WO2010006549A1 - 一种延长器、数据传输方法及无源光网络系统 - Google Patents

一种延长器、数据传输方法及无源光网络系统 Download PDF

Info

Publication number
WO2010006549A1
WO2010006549A1 PCT/CN2009/072772 CN2009072772W WO2010006549A1 WO 2010006549 A1 WO2010006549 A1 WO 2010006549A1 CN 2009072772 W CN2009072772 W CN 2009072772W WO 2010006549 A1 WO2010006549 A1 WO 2010006549A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical network
uplink data
uplink
module
passive optical
Prior art date
Application number
PCT/CN2009/072772
Other languages
English (en)
French (fr)
Inventor
郑若滨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09797396.0A priority Critical patent/EP2312771B1/en
Publication of WO2010006549A1 publication Critical patent/WO2010006549A1/zh
Priority to US12/982,335 priority patent/US8559816B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects

Definitions

  • the invention relates to an extension device, a data transmission method and a passive light.
  • the application is filed on July 16, 2008, and the application number is 200810029506.X.
  • the priority of the Chinese application of the "Network System” is incorporated herein by reference in its entirety.
  • the present invention relates to the field of optical communications, and in particular to an extender, a data transmission method, and a passive optical network system.
  • Optical fiber has the advantages of transmission frequency bandwidth, large capacity, low loss and strong anti-interference ability, and is very suitable for high-speed, broadband transmission media.
  • Passive Optical Network PON
  • PON Passive Optical Network
  • the PON technology is a point-to-multipoint (P2MP) optical access technology, which consists of an Optical Line Termination (OLT), an optical splitter, and an Optical Network Unit. ONU) / Optical Network Termination (ONT) and the fiber that connects these devices.
  • the OLT acts as a central office device and is connected to an optical splitter through a trunk fiber.
  • the optical splitter connects each ONU through a separate branch fiber.
  • the optical splitter implements the splitting function.
  • the downlink optical signal of the OLT is sent to all the ONUs.
  • the optical splitter implements the optical signal convergence function, and the optical signals sent by all the ONUs are aggregated and sent to the OLT through the backbone optical fiber.
  • the OLT To ensure that the uplink data sent by the ONUs does not collide in the uplink direction, the OLT must perform ranging on each optical network unit ONU, and control the time and duration of each ONU occupying the uplink optical link according to the ranging result, and require each ONU.
  • the uplink data must be transmitted in burst time division multiple access (TDMA) multiplexing.
  • TDMA time division multiple access
  • a distributed base station is composed of a radio remote unit (RRU) and a baseband processing unit (BBU).
  • the RRU can be placed in the user's home, so the home BS is generally The RRU for the BS.
  • the private optical interface between the RRU and the BBU is connected through the upstream optical fiber and the downstream optical fiber.
  • the private optical interface cannot form an industrial scale effect, so the cost is high.
  • a standardized PON is used as the specification interface between the RRU and the BBU of the BS, it is required to add a duplexer or a wavelength division multiplexing (WDM) to the base station RU and the BBU due to the single-fiber bidirectional technology of the PON.
  • WDM wavelength division multiplexing
  • the module supports single-fiber bidirectional PON, but the duplexer is costly, and the RRU of the home base station usually requires a low enough cost to be acceptable to the user. How to make the interface between the RRU and the BBU adopt standardized PON, and it is an urgent problem to control the cost of the home base station to a small extent.
  • PON is used as the backhaul of the BS
  • PON is used as a transmission technology rather than a simple access technology.
  • the system security requirements for the PON are much higher than the simple access technology.
  • the operator specifically requires the PON system to be able to resist the abnormal illumination of the ONU device.
  • the abnormal illumination of the ONU is actually a Deny of Service (DoS) that destroys the connection of the physical layer.
  • DoS Deny of Service
  • each ONU uses the upstream channel to transmit data according to the authorization of the OLT, and there is no signal conflict in the network.
  • the ONU device fails to respond to the OLT's authorization and randomly or permanently occupies the uplink channel, or when a malicious ONU randomly occupies the uplink channel, the PON will be in a paralyzed state, thereby affecting the normal operation of the 802.16 base station. Due to the passive nature of the branch nodes, it is impossible to locate which branch of the ONU device has a problem.
  • the security requirements of the device that resists the abnormal illumination of the ONU device become a technical problem to be solved urgently. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an extender, a data transmission method, and a passive optical network system, which realize the conversion of a single fiber to a single fiber of a home BS by an extender.
  • an embodiment of the present invention provides an extender, and the extender includes:
  • a downlink data sending module configured to send downlink data to the first passive optical network device
  • an uplink data receiving module configured to receive uplink data sent by the corresponding first passive optical network device
  • a duplexer configured to convert a data transmission mode used by the downlink data sending module and the uplink data receiving module from a dual fiber transmission to a single fiber transmission, to implement single-fiber bidirectional transmission and reception;
  • the port of the uplink data receiving module connected to the uplink port of the first passive optical network device corresponds to the uplink port of the first passive optical network device
  • optical fiber connected to the uplink port of the first passive optical network device is separated from the optical fiber connected to the downlink port of the first passive optical network device by the uplink data receiving module.
  • the embodiment of the present invention further provides a data transmission method, where the method includes: receiving uplink data sent from each first passive optical network device, and transmitting the uplink data to the second passive optical network device;
  • the uplink data receiving module is connected to the uplink port of the first passive optical network device, and corresponds to the uplink port of the first passive optical network device.
  • the uplink data receiving module is separated from the optical fiber connected to the uplink port of the first passive optical network device, and the downlink data sending module is separated from the optical fiber connected to the downlink port of the first passive optical network device.
  • the embodiment of the present invention further provides a passive optical network system, where the system includes a first passive optical network device, an extender, and a second passive optical network device, where The device includes:
  • a downlink data sending module configured to send downlink data to the first passive optical network device
  • an uplink data receiving module configured to receive corresponding uplink data sent by the first passive optical network device
  • a duplexer configured to convert a data transmission mode used by the downlink data sending module and the uplink data receiving module from a dual fiber transmission to a single fiber transmission, to implement single-fiber bidirectional transmission and reception;
  • the port of the uplink data receiving module connected to the uplink port of the first passive optical network device corresponds to the uplink port of the first passive optical network device
  • optical fiber connected to the uplink port of the first passive optical network device is separated from the optical fiber connected to the downlink port of the first passive optical network device by the uplink data receiving module.
  • the embodiment of the present invention separates the uplink port and the downlink port of the PON of the ONU as the backhaul of the BS, and implements the conversion adaptation of the single fiber of the home BS to the PON by the EB; and detects the ONU device of the home BS.
  • the abnormal illumination and disconnection of the uplink channel of the corresponding port enhance the stability of the PON and ensure the normal operation of the BS.
  • FIG. 1 is a schematic diagram of a network structure of a conventional LR-PON
  • FIG. 2 is a schematic structural diagram of an extender of a passive optical network according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a data transmission method of a passive optical network according to an embodiment of the present invention
  • FIG. 5a and FIG. 5b are schematic diagrams showing a network structure of an LR-PON supporting P2P and P2MP according to an embodiment of the present invention
  • 6a and 6b are system structural diagrams of a passive optical network including an OA-based EB according to an embodiment of the present invention
  • 7a and 7b are passive light including an OEO-based EB according to an embodiment of the present invention.
  • FIG. 8 is a system structural diagram of another passive optical network including an OEO-based EB according to an embodiment of the present invention.
  • FIG. 9 is a system structural diagram of a passive optical network including an EB based on OA and OEO mixing according to an embodiment of the present invention.
  • the extender includes: a downlink data sending module 3, configured to send downlink data to the first passive optical network device.
  • the uplink data receiving module 1 is configured to receive corresponding uplink data sent by the first passive optical network device, and the duplexer 4 is configured to send the downlink data sending module 3 and the uplink data receiving module 1
  • the data transmission mode is converted from a dual-fiber transmission to a single-fiber transmission, and the single-fiber bidirectional transmission and reception is implemented;
  • the uplink data receiving module 1 is connected to the uplink port of the first passive optical network device, and the An uplink port of a passive optical network device, corresponding to; an optical fiber connected to the uplink port of the first passive optical network device, and the downlink data sending module 3 and the first
  • the optical fiber connected to the downlink port of the passive optical network device is phase separated; wherein the dual fiber transmission refers to the uplink and downlink transmission of data occupying one optical fiber,
  • the first passive optical network device may be an optical line terminal or an optical network unit.
  • the extender further includes a data convergence module 2, configured to aggregate uplink data received by the uplink data receiving module 1 when the optical network unit transmits data to the optical line terminal. And transmitting the aggregated data to the duplexer 4.
  • the optical network unit is used as the first passive optical network device, and the optical line terminal is used as the second passive optical network device as an example, and the present invention is described in detail.
  • the extender provided by the embodiment of the present invention may further have an implementation manner, where the extender includes: a downlink data sending module 3, configured to send downlink data to the optical network unit; and at least two uplink data receiving modules 1 configured to receive corresponding The uplink data sent by the optical network unit, the data aggregation module 2, configured to aggregate the uplink data received by the uplink data receiving module 1, and the duplexer 4, configured to aggregate the data aggregation module 2
  • the data is converted into a single fiber mode, and the data sent by the optical line terminal to the downlink data sending module 3 is converted into the downlink data in the dual fiber mode to implement single-fiber bidirectional transmission and reception; the uplink data receiving module 1 and the a port connected to an uplink port of the optical network unit, corresponding to an uplink port of the optical network unit, a port connected to the
  • the PON uplink port and the downlink port are separated, the uplink port adopts a point-to-point topology, and the PON downlink port still adopts a P2MP topology.
  • the optical network unit of the embodiment of the present invention may be an ONU or an ONT.
  • the uplink data receiving module 1 further includes:
  • the receiving sub-module 10 is configured to receive uplink data sent by the optical network unit corresponding to the destination, and the optical detecting module 11 is configured to detect and obtain uplink data sent by the optical network unit.
  • the processing module 12 is configured to disconnect the uplink channel corresponding to the uplink data sent by the optical network unit according to the detection result obtained by the optical detection module 11.
  • the processing module 12 may be an optical switch in an embodiment of the invention.
  • the receiving sub-module 10 may be a brancher, configured to receive uplink data sent by the corresponding optical network unit, and send the uplink data branch to the optical detecting module 11 for detection; the data convergence module 2
  • the optical splitter or the wavelength division multiplexer is configured to aggregate the uplink data received by the uplink data receiving module 1.
  • the receiving submodule 10 may be an optical receiving module (RX), configured to receive uplink data sent by the corresponding optical network unit, and convert the uplink data into an electrical signal;
  • the data aggregation module 2 may be an electrical convergence module, configured to aggregate the multiple electrical signals converted by the optical receiving module.
  • the receiving submodule 10 may be an Ethernet receiving module (ETH RX), configured to receive uplink data sent by the corresponding optical network unit;
  • ETH RX Ethernet receiving module
  • the data aggregation module 2 may be a network convergence module, configured to aggregate uplink data received by the Ethernet receiving module.
  • the extender further includes:
  • the embedded optical network unit is configured to measure the power and the bit error rate of the uplink data and report the measurement result to the optical line terminal.
  • the embedded optical network unit may be an embedded ONT.
  • the OLT port and/or the ONU/ONT corresponding to the PON port on the EB are reported to the OLT through the embedded ONT, and the OLT can pass the OLT.
  • Embedded ONT management and configuration OD are measured according to the time and duration of the ONU/ONT occupying the uplink optical link under each PON port of the EB provided by the embedded ONT, in the corresponding time period, the light from the ONU side PON port The power and error rate of the signal are measured.
  • the power of the uplink optical signal and the error rate measurement result are reported to the OLT through the embedded ONT to support optical line diagnosis.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • a port connected to the uplink port of the optical network unit by the uplink data receiving module, and corresponding to an uplink port of the optical network unit;
  • the row data transmitting module is separated from the port connected to the downstream port of the optical network unit.
  • Steps 101 and 102 may be performed simultaneously in the embodiment of the present invention.
  • step 101 further includes:
  • step 202 detecting whether the uplink data is abnormal; when the detection result is yes, performing step 203; when the detection result is no, executing step 103 in FIG. 3;
  • step 101 includes: dividing the upstream data branch for detection.
  • Step 103 further includes:
  • the amplified data is transmitted to the optical line terminal.
  • the passive optical network system includes a first passive optical network device, an extender, and a second passive optical network device, where the extender includes:
  • a downlink data sending module configured to send downlink data to the first passive optical network device
  • an uplink data receiving module configured to receive corresponding uplink data sent by the first passive optical network device
  • a duplexer configured to convert a data transmission mode used by the downlink data sending module and the uplink data receiving module from a dual fiber transmission to a single fiber transmission, to implement single-fiber bidirectional transmission and reception;
  • the port of the uplink data receiving module connected to the uplink port of the first passive optical network device corresponds to the uplink port of the first passive optical network device
  • the first passive optical network device may be an optical line terminal or an optical network unit; where the optical network unit is used as the first passive optical network device, and the optical line terminal is used as the second
  • the source optical network device is taken as an example, and the passive optical network system provided by the present invention is described in detail.
  • the extender may further include: a data aggregation module, configured to aggregate the uplink data received by the uplink data receiving module, and send the aggregated data to the duplexer.
  • a data aggregation module configured to aggregate the uplink data received by the uplink data receiving module, and send the aggregated data to the duplexer.
  • the extender in the passive optical network system may further be implemented as follows: the extender includes: a downlink data sending module, configured to send downlink data to the optical network unit; and at least two uplink data receiving modules And the data aggregation module is configured to aggregate the uplink data received by the uplink data receiving module, and the duplexer is configured to use the data aggregation module.
  • the aggregated data is converted into a single fiber mode, and the data sent by the optical line terminal to the downlink data sending module is converted into the downlink data of the flash mode to implement single-fiber bidirectional transmission and reception; the uplink data receiving module and the a port connected to the uplink port of the optical network unit, corresponding to the uplink port of the optical network unit, a port connected to the uplink port of the optical network unit, and the downlink data sending module and The ports connected to the downlink ports of the optical network unit are separated.
  • the PON uplink port and the downlink port are separated, the uplink port adopts a point-to-point topology, and the PON downlink port still adopts a P2MP topology.
  • the uplink data receiving module further includes:
  • a receiving submodule configured to receive uplink data sent by the corresponding optical network unit, and a light detecting module, configured to detect uplink data sent by the optical network unit, and obtain a detection result;
  • the processing module is configured to: when the detection result obtained by the optical detection module is abnormal, disconnect the uplink channel corresponding to the uplink data sent by the optical network unit.
  • the extender also includes: The embedded optical network unit is configured to measure the power and the bit error rate of the uplink data and report the measurement result to the optical line terminal.
  • the following uses the ONU as the first passive optical network device, and the OLT as the second passive optical network device as an example, and in combination with FIG. 5a, FIG. 5b, FIG. 6a, FIG. 6b, FIG. 7a, FIG. 7b, FIG. 8, and FIG.
  • the extender, method and system provided by the embodiments of the invention are described in more detail.
  • FIG. 5 is a schematic diagram of a network structure of an LR-PON supporting P2P and P2MP according to an embodiment of the present invention, where a PON uplink port and a downlink port of an ONU that is a backhaul of a BS are separated, and the uplink port adopts a point-to-point ( The topology of P2P) (ports 1 to n in Figure 5a, Figure 5b) to resist abnormal illumination of ONU devices; and the downstream PON ports (ports p in Figure 5a, Figure 5b) still use P2MP Topological structure to save fiber laying.
  • the OLT to EB fiber is still single-fiber bidirectional.
  • the EB is mainly used to realize the conversion adaptation of the single fiber of the dual-fiber to PON of the home BS, and the abnormal illumination of the ONU module of the home BS.
  • the EB can be installed in the corridor of the building, and the BS can be installed inside the home.
  • the ONU module of the home BS RRU uses the uplink and downlink separation for cost considerations, which can save the duplexer for single-fiber bidirectional action in the ONU and EB.
  • WDM module because the distance between the home BS RRU and the EB is not far (up to hundreds of meters), the cost of introducing the dual fiber between the ONU and the EB is lower than the cost of adding the duplexer or WDM module inside the home BS. Low, which helps to reduce the cost of wireless networks.
  • the optical splitter or WDM multiplexer WDM in the figure can be integrated into the EB.
  • the BS in Figure 5a uses WDM in the downlink, which is suitable for each ONU to use different wavelengths.
  • the BS in Figure 5b uses the optical splitter. Suitable for each ONU with the same or different wavelengths.
  • the P2P connection between the ONU and the EB can even be connected by the Ethernet physical layer; and the P2P connection between the OLT and the EB can also be connected by the Ethernet physical layer, and the data link layer can adopt the PON MAC layer.
  • the OLT still performs ranging on each ONU, and controls the time and duration of each ONU occupying the uplink optical link according to the ranging result.
  • the EB performs optical detection on each of the uplink PON ports. When the EB finds that an uplink port is abnormally illuminated and occupies the uplink channel, the EB shuts off the corresponding uplink port to prevent the ONU that is abnormally illuminated on the port from occupying the uplink channel.
  • FIG. 6a and 6b are system structural diagrams of a passive optical network including an OA-based EB according to an embodiment of the present invention.
  • an EB in the system is based on an OA, and the EB is branched.
  • duplexer ie duplexer k, equivalent to duplexer 4 in Figure 2
  • optical splitter or wavelength division multiplexer WDM (equivalent to Figure 2 The data aggregation module 2)
  • the optical switch corresponding to the processing module 12 in FIG. 2)
  • the photodetector OD correspond to the light detecting module 11 in FIG.
  • Figure 6a differs from Figure 6b in that the BS in Figure 6a uses an optical splitter for each ONU with the same or different wavelengths; the BS in Figure 6b uses WDM for the uplink and the ONU for different wavelengths. Among them, the splitter, the optical switch, and the photodetector are optional in other specific embodiments.
  • the optical switch may not be included; when using the light receiving
  • the module (RX) performs the uplink data sent by the optical network unit, the brancher may not be included, and the photodetector may be integrated in the light receiving module.
  • Tap 1 ⁇ Tap n are used to branch out a part of the data from the uplink data received by the ONU 1 ONU n to the OD corresponding to each uplink channel for light detection;
  • the photodetector OD is equivalent to an OLT receiver.
  • reporting by using the embedded ONT, the PON port on the EB and/or the ONU/ONT corresponding to the PON port to the OLT;
  • the optical port from the ONU side PON port is measured;
  • the power of the uplink optical signal and the error rate measurement result are through the embedded ONT direction.
  • the OLT reports to support optical line diagnosis.
  • the embedded ONT is used to report the PON port on the problem EB and/or the ONU/ONT corresponding to the PON port to the OLT.
  • the OLT can manage and configure the OD through the embedded ONT.
  • the embedded ONT provides the OD.
  • the embedded ONT provides the OLT with the OLT assigned to the ONU under the EB PON port 1.
  • the upstream optical chain is occupied.
  • the time and duration of the path, the embedded ONT provides the OD allocated to the OD in the mth (mmn) channel to the ONU of the EB PON port m.
  • the time and duration of the upstream optical link are occupied. Accordingly, the embedded ONT is the OD.
  • the time and duration of the uplink optical link occupied by the ONT m+1 and ONT m+2 ONT n allocated by the OLT to the EB PON port corresponding to the OD are provided.
  • the duplexer is used to implement single-fiber bidirectional transmission and reception, and realizes single-fiber conversion of single-fiber to PON of home BS and conversion of single-fiber to dual-fiber.
  • the EB removes a part of the light from each PON port through the Tap to perform optical detection through the OD.
  • the optical switch is triggered to disconnect the uplink channel of the corresponding port, and the OLT is attached to the OLT through the embedded ONT.
  • the ONU/ONT corresponding to the PON port and/or PON port on the EB.
  • the OLT/EB can immediately locate the abnormally illuminated ONU, so that the uplink path of the problematic PON port can be isolated in time to ensure that the uplink path of other normal PON ports is not Affected, the downlink path of the problematic PON port remains unblocked, and then the OLT can use the downlink port p of the EB to command the ONU under the problematic PON port to stop transmitting the uplink optical signal.
  • FIG. 7a and FIG. 7b are structural diagrams of a system for a passive optical network including an OEO-based EB according to an embodiment of the present invention.
  • the EB in the system is OEO.
  • the EB is made up of duplexers! ⁇ , the light receiving module RX (corresponding to the uplink data receiving module 1 of FIG. 2), the optical transmitting module TX (corresponding to the downlink data transmitting module 3 of FIG. 2), and the optical detector OD (corresponding to the light detecting module of FIG. 2) 11), embedded in the ONT composition.
  • the EB further includes an electrical convergence module (corresponding to the data convergence module 2 in FIG. 2); for FIG.
  • the EB further includes an optical splitter (corresponding to the data convergence module 2 in FIG. 2) and an optical switch ( It is equivalent to the processing module 12 in Fig. 2).
  • the splitter, the optical switch, and the photodetector are optional in other specific embodiments.
  • the optical switch may not be included; when using the light receiving
  • the module (RX) performs the uplink data sent by the optical network unit, the brancher may not be included, and the photodetector may be integrated in the light receiving module.
  • the optical receiving module RX is configured to receive the optical signal and convert the optical signal into an electrical signal; or may convert the PON physical layer optical signal into a PON physical layer electrical signal, and regenerate and add the preamble, or terminate the PON physics.
  • Layer, the PON MAC frame is obtained, which is equivalent to the receiving processing module embedded in an OLT.
  • the optical receiving module integrates the function of the OD. When the OD recognizes the abnormally illuminated PON port, the optical receiving module will turn off the light according to the trigger from the OD. The receiving module receives the corresponding port.
  • the optical transmitting module TX is configured to convert the electrical signal into an optical signal and transmit the optical signal; or may convert the PON physical layer electrical signal into a PON physical layer optical signal for transmission, or perform PON on the PON uplink MAC frame from the electrical convergence module. After the physical layer processes, the optical signal is transmitted.
  • the electrical convergence module is configured to aggregate multiple electrical signals into one electrical signal; the multiple PON physical layer electrical signals may be combined into one PON physical layer electrical signal by TDM, or multiple PON uplink MAC frames may be used. Synthesize one electrical signal by means of TDM.
  • FIG. 8 is a system structural diagram of another passive optical network including an OEO-based EB according to an embodiment of the present invention.
  • the system adopts a hybrid technology of Ethernet and PON, if the P2P connection is between ONU and EB in the uplink direction.
  • the physical layer of the Ethernet is used.
  • the physical layer of the P2P connection between the OLT and the EB can also adopt the physical layer of the Ethernet.
  • the data link layer can adopt the PON MAC layer (such as the MAC layer of the EPON), as shown in Figure 8, and Figure 7a.
  • Figure 7b differs in that RX is the Ethernet receiving module ETH RX, TX is an Ethernet transmission module ⁇ ⁇ , network convergence module, which is equivalent to the electrical convergence module of Figure 7a, and the optical splitter of Figure 7b.
  • the splitter, the optical switch, and the photodetector are optional in other specific embodiments.
  • the optical switch may not be included; when using the light receiving
  • the module (RX) performs the uplink data sent by the optical network unit, the brancher may not be included, and the photodetector may be integrated in the light receiving module.
  • FIG. 9 is a structural diagram of a system including a passive optical network based on OA and OEO mixed EB according to an embodiment of the present invention, and the functions of the components are the same as those of the corresponding modules or units, and are not described here.
  • the embodiment of the present invention separates the uplink port and the downlink port of the PON of the ONU as the backhaul of the BS, and implements the conversion adaptation of the single fiber of the home BS to the PON by the EB; and detects the ONU device of the home BS.
  • the abnormal illumination and disconnection of the uplink channel of the corresponding port enhance the stability of the PON and ensure the normal operation of the BS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

一种延长器、 数据传输方法及无源光网络系统 本申请要求了 2008年 7月 16日提交的, 申请号为 200810029506.X, 发 明名称为 "一种延长器、 数据传输方法及无源光网络系统" 的中国申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信领域, 具体地涉及一种延长器、 数据传输方法及无源 光网络系统。
背景技术
光纤具有传输频带宽、 容量大、 损耗低和抗干扰能力强等优点, 非常适 合作为高速、 宽带业务的传输媒体。 而在各种光接入技术中, 无源光网络 ( Passive Optical Network, PON )作为一种现在使用的光接入技术, 正越来 越引起人们的关注。
PON技术是一种点对多点(Point to Multi-point, P2MP )方式的光接入技 术, 由光线路终端(Optical Line Termination, OLT ), 光分路器、 光网络单元 ( Optical Network Unit, ONU ) /光网络终端 ( Optical Network Termination, ONT ) 以及连接这些设备的光纤组成。 OLT作为局端设备, 通过一根主干光 纤与光分路器(Optical splitter )连接, 光分路器通过单独的分支光纤连接每 一个 ONU, 下行方向, 光分路器实现分光功能, 通过分支光纤将 OLT的下行 光信号发送给所有的 ONU; 上行方向, 光分路器实现光信号汇聚功能, 将所 有 ONU发送的光信号汇聚, 通过主干光纤发送给 OLT。 为了保证上行方向中 各个 ONU发送的上行数据不发生冲突, OLT必须对各个光网络单元 ONU进 行测距, 根据测距结果控制每个 ONU占有上行光链路的时刻和时长, 同时要 求每个 ONU必须采用突发的时分多址( Time Division Multiple Access, TDMA ) 复用方式发送上行数据。
为了支持 OLT与 ONU的长距离数据传输, 需要对光纤中的光信号进行 放大, 衍生出长距离无源光网络(Long Reach PON, LR-PON ), 如图 1所示, 在光传输通路上增加光功率放大器 (Optical Amplifier , OA ) 或光电光 ( Optical-Electrical-Optical, OEO )转换器。 通常, 光分路器和 OA/OEO转换 器可以集成于同一个设备, 称为延长器(Extender Box, EB )。 EB与 ONU间 的拓朴结构为 P2MP, 所以 OLT与 ONU间的拓朴结构仍是 P2MP。
通常,分布式基站( Base Station, BS )由射频远端单元( Radio Remote Unit, RRU )和基带处理单元(Broadband Unit, BBU )组成, RRU—般可放置于用 户家中, 所以家用 BS—般即为 BS 的 RRU。 RRU与 BBU间采用私有光接口 通过上行光纤和下行光纤连接, 私有光接口无法形成产业规模效应, 所以成 本较高。 当采用标准化的 PON作 BS的 RRU和 BBU之间的规范接口时, 由 于 PON釆用单纤双向技术, 就要求在基站 R U和 BBU中增加双工器或波分 复用 ( Wave Division Multiplexing, WDM )模块, 以支持 PON的单纤双向, 但双工器成本很高, 而家用基站的 RRU通常要求成本足够低才能为用户所接 受。 如何能使 RRU和 BBU之间的接口采用标准化的 PON, 又能将家用基站 的成本控制在较小的范围成为急待解决的问题。
而且, 当采用 PON作 BS的回程(backhaul ) 时, PON作为一种传输技 术, 而不是一种简单的接入技术, 此时对 PON的系统安全性要求比对作为单 纯的接入技术高很多, 运营商特别要求 PON系统能够抵抗 ONU设备的异常 发光, ONU的异常发光实际上是属于一种破坏物理层连接的服务拒绝(Deny of Service, DoS )。
在正常情况下, 每个 ONU均按照 OLT的授权占用上行通道发送数据, 网络不会出现信号冲突。 但是, 当 ONU设备出现故障不响应 OLT的授权而 随机或永久占用上行通道时, 或者有恶意的 ONU随意占用上行通道时, PON 将会陷入瘫痪状态, 从而影响 802.16基站的正常工作。 由于分支节点的无源 特性,无法定位是哪个分支上的 ONU设备出现了问题。采用 PON作 BS的回 程时,抵抗 ONU设备的异常发光的设备安全需求,成为急待解决的技术难题。 发明内容
本发明所要解决的技术问题在于, 提供一种延长器、 数据传输方法及无 源光网络系统, 通过延长器实现家用 BS的双纤到 PON的单纤的转换。
为了解决上述技术问题, 本发明实施例提出了一种延长器, 所述延长器 包括:
下行数据发送模块, 用于向第一无源光网络设备发送下行数据; 上行数据接收模块, 用于接收相对应的第一无源光网络设备发送的上行 数据;
双工器, 用于将所述下行数据发送模块和所述上行数据接收模块所采用 的数据传输模式由双纤传输转换为单纤传输, 实现单纤双向收发;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的端 口, 和所述第一无源光网络设备的上行端口——对应;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的光 纤 , 和所述下行数据发送模块与所述第一无源光网络设备的下行端口相连的 光纤相分离。
相应地, 本发明实施例还提供了一种数据传输方法, 所述方法包括: 接收发自各个第一无源光网络设备的上行数据, 并将其发送给第二无源 光网络设备;
向所述第一无源光网络设备发送下行数据;
上行数据接收模块与所述第一无源光网络设备的上行端口相连的端口, 和所迷第一无源光网络设备的上行端口——对应;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的光 纤, 和下行数据发送模块与所述第一无源光网络设备的下行端口相连的光纤 相分离。
相应地, 本发明实施例还提供了一种无源光网络系统, 所述系统包括第 一无源光网络设备、 延长器及第二无源光网絡设备, 其特征在于, 所述延长 器包括:
下行数据发送模块, 用于向所述第一无源光网络设备发送下行数据; 上行数据接收模块, 用于接收相对应的所述第一无源光网络设备发送的 上行数据;
双工器, 用于将所述下行数据发送模块和所述上行数据接收模块所采用 的数据传输模式由双纤传输转换为单纤传输, 实现单纤双向收发;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的端 口, 和所述第一无源光网络设备的上行端口——对应;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的光 纤, 和所述下行数据发送模块与所述第一无源光网络设备的下行端口相连的 光纤相分离。
实施本发明实施例 ,将作为 BS的回程的 ONU的 PON的上行端口和下行 端口进行分离, 由 EB实现家用 BS的双纤到 PON的单纤的转换适配; 以及 检测出家用 BS的 ONU设备的异常发光并断开相应端口的上行通道, 增强了 PON的稳定性及保证 BS的正常工作。
附图说明
图 1是现有的 LR-PON的网络结构的示意图;
图 2是本发明实施例提供的无源光网络的延长器的结构示意图; 图 3是本发明实施例提供的无源光网络的数据传输方法的流程示意图; 图 4是本发明实施例提供的接收发自各个光网络单元的上行数据的具体 流程示意图;
图 5a、 图 5b是本发明实施例提供的支持 P2P和 P2MP的 LR-PON的网 络结构的示意图;
图 6a、 图 6b是本发明实施例提供的包含基于 OA的 EB的无源光网络的 系统结构图;
图 7a、 图 7b是本发明实施例提供的一种包含基于 OEO的 EB的无源光 网络的系统结构图;
图 8是本发明实施例提供的另一种包含基于 OEO的 EB的无源光网络的 系统结构图;
图 9是本发明实施例提供的包含基于 OA与 OEO混合的 EB的无源光网 络的系统结构图。
具体实施方式
下面结合附图对本发明实施例作进一步详细、 清楚的说明。
图 2是本发明实施例提供的无源光网络的延长器的结构示意图, 如图 2 所示, 该延长器包括: 下行数据发送模块 3, 用于向第一无源光网络设备发送 下行数据; 上行数据接收模块 1 , 用于接收相对应的所述第一无源光网絡设备 发送的上行数据; 双工器 4, 用于将所述下行数据发送模块 3和所述上行数据 接收模块 1 所采用的数据传输模式由双纤传输转换为单纤传输, 实现单纤双 向收发; 所述上行数据接收模块 1 与所述第一无源光网絡设备的上行端口相 连的端口, 和所述第一无源光网络设备的上行端口——对应; 所述上行数据 接收模块 1 与所述第一无源光网络设备的上行端口相连的光纤, 和所述下行 数据发送模块 3与所述第一无源光网络设备的下行端口相连的光纤相分离; 其中, 上述双纤传输指的是数据的上、 下行传输各占用一根光纤, 即数 据传输的收发分离; 单纤传输指的是数据的上、 下行传输共用一根光纤, 即 数据传输的双向合并。
在本发明实施例中, 所述第一无源光网络设备可以是光线路终端, 也可 以是光网络单元。
在本发明实施例中, 所述延长器还包括数据汇聚模块 2, 用于在所述光网 络单元向所述光线路终端传送数据时, 对所述上行数据接收模块 1 接收的上 行数据进行汇聚, 并将汇聚后的数据发送给所述双工器 4。
在本实施例及以下实施例中, 均以光网络单元作为第一无源光网络设备, 光线路终端作为第二无源光网絡设备为例, 对本发明进行详述。 本发明实施例提供的延长器还可以有如下实现方式, 该延长器包括: 下 行数据发送模块 3 , 用于向光网络单元发送下行数据; 至少两个上行数据接收 模块 1 ,用于接收相对应的所述光网络单元发送的上行数据;数据汇聚模块 2, 用于对所述上行数据接收模块 1接收的上行数据进行汇聚; 双工器 4, 用于将 所述数据汇聚模块 2所汇聚的数据转换为单纤模式, 及将光线路终端发送给 所述下行数据发送模块 3 的数据转换为双纤模式的所述下行数据, 实现单纤 双向收发; 所述上行数据接收模块 1 与所述光网络单元的上行端口相连的端 口, 和所述光网络单元的上行端口——对应; 所述上行数据接收模块 1 与所 述光网络单元的上行端口相连的端口, 和所述下行数据发送模块 3 与所述光 网络单元的下行端口相连的端口相分离。
具体实施例中 , PON上行端口和下行端口分离, 上行端口采用点到点的 拓朴结构, 而 PON下行端口仍采 P2MP的拓朴结构。
本发明实施例的光网络单元可以是 ONU或者 ONT。
上行数据接收模块 1进一步包括:
接收子模块 10, 用于接收所 目对应的光网络单元发送的上行数据; 光检测模块 11, 用于对所述光网络单元发送的上行数据进行检测并获得
OD )。
处理模块 12,用于根据所述光检测模块 11所获得的检测结果断开所述光 网络单元发送的上行数据所对应的上行通道。 处理模块 12在本发明实施例中 可以是光开关。
在本发明实施例中, 上行数据接收模块 1至少有两个, 如图 2所示。 所述接收子模块 10可以是分支器, 用于接收所述相对应的光网络单元发 送的上行数据并将所述上行数据分支一部分给所述光检测模块 11进行检测; 所述数据汇聚模块 2 包括光分路器或者波分复用器, 用于对所述上行数 据接收模块 1接收的上行数据进行汇聚。 所述接收子模块 10可以是光接收模块 ( RX ), 用于接收所述相对应的光 网络单元发送的上行数据, 并将所述上行数据转换成电信号;
所述数据汇聚模块 2可以是电汇聚模块, 用于将所述光接收模块转换成 的多路电信号进行汇聚。
所述接收子模块 10可以是以太网接收模块( ETH RX ), 用于接收所述相 对应的光网絡单元发送的上行数据;
所述数据汇聚模块 2可以是网络汇聚模块, 用于将所述以太网接收模块 所接收的上行数据进行汇聚。
所述延长器还包括:
内嵌光网络单元, 用于对所述上行数据的功率和误码率进行测量及上报 测量结果给光线路终端。内嵌光网络单元在本发明实施例中可以是内嵌 ONT, 具体实施中,通过内嵌 ONT向 OLT上报有问题的 EB上的 PON端口和 /或 PON 端口对应的 ONU/ONT, OLT可通过内嵌 ONT管理和配置 OD; 可选地, 根 据内嵌 ONT提供的 EB每个 PON端口下 ONU/ONT占有上行光链路的时刻和 时长, 在相应的时段内 , 对来自 ONU侧 PON端口光信号的功率和误码率进 行测量; 可选地, 将上行光信号的功率和误码率测量结果, 通过内嵌 ONT向 OLT上报, 以支持光线路诊断。
图 3是本发明实施例提供的数据传输方法的流程示意图, 如图 3所示, 该方法包括:
101 , 接收发自各个光网络单元的上行数据;
102, 向所述光网络单元发送下行数据;
103 , 对所述上行数据进行汇聚并把汇聚后的上行数据发送给光线路终 端。
上行数据接收模块与所述光网络单元的上行端口相连的端口, 和所述光 网络单元的上行端口 对应;
所述上行数据接收模块与所述光网絡单元的上行端口相连的端口, 和下 行数据发送模块与所述光网络单元的下行端口相连的端口相分离。
步骤 101及 102在本发明实施例中可以是同时进行的。
图 4是本发明实施例提供的接收发自各个光网络单元的上行数据的具体 流程示意图, 如图 4所示, 步骤 101进一步包括:
201 , 接收各个光网络单元发送的上行数据;
202, 检测所述上行数据是否异常; 当检测结果为是时, 执行步驟 203; 当检测结果为否时, 则执行图 3中的步骤 103;
203 , 断开所述光网络单元发送上行数据所对应的上行通道。
本发明实施例的方法还包括:
当延长器包括分支器时, 步骤 101 之后包括: 将所述上行数据分支一部 分以进行检测。
步骤 103进一步包括:
对所述上行数据进行汇聚;
对所汇聚后的上行数据进行放大;
将放大后的数据发送给所述光线路终端。
本发明实施例所提供的无源光网络系统包括第一无源光网络设备、 延长 器及第二无源光网络设备, 所述延长器包括:
下行数据发送模块, 用于向所述第一无源光网络设备发送下行数据; 上行数据接收模块, 用于接收相对应的所述第一无源光网络设备发送的 上行数据;
双工器, 用于将所述下行数据发送模块和所述上行数据接收模块所采用 的数据传输模式由双纤传输转换为单纤传输, 实现单纤双向收发;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的端 口, 和所述第一无源光网络设备的上行端口——对应;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的光 纤 , 和所述下行数据发送模块与所述第一无源光网絡设备的下行端口相连的 光纤相分离。
在本发明实施例中, 所述第一无源光网络设备可以是光线路终端, 也可 以是光网络单元; 这里以光网络单元作为第一无源光网络设备, 光线路终端 作为第二无源光网络设备为例, 对本发明提供的无源光网络系统进行详述。
在本实施例中, 上述延长器还可以包括: 数据汇聚模块, 用于对所述上 行数据接收模块接收的上行数据进行汇聚, 并将汇聚后的数据发送给所述双 工器。
本发明实施例提供的无源光网络系统中的延长器还可以有如下实现方 式, 所述延长器包括: 下行数据发送模块, 用于向光网络单元发送下行数据; 至少两个上行数据接收模块, 用于接收相对应的所述光网络单元发送的上行 数据; 数据汇聚模块, 用于对所述上行数据接收模块接收的上行数据进行汇 聚; 双工器, 用于将所述数据汇聚模块所汇聚的数据转换为单纤模式, 及将 光线路终端发送给所述下行数据发送模块的数据转换为欢纤模式的所述下行 数据, 实现单纤双向收发; 所述上行数据接收模块与所述光网络单元的上行 端口相连的端口, 和所述光网络单元的上行端口——对应; 所述上行数据接 收模块与所述光网络单元的上行端口相连的端口, 和所述下行数据发送模块 与所述光网络单元的下行端口相连的端口相分离。
具体实施例中, PON上行端口和下行端口分离, 上行端口采用点到点的 拓朴结构, 而 PON下行端口仍采 P2MP的拓朴结构。
所述上行数据接收模块进一步包括:
接收子模块, 用于接收所述相对应的光网络单元发送的上行数据; 光检测模块, 用于对所述光网络单元发送的上行数据进行检测并获得检 测结果;
处理模块, 用于当所述光检测模块所获得的检测结果为异常时, 断开所 述光网络单元发送上行数据所对应的上行通道。
该延长器还包括: 内嵌光网络单元, 用于对所述上行数据的功率和误码率进行测量及上报 测量结果给光线路终端。
下面以 ONU作为第一无源光网络设备, OLT作为第二无源光网络设备为 例, 并结合图 5a、 图 5b、 图 6a、 图 6b、 图 7a、 图 7b、 图 8、 图 9对本发明 实施例提供的延长器、 方法及系统进行更为详细的说明。
图 5a、 图 5b是本发明实施例提供的支持 P2P和 P2MP的 LR-PON的网 络结构的示意图,将作为 BS的回程的 ONU的 PON上行端口和下行端口进行 分离, 上行端口采用点到点(P2P ) 的拓朴结构 (如图 5a、 图 5b中的端口 1 至 n ), 以抵抗 ONU设备的异常发光; 而下行 PON端口 (如图 5a、 图 5b中 的端口 p ), 仍采用 P2MP的拓朴结构, 以节省光纤铺设。 OLT到 EB的光纤 仍采用单纤双向传输。
EB主要用于实现家用 BS的双纤到 PON的单纤的转换适配,以及抵抗家 用 BS的 ONU模块的异常发光。 EB可布设于大楼的楼道, 而 BS可以布设于 家庭内部, 家用 BS RRU的 ONU模块出于成本考虑, 采用上下行分离, 可以 在 ONU和 EB中节省掉用于单纤双向作用的双工器或 WDM模块, 由于家用 BS RRU与 EB的距离并不远(最多上百米), ONU和 EB间上下行分离引入 双纤的成本相比于家用 BS内部增加双工器或 WDM模块的成本要低,有利于 降低无线网络成本。
图示中的光分路器或波分复用器 WDM可集成到 EB,图 5a中的 BS下行 采用 WDM, 适用于每个 ONU采用不同波长; 图 5b中的 BS下行采用光分路 器, 适用于每个 ONU采用同样或不同波长。
对于上行方向 ONU到 EB的之间 P2P连接甚至可采用以太网物理层连接; 而且 OLT到 EB的之间 P2P连接也可采用以太网物理层连接, 数据链路层可 采用 PON MAC层。
在此混合的拓朴下, OLT仍对各个 ONU进行测距,根据测距结果控制每 个 ONU占有上行光链路的时刻和时长。 EB对每个上行 PON端口进行光检测,当 EB发现某个上行端口出现异常 发光占用上行通道, 则切断相应的上行端口 , 避免该端口下异常发光的 ONU 占用上行通道。
图 6a、 图 6b是本发明实施例提供的包含基于 OA的 EB的无源光网络的 系统结构图, 如图 6a、 图 6b所示, 该系统中的 EB是基于 OA的, 该 EB由 分支器(Tap .Tap n, 以及 Tap k )、 双工器(即双工器 k, 相当于图 2中的 双工器 4 )、光分路器或波分复用器 WDM (相当于图 2中的数据汇聚模块 2 )、 光开关(相当于图 2中的处理模块 12 )、 光检测器 OD (相当于图 2中的光检 测模块 11 )、 内嵌 ONT、 上行光放大器 OA、 下行光放大器 OA组成。 图 6a 与图 6b的区别在于, 图 6a中的 BS上行采用光分路器, 适用于每个 ONU采 用同样或不同波长; 图 6b中的 BS上行采用 WDM, 适用于 ONU采用不同波 长。 其中, 分支器、 光开关、 光检测器在其它具体实施例中都是可选的。 当 不需要对上行数据进行检测时则 EB中不需要包括光检测器,当需要进行检测 时, 则需要光检测器; 同样地, 不需要进行处理时则可以不包括光开关; 当 使用光接收模块 ( RX )进行接收光网络单元发送的上行数据时, 可以不包括 分支器, 同时光检测器可以集成在光接收模块里面。
其中, Tap 1〜Tap n用于从 ONU 1 ONU n分别接收的上行数据中分支 出一部分数据给各自上行通道相对应的 OD做光检测用;
光检测器 OD相当于一个 OLT接收机,
1、 对异常发光上行 PON端口的识别检测, 对来自上行 PON端口的光信 号进行解析, 若上行光信号都无法进行正常解析, 则检测出该上行端口中存 在发生异常发光的 ONU, 则触发光开关断开相应端口的上行通道;
2、 可选地, 通过内嵌 ONT向 OLT上报有问题的 EB上的 PON端口和 / 或 PON端口对应的 ONU/ONT;
3、 可选地 , 根据内嵌 ONT提供的 EB每个 PON端口下 ONU/ONT占有 上行光链路的时刻和时长, 在相应的时段内, 对来自 ONU侧 PON端口光信 号的功率和误码率进行测量;
4、 可选地, 将上行光信号的功率和误码率测量结果, 通过内嵌 ONT向
OLT上报, 以支持光线路诊断。
内嵌 ONT用于向 OLT上报有问题的 EB上的 PON端口和 /或 PON端口 对应的 ONU/ONT, OLT可通过内嵌 ONT管理和配置 OD; 另外, 可选地, 内嵌 ONT为 OD提供 OLT分配给 EB每个 PON端口下 ONU/ONT占有上行 光链路的时刻和时长, 参见图 6a、 图 6b, 内嵌 ONT为 OD提供 OLT分配给 EB PON端口 1下的 ONU 1占有上行光链路的时刻和时长,内嵌 ONT为第 m ( l m n )条通道中的 OD提供 OLT分配给 EB PON端口 m下的 ONU m 占有上行光链路的时刻和时长,相应地, 内嵌 ONT为 OD提供 OLT分配给与 其 OD相对应的 EB PON端口下的 ONT m+1、 ONT m+2 ONT n占有 上行光链路的时刻和时长。
双工器用于实现单纤双向收发, 实现家用 BS的双纤到 PON的单纤转换 以及单纤到双纤的转换。
对异常发光 PON端口的识别检测过程如下:
EB通过 Tap从每个 PON端口取出一部分光通过 OD进行光检测, 当 OD 判断某个端口出现异常发光占用上行通道, 则触发光开关断开相应端口的上 行通道, 通过内嵌 ONT向 OLT上艮有问题的 EB上的 PON端口和 /或 PON 端口对应的 ONU/ONT。
若异常发光的 ONU出现在 BS的 PON端口上,此时 OLT/EB立刻能定位 出异常发光的 ONU, 则可及时隔离有问题的 PON端口的上行通路, 保证其 它正常的 PON端口的上行通路不受影响, 对有问题的 PON端口的下行通路 仍然保持畅通, 然后 OLT可通过 EB的下行端口 p, 命令有问题的 PON端口 下的 ONU停止发送上行光信号。
图 7a、 图 7b是本发明实施例提供的一种包含基于 OEO的 EB的无源光 网络的系统结构图, 如图 7a、 图 7b所示, 该系统中的 EB 于 OEO的, 该 EB由双工器!^、 光接收模块 RX (相当于图 2的上行数据接收模块 1 )、 光 发送模块 TX (相当于图 2的下行数据发送模块 3 )、 光检测器 OD (相当于图 2中的光检测模块 11 )、内嵌 ONT组成。对于图 7a, EB还包括电汇聚模块(相 当于图 2中的数据汇聚模块 2 ); 对于图 7b, EB还包括光分路器(相当于图 2 中的数据汇聚模块 2 )、 光开关(相当于图 2中的处理模块 12 )。 其中, 分支 器、 光开关、 光检测器在其它具体实施例中都是可选的。 当不需要对上行数 据进行检测时则 EB中不需要包括光检测器, 当需要进行检测时, 则需要光检 测器; 同样地, 不需要进行处理时则可以不包括光开关; 当使用光接收模块 ( RX )进行接收光网络单元发送的上行数据时, 可以不包括分支器, 同时光 检测器可以集成在光接收模块里面。
其中, 光接收模块 RX用于接收光信号, 并将光信号转换成电信号; 可以 是将 PON物理层光信号转为 PON物理层电信号,并重新产生和添加前导码, 或者是终结 PON物理层,得到 PON MAC帧,相当于内嵌一个 OLT的接收处 理模块; 另外, 光接收模块集成了 OD的功能, 当 OD识别出异常发光 PON 端口, 光接收模块将根据来自 OD的触发关断光接收模块对相应端口的接收。
光发送模块 TX用于将电信号转换成光信号, 并发送光信号; 可以是将 PON物理层电信号转为 PON物理层光信号进行发送, 或者对来自电汇聚模 块的 PON上行 MAC帧进行 PON物理层处理后, 再发送光信号。
电汇聚模块用于将多路的电信号汇聚合成为一路电信号; 可以是将多路 的 PON物理层电信号通过 TDM的方式合成一路 PON物理层电信号, 或者 将多路的 PON上行 MAC帧通过 TDM的方式合成一路电信号。
图 8是本发明实施例提供的另一种包含基于 OEO的 EB的无源光网络的 系统结构图, 该系统采用以太网与 PON的混合技术, 若对于上行方向 ONU 到 EB的之间 P2P连接采用以太网物理层, OLT到 EB的之间 P2P连接物理层 也可采用以太网物理层 , 数据链路层可采用 PON MAC层(如 EPON的 MAC 层), 如图 8所示, 与图 7a、 图 7b不同在于 RX为以太网接收模块 ETH RX、 TX为以太网发送模块 ΕΤΉ ΤΧ、 网络汇聚模块, 相当于图 7a的电汇聚模块、 图 7b的光分路器。 其中, 分支器、 光开关、 光检测器在其它具体实施例中都 是可选的。 当不需要对上行数据进行检测时则 EB中不需要包括光检测器, 当 需要进行检测时, 则需要光检测器; 同样地, 不需要进行处理时则可以不包 括光开关; 当使用光接收模块 ( RX )进行接收光网络单元发送的上行数据时, 可以不包括分支器, 同时光检测器可以集成在光接收模块里面。
图 9是本发明实施例提供的包含基于 OA与 OEO混合的 EB的无源光网 络的系统结构图, 其部件的功能与上述对应的模块或者单元相同, 这里不再 累赘阐述。
实施本发明实施例,将作为 BS的回程的 ONU的 PON的上行端口和下行 端口进行分离, 由 EB实现家用 BS的双纤到 PON的单纤的转换适配; 以及 检测出家用 BS的 ONU设备的异常发光并断开相应端口的上行通道, 增强了 PON的稳定性及保证 BS的正常工作。
以上所揭露的仅为本发明的较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖 的范围。

Claims

权利要求 书
1、 一种延长器, 其特征在于, 所述延长器包括:
下行数据发送模块, 用于向第一无源光网络设备发送下行数据; 上行数据接收模块, 用于接收相对应的第一无源光网络设备发送的上行数 据;
双工器, 用于将所述下行数据发送模块和所述上行数据接收模块所采用的 数据传输模式由双纤传输转换为单纤传输, 实现单纤双向收发;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的端 口, 和所述第一无源光网络设备的上行端口——对应;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的光 纤, 和所述下行数据发送模块与所述第一无源光网络设备的下行端口相连的光 纤相分离。
2、 如权利要求 1所述的延长器, 其特征在于, 还包括:
数据汇聚模块, 用于对所述上行数据接收模块接收的上行数据进行汇聚, 并将汇聚后的数据发送给所述双工器。
3、 如权利要求 1所述的延长器, 其特征在于, 所述第一无源光网络设备为 光网络单元, 所述上行数据接收模块包括:
接收子模块, 用于接收所迷相对应的光网络单元发送的上行数据; 光检测模块, 用于对所述光网络单元发送的上行数据进行检测并获得检测 结果;
处理模块, 用于当所述光检测模块所获得的检测结杲为异常时, 断开所述 光网络单元发送上行数据所相对应的上行通道。
4、 如权利要求 3所述的延长器, 其特征在于,
所述接收子模块具体为分支器, 用于接收所述相对应的光网络单元发送的 上行数据并将所述上行数据分支一部分给所述光检测模块进行检测;
所述数据汇聚模块包括光分路器或者波分复用器, 用于对所述上行数据接 收模块接收的上行数据进行汇聚。
5、 如权利要求 3所述的延长器, 其特征在于,
所述接收子模块具体为光接收模块, 用于接收所述相对应的光网络单元发 送的上行数据, 并将所述上行数据转换成电信号;
所述数据汇聚模块包括电汇聚模块, 用于将所述光接收模块转换成的多路 电信号进行汇聚。
6、 如权利要求 3所述的延长器, 其特征在于,
所述接收子模块具体为以太网接收模块, 用于接收所述相对应的光网络单 元发送的上行数据;
所述数据汇聚模块包括网络汇聚模块, 用于将所述以太网接收模块所接收 的上行数据进行汇聚。
7、 如权利要求 1所述的延长器, 其特征在于, 所述延长器还包括: 内嵌光网络单元, 用于对所述上行数据的功率和误码率进行测量及上报测 量结果给第二无源光网络设备。
8、 一种数据传输方法, 其特征在于, 所述方法包括:
接收发自各个第一无源光网络设备的上行数据, 并将其发送给第二无源光 网络设备;
向所述第一无源光网络设备发送下行数据;
上行数据接收模块与所述第一无源光网络设备的上行端口相连的端口, 和 所述第一无源光网络设备的上行端口——对应;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的光 纤, 和下行数据发送模块与所述第一无源光网络设备的下行端口相连的光纤相 分离。
9、 如权利要求 8所述的方法, 其特征在于, 所述接收发自各个第一无源光 网络设备的上行数据, 并将其发送给第二无源光网络设备, 包括:
接收发自各个第一无源光网络设备的上行数据; 对所述上行数据进行汇聚并把汇聚后的上行数据发送给所述第二无源光网 络设备。
10、 如权利要求 9所述的方法, 其特征在于, 所述对所述上行数据进行汇 聚并把汇聚后的上行数据发送给光线路终端, 包括:
对所述上行数据进行汇聚;
对所汇聚后的上行数据进行放大;
将放大后的数据发送给所述光线路终端。
11、 如权利要求 8所述的方法, 其特征在于, 所述第一无源光网络设备为 光网络单元, 所述接收发自各个光网络单元的上行数据, 包括:
接收各个光网络单元发送的上行数据;
检测所述上行数据是否异常;
当检测结果为是时, 断开所述光网絡单元发送上行数据所相对应的上行通 道。
12、 如权利要求 11所述的方法, 其特征在于, 所述接收各个光网络单元发 送的上行数据之后, 包括:
将所述上行数据分支一部分以进行检测。
13、 一种无源光网络系统, 所述系统包括第一无源光网络设备、 延长器及 第二无源光网络设备, 其特征在于, 所述延长器包括:
下行数据发送模块, 用于向所述第一无源光网络设备发送下行数据; 上行数据接收模块, 用于接收相对应的所述第一无源光网络设备发送的上 行数据;
双工器, 用于将所述下行数据发送模块和所述上行数据接收模块所采用的 数据传输模式由双纤传输转换为单纤传输, 实现单纤双向收发;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的端 口, 和所述第一无源光网络设备的上行端口——对应;
所述上行数据接收模块与所述第一无源光网络设备的上行端口相连的光 纤 , 和所述下行数据发送模块与所述第一无源光网絡设备的下行端口相连的光 纤相分离。
14、 如权利要求 13所述的系统, 其特征在于, 所述延长器还包括: 数据汇聚模块, 用于对所述上行数据接收模块接收的上行数据进行汇聚, 并将汇聚后的数据发送给所述双工器。
15、 如权利要求 13所述的系统, 其特征在于, 所述第一无源光网络设备为 光网络单元, 所述上行数据接收模块包括:
接收子模块, 用于接收所 目对应的光网络单元发送的上行数据; 光检测模块, 用于对所述光网络单元发送的上行数据进行检测并获得检测 结果;
处理模块, 用于当所述光检测模块所获得的检测结杲为异常时, 断开所述 光网络单元发送上行数据所相对应的上行通道。
16、 如权利要求 13所述的系统, 其特征在于, 所述延长器还包括: 内嵌光网络单元, 用于对所述上行数据的功率和误码率进行测量及上报测 量结果给所述第二无源光网络设备。
PCT/CN2009/072772 2008-07-16 2009-07-15 一种延长器、数据传输方法及无源光网络系统 WO2010006549A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09797396.0A EP2312771B1 (en) 2008-07-16 2009-07-15 Extender, data transmission method and passive optical network
US12/982,335 US8559816B2 (en) 2008-07-16 2010-12-30 Extender box, data transmission method and passive optical network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810029506.X 2008-07-16
CN200810029506.XA CN101630979B (zh) 2008-07-16 2008-07-16 一种延长器、数据传输方法及无源光网络系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/982,335 Continuation US8559816B2 (en) 2008-07-16 2010-12-30 Extender box, data transmission method and passive optical network system

Publications (1)

Publication Number Publication Date
WO2010006549A1 true WO2010006549A1 (zh) 2010-01-21

Family

ID=41550022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072772 WO2010006549A1 (zh) 2008-07-16 2009-07-15 一种延长器、数据传输方法及无源光网络系统

Country Status (4)

Country Link
US (1) US8559816B2 (zh)
EP (1) EP2312771B1 (zh)
CN (1) CN101630979B (zh)
WO (1) WO2010006549A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8543008B2 (en) * 2005-03-01 2013-09-24 Alexander I Soto System and method for a subscriber powered network element
CN102215606B (zh) * 2010-04-02 2016-05-25 中兴通讯股份有限公司 基带单元与射频单元之间的连接装置及方法
US8837953B2 (en) 2011-06-01 2014-09-16 Arris Enterprises, Inc. Mitigating noise and OBI in RFoG networks
CN102237932B (zh) * 2010-04-30 2016-07-06 中兴通讯股份有限公司 长距光放大装置、无源光网络和光信号传输方法
CN102238437B (zh) 2010-05-01 2016-06-15 中兴通讯股份有限公司 一种长距盒及其对上下行光的处理方法
CN102238438B (zh) * 2010-05-01 2016-01-20 中兴通讯股份有限公司 一种长距盒及其对上下行光的处理方法
US20120288273A1 (en) * 2011-05-12 2012-11-15 Alcatel-Lucent Usa, Inc. Intelligent splitter monitor
WO2013020023A1 (en) * 2011-08-03 2013-02-07 Huawei Technologies Co., Ltd. Rogue optical network unit mitigation in multiple-wavelength passive optical networks
FR2979778A1 (fr) * 2011-09-05 2013-03-08 France Telecom Procede de protection d'un pon contre l'eblouissement par un ont
US20130183035A1 (en) * 2011-12-01 2013-07-18 Joseph L. Smith Enhanced PON And Splitter Module And Associated Method
US20150086209A1 (en) * 2012-04-05 2015-03-26 Telefonaktiebolaget L M Ericsson (Publ) Arrangement in a Mobile Network
US9350447B1 (en) * 2012-06-22 2016-05-24 Adtran, Inc. Systems and methods for protecting optical networks from rogue optical network terminals
KR101727779B1 (ko) 2013-01-02 2017-04-17 한국전자통신연구원 파장 가변 광 모듈 기반 수동형 광 망 거리 확장장치 및 그 방법
CN104730653B (zh) * 2013-12-23 2016-08-31 华为技术有限公司 光互连系统和方法
US9577758B2 (en) * 2014-04-10 2017-02-21 Tibit Communications, Inc. Method and system for scheduling cascaded PON
US9634761B2 (en) * 2014-04-11 2017-04-25 Alcatel Lucent Apparatus and method for optical-network monitoring
KR20150145128A (ko) * 2014-06-18 2015-12-29 한국전자통신연구원 Xg-pon 링크에서 g-pon 서비스의 수용을 위한 프레임 변환 기반의 중간 경로 확장 장치 및 방법
US9673897B2 (en) * 2015-06-30 2017-06-06 Viavi Solutions Deutschland Gmbh Optical network test instrument including optical network unit identifier capture capability from downstream signals
US10523356B2 (en) * 2016-05-31 2019-12-31 Cable Television Laborties, Inc. System and methods for coherent optical extension
JP2018011137A (ja) * 2016-07-11 2018-01-18 株式会社東芝 通信中継装置、通信中継システム、方法及びプログラム
US10158929B1 (en) 2017-02-17 2018-12-18 Capital Com SV Investments Limited Specialized optical switches utilized to reduce latency in switching between hardware devices in computer systems and methods of use thereof
US10256910B2 (en) * 2017-04-24 2019-04-09 Futurewei Technologies, Inc. Control and management of passive optical network reach extenders
US10848261B1 (en) 2018-08-07 2020-11-24 Adtran, Inc. Systems and methods for identifying rogue optical network units in optical networks with wavelength-division multiplexing
CN109547100B (zh) * 2018-12-05 2021-07-20 广州芯德通信科技股份有限公司 一种强制关闭异常光纤终端的光功率增强装置及方法
CN112887851B (zh) * 2021-01-13 2021-10-08 烽火通信科技股份有限公司 一种家庭全光网络系统及其实现方法
CN115314105B (zh) * 2022-07-06 2023-07-21 江苏信而泰智能装备有限公司 Bob测试系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050644A1 (en) * 1999-12-31 2001-07-12 Pirelli Cavi E Sistemi S.P.A. Network for distributing signals to a plurality of users
EP1387511A2 (en) * 2002-08-03 2004-02-04 Samsung Electronics Co., Ltd. Broadcast/communication unified passive optical network system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909821B2 (en) * 1999-12-31 2005-06-21 Pirelli Cavi E Sistemi S.P.A. Network for distributing signals to a plurality of users
US20020071149A1 (en) * 2000-12-12 2002-06-13 Xu Dexiang John Apparatus and method for protection of an asynchronous transfer mode passive optical network interface
KR20040105431A (ko) * 2003-06-09 2004-12-16 삼성전자주식회사 수동 광통신 망에서 광 파워 등화 장치
CN100461654C (zh) * 2003-12-12 2009-02-11 武汉华工飞腾光子科技有限公司 基于波分多址的以太网无源光网络及其传输数据的方法
KR100675834B1 (ko) * 2004-10-28 2007-01-29 한국전자통신연구원 루프백 형 파장분할다중방식의 수동형 광 네트워크
KR100678256B1 (ko) * 2005-01-12 2007-02-02 삼성전자주식회사 파장 분할다중 방식 수동형 광 가입자 망
US7787771B2 (en) * 2005-12-08 2010-08-31 Electronics And Telecommunications Research Institute Extendable loop-back type passive optical network and scheduling method and apparatus for the same
CN101212254A (zh) * 2006-12-27 2008-07-02 华为技术有限公司 一种光源链路传输装置和方法
CN101114885B (zh) * 2007-09-05 2011-07-27 华中科技大学 混合波分时分复用无源光网络系统、终端及信号传输方法
US20090208210A1 (en) * 2008-02-18 2009-08-20 Elmar Trojer Passive optical network remote protocol termination
US8090258B2 (en) * 2008-09-19 2012-01-03 Tellabs Petaluma, Inc. Method and apparatus for correcting faults in a passive optical network
US8244125B2 (en) * 2009-01-21 2012-08-14 Calix, Inc. Passive optical network protection switching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050644A1 (en) * 1999-12-31 2001-07-12 Pirelli Cavi E Sistemi S.P.A. Network for distributing signals to a plurality of users
EP1387511A2 (en) * 2002-08-03 2004-02-04 Samsung Electronics Co., Ltd. Broadcast/communication unified passive optical network system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2312771A4 *

Also Published As

Publication number Publication date
CN101630979A (zh) 2010-01-20
EP2312771A4 (en) 2012-02-22
US20110129214A1 (en) 2011-06-02
EP2312771A1 (en) 2011-04-20
EP2312771B1 (en) 2014-01-29
CN101630979B (zh) 2015-05-06
US8559816B2 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
WO2010006549A1 (zh) 一种延长器、数据传输方法及无源光网络系统
JP5490517B2 (ja) 光通信システム、光通信方法およびolt
CA2819857C (en) Multiplex conversion for a passive optical network
CN101651492B (zh) 光接入网络的延长器设备、系统和异常发光故障处理方法
WO2010111923A1 (zh) 无源光网络保护方法、主备切换控制设备和系统
US20070230958A1 (en) Method and System for Maintenance of a Passive Optical Network
WO2010023721A1 (ja) Ponシステムおよび冗長化方法
US8977127B2 (en) Inter-optical line terminal (OLT) communication in multiple-OLT passive optical networks (PONs)
WO2013185306A1 (zh) 多波长无源光网络的波长配置方法、系统和装置
WO2007095805A1 (en) A loading, detecting and monitoring method and apparatus for optical channel-associated signal
WO2008080350A1 (fr) Procédé et dispositif pour ajuster une bande passante dans un réseau d'accès optique de façon dynamique et système apparenté
JP5137906B2 (ja) 光アクセス網、光加入者装置および光アクセス網の通信設定方法
JP2010034877A (ja) ポイント−マルチポイントシステムにおける冗長化伝送システム
CN107666362B (zh) 一种电力通信多业务隔离接入系统及接入方法
JP5067610B2 (ja) Ponシステムにおける局側端局装置
WO2007134520A1 (fr) Procédé de maintenance de réseau optique passif, élément de réseau optique et terminal de ligne optique
JP2009055267A (ja) 光伝送システム
CN106160840B (zh) 波分复用无源光网络光纤链路分布式保护装置及其保护方法
KR20190002277A (ko) 인빌딩 유무선 광통합 장치 및 유선 광신호 처리 장치
US9584249B2 (en) Station-side terminal apparatus, optical access network, and communication method
JP2015173384A (ja) 通信システム、加入者側装置、局側装置および無瞬断切替方法
JP6414406B2 (ja) 局側装置、宅側装置、ponシステム及び光通信方法
JP5942751B2 (ja) Wdm/tdm−pon方式用の局側装置及び光通信ネットワークシステム
KR101385390B1 (ko) Epon 시스템에서 단말 장치의 슬립 모드 동작 방법 및 이를 구현하는 단말 장치
JP2014033269A (ja) 利用者側光終端装置、局側光終端装置、制御装置、通信装置、光伝送システムおよび省電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009797396

Country of ref document: EP