was measured as the amount of tin element.
  • composition of the outermost surface of the copper surface film is Cu, Sn, C, O, S narrow scan (Kratos Analytical Ltd.), trade name: “AXIS NOVA "), atomic% was measured and converted to a molar ratio. Since the surface composition analysis of about 10 nm can be performed in the measurement, the outermost surface composition was used.
  • Adhesion between copper foil and insulating material such as resin in multilayer wiring board provided with electrolytic copper foil after surface treatment of copper Adhesion between copper foil of multilayer wiring board and insulating material such as resin
  • the peel strength of the copper foil from the insulating material in the multilayer wiring board is 100 kg / m in load cell according to JIS C 6481 using a universal testing machine (manufactured by A & D Co., Ltd., trade name: “Tensilon”). 2. Measurement was performed under conditions of a range of 2%, a crosshead speed of 50 mm / min, and a chart speed of 20 mm / min.
  • a material or B material was used as the insulating material
  • a copper foil having a thickness of 35 ⁇ m was used
  • C material was used as the insulating material
  • a copper foil having a thickness of 18 ⁇ m was used.
  • Solder heat resistance is a cycle of "immersion for 30 seconds in a solder bath at 280 ° C for 30 seconds ⁇ cooling" after the electrolytic copper foil after the surface treatment of copper is absorbed at 121 ° C and 100RH 2.1 atm for 8 hours. Was repeated five times, and the swelling was visually evaluated. As a result, a state where there was no bulging was set as “ ⁇ ”, a state where there was a slight bulging was set as “ ⁇ ”, and a state where there was bulging was set as “x”.
  • Table 1 shows the evaluation results of the above physical properties.
  • FIG. 1 shows the SEM appearance of the copper surface in Example 1.
  • (a) in FIG. 1 is an SEM appearance of the copper surface at a magnification of 30,000
  • (b) in FIG. 1 is at a magnification of 50,000
  • (c) in FIG. 1 is at a magnification of 150,000.
  • the copper which surface-treated with the copper surface treating agent of this invention was the state of the micro roughening.
  • FIG. 2 shows the SEM appearance of the copper surface after surface treatment with a sulfuric acid / hydrogen peroxide aqueous solution (conventional copper surface treatment agent) as a pretreatment.
  • FIG. 2A shows the SEM appearance of the copper surface at a magnification of 30,000
  • FIG. 2B shows the SEM appearance of the copper surface at a magnification of 50,000.
  • FIG. 3 shows the SEM appearance of the copper surface that was surface-treated with a copper surface treatment agent (conventional copper surface treatment agent) containing a tin compound.
  • (a) in FIG. 3 is an SEM appearance of the copper surface at a magnification of 30,000 and (b) in FIG. 3 at a magnification of 50,000.
  • FIG. 4 shows the SEM appearance of the copper cross section in Example 1.
  • 4A is an SEM appearance of a copper cross section at a magnification of 5,000
  • FIG. 4B is a copper cross section at a magnification of 50,000.
  • bamboo shoot-like protrusions were observed on the cross section of the copper surface-treated with the copper surface treating agent of the present invention.
  • FIG. 5 shows the SEM appearance of a copper cross section subjected to a surface treatment with a copper surface treatment agent (conventional copper surface treatment agent) containing a tin compound.
  • a) of FIG. 5 is an SEM appearance of a copper cross section at a magnification of 5,000, and (b) of FIG. 5 at a magnification of 50,000.
  • Example 2 Example 1 except that the pH adjuster contained in the predetermined surface treatment agent was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 500 ppm). The same operation was performed.
  • Example 3 Example except that the pH adjuster contained in the predetermined surface treatment agent was changed from sulfuric acid (sulfuric acid concentration with respect to the whole surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration with respect to the whole surface treatment agent: 2,000 ppm). The same operation as 1 was performed.
  • Example 4 Example except that the pH adjusting agent contained in the predetermined surface treatment agent was changed from sulfuric acid (sulfuric acid concentration with respect to the whole surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration with respect to the whole surface treatment agent: 5,000 ppm). The same operation as 1 was performed.
  • Example 5 Example except that the pH adjuster contained in the predetermined surface treatment agent was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 10,000 ppm). The same operation as 1 was performed.
  • Example 6 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000ppm), and the fluorine compound is changed from hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500ppm) to hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 1,000ppm),
  • the same operation as in Example 1 was performed except that the pH adjuster was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 3,000 ppm). .
  • Example 7 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000ppm), and the fluorine compound is changed from hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500ppm) to hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 1,000ppm),
  • the same operation as in Example 1 was performed, except that the pH adjuster was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 10,000 ppm).
  • Example 8 The complexing agent contained in the predetermined surface treatment agent is changed from thiourea (concentration of thiourea to the whole surface treatment agent: 4%) to thiourea (concentration of thiourea to the whole surface treatment agent: 6%), pH
  • the same operation as in Example 1 was performed except that the adjusting agent was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 200 ppm).
  • Example 9 The complexing agent contained in the predetermined surface treatment agent is changed from thiourea (concentration of thiourea to the whole surface treatment agent: 4%) to thiourea (concentration of thiourea to the whole surface treatment agent: 6%), pH
  • the same operation as in Example 1 was performed except that the adjusting agent was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 1,000 ppm).
  • Example 10 The complexing agent contained in the predetermined surface treatment agent is changed from thiourea (concentration of thiourea to the whole surface treatment agent: 4%) to thiourea (concentration of thiourea to the whole surface treatment agent: 6%), pH
  • the same operation as in Example 1 was performed except that the adjusting agent was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 2,000 ppm).
  • Example 11 The complexing agent contained in the predetermined surface treatment agent is changed from thiourea (concentration of thiourea to the whole surface treatment agent: 4%) to thiourea (concentration of thiourea to the whole surface treatment agent: 6%), pH
  • the same operation as in Example 1 was performed except that the adjusting agent was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 5,000 ppm).
  • Example 12 The complexing agent contained in the predetermined surface treatment agent is changed from thiourea (concentration of thiourea to the whole surface treatment agent: 4%) to thiourea (concentration of thiourea to the whole surface treatment agent: 6%), pH
  • the same operation as in Example 1 was performed except that the adjusting agent was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 10,000 ppm).
  • Example 13 Stannous sulfate (concentration of stannous sulfate with respect to the entire surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the entire surface treatment agent: 50 ppm)
  • the fluorine compound was changed from hydrogen fluoride (concentration of hydrogen fluoride with respect to the entire surface treatment agent: 500 ppm) to hydrogen fluoride (concentration of hydrogen fluoride with respect to the entire surface treatment agent: 50 ppm).
  • the thiourea (the concentration of thiourea with respect to the entire surface treatment agent: 4%) was changed to thiourea (the concentration of thiourea with respect to the entire surface treatment agent: 6%), and the pH adjuster was changed to sulfuric acid
  • the same operation as in Example 1 was performed, except that the concentration was changed from 300 ppm) to sulfuric acid (concentration of sulfuric acid with respect to the entire surface treatment agent: 10,000 ppm).
  • Example 14 The pH adjuster contained in the predetermined surface treatment agent is changed from sulfuric acid (sulfuric acid concentration with respect to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration with respect to the entire surface treatment agent: 5,000 ppm), and further a water-soluble polymer.
  • sulfuric acid sulfuric acid concentration with respect to the entire surface treatment agent: 300 ppm
  • sulfuric acid sulfuric acid concentration with respect to the entire surface treatment agent: 5,000 ppm
  • the same operation as in Example 1 was performed except that polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid with respect to the entire surface treatment agent: 1,000 ppm) was added.
  • Example 15 The pH adjuster contained in the predetermined surface treatment agent is changed from sulfuric acid (sulfuric acid concentration with respect to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration with respect to the entire surface treatment agent: 5,000 ppm), and further a water-soluble polymer.
  • sulfuric acid sulfuric acid concentration with respect to the entire surface treatment agent: 300 ppm
  • sulfuric acid sulfuric acid concentration with respect to the entire surface treatment agent: 5,000 ppm
  • the same operation as in Example 1 was performed except that polyacrylic acid (molecular weight 20,000, concentration of polyacrylic acid with respect to the entire surface treatment agent: 1,000 ppm) was added.
  • Example 16 The pH adjuster contained in the predetermined surface treatment agent is changed from sulfuric acid (sulfuric acid concentration with respect to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration with respect to the entire surface treatment agent: 5,000 ppm), and further a water-soluble polymer.
  • the same operation as in Example 1 was performed except that epoxysilane (concentration of epoxysilane with respect to the entire surface treatment agent: 1,000 ppm, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: “KBM403”) was added. .
  • Example 17 The complexing agent contained in the predetermined surface treatment agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to diethyl thiourea (concentration of diethylthiourea to the entire surface treatment agent: 5%), pH
  • the same operation as in Example 1 was performed except that the adjusting agent was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 500 ppm).
  • Example 18 Other than changing the pH adjuster contained in a given surface treatment agent from sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 300 ppm) to methanesulfonic acid (concentration of methanesulfonic acid to the whole surface treatment agent: 5,000 ppm) The same operation as in Example 1 was performed.
  • Example 19 The pH adjuster contained in a given surface treatment agent is changed from sulfuric acid (sulfuric acid concentration with respect to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration with respect to the entire surface treatment agent: 5,000 ppm), and a fluorine compound as a fluorine compound is obtained.
  • the same operation as in Example 1 was performed except that hydrogen fluoride (the concentration of hydrogen fluoride with respect to the entire surface treatment agent: 500 ppm) was not added.
  • Example 20 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000ppm), and the fluorine compound is changed from hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500ppm) to hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 1,000ppm), Further, the same operation as in Example 1 was performed except that copper sulfate as a metal compound (concentration of copper sulfate with respect to the entire surface treatment agent: 500 ppm) was added (the above-mentioned concentration relative to the concentration of the tin compound in the surface treatment agent). The concentration ratio of the copper compound was 0.5).
  • Example 21 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 3, 000ppm), and the fluorine compound is changed from hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500ppm) to hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 3,000ppm),
  • the pH adjuster was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 1,000 ppm), and copper sulfate as a metal compound (relative to the entire surface treatment agent)
  • the same operation as in Example 1 was performed except that the concentration of copper sulfate (1,500 pp
  • Example 22 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 6, 000ppm), and the fluorine compound is changed from hydrogen fluoride (concentration of hydrogen fluoride to the whole surface treatment agent: 500ppm) to hydrogen fluoride (concentration of hydrogen fluoride to the whole surface treatment agent: 6,000ppm),
  • the pH adjuster was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 2,000 ppm), and copper sulfate as a metal compound (relative to the entire surface treatment agent)
  • the same operation as in Example 1 was performed except that the concentration of copper sulfate (3,000 ppm) was added
  • Example 23 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000ppm), and the fluorine compound is changed from hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500ppm) to hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 1,000ppm), Further, the same operation as in Example 1 was performed except that copper sulfate (concentration of copper sulfate with respect to the whole surface treatment agent: 200 ppm) was added as a metal compound (the above-mentioned concentration relative to the concentration of the tin compound in the surface treatment agent). The concentration ratio of the copper compound was 0.2).
  • Example 24 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000ppm), and the fluorine compound is changed from hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500ppm) to hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 1,000ppm),
  • the pH adjuster was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to methanesulfonic acid (concentration of methanesulfonic acid relative to the entire surface treatment agent: 100,000 ppm), and copper sulfate as the metal compound (surface The same operation as in Example 1 was performed except that the concentration of copper sulfate with respect to the entire treatment agent:
  • Example 25 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 3%), and a pH adjusting agent Was changed from sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 300 ppm) to sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 100,000 ppm), and copper sulfate as a metal compound (copper sulfate to the whole surface treatment agent) Concentration: 400 ppm) was added, and hydrogen fluoride as a fluorine compound (the concentration of hydrogen
  • Example 26 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 3%), and a pH adjusting agent Was changed from sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 300 ppm) to sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 100,000 ppm), and copper sulfate as a metal compound (copper sulfate to the whole surface treatment agent) Concentration: 400 ppm) and silver nitrate (silver nitrate concentration with respect to the entire
  • Example 27 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 3%), and a pH adjusting agent Was changed from sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 300 ppm) to sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 100,000 ppm), and copper sulfate as a metal compound (copper sulfate to the whole surface treatment agent) Concentration: 400 ppm) and sodium hypophosphite as a reducing agent (concentration of sodium hypo
  • Example 28 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 3%), and a pH adjusting agent Was changed from sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 300 ppm) to sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 100,000 ppm), and copper sulfate as a metal compound (copper sulfate to the whole surface treatment agent) Concentration: 400 ppm) and thioglycerol as a rust preventive (concentration of
  • Example 29 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 3%), and a pH adjusting agent Is changed from sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 300 ppm) to methanesulfonic acid (concentration of methanesulfonic acid to the whole surface treatment agent: 100,000 ppm), and copper sulfate as the metal compound (overall surface treatment agent) Copper sulfate concentration: 400 ppm) and hydrogen fluoride as a fluorine compound (
  • Example 30 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 3%), and a pH adjusting agent Was changed from sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 300 ppm) to sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 100,000 ppm), and copper sulfate as a metal compound (copper sulfate to the whole surface treatment agent) Concentration: 400 ppm) and polyacrylic acid as a water-soluble polymer (molecular weight 20,000
  • Example 31 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 5, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 3%), and a pH adjusting agent Was changed from sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 300 ppm) to sulfuric acid (concentration of sulfuric acid to the whole surface treatment agent: 100,000 ppm), and copper sulfate as a metal compound (copper sulfate to the whole surface treatment agent) Concentration: 1,000 ppm) was added, but hydrogen fluoride as a fluorine compound (hydrogen fluor
  • Example 32 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 2%).
  • Example 33 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 3%), and a pH adjusting agent Was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 50,000 ppm), and copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent) Concentration of 400 ppm) was added, and hydrogen fluoride as a fluorine compound
  • Example 3 The same operation as in Example 1 was performed except that sulfuric acid as a pH adjusting agent (sulfuric acid concentration with respect to the whole surface treating agent: 300 ppm) was not added to the predetermined surface treating agent.
  • Example 5 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000ppm), and the fluorine compound is changed from hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500ppm) to hydrogen fluoride (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 1,000ppm),
  • the same operation as in Example 1 was performed except that the pH adjuster was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 500 ppm).
  • Example 14 The complexing agent contained in the predetermined surface treatment agent is changed from thiourea (concentration of thiourea to the whole surface treatment agent: 4%) to thiourea (concentration of thiourea to the whole surface treatment agent: 6%), pH
  • sulfuric acid as a conditioner sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm
  • the tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 18, 000 ppm), and the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 4%) to thiourea (thiourea concentration to the entire surface treatment agent: 15%), and a pH adjusting agent.
  • the tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 18, 000 ppm), and the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 4%) to thiourea (thiourea concentration to the entire surface treatment agent: 15%), and a pH adjusting agent.
  • the tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate to the whole surface treatment agent: 500 ppm) to stannous sulfate (concentration of stannous sulfate to the whole surface treatment agent: 15, 000 ppm), and the complexing agent is changed from thiourea (concentration of thiourea to the entire surface treatment agent: 4%) to thiourea (concentration of thiourea to the entire surface treatment agent: 21%), and a pH adjusting agent Was changed from sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 300 ppm) to sulfuric acid (sulfuric acid concentration relative to the entire surface treatment agent: 150,000 ppm), and further nickel sulfate (concentration of nickel sulfate relative to the entire surface treatment agent: 35, 000 ppm), diethylene glycol (concentration of diethylene glycol with respect to the entire surface treatment
  • Table 1 summarizes the evaluation results of the above physical properties after the surface treatment of copper.
  • Example 6 and 7 are compared with Example 5, in Examples 6 and 7, by increasing the concentration of stannous sulfate as a tin compound as compared with Example 5, an insulating material such as copper foil and resin is used. As a result, the adhesiveness with the film decreased.
  • Examples 8 to 12 and Examples 1 to 5 are compared, in Examples 8 to 12, the concentration of thiourea as a complexing agent is increased compared to Examples 1 to 5, so that copper foil and resin, etc. As a result, the adhesion with the insulating material was improved.
  • Example 13 When Example 13 and Example 12 are compared, in Example 13, the concentration of stannous sulfate as a tin compound is reduced compared to Example 12, resulting in a higher copper ratio on the copper surface. became.
  • Example 17 Comparing Example 17 and Example 1, in Example 17, compared with Example 1, by adding diethylthiourea instead of thiourea as a complexing agent, copper foil and an insulating material such as a resin As a result, sufficient adhesion could be maintained.
  • Example 18 Comparing Example 18 and Example 1, in Example 18, compared with Example 1, by adding methanesulfonic acid instead of sulfuric acid as a pH adjuster, the copper foil and an insulating material such as a resin As a result, sufficient adhesion could be maintained.
  • Example 19 can maintain sufficient adhesion between the copper foil and an insulating material such as a resin without adding a fluorine compound as compared with Example 1. The result was that it was possible.
  • Example 25 and 33 When Examples 25 and 33 are compared with Example 20, in Examples 25 and 33, the concentration of sulfuric acid as a pH adjusting agent is increased without adding a fluorine compound as compared with Example 20, and accordingly, a complexing agent is added. As a result, by reducing the concentration of thiourea, sufficient adhesion between the copper foil and an insulating material such as a resin can be maintained.
  • Example 26 When Example 26 and Example 25 are compared, in Example 26, the adhesion between copper foil and an insulating material such as a resin is improved by adding silver nitrate as a metal compound as compared with Example 25. Became.
  • Example 27 Comparing Example 27 and Example 25, in Example 27, sodium hypophosphite as a reducing agent was added as compared with Example 25, so that sufficient adhesion between the copper foil and an insulating material such as a resin was achieved. As a result, it was possible to maintain sex.
  • Example 28 Comparing Example 28 and Example 25, in Example 28, sufficient adhesion between the copper foil and an insulating material such as a resin can be obtained by adding thioglycerol as a rust inhibitor compared to Example 25. The result was that it could be maintained.
  • Example 29 and Example 25 compared with Example 25, in Example 29, methanesulfonic acid was added instead of sulfuric acid as a pH adjuster, so that copper foil and an insulating material such as a resin were used. As a result, sufficient adhesion could be maintained.
  • Example 30 When Example 30 and Example 25 are compared, in Example 30, compared with Example 25, by adding polyacrylic acid as a water-soluble polymer, the adhesion between the copper foil and an insulating material such as a resin is improved. The result was improved.
  • Example 31 When Example 31 and Example 25 are compared, in Example 31, the concentration of stannous sulfate as the tin compound is high by increasing the concentration of copper sulfate as the copper compound as compared with Example 25. As a result, sufficient adhesion between the copper foil and an insulating material such as resin can be maintained.
  • Example 32 Comparing Example 32 and Example 25, in Example 32, as in Example 25, the fluorine compound was not added and the concentration of sulfuric acid as a pH adjusting agent was increased compared to Example 25, and the complex was accordingly increased. As a result, by reducing the concentration of thiourea as the agent, sufficient adhesion between the copper foil and an insulating material such as a resin can be maintained.
  • Comparative Examples 1 and 2 did not use a surface treatment agent containing a tin compound or the like as compared with Examples 1 to 33, and roughened etching and the like. Since the treatment (unevenness treatment) was performed, the result was that unevenness was seen in the SEM appearance of the electrolytic copper foil after the copper surface treatment.
  • Comparative Examples 8 to 13 Comparing Comparative Examples 8 to 13 with Examples 1 to 5, in Comparative Examples 8 to 13, the concentration of stannous sulfate as a tin compound was further increased as compared with Examples 1 to 5, thereby As a result, the adhesion with an insulating material such as resin was lowered.
  • Comparative Examples 15 to 17 and Example 1 in Comparative Examples 15 to 17, the concentration of stannous sulfate as a tin compound was significantly higher than that in Example 1, and copper sulfate ( As a result, the adhesion between the copper foil and an insulating material such as a resin is greatly reduced.
  • the copper surface treatment agent and surface treatment method of the present invention maintain the adhesion between copper and an insulating material such as a resin without subjecting the copper surface to a roughening treatment such as etching. Therefore, it is possible to cope with the recent increase in frequency and density of electronic devices and electronic parts. Moreover, in the conventional roughening process (unevenness
  • the copper surface treating agent of the present invention performs adhesion and rust prevention (passivation) at the same time, the production process of electronic devices and electronic parts can be reduced as compared with the conventional roughening treatment.
  • the copper surface treatment agent and the surface treatment method and the copper surface coating of the present invention are environmentally friendly technologies that significantly reduce the drainage load because the tin compound is used at a low concentration.
  • the copper surface treatment agent and surface treatment method of the present invention are used for various electronic devices and electronic parts such as printed wiring boards, semiconductor mounting products, liquid crystal devices, and electroluminescence having fine (fine) wiring. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 処理工程を増加させることなく、銅の表面をエッチング等の粗化処理することなく平滑な状態に処理することができ、かつ銅と樹脂等の絶縁材との間の密着性を維持することができる銅表面の皮膜を提供する。銅とスズとの合金を含有し、銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内であり、上記皮膜の最表面における組成のうちの、スズに対する銅のモル比が0.2以上、2.0以下の範囲内である。

Description

銅の表面処理剤および表面処理方法、並びに銅表面の皮膜
 本発明は、銅の表面処理剤および表面処理方法、並びに、銅表面の皮膜、銅張り材料、多層配線基板および配線基板に関するものである。さらに詳しくは、銅の表面をエッチング等の粗化処理することなく平滑(フラット)な状態に処理することができる銅の表面処理剤および表面処理方法、並びに、上記表面処理方法により表面処理されてなる銅表面の皮膜、銅張り材料、多層配線基板および配線基板に関するものである。
 従来、一般的な多層配線基板(ビルドアップ配線基板)は、表面部に銅からなる導電層を有する内層基板が樹脂等の絶縁材を挟んで他の内層基板と積層プレスされることにより製造されている。上記導電層間は、孔壁が銅メッキされたスルーホールと呼ばれる貫通孔により、電気的に接続されている。
 ここで、上記多層配線基板の配線として上記内層基板の表面部に用いられている銅には、樹脂等の絶縁材との密着性が要求されている。それゆえ、上記内層基板の表面部に用いられている銅の表面と、樹脂等の絶縁材との密着性を向上させるために、銅の表面処理が行われるのが一般的である。
 銅の表面処理方法としては、例えば、銅の表面を塩化銅、硫酸・過酸化水素等でエッチングして銅の表面を粗化させ、銅の表面に凹凸形状の酸化皮膜を付ける方法等が挙げられる。この方法によれば、凹凸形状の酸化皮膜が樹脂等の絶縁材にくい込み、アンカー効果を生じて、銅と樹脂等の絶縁材との密着性が向上する。銅と樹脂等の絶縁材との密着性を向上させるための他の方法として、粗化させた銅の表面を、スズ、シランカップリング剤等で処理する方法も開発されている(例えば、特許文献1~3参照)。
 ここで、特許文献11には、粗化させた銅の表面をスズで処理し、合金化スズを形成する方法、および該合金化スズを形成後にスズ皮膜を剥離し、銅スズ合金化皮膜を形成する方法が記載されているが、それらの方法を用いても、銅と樹脂等の絶縁材との密着が不十分である。
 近年の電子機器・電子部品の小型化、薄型化等に対応するために、多層配線基板を薄くすることが要求されている。さらに、近年の電子機器・電子部品の高周波化、高密度化等に対応するために、多層配線基板の配線の微細化(ファイン化)が要求されている。
 また、上記多層配線基板の表面部に用いられている銅の表面が粗い場合には、該多層配線基板に表面電流が流れ、電気的損失や信号の遅延が生じるという問題がある。
 そこで、上記のエッチング等の粗化処理を用いる方法に代わる方法として、内層基板の表面部に用いられている銅の表面に、スズメッキ等によりスズ皮膜を形成する方法が示されている(例えば、特許文献4参照)。さらに、銅と樹脂等の絶縁材との密着性を向上させるために、内層基板の表面部に用いられている銅の表面にスズメッキした後、硝酸、シランカップリング剤等で処理する方法が示されている(例えば、特許文献5~9参照)。さらに、pHを調整して銅と樹脂等の絶縁材との密着性を向上させるために、スズ化合物と同時に酸および反応促進剤を添加する方法が示されている(例えば、特許文献5,10参照)。さらに、銅と樹脂等の絶縁材との密着性を向上させるために、銅の表面に銅塩を添加することで、樹脂等の絶縁材との密着性の高い金属層を形成する方法が示されている(例えば、特許文献10参照)。さらに、銅と樹脂等の絶縁材との密着性を向上させるために、スズによる処理後、シランによる処理を行い、水洗せず乾燥して、スズ皮膜の上にシラン皮膜をコーティングする方法が示されている(例えば、非特許文献1参照)。
日本国公開特許公報「特開平10-289838号公報(1998年10月27日公開)」 日本国公開特許公報「特開2000-340948号公報(2000年12月8日公開)」 日本国公開特許公報「特開平10-256736号公報(1998年9月25日公開)」 日本国公開特許公報「特開平4-233793号公報(1992年8月21日公開)」 日本国公開特許公報「特開2005-23301号公報(2005年1月27日公開)」 日本国公開特許公報「特開平1-109796号公報(1989年4月26日公開)」 日本国公開特許公報「特開平7-170064号公報(1995年7月4日公開)」 日本国公開特許公報「特許第3135516号公報(特開平10-46359号公報、1998年2月17日公開)」 日本国公開特許公報「特開2003-201585号公報(2003年7月18日公開)」 日本国公開特許公報「特開2008-109111号公報(2008年5月8日公開)」 日本国公開特許公報「特開2000-340948号公報(2000年12月8日公開)」
Patrick Brooks, et al Atotech Deutschland 著 「プリント配線板/パッケージ基板の最新技術動向 めっき・表面処理プロセス技術編 次世代のICサブストレートに向けた革新的なノンエッチング・アドヒージョンプロモーター」 「電子材料」(工業調査会) 2007年 p.88-91
 しかしながら、上記特許文献1~3に示される銅の表面処理方法では、いずれも性能、特に銅と樹脂等の絶縁材との密着性が不十分であるため、ほとんど実用化されていない。さらに、これらの方法では、粗化処理が銅を溶解するため銅幅が目減りし、これらの方法により表面処理された銅張り材料のファイン化が困難となり、かつ電気損失が大きくなる。さらに、これらの方法では、粗化処理後の経時変化に伴い酸化膜が成長するため不動態化が不十分となり、いずれも性能が劣化する。そのため、後処理としての防錆処理が一般的に行われている。
 また、上記特許文献4に示される銅の表面処理方法では、銅の表面をエッチング等の粗化処理する方法と比較して、銅と樹脂等の絶縁材との密着性が十分ではないという問題点を有している。
 また、上記特許文献5~9に示される銅の表面処理方法では、銅の表面にスズメッキした後、硝酸、シランカップリング剤等で処理するので、処理工程が増加する。さらに、これらの方法でも、銅の表面をエッチング等の粗化処理する方法と比較して、銅と樹脂等の絶縁材との十分な密着性を維持できないという問題点がある。
 また、上記特許文献5,10に示される銅の表面処理方法では、銅の表面にスズ化合物と同時に酸および反応促進剤を添加しているが、スズ化合物と酸(pH)と反応促進剤とのバランスを考慮しておらず、銅の表面をエッチング等の粗化処理する方法と比較して、銅と樹脂等の絶縁材との十分な密着性を維持できないという問題点がある。
 また、上記特許文献10に示される銅の表面処理方法では、十分な密着性を維持できないという問題点があるのに加え、銅表面への金属層の均一付着が難しく、さらに銅以外の部分にもコーティングされるため、実装時にメッキ性、電気導電性などの阻害が懸念されるという問題点がある。
 また、上記特許文献11に示される銅の表面処理方法では、銅の表面をエッチングにて粗化した後にスズ化合物を添加しているが、従来のスズ皮膜形成では粗化表面が埋まるなどして形状効果が期待できないとの理由により、銅と樹脂等の絶縁材との十分な密着性を維持できないという問題点がある。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、処理工程を増加させることなく、銅の表面をエッチング等の粗化処理することなく平滑な状態に処理することができ、かつ銅と樹脂等の絶縁材との間の密着性を維持することができる銅の表面処理剤および表面処理方法、並びに銅表面の皮膜を提供することにある。
 本発明者は、上記課題に鑑み鋭意検討した結果、銅の表面処理に用いられる表面処理剤および表面処理方法、並びに銅表面の皮膜において、上記表面処理剤にスズ化合物と錯化剤(キレート剤)とpH調整剤とを含め、それらの濃度のバランスを制御することで、銅表面に存在する結晶の物性を変え、銅の表面に竹の子状の突起を有するCu-Sn合金皮膜(凹凸超マイクロ粗化皮膜)を形成し、その結果、表面積が飛躍的に向上し、銅と樹脂等の絶縁材との十分な密着性を維持することができることを独自に見出し、本発明を完成させるに至った。つまり、本発明者は、錯化剤により銅の電位を下げて銅を反応しやすい物質にして、銅の溶解速度を制御し、かつpH調整剤により銅の溶解を促進させることで、銅リッチのスズ皮膜を形成することができ、その結果、析出皮膜の結晶性質を変え、皮膜形状を自在に設計制御できることを独自に見出した。さらに、本発明者は、スズ化合物の濃度が低い場合には、銅表面へのスズの析出が銅の溶解に追いつかず、溶解された銅がスズと共析し、銅リッチのスズ皮膜が形成しやすいことも独自に見出した。ここで、通常のスズ処理はパーセントオーダーの濃度の処理液で処理されおり、スズが皮膜化に用いられる以外に排水中に残存して廃棄されることも多いということが一般的であるが、本発明では大幅な性能向上のみならず、排水負荷を飛躍的に減少させるため、環境対応としても大変優れている。
 即ち、本発明の銅表面の皮膜は、上記課題を解決するために、銅とスズとの合金を含有し、銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内であり、上記皮膜の最表面における組成のうちの、スズに対する銅のモル比が0.2以上、2.0以下の範囲内であることを特徴としている。また、本発明の銅表面の皮膜は、銅表面の皮膜におけるスズの重量が20mg/m以上、2,000mg/m以下の範囲内であることが好ましい。
 上記の発明によれば、本発明の銅表面の皮膜は、銅とスズとの合金を含有し、銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内であり、かつ銅表面の上記皮膜の最表面におけるスズに対する銅のモル比が0.2以上、2.0以下の範囲内であるので、該合金が銅の表面に生じる空隙および微細孔を埋めて、竹の子状の突起を有する皮膜(凹凸超マイクロ粗化皮膜)となる。それは、錯化剤および酸により銅の溶出量を増やし、スズの析出時に銅を共析出させることで、銅リッチのスズ皮膜を形成するためであると考えられる。Cu-Snの2元平衡状態図より、Cu-Sn合金にはCuSnとCuSnとの単一層が存在する。通常のスズ処理では、Snの単一層を中心とした皮膜が形成し、スズ皮膜は層状に成長するため、表面形状は大きく変化しない。しかし、本発明におけるCu-Sn合金の主成分であるCuSnは六方晶系の結晶であるから、結晶性が高く、成長過程において隣り合う結晶がぶつかれば、縦方向に成長しようとし、竹の子状の突起を有する皮膜(凹凸超マイクロ粗化皮膜)ができると考えられる。また、竹の子状の突起を有する皮膜の凹凸の大きさは、現行のエッチングによる凹凸の大きさの約1/10であるため、高周波での表皮効果による電気損失の影響を受けないと考えられる。また、現行技術であるエッチングによる凹凸制御に対し、本発明による凹凸制御は、結晶皮膜による1/10以下の凹凸超マイクロ粗化皮膜の形成であるので、表面積も飛躍的に向上するばかりか、配線の目減りをほとんどなくすため、密着性を維持向上させながら銅線のファイン化に大きく貢献できる技術であると考えられる。なお、本発明の銅表面の皮膜は、上記皮膜におけるスズの重量を1mg/m以上、2,000mg/m以下の範囲内とし、かつ上記皮膜の最表面におけるスズに対する銅のモル比を0.2以上、2.0以下の範囲内とすることにより、銅とスズとを効率的に合金化させることができる。また、皮膜重量を前記範囲内に制御することで、良好な密着性を付与することができる。さらに、本発明の銅表面の皮膜は、銅とスズとの合金を含有し、該皮膜中におけるスズ皮膜が樹脂等の絶縁材との密着性に優れているので、銅と樹脂等の絶縁材との密着性を向上させることができる。また、本発明における銅表面の皮膜は、高周波対応およびファイン化対応が可能であり、環境にも優しい技術である。
 ここで、上記特許文献10には、「樹脂と、銅又は銅合金層とを接着するための、銅又は銅合金からなる対樹脂接着層であって、前記対樹脂接着層は、多数の銅又は銅合金の粒子が集まり且つ粒子間に空隙が存在し、表面においては複数の微細孔が存在したサンゴ状構造の金属層で形成されている」という技術が示されている。これに対して、本発明の銅表面の皮膜は、空隙および微細孔が存在しない竹の子状の突起を有する皮膜(凹凸超マイクロ粗化皮膜)である。本発明における銅表面の皮膜の形状と上記特許文献10に示されている対樹脂接着層の形状とが異なるのは、皮膜(対樹脂接着層)表面の組成が異なっているからであると考えられる。その結果、本発明における銅表面の皮膜と上記特許文献10に示されている対樹脂接着層とは、樹脂等の絶縁材との密着性等の効果も異なると考えられる。要するに、本発明における銅表面の皮膜と上記特許文献10に示されている対樹脂接着層とは、技術的思想が相違していると考えられる。
 また、本発明の銅の表面処理剤は、上記銅表面の皮膜を形成し、スズ化合物と、錯化剤と、pH調整剤とを含有し、表面処理剤全体に対する上記スズ化合物の濃度が20ppm以上、8,000ppm以下の範囲内であり、表面処理剤全体に対する上記錯化剤の濃度が10,000ppm以上、300,000ppm以下の範囲内であり、表面処理剤全体に対する上記pH調整剤の濃度が100ppm以上、300,000ppm以下の範囲内であるものである。
 また、本発明の銅の表面処理剤は、下記(a)~(f)のいずれか1つの条件を満たしていることが好ましい。
(a)表面処理剤全体に対する上記スズ化合物の濃度が500ppm以下であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が300ppm以上である。
(b)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、1,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が3,000ppm以上である。
(c)表面処理剤全体に対する上記スズ化合物の濃度が1,000ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が20,000ppm以上である。
(d)表面処理剤全体に対する上記スズ化合物の濃度が500ppm以下であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が200ppm以上である。
(e)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、1,000ppm以下の範囲内であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が500ppm以上である。
(f)表面処理剤全体に対する上記スズ化合物の濃度が1,000ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が5,000ppm以上である。
 これにより、本発明の銅の表面処理剤は、錯化剤を含有しているので、銅の溶解速度を制御することができる。具体的には、上記銅の表面処理剤を溶液で用いた場合に、上記錯化剤が銅と錯体を形成して銅の表面の電位が低くなるため、銅が反応しやすくなり、スズ化合物と反応する。これにより、スズ化合物中のスズが析出する。その結果、銅とスズとの置換メッキ反応が進行する。さらに、本発明の銅の表面処理剤は、錯化剤を含有しているので、上記表面処理剤の溶液では、上記錯化剤が溶解した銅のキレートを形成することにより、銅とスズとの合金を含有する皮膜の均一性を向上させている可能性がある。また、本発明の銅の表面処理剤は、pH調整剤を含有しているので、上記表面処理剤の溶液中のpHを調整することで錯化剤の働きを助長し、銅の溶解を促進させることができる。具体的には、上記表面処理剤の溶液中におけるpHの値が小さいほど錯化剤の働きが活性化され、銅の溶解量が増加する。pH調整剤の濃度が下限を下回ると、錯化剤の働きが十分には活性化されないおそれがある。pH調整剤の濃度が上限を超えると、銅の溶解量が過剰となって皮膜中のスズに対する銅の比率が増加し、皮膜の密着性が不十分となるおそれがある。さらには、本発明の銅の表面処理剤は、含有しているスズ化合物などの濃度が低いので、使用後の環境負荷が小さい。
 それゆえ、本発明の銅の表面処理剤は、スズ化合物と錯化剤とpH調整剤とを含有し、それらの濃度のバランスを調整することで、スズおよび銅を含有する皮膜(結晶)を形成することができる。その結果、本発明の銅の表面処理剤は、銅表面の組成を変えることができる。さらに、本発明の銅の表面処理剤は、スズ化合物の濃度が低いほど、銅表面へのスズの析出が銅の溶解に追いつかず、溶解された銅によりスズおよび銅を含有する皮膜を形成しやすい。
 また、本発明の銅の表面処理剤は、さらに金属化合物を含有することが好ましい。
 これにより、本発明の銅の表面処理剤は、金属イオンの緩衝作用により、銅の表面に銅とスズとの合金を含有する皮膜を均一・安定に形成することができると考えられる。
 また、本発明の銅の表面処理剤は、上記金属化合物が銅化合物であり、上記スズ化合物の濃度に対する上記銅化合物の濃度の比が0.2以上、2.0以下の範囲内であることが好ましい。また、本発明の銅の表面処理剤は、上記金属化合物が、さらに銀またはパラジウムを含有することが好ましい。
 また、本発明の銅の表面処理剤は、下記(g)~(i)のいずれか1つの条件を満たしていることが好ましい。
(g)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、銅化合物の濃度が100ppmよりも高く、4,000ppm以下の範囲内であり、かつ上記pH調整剤の濃度が300ppm以上である。
(h)表面処理剤全体に対する上記スズ化合物の濃度が2,000ppmよりも高く、5,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、上記銅化合物の濃度が400ppmよりも高く、10,000ppm以下の範囲内であり、かつ上記pH調整剤の濃度が1,000ppm以上である。
(i)表面処理剤全体に対する上記スズ化合物の濃度が5,000ppmよりも高く、上記錯化剤の濃度が40,000ppm以上であり、上記銅化合物の濃度が1,000ppm以上であり、かつ上記pH調整剤の濃度が2,000ppm以上である。
 これにより、本発明の銅の表面処理剤は、銅化合物を含有しているので、銅イオンを生じる。その結果、銅イオンとスズ化合物との反応が進行する。
 それゆえ、本発明の銅の表面処理剤は、スズ化合物と錯化剤と銅化合物とpH調整剤とを含有し、それらの濃度のバランスを調整することで、銅とスズとの合金を含有する皮膜(結晶)を形成することができる。その結果、本発明の銅の表面処理剤は、銅表面の組成を変えることができる。さらに、本発明の銅の表面処理剤は、銅化合物を含有しているので、pH調整剤の含有量が少なくても、即ち銅表面からの銅の溶解量が少なくても、銅とスズとの合金を含有する皮膜を形成することができる。
 また、本発明の銅の表面処理剤は、下記(j)または(k)の条件を満たしていることが好ましい。
(j)表面処理剤全体に対する上記スズ化合物の濃度が2,000ppm以上、5,000ppm未満の範囲内であり、上記錯化剤の濃度が20,000ppm以上、40,000ppm未満の範囲内であり、上記銅化合物の濃度が400ppm以上であり、かつ上記pH調整剤の濃度が50,000ppm以上である。
(k)表面処理剤全体に対する上記スズ化合物の濃度が5,000ppm以上であり、上記錯化剤の濃度が20,000ppm以上、40,000ppm未満の範囲内であり、上記銅化合物の濃度が1,000ppm以上であり、かつ上記pH調整剤の濃度が50,000ppm以上である。
 これにより、本発明の銅の表面処理剤は、pH調整剤の濃度を高くすることに伴い、錯化剤の濃度を低くすることができる。その結果、銅の溶解性がよくなり、銅の表面にスズおよび銅を含有する皮膜を形成する反応を促進させることができる。
 また、本発明の銅の表面処理剤は、上記錯化剤として、少なくともチオ尿素もしくはその誘導体を含有することが好ましい。
 これにより、本発明の銅の表面処理剤は、チオ尿素もしくはその誘導体を含有しているので、チオ尿素もしくはその誘導体が主に錯化剤として働き、銅との錯体を形成して銅表面の電位を下げて還元性を向上させる。さらに、チオ尿素もしくはその誘導体は副次的に還元剤としても働き、銅の表面に、銅とスズとの合金を含有する皮膜を形成する反応を促進させることができる。
 また、本発明の銅の表面処理剤は、上記pH調整剤として、少なくとも硫酸、硝酸、塩酸、メタンスルホン酸もしくはリン酸を含有することが好ましい。
 これにより、本発明の銅の表面処理剤は、強酸を含有することになり、銅の溶解を促進させやすくなる。
 また、本発明の銅の表面処理剤は、さらにアミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有する水溶性高分子または水分散性高分子を含有することが好ましい。
 これにより、本発明の銅の表面処理剤は、上記官能基を有する水溶性高分子または水分散性高分子が、銅表面に析出したスズと架橋構造を形成し、該スズに抱き込まれる。その結果、本発明の銅の表面処理剤は、上記官能基が樹脂等の絶縁材と水素結合または共有結合を行い、銅と樹脂等の絶縁材との密着性をより一層向上させることができる。
 また、本発明の銅の表面処理剤は、上記水溶性高分子または水分散性高分子の分子量が2,000以上であることが好ましい。
 これにより、本発明の銅の表面処理剤は、銅と樹脂等の絶縁材との密着性をより効率的に向上させることができる。
 また、本発明の銅の表面処理剤は、上記水溶性高分子がシランカップリング剤であることが好ましい。また、本発明の銅の表面処理剤は、上記シランカップリング剤が3量体以上のシランカップリング剤縮合体を含んでいることが好ましい。
 また、銅と絶縁材との両方に密着性が良好なメルカプトシラン含有シランカップリング剤縮合体を含んでいることが好ましい。
 これにより、本発明の銅の表面処理剤は、銅の表面にシラン化合物を析出(付着)させることができる。それゆえ、樹脂等の絶縁材との密着官能基を有するシラン化合物の作用により、本発明の銅の表面処理剤は、銅と樹脂等の絶縁材との十分な密着性を付与することができる。
 また、本発明の銅の表面処理剤は、上記水溶性高分子として、少なくともポリアクリル酸、またはその誘導体を含有することが好ましい。
 これにより、本発明の銅の表面処理剤は、銅と樹脂等の絶縁材との密着性をより一層向上させることができる。
 また、本発明の銅の表面処理剤は、さらにフッ素化合物を含有していてもよい。
 これにより、本発明の銅の表面処理剤を溶液で用いた場合に、フッ素化合物から遊離したフッ素がスズイオンを安定化する。その安定化のメカニズムは明らかではないが、可能性としては、スズイオンと遊離フッ素とが錯体を形成することにより、濁りの少ない安定な溶液になると考えられる。さらに、本発明の銅の表面処理剤を含む溶液は濁りの少ない安定な溶液となるので、銅の表面に、銅とスズとの合金を含有する皮膜を均一に形成することができ、銅と樹脂等の絶縁材との密着性を向上させることができる。
 また、本発明の銅の表面処理剤は、さらに還元剤を含有することが好ましい。
 これにより、本発明の銅の表面処理剤は、銅の表面に、銅とスズとの合金を含有する皮膜を形成する反応を促進させることができる。
 また、本発明の銅の表面処理剤は、さらに防錆剤を含有することが好ましい。
 これにより、本発明の銅の表面処理剤は、銅と樹脂等の絶縁材との密着性を向上させるとともに、表面処理後に銅を長期間保存しても、銅の性能を変化させ難くすることができる。
 また、本発明の銅の表面処理剤は、上記防錆剤がテトラゾール、トリアゾール、イミダゾールおよびチオールからなる群より選ばれる少なくとも一種の化合物であることが好ましい。
 これにより、本発明の銅の表面処理剤は、表面処理後に銅を長期間保存しても、銅の性能をより一層変化させ難くすることができる。
 また、本発明の銅の表面処理方法は、銅の表面に上記銅の表面処理剤を接触させることが好ましい。
 これにより、本発明の銅の表面処理方法は、銅の表面にスズメッキした後に硝酸、シランカップリング剤等で処理する表面処理方法と比較して、処理工程を一工程減らすことができる。また、本発明の銅の表面処理方法は、銅の表面をエッチング等の粗化処理しなくとも十分な密着性を担保できるため、銅の表面を平滑な状態に処理することができる。その結果、本発明の銅の表面処理方法は、多層配線基板の小型化、薄型化、高周波化、高密度化等に対応するのに適している。
 従来公知のシランカップリング剤を利用した密着性の向上は、スズ処理後、シランカップリング剤を塗布して水洗せずに乾燥させ、シロキサン結合によるシラン皮膜を形成するメカニズムである。しかし、配線板等のような構造物は、塗布液が均一に皮膜化することが難しく、また、銅以外のレジスト部にもシラン皮膜がコーティングされるため、実装時に電気導電性、金などのメッキ性に悪影響を及ぼすおそれがある。本発明は、銅のみに反応皮膜を析出させ、その後に水洗するため、上記のような悪影響がない。
 また、本発明の銅の表面処理方法は、銅の表面に酸洗処理、粗化処理(凹凸処理)、防錆処理、酸化処理、表面調整処理および脱脂処理からなる群より選ばれる少なくとも一種の前処理をした後に、上記表面処理剤を接触させることが好ましい。
 これにより、本発明の銅の表面処理方法は、酸洗処理、脱脂処理により銅表面の汚れ、酸化物等を除去することができ、粗化処理、防錆処理、酸化処理、表面調整処理により銅表面での化成性向上、銅の性能向上等を図ることができる。
 また、本発明の銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に、防錆剤、後処理剤またはpH調整剤を接触させることが好ましい。
 本発明の銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に防錆剤を接触させることにより、表面処理後に銅を長期間保存しても、銅の性能をより一層変化させ難くすることができる。本発明の銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に後処理剤、pH調整剤を接触させることにより、銅と樹脂等の絶縁材との密着性をより一層向上させることができる。
 本発明の銅表面の皮膜は、上記銅の表面処理方法により形成され、スズおよび銅を含有することが好ましい。
 これにより、本発明の銅表面の皮膜は、銅とスズとの合金を含有する。その結果、上述したように、本発明の銅表面の皮膜は、竹の子状の突起を有する皮膜(凹凸超マイクロ粗化皮膜)となり、銅と樹脂等の絶縁材との密着性を向上させることができる。
 本発明の銅表面の皮膜は、銅表面1μm当たりに、銅とスズとを含有する結晶を1個以上含んでおり、上記結晶の平均結晶径が50nm以上、1000nm以下の範囲内であることが好ましい。なお、平均結晶径は、X線小核散乱法による測定で求めた結晶径から算出することができる。
 これにより、本発明の銅表面の皮膜は、銅とスズとを含有する合金を結晶化させ、さらに平均結晶径が50nm以上、1000nm以下の範囲内である結晶を1個以上含むことで、より確実に竹の子状の突起を有する皮膜(凹凸超マイクロ粗化皮膜)となる。その結果、本発明の銅表面の皮膜は、銅と樹脂等の絶縁材との密着性をより確実に向上させることができる。
 本発明の銅表面の皮膜は、厚さが0.02μm以上、2μm以下の範囲内であることが好ましい。
 これにより、本発明の銅表面の皮膜は、より確実にマイクロレベルの凹凸を形成することができる。その結果、本発明の銅表面の皮膜は、銅と樹脂等の絶縁材との密着性をより確実に向上させることができる。
 また、本発明の銅張り材料は、上記銅表面の皮膜を含んでいることが好ましい。さらに、本発明の多層配線基板は、上記銅張り材料を備えていることが好ましい。さらに、本発明の配線基板は、最外層に上記銅張り材料を備えていることが好ましい。
 これにより、本発明の銅張り材料、多層配線基板および配線基板は、従来の銅の表面処理方法により表面処理された銅張り材料、多層配線基板および配線基板と比較して、銅と樹脂等の絶縁材との十分な密着性を維持することが可能となる。
 本発明の銅表面の皮膜は、以上のように、銅とスズとの合金を含有し、銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内であり、上記皮膜の最表面における組成のうちの、スズに対する銅のモル比が0.2以上、2.0以下の範囲内であるものである。
 それゆえ、本発明の銅表面の皮膜は、処理工程を増加させることなく、銅の表面をエッチング等の粗化処理することなく平滑な状態に処理することができ、かつ銅と樹脂等の絶縁材との間の密着性を維持することができるという効果を奏する。
本発明における銅の表面処理方法により表面処理された銅のSEM外観を示す図である。 従来の銅の表面処理方法により表面処理された銅のSEM外観を示す図である。 従来の銅の表面処理方法により表面処理された銅のSEM外観を示す図である。 本発明における銅の表面処理方法により表面処理された銅のSEM外観を示す図である。 従来の銅の表面処理方法により表面処理された銅のSEM外観を示す図である。
 以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更して実施し得るものである。具体的には、本発明は下記の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本明細書等において、便宜上、「重量ppm」を単に「ppm」,「重量%」を単に「%」と記載する。
 (I)本発明における銅の表面処理剤で表面処理される物質等
 本発明における銅の表面処理剤で表面処理される物質は、銅を50%以上含有するものであれば特に限定されない。つまり、銅を50%以上含有していれば、銅以外の物質が含まれていても本発明に含まれる。例えば、銅単体、銅を含む銅合金材、クロメート等の表面処理された銅、メッキされた銅などが挙げられる。
 本発明における銅として、具体的には電子基板、リードフレーム等の電子部品、装飾品、建材等に使用される箔(電解銅箔、圧延銅箔)、めっき膜(無電解銅めっき膜、電解銅めっき膜)、線、棒、管、板など、種々の用途の銅を挙げることができる。上記銅は、黄銅、青銅、白銅、ヒ素銅、ケイ素銅、チタン銅、クロム銅等、その目的に応じて他の元素を含有したものであってもよい。また、近年の高周波の電気信号が流れる銅配線の場合には、銅の表面は平均粗さが0.1μm以下の平滑面であることが好ましい。
 本発明において、銅と密着する樹脂等の絶縁材は、エポキシ樹脂、フェノール樹脂、ポリイミド、ポリウレタン、ビスマレイミド・トリアジン樹脂、変性ポリフェニレンエーテル、シアネートエステル等の熱硬化性樹脂などを挙げることができる。これらの樹脂は官能基によって変性されていてもよく、ガラス繊維、アラミド繊維、その他の繊維等で強化されていてもよい。
 (II)本発明における銅の表面処理剤に用いられる材料等
 本発明の銅の表面処理剤は、スズ化合物と、錯化剤と、pH調整剤とを含有するものである。さらに、本発明の銅の表面処理剤は、還元剤を含有することが好ましい。さらに、本発明の銅の表面処理剤は、アミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有する水溶性高分子または水分散性高分子を含有することが好ましい。さらに、本発明の銅の表面処理剤は、フッ素化合物を含有していてもよい。さらに、本発明の銅の表面処理剤は、防錆剤を含有することが好ましい。さらに、本発明の銅の表面処理剤は、金属化合物を含有することが好ましい。また、本発明の銅の表面処理剤は、必要に応じて、添加剤を含有していてもよい。
 また、本発明の銅の表面処理剤は、該表面処理剤の特性を阻害しない限り、上記物質以外の物質(以下、「他の物質」という)を含んでいてもよい。他の物質を含める方法としては、特に限定されるものではない。
 <スズ化合物>
 本発明の銅の表面処理剤は、スズ化合物を含有するものである。スズ化合物としては、後述する溶媒に対して可溶性のものであれば特に限定されないが、その溶解性から酸との塩類が好ましい。例えば、硫酸第一スズ、硫酸第二スズ、ホウフッ化第一スズ、フッ化第一スズ、フッ化第二スズ、硝酸第一スズ、硝酸第二スズ、塩化第一スズ、塩化第二スズ、ギ酸第一スズ、ギ酸第二スズ、酢酸第一スズ、酢酸第二スズ等の第一スズ塩や第二スズ塩などが挙げられる。その中でも、スズを含有する皮膜の形成速度が速いという理由から第一スズ塩が好ましく、後述する溶媒との溶液中での安定性が高く、均一なスズを含有する皮膜を形成することができるという理由から、第一スズ塩が好ましい。さらに、銅のエッチングに悪影響を及ぼさないという理由から硫酸第一スズが特に好ましい。
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記スズ化合物の濃度は、好ましくは10ppm以上、より好ましくは25ppm以上、特に好ましくは100ppm以上である。上記表面処理剤全体に対する上記スズ化合物の濃度が10ppm未満であると、銅および樹脂等の絶縁材との密着性が低下するおそれがあり、好ましくない。なお、上記スズ化合物の濃度の上限については下記で詳述するが、浴の安定性、経済性、および使用後における表面処理液の排水処理の観点から決定され、70%を超えないことが好ましい。
 <pH調整剤>
 本発明の銅の表面処理剤は、pH調整剤を含有するものである。pH調整剤としては、後述する溶媒に対して可溶性のものであれば特に限定されない。酸のpH調整剤としては、無機酸および有機酸から選択される少なくとも1種の酸を使用することができる。本発明で使用することができる酸としては、例えば、塩酸、硫酸、硝酸、ホウフッ化水素酸、リン酸などの無機酸;ギ酸、酢酸、プロピオン酸、酪酸、アクリル酸等のカルボン酸、メタンスルホン酸、エタンスルホン酸等のアルカンスルホン酸、ベンゼンスルホン酸、フェノールスルホン酸、クレゾールスルホン酸等の芳香族スルホン酸などの有機酸;が挙げられる。その中でも、pHを5以下に調整することができるとの理由から、硫酸、硝酸、塩酸、メタンスルホン酸、リン酸等の強酸が好ましい。なお、上記pH調整剤の濃度の下限については後述する。また、pH1以下では、遊離酸として滴定による測定をするほうが正確な濃度を制御できる点で望ましい。
 表面処理剤全体に対する遊離酸の濃度は、次のようにして評価することができる。調製した表面処理剤から10mlをサンプリングし、ブロモフェノールブルー(試薬)を3滴滴下し、さらに1/10NのNaOH(試薬)を滴下して、上記表面処理剤の溶液が青色に変色したときの上記NaOHの量により遊離酸の濃度を評価する。
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記遊離酸の濃度は、好ましくは2ml以上250ml以下、より好ましくは3ml以上100ml以下、特に好ましくは5ml以上30ml以下の範囲内である。
 pH調整剤の濃度の上限は、浴の安定性、経済性、および使用後における表面処理液の排水処理の観点から決定されるが、70%を超えないことが好ましい。
 <錯化剤>
 本発明の銅の表面処理剤は、錯化剤を含有するものである。ここで、本明細書でいう錯化剤とは、銅に配位してキレートを形成し、銅表面の電位を下げ還元しやすいような状態にし、スズ表面に樹脂等の絶縁材密着層を形成しやすくするものを意味する。錯化剤としては、例えば、チオ尿素、エチレンチオウレア、ジエチルチオ尿素、ジブチルチオ尿素等のチオ尿素誘導体、チオ硫酸、シアン類などが挙げられる。その中でも、上記表面処理剤を溶液で用いた場合に、より一層濁りの少ない安定な溶液とすることができ、かつ銅との錯体を形成しやすく、銅の表面の電位を低くするためより一層スズおよび銅を含有する皮膜を形成しやすくするという理由から少なくともチオ尿素を含有することが好ましい。なお、錯化剤には、副次的に後述する還元剤としても働くものもある。その中で、チオ尿素は、副次的に後述する還元剤としても働くものである。
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記錯化剤の濃度は、好ましくは500,000ppm以下、より好ましくは300,000ppm以下、さらに好ましくは150,000ppm以下、特に好ましくは100,000ppm以下の範囲内である。上記表面処理剤全体に対する上記錯化剤の濃度が500,000ppmを超えると、銅の溶解性が悪くなり、銅の表面にスズおよび銅を含有する皮膜を形成する反応を阻害するおそれがあり、好ましくない。なお、上記錯化剤の濃度の下限については後述する。
 <還元剤>
 本発明の銅の表面処理剤は、還元剤を含有していることが好ましい。還元剤としては、例えば、チオ尿素、ジエチルチオ尿素、水素化ホウ素カリウム、ジメチルアミノボラン、次亜リン酸ナトリウム、ヒドラジン、ホルムアルデヒド等が挙げられる。その中でも、スズ化合物に電子を付加して、スズ単体、酸化スズ等からなるスズを含有する皮膜を形成しやすいという理由から少なくともチオ尿素を含有することが好ましい。
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記還元剤の濃度は、好ましくは100ppm以上500,000ppm以下、より好ましくは1,000ppm以上300,000ppm以下、特に好ましくは10,000ppm以上150,000ppm以下の範囲内である。上記表面処理剤全体に対する上記還元剤の濃度が100ppm未満であると、スズおよび銅を含有する皮膜を形成しないおそれがあり、好ましくない。一方、500,000ppmを超えると、スズが溶解し難くなるとの理由から銅の表面にスズおよび銅を含有する皮膜を形成し難くなるおそれがあり、好ましくない。
 <水溶性高分子または水分散性高分子>
 本発明の銅の表面処理剤は、アミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有する水溶性高分子または水分散性高分子を含有していることが好ましい。上記水溶性高分子または水分散性高分子の分子量は、2,000以上、500,000以下であることが好ましく、20,000以上であることがより好ましい。水溶性高分子または水分散性高分子の分子量が2,000未満であると銅表面に析出したスズとの架橋構造が不十分となるおそれがある。水溶性高分子または水分散性高分子の分子量が500,000を超えると、結晶形成を阻害するおそれがある。なお、本明細書等において、水溶性高分子または水分散性高分子の分子量とは重量平均分子量を意味する。重量平均分子量の測定は、ポリスチレンを標準とするゲル・パーミエーションクロマトグラフィー(GPC)法によって求めることができる。水溶性高分子または水分散性高分子としては、例えば、アミノシラン縮合体、メルカプトシラン縮合体、エポキシシラン縮合体、ポリアクリル酸、フェノール樹脂、エポキシ樹脂、ポリアミン樹脂等が挙げられる。その中でも、皮膜結晶物性を阻害し難く、水溶液安定性に優れているという理由から少なくともポリアクリル酸もしくはその誘導体を含有することが好ましい。また、銅とエポキシ樹脂等の絶縁材との密着性を極めて向上させるという理由から少なくともメルカプトシランもしくはその誘導体を含有することが好ましい。
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記水溶性高分子または水分散性高分子の濃度は、好ましくは10ppm以上100,000ppm以下、より好ましくは20ppm以上10,000ppm以下、特に好ましくは50ppm以上2,000ppm以下の範囲内である。上記表面処理剤全体に対する上記水溶性高分子または水分散性高分子の濃度が10ppm未満であると、銅表面に析出しないおそれがあり、好ましくない。一方、100,000ppmを超えると、結晶形成を阻害するおそれがあり、好ましくない。
 <防錆剤>
 本発明の銅の表面処理剤は、防錆剤を含有していることが好ましい。防錆剤としては、例えば、アミノテトラゾール、メチルメルカプトテトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノメルカプトトリアゾール、イミダゾール、メチルイミダゾール、トリアジンチオール、トリメルカプトトリアジン若しくはこれらの塩、またはこれらの類似化合物;メルカプトシラン;チオグリコール酸;チオグリセロール;グアニルチオ尿素;チオ尿素類;等が挙げられる。その中でも、銅表面での防錆機能と化成性との両立という理由から、テトラゾール、トリアゾール、イミダゾール、チオール類の防錆剤が好ましい。
 <金属化合物>
 本発明の銅の表面処理剤は、金属化合物を含有していることが好ましい。これにより、本発明の銅の表面処理剤は、金属イオンの緩衝作用により、銅の表面に銅とスズとの合金を含有する皮膜を均一・安定に形成することができると考えられる。金属化合物としては、金属塩等が挙げられる。また、金属化合物としては、例えば、アルミニウム化合物、ジルコニル化合物、チタニウム化合物、カルシウム化合物、ナトリウム化合物、マグネシウム化合物、ストロンチウム化合物、マンガン化合物、バナジウム化合物、イットリウム化合物、ニオブ化合物、亜鉛化合物、インジウム化合物、銀化合物、鉄化合物、パラジウム化合物、コバルト化合物、銅化合物等が挙げられる。その中でも、スズと共析出しやすいと考えられ、より緻密なスズ膜を与えるという理由から銀化合物、パラジウム化合物、亜鉛化合物、コバルト化合物、銅化合物が好ましい。さらにその中でも、スズとの合金を形成することができるという理由から銅化合物が特に好ましい。これらの金属化合物は、単独または複数を組み合わせて使用することができる。複数を組み合わせる場合は、銅と銀、または銅とパラジウム、を組み合わせて用いることが好ましい。
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記金属化合物の濃度は、好ましくは1ppm以上10,000ppm以下、より好ましくは10ppm以上2,000ppm以下、特に好ましくは100ppm以上1,000ppm以下の範囲内である。上記表面処理剤全体に対する上記金属化合物の濃度が1ppm未満であると、効果が期待できず、好ましくない。一方、10,000ppmを超えると、銅の表面にスズおよび銅を含有する皮膜を形成する反応を阻害するおそれがあり、好ましくない。
 <他の物質>
 本発明の銅の表面処理剤は、樹脂等の絶縁材との均一な密着層を形成するための界面活性剤、樹脂等の絶縁材との密着層の形成を促進するための重合開始剤等、必要に応じて、銅の表面にスズおよび銅を含有する皮膜を形成する反応を阻害しないような種々の添加剤を含有してもよい。
 例えば、本発明の銅の表面処理剤は、フッ素化合物を含有していてもよい。フッ素化合物としては、例えば、フッ化水素、ホウフッ化水素酸、酸性フッ化ナトリウム、酸性フッ化アンモニウム、フッ化ナトリウム、フッ化アンモニウム、ケイフッ化水素等が挙げられる。その中でも、上記表面処理剤を溶液で用い、pHが0.1以上、5以下の範囲内である場合に、スズイオンが安定的に存在し、より一層濁りの少ない安定な溶液とすることができるという理由からフッ化水素、酸性フッ化ナトリウムが好ましい。
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記フッ素化合物の濃度は、好ましくは10ppm以上200,000ppm以下、より好ましくは25ppm以上5000ppm以下、特に好ましくは100ppm以上2000ppm以下の範囲内である。上記表面処理剤全体に対する上記フッ素化合物の濃度が10ppm未満であると、スズイオンが安定化し難いおそれがあり、好ましくない。一方、200,000ppmを超えると、銅の表面にスズを含有する皮膜を形成する反応を阻害するおそれがあり、好ましくない。上記表面処理剤全体に対する上記フッ素化合物の濃度が5,000ppm以下であると、銅の表面に形成されるスズを含有する皮膜が厚くなること、多孔質(ポーラス)になること等で不均一になるおそれがないため、より好ましい。
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記フッ素化合物に由来する遊離フッ素の濃度は、好ましくは0.1ppm以上100ppm以下、より好ましくは1ppm以上50ppm以下、特に好ましくは2ppm以上20ppm以下の範囲内である。上記表面処理剤全体に対する上記フッ素化合物中の遊離フッ素の濃度が0.1ppm未満であると、スズイオンが安定的に存在し難くなるおそれがあり、好ましくない。一方、100ppmを超えると、銅の表面にスズを含有する皮膜を形成する反応を阻害するおそれがあり、好ましくない。遊離のフッ素の濃度は、フッ素イオン量として通常のイオンメーターにより測定することができる。
 ここで、遊離フッ素(フッ素イオン)について以下に説明する。本発明における銅の表面処理剤の溶液には、遊離フッ素が存在していることが好ましい。上記遊離フッ素を存在させるには、上記表面処理剤にフッ素化合物を含めておく。上記遊離フッ素は、上記表面処理剤の溶液中におけるスズ化合物の安定性を向上させる作用を有している。さらに、上記遊離フッ素は、上記表面処理剤の溶液による表面処理の対象である銅に対しての上記スズ化合物の反応を促進する作用も有している。
 <各物質の濃度のバランス>
 本発明の銅の表面処理剤は、表面処理剤全体に対する上記スズ化合物の濃度が20ppm以上、8,000ppm以下の範囲内であり、表面処理剤全体に対する上記錯化剤の濃度が10,000ppm以上、300,000ppm以下の範囲内であり、表面処理剤全体に対する上記pH調整剤の濃度が100ppm以上、300,000ppm以下の範囲内であるものである。
 また、本発明の銅の表面処理剤は、上記スズ化合物の濃度に対する上記銅化合物の濃度の比が好ましくは0.2以上2.0以下の範囲内、より好ましくは0.4以上1.2以下の範囲内、特に好ましくは0.7以上1.0以下の範囲内である。上記スズ化合物の濃度に対する上記銅化合物の濃度の比を上記範囲内に制御することで、銅と樹脂等の絶縁材との密着性を向上させることのできる皮膜を長期にわたり安定して形成することが可能である。
 具体的には、本発明の銅の表面処理剤は、下記(a)~(k)のいずれか1つの条件を満たしていることが好ましい。
(a)表面処理剤全体に対する上記スズ化合物の濃度が500ppm以下であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が300ppm以上である。ここで、表面処理剤全体に対する遊離酸の濃度は、表面処理剤10mlをサンプリングし、ブロモフェノールブルー(試薬)を3滴滴下し、さらに1/10NのNaOH(試薬)を滴下して、表面処理剤の溶液が青色に変色したときの上記NaOHの量をもって評価できる。前記表面処理剤における遊離酸の濃度は1/10NのNaOH(試薬)として3.0ml以上である。
(b)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、1,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が3,000ppm以上である。ここで、上記遊離酸の濃度は1/10NのNaOH(試薬)として20ml以上である。
(c)表面処理剤全体に対する上記スズ化合物の濃度が1,000ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が20,000ppm以上である。ここで、上記遊離酸の濃度は1/10NのNaOH(試薬)として100ml以上である。
(d)表面処理剤全体に対する上記スズ化合物の濃度が500ppm以下であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が200ppm以上である。ここで、上記遊離酸の濃度は1/10NのNaOH(試薬)として1.5ml以上である。
(e)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、1,000ppm以下の範囲内であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が500ppm以上である。ここで、上記遊離酸の濃度は1/10NのNaOH(試薬)として6.0ml以上である。
(f)表面処理剤全体に対する上記スズ化合物の濃度が1,000ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が5,000ppm以上である。ここで、上記遊離酸の濃度は1/10NのNaOH(試薬)として20ml以上である。
(g)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、銅化合物の濃度が100ppmよりも高く、4,000ppm以下の範囲内であり、かつ上記pH調整剤の濃度が300ppm以上である。
(h)表面処理剤全体に対する上記スズ化合物の濃度が2,000ppmよりも高く、5,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、上記銅化合物の濃度が400ppmよりも高く、10,000ppm以下の範囲内であり、かつ上記pH調整剤の濃度が1,000ppm以上である。
(i)表面処理剤全体に対する上記スズ化合物の濃度が5,000ppmよりも高く、上記錯化剤の濃度が40,000ppm以上であり、上記銅化合物の濃度が1,000ppm以上であり、かつ上記pH調整剤の濃度が2,000ppm以上である。
(j)表面処理剤全体に対する上記スズ化合物の濃度が2,000ppm以上、5,000ppm未満の範囲内であり、上記錯化剤の濃度が20,000ppm以上、40,000ppm未満の範囲内であり、上記銅化合物の濃度が400ppm以上であり、かつ上記pH調整剤の濃度が50,000ppm以上である。
(k)表面処理剤全体に対する上記スズ化合物の濃度が5,000ppm以上であり、上記錯化剤の濃度が20,000ppm以上、40,000ppm未満の範囲内であり、上記銅化合物の濃度が1,000ppm以上であり、かつ上記pH調整剤の濃度が50,000ppm以上である。
 本発明の銅の表面処理剤は、上記(a)~(f)のいずれか1つの条件を満たしていることで、スズおよび銅を含有する皮膜を形成することができる。さらに、本発明の銅の表面処理剤は、スズ化合物の濃度が低いほど、銅表面へのスズの析出が銅の溶解に追いつかず、溶解された銅によりスズおよび銅を含有する皮膜を形成しやすい。
 また、本発明の銅の表面処理剤は、上記(g)~(i)のいずれか1つの条件を満たしていることで、銅とスズとの合金を含有する皮膜を形成することができる。さらに、本発明の銅の表面処理剤は、pH調整剤の含有量が少なくても、即ち銅表面からの銅の溶解量が少なくても、銅とスズとの合金を含有する皮膜を形成することができる。
 また、本発明の銅の表面処理剤は、上記(j)または(k)の条件を満たしていることで、pH調整剤の濃度を高くすることに伴い、錯化剤の濃度を低くすることができる。その結果、銅の溶解性がよくなり、銅の表面にスズおよび銅を含有する皮膜を形成する反応を促進させることができる。
 (III)本発明における銅の表面処理剤の製造方法
 本発明の銅の表面処理剤は、従来公知の混合方法・混合装置により混合される。本発明の銅の表面処理剤に含有される物質を混合する順番は、特に限定されない。また、上記物質は、一度に混合してもよく、分割して混合してもよい。
 (IV)本発明における銅の表面処理剤を含む溶液
 本発明における銅の表面処理方法は、銅の表面に、上記表面処理剤を溶液として接触させることが好ましい。上記溶液は、溶質である上記表面処理剤と溶媒とから構成される。本発明に用いられる溶媒は、上記表面処理剤を溶解することができれば特に限定されない。例えば、水、有機溶媒などが挙げられる。その中でも、上記表面処理剤の組成物の溶解性や上記表面処理剤使用後の廃棄などの点で、水が好ましい。本発明における銅の表面処理剤は、従来の銅の表面処理剤と比較して、銅の表面をエッチング等の粗化処理しないという点で優れている。
 (V)本発明における銅の表面処理方法
 本発明における銅の表面処理方法は、銅表面に銅とスズとの合金を含有する皮膜を形成し、上記皮膜におけるスズの重量を1mg/m以上、2,000mg/m以下の範囲内、好ましくは20mg/m以上、2,000mg/m以下の範囲内とし、上記皮膜の最表面におけるスズに対する銅のモル比を0.2以上、2.0以下の範囲内とする方法である。
 銅とスズとの合金は、銅を6%以上、スズを10%以上含有するものであれば特に限定されない。つまり、銅を6%以上、スズを10%以上含有していれば、銅およびスズ以外の物質が含まれていても本発明に含まれる。
 上記皮膜におけるスズの重量は、1mg/m以上2,000mg/m以下の範囲内であり、好ましくは20mg/m以上2,000mg/m以下、より好ましくは50mg/m以上1,500mg/m以下、特に好ましくは10mg/m以上1,000mg/m以下の範囲内である。
 上記皮膜の最表面におけるスズに対する銅のモル比は、0.2以上2.0以下の範囲内であり、好ましくは0.4以上1.6以下、より好ましくは0.5以上1.2以下の範囲内である。
 本発明における銅の表面処理方法は、銅とスズとの合金が銅の表面に生じる空隙および微細孔を埋めて、竹の子状の突起を有する皮膜(凹凸超マイクロ粗化皮膜)を形成する。ここで、マイクロ粗化とは、マイクロレベルの凹凸を有する状態をいう。
 また、本発明の銅の表面処理方法は、銅の表面に上記表面処理剤を接触させることが好ましい。
 銅の表面に上記表面処理剤を接触させる方法としては特に限定されない。例えば、上記表面処理剤を含む溶液に銅を浸漬させる方法、銅の表面に上記表面処理剤を含む溶液をスプレーによって噴射する方法、銅の表面に上記表面処理剤を含む溶液を塗布する方法等が挙げられる。その中でも、銅表面での上記表面処理剤を含む溶液の置換が早い方が好ましいとの理由から、上記表面処理剤を含む溶液に銅を浸漬させて強攪拌を行う方法、銅表面に上記表面処理剤を含む溶液をスプレーによって噴射する方法等が好ましい。なお、上記表面処理剤を含む溶液を攪拌する場合には、例えば50rpm以上、3000rpm以下の範囲内で攪拌することが好ましい。また、上記表面処理剤は、一度に接触させてもよく、分割して接触させてもよい。
 銅の表面に上記表面処理剤を接触させる際の温度は、上記表面処理剤の成分等によって決まり特に限定されるものではないが、反応性に優れているとの理由から、好ましくは10℃以上60℃以下、より好ましくは20℃以上50℃以下、特に好ましくは30℃以上40℃以下の範囲内である。
 銅の表面に上記表面処理剤を接触させる時間は、上記表面処理剤の成分等によって決まり特に限定されるものではないが、反応性に優れているとの理由から、好ましくは1秒以上600秒以下、より好ましくは5秒以上300秒以下、さらに好ましくは15秒以上180秒以下、さらにより好ましくは60秒以上180秒以下、特に好ましくは60秒以上120秒以下の範囲内である。
 本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させる前に、酸洗処理、粗化処理、防錆処理、酸化処理および脱脂処理からなる群より選ばれる少なくとも一種の前処理を行ってもよい。また、本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に、さらに上記表面処理剤等により後処理してもよい。上記後処理後には、水洗してから乾燥させても、水洗せずに乾燥させてもよい。また、本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に、熱処理等を行ってもよい。また、本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に、防錆剤、後処理剤またはpH調整剤を接触させてもよい。
 後処理剤としては、例えば、メルカプトシラン、ビニルシラン、エポキシシラン、スチリルシラン、メタクリロキシシラン、アクリロキシシラン、アミノシラン、ウレイドシラン、クロロプロピルシラン、スルフィドシラン、イソシアネートシラン等のシランカップリング剤およびそれらの混合物、シランカップリング剤縮合物およびそれらの混合物、上記の少なくとも一種の官能基を有する水溶性高分子が好ましい。後処理方法としては、化成処理後、後処理剤をスプレー、浸漬、コーティング等により接触させ、その後水洗するまたは水洗せずに乾燥することにより、コーティング膜を形成してもよい。
 (VI)本発明における銅表面の皮膜
 本発明における銅表面の皮膜は、銅とスズとの合金を含有し、銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内、好ましくは20mg/m以上、2,000mg/m以下の範囲内であり、上記皮膜の最表面におけるスズに対する銅のモル比が0.2以上、2.0以下の範囲内であるものである。
 ここで、皮膜の最表面とは、皮膜表面の極めて薄い層を意味し、具体的には皮膜表面から約10nmまでの深さの層を意味する。皮膜の最表面におけるスズや銅の組成は、ナロースキャンによって測定することができる。
 上記皮膜におけるスズの重量は、1mg/m以上2,000mg/m以下の範囲内であり、好ましくは20mg/m以上2,000mg/m以下、より好ましくは50mg/m以上1,500mg/m以下、特に好ましくは10mg/m以上1,000mg/m以下の範囲内である。
 上記皮膜の最表面におけるスズに対する銅のモル比は、0.2以上2.0以下の範囲内であり、好ましくは0.4以上1.6以下、より好ましくは0.5以上1.2以下の範囲内である。
 また、本発明における銅表面の皮膜は、上記銅の表面処理方法により形成され、スズおよび銅を含有することが好ましい。
 また、本発明における銅表面の皮膜は、銅表面1μm当たりに、銅とスズとを含有する結晶を、好ましくは1個以上、より好ましくは10個以上含んでいる。上記結晶の平均結晶径は、50nm以上1,000nm以下、好ましくは100nm以上500nm以下の範囲内である。銅表面1μm当たりの銅とスズとを含有する結晶の個数はSEM観察により数えることができ、平均結晶径はX線小核散乱法による測定で求めた結晶径から算出することができる。
 また、本発明における銅表面の皮膜は、厚さが、好ましくは0.02μm以上2μm以下、より好ましくは0.04μm以上1μm以下、特に好ましくは0.06μm以上0.2μm以下の範囲内である。
 (VII)本発明における銅張り材料
 本発明の銅張り材料は、上記銅の表面処理方法により表面処理されてなるものであり、上記銅表面の皮膜を含んでいる。
 上記銅の表面処理方法により表面処理される前の銅張り材料としては、一般的な電子基板、リードフレーム等の電子部品、装飾品、建材等を挙げることができる。本発明の銅張り材料は、銅の表面全体が上記表面処理方法により表面処理されているものに限定されず、銅の表面の一部が上記表面処理方法により表面処理されているものも本発明に含まれる。
 (VIII)本発明における多層配線基板
 本発明の多層配線基板(ビルドアップ配線基板)は、上記銅張り材料を備えているものである。本発明の多層配線基板は、従来公知の多層配線基板の製造方法により製造されるものである。具体的には、表面部が銅からなる導電層を有する内層基板が、樹脂等の絶縁材を挟んで他の内層基板と積層プレスされることにより製造される。多層配線基板(ビルドアップ配線基板)には、一括ラミネーション方式のビルドアップ基板と、シーケンシャルビルドアップ方式のビルドアップ基板とがある。
 本発明における多層配線基板には、最外層に上記銅張り材料を備えている外層基板および単層基板を含む。また、上記外層基板には、最外層面に上記銅張り材料を片面または両面に備えている片面または両面の外層基板を含む。
 以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 〔実施例1〕
 <銅の表面処理工程>
 厚さ35μmまたは18μmの電解銅箔(古河サーキットフォイル株式会社製、商品名:「F-WS箔」)を、水道水で希釈した硫酸および過酸化水素の水溶液(硫酸の濃度4%、過酸化水素の濃度1%)に30℃・60秒の条件で浸漬させた後、水道水で洗浄した。
 次に、上記処理を行った電解銅箔を、所定の表面処理剤(成分等については後述する)の溶液に40℃・60秒の条件で浸漬させた後、水道水で洗浄し、80℃・5分の条件で乾燥させた。
 <所定の表面処理剤の成分等>
 上記所定の表面処理剤には、スズ化合物としての硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm、試薬)と、錯化剤としてのチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%、試薬)と、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:300ppm、試薬)と、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm、試薬)とを含めた。ここで、pHメーター(株式会社堀場製作所製、商品名「F-21」)によりpHを測定したところ、pHは2.0であった。また、上記表面処理剤10mlをサンプリングし、ブロモフェノールブルー(試薬)を3滴滴下し、さらに1/10NのNaOH(試薬)を滴下して遊離酸の濃度を測定したところ、上記表面処理剤の溶液が青色に変色したときの上記NaOHの量は2.7mlであった。
 <多層配線基板製造工程>
 得られた電解銅箔と樹脂等の絶縁材との密着性を評価するため、上記電解銅箔の両面にビルドアップ配線板用絶縁材[A材(日立化成工業株式会社製、FR-5)、B材(松下電工株式会社製、R-1661T)、C材(味の素株式会社製、パッケージ用絶縁材AGF-GX13)]を重ねて、150℃・20kg/m→150℃・30kg/m・0.5時間→180℃・30kg/m・1.5時間の条件で加熱しながら積層プレスし、その後に、80℃・1.5時間の条件で冷却した。その後プレスを終了し、20℃・20分間の条件で冷却した。また、A材およびB材は35μm銅箔で測定し、C材は絶縁材の密着性が高いため、18μ銅箔で測定した。
 <銅の表面処理後の物性>
 (1)銅の表面処理後における電解銅箔のエッチング量
 銅の表面処理後における電解銅箔のエッチング量は、精密天秤により、エッチング前後の重量変化を測定して求めた。その結果、エッチング量が0.1g/m未満である状態を「○」とし、0.1g/m以上1g/m以下である状態を「△」とし、1g/mを超える状態を「×」とした。
 (2)銅の表面処理後における電解銅箔のSEM外観
 銅の表面処理後における電解銅箔の外観は、SEM(Scanning Electron Microscope、日本電子株式会社製、商品名:「JSM5310」)により、倍率を1000倍および5000倍にして目視にて評価した。その結果、凹凸がない(平坦な)状態を「○」とし、凹凸がある状態を「×」とした。
 (3)銅の表面処理後における電解銅箔のスズの皮膜量
 銅の表面処理後における電解銅箔のスズの皮膜量は、蛍光X線(株式会社島津製作所製、商品名:「XRF1700」)による測定により、スズ元素の量として測定した。
 (4)銅表面の皮膜の組成
 銅表面の皮膜における最表面の組成は、Cu,Sn,C,O,Sのナロースキャン(Kratos Analytical Ltd.(クレイトス アナリティカル リミテッド)製、商品名:「AXIS NOVA」)により、atomic%を測定しモル比に換算した。上記測定は、約10nmの表面組成分析ができるため、最表面組成とした。
 (5)銅の表面処理後における電解銅箔を備えた多層配線基板での銅箔と樹脂等の絶縁材との密着性
 多層配線基板の銅箔と樹脂等の絶縁材との密着性、即ち多層配線基板における絶縁材からの銅箔の引き剥がし強さは、万能試験機(株式会社エー・アンド・デイ製、商品名:「テンシロン」)により、JIS C 6481に準拠してロードセル100kg/m、レンジ2%、クロスヘッドスピード50mm/min、チャートスピード20mm/minの条件で測定した。なお、絶縁材としてA材またはB材を用いた場合には銅箔として厚さ35μmのものを用い、絶縁材としてC材を用いた場合には銅箔として厚さ18μmのものを用いた。
 (6)はんだ耐熱性
 はんだ耐熱性は、銅の表面処理後における電解銅箔を、121℃ 100RH 2.1atmで8時間吸湿した後、「280℃のはんだ浴に30秒間浸漬→冷却」のサイクルを5回繰り返し、膨れを目視にて評価した。その結果、膨れがない状態を「○」とし、膨れがわずかにある状態を「△」とし、膨れがある状態を「×」とした。
 (7)上記物性の評価結果
 上記物性の評価結果を表1に示す。
 また、図1は、実施例1における銅表面のSEM外観を示したものである。ここで、図1の(a)は倍率30,000、図1の(b)は倍率50,000、図1の(c)は倍率150,000での銅表面のSEM外観である。図1に示すように、本発明の銅の表面処理剤により表面処理を行った銅は、マイクロ粗化の状態であった。
 これに対して、図2は、前処理として硫酸・過酸化水素の水溶液(従来の銅の表面処理剤)により表面処理を行った後の銅表面のSEM外観を示したものである。ここで、図2の(a)は倍率30,000、図2の(b)は倍率50,000での銅表面のSEM外観である。また、図3は、スズ化合物を含有する銅の表面処理剤(従来の銅の表面処理剤)により表面処理を行った銅表面のSEM外観を示したものである。ここで、図3の(a)は倍率30,000、図3の(b)は倍率50,000での銅表面のSEM外観である。
 また、図4は、実施例1における銅断面のSEM外観を示したものである。ここで、図4の(a)は倍率5,000、図4の(b)は倍率50,000での銅断面のSEM外観である。図4に示すように、本発明の銅の表面処理剤により表面処理を行った銅の断面は、竹の子状の突起が認められた。
 これに対して、図5は、スズ化合物を含有する銅の表面処理剤(従来の銅の表面処理剤)により表面処理を行った銅断面のSEM外観を示したものである。ここで、図5の(a)は倍率5,000、図5の(b)は倍率50,000での銅断面のSEM外観である。
 また、実施例1における銅表面の皮膜の表面組成をX線光電子分光(X-ray photoelectron spectroscopy)により分析した結果、スズが約29%であり、銅が約17%であった。
 これに対して、スズ化合物を含有する銅の表面処理剤(従来の銅の表面処理剤)により表面処理を行った銅表面の皮膜の表面組成をX線光電子分光により分析した結果、スズが約26%であり、銅が約5%であった。
 〔実施例2〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:500ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.8、遊離酸濃度(1/10N NaOH滴定量)は3.3mlであった。
 〔実施例3〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:2,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.3、遊離酸濃度(1/10N NaOH滴定量)は6.0mlであった。
 〔実施例4〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は12.3mlであった。
 〔実施例5〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:10,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.8、遊離酸濃度(1/10N NaOH滴定量)は24.8mlであった。
 〔実施例6〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:3,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.3、遊離酸濃度(1/10N NaOH滴定量)は10.0mlであった。
 〔実施例7〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:10,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.8、遊離酸濃度(1/10N NaOH滴定量)は26.2mlであった。
 〔実施例8〕
 所定の表面処理剤に含まれる錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:6%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:200ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは2.0、遊離酸濃度(1/10N NaOH滴定量)は2.6mlであった。
 〔実施例9〕
 所定の表面処理剤に含まれる錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:6%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:1,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.6、遊離酸濃度(1/10N NaOH滴定量)は4.3mlであった。
 〔実施例10〕
 所定の表面処理剤に含まれる錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:6%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:2,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.3、遊離酸濃度(1/10N NaOH滴定量)は6.3mlであった。
 〔実施例11〕
 所定の表面処理剤に含まれる錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:6%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は13.9mlであった。
 〔実施例12〕
 所定の表面処理剤に含まれる錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:6%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:10,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.8、遊離酸濃度(1/10N NaOH滴定量)は25.1mlであった。
 〔実施例13〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:50ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:50ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:6%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:10,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.9、遊離酸濃度(1/10N NaOH滴定量)は22.1mlであった。
 〔実施例14〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)に変更し、さらに水溶性高分子としてのポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)を添加したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は12.5mlであった。
 〔実施例15〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)に変更し、さらに水溶性高分子としてのポリアクリル酸(分子量20,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)を添加したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.0、遊離酸濃度(1/10N NaOH滴定量)は12.8mlであった。
 〔実施例16〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)に変更し、さらに水溶性高分子としてのエポキシシラン(表面処理剤全体に対するエポキシシランの濃度:1,000ppm、信越化学工業株式会社製、商品名:「KBM403」)を添加したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は12.5mlであった。
 〔実施例17〕
 所定の表面処理剤に含まれる錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からジエチルチオ尿素(表面処理剤全体に対するジエチルチオ尿素の濃度:5%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:500ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は12.3mlであった。
 〔実施例18〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)からメタンスルホン酸(表面処理剤全体に対するメタンスルホン酸の濃度:5,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は12.5mlであった。
 〔実施例19〕
 所定の表面処理剤に含まれるpH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)に変更し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は12.5mlであった。
 〔実施例20〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.5であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.3、遊離酸濃度(1/10N NaOH滴定量)は2.9mlであった。
 〔実施例21〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:3,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:3,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:1,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:1,500ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.5であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.0、遊離酸濃度(1/10N NaOH滴定量)は4.5mlであった。
 〔実施例22〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:6,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:6,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:2,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:3,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.5であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.0、遊離酸濃度(1/10N NaOH滴定量)は8.8mlであった。
 〔実施例23〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:200ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.3、遊離酸濃度(1/10N NaOH滴定量)は2.9mlであった。
 〔実施例24〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)からメタンスルホン酸(表面処理剤全体に対するメタンスルホン酸の濃度:100,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:2,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例25〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例26〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)および硝酸銀(表面処理剤全体に対する硝酸銀の濃度:100ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例27〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)および還元剤としての次亜リン酸ナトリウム(表面処理剤全体に対する次亜リン酸ナトリウムの濃度:2,000ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例28〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)および防錆剤としてのチオグリセロール(表面処理剤全体に対するチオグリセロールの濃度:5,000ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例29〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)からメタンスルホン酸(表面処理剤全体に対するメタンスルホン酸の濃度:100,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例30〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)および水溶性高分子としてのポリアクリル酸(分子量20,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例31〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:5,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:1,000ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例32〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:2%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:300,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔実施例33〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:50,000ppm)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.5以下、遊離酸濃度(1/10N NaOH滴定量)は100ml以上であった。
 〔比較例1〕
 所定の表面処理剤に含まれるスズ化合物としての硫酸第一スズと、フッ素化合物としてのフッ化水素と、錯化剤としてのチオ尿素と、pH調整剤としての硫酸とを、塩化銅(表面処理剤全体に対する塩化銅の濃度:5%、試薬)と、酢酸(表面処理剤全体に対する酢酸の濃度:10%、試薬)と、アミノテトラゾール(表面処理剤全体に対するアミノテトラゾールの濃度:0.3%、試薬)とに変更したこと以外は、実施例1と同様の操作を行った。上記物性の評価結果を表1に示す。
 〔比較例2〕
 所定の表面処理剤に含まれるスズ化合物としての硫酸第一スズと、フッ素化合物としてのフッ化水素と、錯化剤としてのチオ尿素と、pH調整剤としての硫酸とを、硫酸(表面処理剤全体に対する硫酸の濃度:10%、試薬)と、過酸化水素(表面処理剤全体に対する過酸化水素の濃度:3%、試薬)と、アミノテトラゾール(表面処理剤全体に対するアミノテトラゾールの濃度:0.3%)とに変更したこと以外は、実施例1と同様の操作を行った。上記物性の評価結果を表1に示す。
 〔比較例3〕
 所定の表面処理剤に、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは2.2、遊離酸濃度(1/10N NaOH滴定量)は2.0mlであった。
 〔比較例4〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.5、遊離酸濃度(1/10N NaOH滴定量)は4.5mlであった。
 〔比較例5〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:500ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.3、遊離酸濃度(1/10N NaOH滴定量)は5.8mlであった。
 〔比較例6〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:1,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.2、遊離酸濃度(1/10N NaOH滴定量)は6.3mlであった。
 〔比較例7〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:2,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は8.5mlであった。
 〔比較例8〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:2,000ppm)に変更し、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は9.2mlであった。
 〔比較例9〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:2,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:500ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.0、遊離酸濃度(1/10N NaOH滴定量)は10.5mlであった。
 〔比較例10〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:2,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:1,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.0、遊離酸濃度(1/10N NaOH滴定量)は11.0mlであった。
 〔比較例11〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:2,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:2,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは1.1、遊離酸濃度(1/10N NaOH滴定量)は13.2mlであった。
 〔比較例12〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:2,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.9、遊離酸濃度(1/10N NaOH滴定量)は19.1mlであった。
 〔比較例13〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、フッ素化合物をフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)からフッ化水素(表面処理剤全体に対するフッ化水素の濃度:2,000ppm)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:10,000ppm)に変更したこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは0.7、遊離酸濃度(1/10N NaOH滴定量)は31.6mlであった。
 〔比較例14〕
 所定の表面処理剤に含まれる錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:6%)に変更し、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った。
 上記物性の評価結果を表1に示す。ここで、表面処理剤のpHは2.2、遊離酸濃度(1/10N NaOH滴定量)は2.3mlであった。
 〔比較例15〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:18,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:15%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:220,000ppm)に変更し、さらに硫酸ニッケル(表面処理剤全体に対する硫酸ニッケルの濃度:50,000ppm)、硫酸銅(表面処理剤全体に対する硫酸銅の濃度:20,000ppm)、ジエチレングリコール(表面処理剤全体に対するジエチレングリコールの濃度:300,000ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は1.1であった)。上記物性の評価結果を表1に示す。
 また、比較例15における銅表面の皮膜の表面組成をX線光電子分光(X-ray photoelectron spectroscopy)により分析した結果、スズが約40%であり、銅が約4%であった。
 〔比較例16〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:18,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:15%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:220,000ppm)に変更し、さらに硫酸ニッケル(表面処理剤全体に対する硫酸ニッケルの濃度:50,000ppm)、硫酸銅(表面処理剤全体に対する硫酸銅の濃度:20,000ppm)、ジエチレングリコール(表面処理剤全体に対するジエチレングリコールの濃度:300,000ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加せず、後処理としてシランを添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は1.1であった)。上記物性の評価結果を表1に示す。
 〔比較例17〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:15,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:4%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:21%)に変更し、pH調整剤を硫酸(表面処理剤全体に対する硫酸の濃度:300ppm)から硫酸(表面処理剤全体に対する硫酸の濃度:150,000ppm)に変更し、さらに硫酸ニッケル(表面処理剤全体に対する硫酸ニッケルの濃度:35,000ppm)、ジエチレングリコール(表面処理剤全体に対するジエチレングリコールの濃度:300,000ppm)を添加し、フッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加しなかったこと以外は、実施例1と同様の操作を行った。上記物性の評価結果を表1に示す。
 また、比較例17における銅表面の皮膜の表面組成をX線光電子分光(X-ray photoelectron spectroscopy)により分析した結果、スズが約38%であり、銅が約4%であった。
 〔比較例18〕
 所定の表面処理剤に含まれるスズ化合物としての硫酸第一スズと、フッ素化合物としてのフッ化水素と、錯化剤としてのチオ尿素と、pH調整剤としての硫酸とを、塩化銅(表面処理剤全体に対する塩化銅の濃度:5%、試薬)と、酢酸(表面処理剤全体に対する酢酸の濃度:10%、試薬)と、アミノテトラゾール(表面処理剤全体に対するアミノテトラゾールの濃度:0.3%、試薬)とに変更し、その後ホウフッ化スズ0.1mol/リットルおよびチオ尿素1mol/リットルを添加し、次にホウフッ酸でpHが1.2になるように調整した合金形成置換スズめっき液に、銅を表面処理した後の電解銅箔を45℃、30秒の条件で浸漬した後、水洗、乾燥したこと以外は、実施例1と同様の操作を行った。上記物性の評価結果を表1に示す。
 また、比較例18における銅表面の皮膜の表面組成をX線光電子分光(X-ray photoelectron spectroscopy)により分析した結果、スズが約40%であり、銅が約4%であった。
 〔実施例のまとめ〕
 表1に、銅の表面処理後における上記物性の評価結果をまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000001
 実施例1~5を比較すると、所定の表面処理剤に含まれるpH調整剤としての硫酸の濃度を高くすることにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。
 実施例6,7と実施例5とを比較すると、実施例6,7では実施例5と比べてスズ化合物としての硫酸第一スズの濃度を高くすることにより、銅箔と樹脂等の絶縁材との密着性が低下するという結果になった。
 実施例8~12と実施例1~5とを比較すると、実施例8~12では実施例1~5と比べて錯化剤としてのチオ尿素の濃度を高くすることにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。
 実施例13と実施例12とを比較すると、実施例13では実施例12と比べてスズ化合物としての硫酸第一スズの濃度を低くすることにより、銅表面における銅の比率が高くなるという結果になった。
 実施例14~16と実施例1とを比較すると、実施例14~16では実施例1と比べて水溶性高分子としてのポリアクリル酸またはシランカップリング剤を添加することにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。
 実施例17と実施例1とを比較すると、実施例17では実施例1と比べて錯化剤としてのチオ尿素の代わりにジエチルチオ尿素を添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例18と実施例1とを比較すると、実施例18では実施例1と比べてpH調整剤としての硫酸の代わりにメタンスルホン酸を添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例19と実施例1とを比較すると、実施例19では実施例1と比べてフッ素化合物を添加しなくても、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例20~24と実施例6とを比較すると、実施例20~24では実施例6と比べて銅化合物としての硫酸銅を添加することにより、pH調整剤としての硫酸の濃度が低い場合でも、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例25,33と実施例20とを比較すると、実施例25,33では実施例20と比べてフッ素化合物を添加せずにpH調整剤としての硫酸の濃度を高くし、それに伴い錯化剤としてのチオ尿素の濃度を低くすることにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例26と実施例25とを比較すると、実施例26では実施例25と比べて金属化合物としての硝酸銀を添加することにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。
 実施例27と実施例25とを比較すると、実施例27では実施例25と比べて還元剤としての次亜リン酸ナトリウムを添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例28と実施例25とを比較すると、実施例28では実施例25と比べて防錆剤としてのチオグリセロールを添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例29と実施例25とを比較すると、実施例29では実施例25と比べてpH調整剤としての硫酸の代わりにメタンスルホン酸を添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例30と実施例25とを比較すると、実施例30では実施例25と比べて水溶性高分子としてのポリアクリル酸を添加することにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。
 実施例31と実施例25とを比較すると、実施例31では実施例25と比べて銅化合物としての硫酸銅の濃度を高くすることにより、スズ化合物としての硫酸第一スズの濃度が高い場合でも、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 実施例32と実施例25とを比較すると、実施例32では実施例25と同様にフッ素化合物を添加せずに、実施例25よりもpH調整剤としての硫酸の濃度を高くし、それに伴い錯化剤としてのチオ尿素の濃度を低くすることにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。
 比較例1,2と実施例1~33とを比較すると、比較例1,2では実施例1~33と比べてスズ化合物等を含んだ表面処理剤を用いておらず、エッチング等の粗化処理(凹凸処理)を行っているので、銅の表面処理後における電解銅箔のSEM外観に凹凸が見られるという結果になった。
 比較例3と実施例1とを比較すると、比較例3では実施例1と比べてpH調整剤としての硫酸を添加しないことにより、銅箔と樹脂等の絶縁材との密着性が低下するという結果になった。
 比較例4~7と実施例1~5とを比較すると、比較例4~7では実施例1~5と比べてスズ化合物としての硫酸第一スズの濃度を高くすることにより、銅箔と樹脂等の絶縁材との密着性が低下するという結果になった。
 比較例8~13と実施例1~5とを比較すると、比較例8~13では実施例1~5と比べてスズ化合物としての硫酸第一スズの濃度をさらに高くすることにより、銅箔と樹脂等の絶縁材との密着性が低下するという結果になった。
 比較例14と実施例1とを比較すると、比較例14では実施例1と比べてpH調整剤としての硫酸を添加しないことにより、銅箔と樹脂等の絶縁材との密着性が低下するという結果になった。
 比較例15~17と実施例1とを比較すると、比較例15~17では実施例1と比べてスズ化合物としての硫酸第一スズの濃度を大幅に高くし、かつ銅イオンとしての硫酸銅(およびニッケル)を添加することにより、銅箔と樹脂等の絶縁材との密着性が大幅に低下するという結果になった。
 上述した具体的な実施形態および実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明の銅の表面処理剤および表面処理方法、並びに銅表面の皮膜は、銅の表面をエッチング等の粗化処理することなく銅と樹脂等の絶縁材との間の密着性を維持することができるため、近年の電子機器・電子部品の高周波化、高密度化等に対応することができる。また、従来の粗化処理(凹凸処理)では、処理後に酸化膜が成長し、電子機器・電子部品としての機能を発揮しないため、多くの場合には後処理として防錆処理を施していた。本発明の銅の表面処理剤は、密着および防錆(不動態化)を同時に行うため、従来の粗化処理と比較して、電子機器・電子部品の生産工程を削減することができる。加えて、本発明の銅の表面処理剤および表面処理方法、並びに銅表面の皮膜は、スズ化合物を低濃度で使用するため、排水負荷を大幅に低減した環境対応技術である。具体的には、本発明の銅の表面処理剤および表面処理方法は、微細(ファイン)配線を有するプリント配線基板、半導体実装品、液晶デバイス、エレクトロルミネッセンス等の各種電子機器・電子部品に利用することが可能である。

Claims (20)

  1.  銅とスズとの合金を含有し、
     銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内であり、
     上記皮膜の最表面における組成のうちの、スズに対する銅のモル比が0.2以上、2.0以下の範囲内であることを特徴とする銅表面の皮膜。
  2.  上記銅表面の皮膜における上記スズの重量が20mg/m以上、2,000mg/m以下の範囲内であることを特徴とする請求項1に記載の銅表面の皮膜。
  3.  スズ化合物と、錯化剤と、pH調整剤とを含有し、
     表面処理剤全体に対する上記スズ化合物の濃度が20ppm以上、8,000ppm以下の範囲内であり、
     表面処理剤全体に対する上記錯化剤の濃度が10,000ppm以上、300,000ppm以下の範囲内であり、
     表面処理剤全体に対する上記pH調整剤の濃度が100ppm以上、300,000ppm以下の範囲内であることを特徴とする銅の表面処理剤。
  4.  さらに、金属化合物を含有することを特徴とする請求項3に記載の銅の表面処理剤。
  5.  上記金属化合物が銅化合物であり、
     上記スズ化合物の濃度に対する上記銅化合物の濃度の比が0.2以上、2.0以下の範囲内であることを特徴とする請求項4に記載の銅の表面処理剤。
  6.  上記金属化合物は、さらに銀またはパラジウムを含有することを特徴とする請求項5に記載の銅の表面処理剤。
  7.  下記(a)~(k)のいずれか1つの条件を満たしていることを特徴とする請求項3~6のいずれか1項に記載の銅の表面処理剤。
    (a)表面処理剤全体に対する上記スズ化合物の濃度が500ppm以下であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が300ppm以上である。
    (b)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、1,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が3,000ppm以上である。
    (c)表面処理剤全体に対する上記スズ化合物の濃度が1,000ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、かつ上記pH調整剤の濃度が20,000ppm以上である。
    (d)表面処理剤全体に対する上記スズ化合物の濃度が500ppm以下であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が200ppm以上である。
    (e)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、1,000ppm以下の範囲内であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が500ppm以上である。
    (f)表面処理剤全体に対する上記スズ化合物の濃度が1,000ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が60,000ppm以上であり、かつ上記pH調整剤の濃度が5,000ppm以上である。
    (g)表面処理剤全体に対する上記スズ化合物の濃度が500ppmよりも高く、2,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、銅化合物の濃度が100ppmよりも高く、4,000ppm以下の範囲内であり、かつ上記pH調整剤の濃度が300ppm以上である。
    (h)表面処理剤全体に対する上記スズ化合物の濃度が2,000ppmよりも高く、5,000ppm以下の範囲内であり、上記錯化剤の濃度が40,000ppm以上であり、上記銅化合物の濃度が400ppmよりも高く、10,000ppm以下の範囲内であり、かつ上記pH調整剤の濃度が1,000ppm以上である。
    (i)表面処理剤全体に対する上記スズ化合物の濃度が5,000ppmよりも高く、上記錯化剤の濃度が40,000ppm以上であり、上記銅化合物の濃度が1,000ppm以上であり、かつ上記pH調整剤の濃度が2,000ppm以上である。
    (j)表面処理剤全体に対する上記スズ化合物の濃度が2,000ppm以上、5,000ppm未満の範囲内であり、上記錯化剤の濃度が20,000ppm以上、40,000ppm未満の範囲内であり、上記銅化合物の濃度が400ppm以上であり、かつ上記pH調整剤の濃度が50,000ppm以上である。
    (k)表面処理剤全体に対する上記スズ化合物の濃度が5,000ppm以上であり、上記錯化剤の濃度が20,000ppm以上、40,000ppm未満の範囲内であり、上記銅化合物の濃度が1,000ppm以上であり、かつ上記pH調整剤の濃度が50,000ppm以上である。
  8.  上記錯化剤として、少なくともチオ尿素もしくはその誘導体を含有することを特徴とする請求項3~7のいずれか1項に記載の銅の表面処理剤。
  9.  上記pH調整剤として、少なくとも硫酸、硝酸、塩酸、メタンスルホン酸もしくはリン酸を含有することを特徴とする請求項3~8のいずれか1項に記載の銅の表面処理剤。
  10.  さらに、アミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有する水溶性高分子または水分散性高分子を含有することを特徴とする請求項3~9のいずれか1項に記載の銅の表面処理剤。
  11.  上記水溶性高分子として、少なくともポリアクリル酸もしくはシランカップリング剤、またはその誘導体を含有することを特徴とする請求項10に記載の銅の表面処理剤。
  12.  銅の表面に請求項3~11のいずれか1項に記載の銅の表面処理剤を接触させることを特徴とする銅の表面処理方法。
  13.  銅の表面に酸洗処理、粗化処理、防錆処理、酸化処理および脱脂処理からなる群より選ばれる少なくとも一種の前処理をした後に、上記表面処理剤を接触させることを特徴とする請求項12に記載の銅の表面処理方法。
  14.  銅の表面に上記表面処理剤を接触させた後に、防錆剤、後処理剤またはpH調整剤を接触させることを特徴とする請求項12または13に記載の銅の表面処理方法。
  15.  請求項12~14のいずれか1項に記載の銅の表面処理方法により形成され、
     スズおよび銅を含有することを特徴とする銅表面の皮膜。
  16.  銅表面1μm当たりに、銅とスズとを含有する結晶を1個以上含んでおり、
     上記結晶の平均結晶径が50nm以上、1000nm以下の範囲内であることを特徴とする請求項1、2または15に記載の銅表面の皮膜。
  17.  厚さが0.02μm以上、2μm以下の範囲内であることを特徴とする請求項1、2、15または16に記載の銅表面の皮膜。
  18.  請求項1、2、15~17のいずれか1項に記載の銅表面の皮膜を含んでいることを特徴とする銅張り材料。
  19.  請求項18に記載の銅張り材料を備えていることを特徴とする多層配線基板。
  20.  最外層に請求項18に記載の銅張り材料を備えていることを特徴とする配線基板。
PCT/JP2009/003275 2008-07-15 2009-07-13 銅の表面処理剤および表面処理方法、並びに銅表面の皮膜 WO2010007755A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008183795 2008-07-15
JP2008-183795 2008-07-15
JP2008-305030 2008-11-28
JP2008305030 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010007755A1 true WO2010007755A1 (ja) 2010-01-21

Family

ID=41550167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003275 WO2010007755A1 (ja) 2008-07-15 2009-07-13 銅の表面処理剤および表面処理方法、並びに銅表面の皮膜

Country Status (1)

Country Link
WO (1) WO2010007755A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225691A (ja) * 2005-02-15 2006-08-31 Mitsui Mining & Smelting Co Ltd スズコート銅粉及び当該スズコート銅粉を用いた導電性ペースト
JP2008109111A (ja) * 2006-09-27 2008-05-08 Mec Kk 対樹脂接着層及びこれを用いた積層体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225691A (ja) * 2005-02-15 2006-08-31 Mitsui Mining & Smelting Co Ltd スズコート銅粉及び当該スズコート銅粉を用いた導電性ペースト
JP2008109111A (ja) * 2006-09-27 2008-05-08 Mec Kk 対樹脂接着層及びこれを用いた積層体の製造方法

Similar Documents

Publication Publication Date Title
JP5307117B2 (ja) 銅の表面処理剤および表面処理方法
KR101482898B1 (ko) 표면 처리 동박
JP5663739B2 (ja) 銅の表面調整組成物および表面処理方法
US5861076A (en) Method for making multi-layer circuit boards
CN107923047B (zh) 粗糙化处理铜箔、覆铜层叠板及印刷电路板
EP2823084B1 (en) Method for promoting adhesion between dielectric substrates and metal layers
KR100437569B1 (ko) 표면처리동박 및 그 표면처리동박의 제조방법 및 그표면처리동박을 사용한 동 클래드 적층판
CN1993501B (zh) 复合铜箔及其制造方法
US20080261020A1 (en) Adhesive layer for resin and a method of producing a laminate including the adhesive layer
JP3306404B2 (ja) 表面処理銅箔の製造方法及びその製造方法で得られた表面処理銅箔を用いた銅張積層板
KR101992507B1 (ko) 전해 구리 합금박 및 캐리어박 부착 전해 구리 합금박
JP2009235565A (ja) 銅の表面処理液および表面処理方法
KR100743512B1 (ko) 표면처리 동박의 제조방법
JP2008109111A (ja) 対樹脂接着層及びこれを用いた積層体の製造方法
JP2010150613A (ja) 銅の表面処理剤および表面処理方法、並びに銅表面の皮膜
JP2006028635A (ja) 微細回路基板用表面処理銅箔の製造方法及びその銅箔
JP4621293B2 (ja) 銅の表面処理剤および表面処理方法
JP5688522B2 (ja) 銅の表面処理剤
EP1807549B1 (en) Method for coating substrates containing antimony compounds with tin and tin alloys
JP2009081396A (ja) プリント配線板用銅箔及びその表面処理方法
WO2010007755A1 (ja) 銅の表面処理剤および表面処理方法、並びに銅表面の皮膜
JP5317099B2 (ja) 接着層形成液
KR20070017547A (ko) 표면 처리 동박 및 그 표면 처리 동박을 이용하여 제조한플렉서블 동박 적층판 및 필름 캐리어 테이프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP