WO2010004940A1 - 血管特性計測装置及び血管特性計測方法 - Google Patents

血管特性計測装置及び血管特性計測方法 Download PDF

Info

Publication number
WO2010004940A1
WO2010004940A1 PCT/JP2009/062217 JP2009062217W WO2010004940A1 WO 2010004940 A1 WO2010004940 A1 WO 2010004940A1 JP 2009062217 W JP2009062217 W JP 2009062217W WO 2010004940 A1 WO2010004940 A1 WO 2010004940A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
light
measurement
blood
unit
Prior art date
Application number
PCT/JP2009/062217
Other languages
English (en)
French (fr)
Inventor
嘉之 山海
Original Assignee
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学 filed Critical 国立大学法人筑波大学
Priority to CN200980127040XA priority Critical patent/CN102088899B/zh
Priority to EP09794385.6A priority patent/EP2314210B1/en
Priority to US13/003,017 priority patent/US9113797B2/en
Priority to KR1020117000687A priority patent/KR101248517B1/ko
Priority to JP2010519760A priority patent/JP5283700B2/ja
Publication of WO2010004940A1 publication Critical patent/WO2010004940A1/ja
Priority to HK11112116.1A priority patent/HK1157608A1/xx

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/417Evaluating particular organs or parts of the immune or lymphatic systems the bone marrow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography

Definitions

  • the present invention relates to a blood vessel characteristic measuring apparatus and a blood vessel characteristic measuring method configured to measure a state in a blood vessel through which blood flows without contact.
  • the pulse wave velocity measuring device is provided from a predetermined portion generated at every cycle of the electrocardiographic waveform detected by the electrocardiographic induction device to a predetermined portion generated at every cycle of the pulse wave detected by the pressure pulse wave sensor.
  • the propagation speed of the pulse wave in the artery is calculated based on the time difference.
  • the propagation speed is calculated based on the distance including propagation in the aorta connected to the heart. Therefore, in the pulse wave velocity measuring device, when the propagation distance is long and the diameter of the aorta is large, the pulse wave velocity in the artery becomes low and the propagation time, that is, the time difference becomes long. Increases accuracy.
  • a pulse wave sensor that measures a pulse wave from a waveform of a signal when light is transmitted through a blood vessel by irradiating light to a measurement region of a subject (see, for example, Patent Document 2).
  • the pulse wave sensor described in Patent Document 2 is a method of irradiating light on a fingertip and measuring blood flow from a detection signal of the light.
  • the skin of the fingertip is a light receiving unit. Since the fingertip is pressed by being touched, there is a problem in that the blood flow in the blood vessel of the fingertip changes and the measurement accuracy decreases.
  • an object of the present invention is to reduce the burden on the subject and solve the decrease in measurement accuracy.
  • the present invention has the following means.
  • the present invention includes a light-emitting unit that is provided at a position facing a measurement region of a subject and that irradiates light on the measurement region and a light-receiving unit that receives light propagating through the measurement region in a non-contact manner.
  • a blood flow measurement that measures displacement of blood vessels and tissues around the blood vessels due to blood flow in the measurement region based on the light intensity when the light emitted from the light emitting unit is received by the light receiving unit Means, blood vessel displacement deriving means for deriving the displacement of the blood vessel wall based on the displacement of the blood vessel and the tissue around the blood vessel obtained by the blood flow measuring means, and electrocardiographic measuring means for measuring the electrocardiographic signal of the subject And vascular state deriving means for deriving the inner wall state of the blood vessel at each measurement position based on the difference between the waveform of the electrocardiogram signal and the waveform of the detection signal obtained from the light receiving unit. Solve Than is.
  • the present invention is the blood vessel characteristic measurement device according to (1), wherein the blood vessel state deriving unit compares the waveform of the electrocardiogram signal with the waveform of the detection signal obtained from the light receiving unit. The above-described problem is solved by deriving the inner wall state of the blood vessel at each measurement position based on the phase difference.
  • the present invention is the blood vessel characteristic measuring device according to (1), which solves the above-mentioned problem by optically measuring blood cell components according to the state of the inner wall of the blood vessel.
  • the present invention is the blood vessel characteristic measurement device according to (1), in which the sensor unit includes a plurality of light emitting units that irradiate light to a plurality of measurement points of a subject and the plurality of measurement points.
  • the problem is solved by deriving the inner wall state of the blood vessel at each measurement position based on the difference.
  • the present invention is the blood vessel characteristic measurement device according to (4), wherein the plurality of light receiving units measure a light propagation intensity upstream of a blood vessel existing in a measurement target region. And a second light receiving portion that is arranged downstream of the blood vessel from the first light receiving portion and that measures the propagation intensity of light downstream of the blood vessel existing in the measurement region. To do.
  • the present invention is the blood flow characteristic measurement device according to (4), wherein the plurality of light receiving units are arranged at predetermined intervals in the circumferential direction at different radial positions centered on the light emitting unit. This solves the above-mentioned problem.
  • the present invention provides the blood vessel characteristic measuring device according to (1), The sensor unit is provided in a movable blood flow measurement unit, and solves the above problem by measuring the light propagation intensity in an arbitrary measurement region.
  • the present invention provides the blood vessel characteristic measurement device according to (7), The blood flow measurement unit A battery for supplying current to the sensor unit; A wireless communication device that transmits a detection signal detected by the sensor unit as a wireless signal; By solving this problem, the above-mentioned problems are solved.
  • the present invention provides the blood vessel characteristic measurement device according to (1),
  • the sensor unit is supported at a plurality of locations on a net-like base attached to the head of the subject, and solves the above problem by measuring the light propagation intensity at each of a plurality of measurement positions on the subject's head.
  • To do. (10) The blood vessel characteristic measurement apparatus according to (9), wherein the plurality of light receiving units are arranged at predetermined intervals so as to face the surface of the head from outside.
  • the state deriving means derives an inner wall state of the blood vessel at each measurement position of the head based on a difference between the waveform of the electrocardiogram signal and the waveforms of the plurality of detection signals obtained from the plurality of light receiving units.
  • the present invention is the blood vessel characteristic measurement device according to (9), wherein the blood flow measurement unit maps each measurement data obtained from the plurality of light receiving units for each address with respect to the head. Processing, storing the displacement of the blood vessel for each measurement position corresponding to each address in the database, and the blood vessel state deriving means reads the displacement of the blood vessel for each measurement position from the database, and the displacement of the blood vessel corresponding to each address Is extracted to derive the state of the blood vessel at each measurement position of the head, and to generate an image of the blood vessel characteristics of the entire head, thereby solving the above problem.
  • the present invention irradiates light to the measurement area from the light emitting part of the sensor unit arranged so as to face any measurement area of the subject, and the light that has propagated through the measurement area is received by the light receiving part.
  • the procedure for receiving light Based on a detection signal of light intensity when the light emitted from the light emitting unit is received by the light receiving unit, a procedure for measuring the displacement of the blood vessel and the tissue around the blood vessel due to blood flow in the measurement region; Deriving the displacement of the blood vessel wall based on the displacement of the blood vessel and tissue around the blood vessel; Measuring the electrocardiographic signal of the subject; A procedure for deriving the inner wall state of the blood vessel at each measurement position based on the difference between the waveform of the electrocardiogram signal and the waveform of the detection signal obtained from the light receiving unit, By executing the above, the above-mentioned problem is solved.
  • the present invention in order to derive the inner wall state of the blood vessel at each measurement position based on the difference between the waveform of the light receiving unit that receives light propagated through the measurement region in a non-contact manner and the waveform of the electrocardiogram signal, Since the state of the blood vessel can be measured without contact and the subject is not restrained, the burden on the subject can be reduced. Further, according to the present invention, since the state of the blood vessel is measured without squeezing the blood vessel, the measurement accuracy is high. For example, even in a head where a plurality of blood vessels are arranged, blood vessel characteristics according to the inner wall state of the blood vessel It is possible to measure the data.
  • FIG. 1 is a system diagram showing a schematic configuration of Embodiment 1 of a blood vessel characteristic measuring apparatus according to the present invention. It is a figure for demonstrating the principle of a blood-flow measurement method. It is a graph which shows the relationship between the wavelength of a laser beam, and the light absorption state at the time of changing the oxygen saturation of blood. It is a flowchart explaining the measurement control process which a control apparatus performs. It is a figure which compares a cardiac potential signal waveform (A) with a light-receiving part detection signal waveform (B). It is a longitudinal cross-sectional view which shows the modification 1 of a blood flow measurement part.
  • A cardiac potential signal waveform
  • B light-receiving part detection signal waveform
  • FIG. 1 is a system diagram showing a schematic configuration of Embodiment 1 of a blood vessel characteristic measuring apparatus according to the present invention.
  • the blood vessel characteristic measurement device 100 includes a movable blood flow measurement unit 20, an optical sensor unit 30, an electrocardiograph (electrocardiogram measurement means) 40, and a control device 50.
  • the blood flow measurement unit 20 measures the blood flow at a position facing the skin surface 10 of the measurement area of the subject.
  • the sensor unit 30 includes an optical sensor that is built in the blood flow measurement unit 20 and measures a blood flow flowing in the blood vessel in a non-contact manner.
  • the electrocardiograph (electrocardiogram measuring means) 40 measures a cardiac potential and outputs a cardiac potential signal.
  • the control device 50 obtains the displacement of the inner wall of the blood vessel and the displacement of the tissue around the blood vessel based on the difference between the detection signal of the sensor unit 30 and the electrocardiographic signal of the electrocardiograph 40, and based on this, the blood vessel characteristics (ratio of elasticity of the blood vessel) , The amount of plaque in the blood vessel, the rate of arteriosclerosis).
  • the blood flow measurement unit 20 is formed in a size that can be moved by hand, and can be moved appropriately depending on, for example, which part of the human body the blood flow is measured. It is possible to measure blood flow.
  • the blood flow measurement unit 20 is a measurement surface 24 in which the bottom surface of the conical portion 22 is opposed to the region to be measured (in a non-contacting proximity state), and a grip portion 26 protrudes above the conical portion 22. ing. Therefore, the measurer who measures the blood vessel characteristics holds the grasping portion 26 and appropriately faces the measurement surface 24 on the bottom surface side to the skin surface 10 of the measurement target region, so that blood vessels and blood vessels in the measurement target region can be measured. Non-contact measurement of tissue displacement around blood vessels can be performed.
  • the sensor unit 30 includes a light emitting unit 32 and a pair of light receiving units 34 and 36.
  • the light emitting unit 32 is a light source that irradiates a subject with laser light.
  • the pair of light receiving units 34 and 36 are respectively arranged downstream of the blood flow from the light emission point of the light emitting unit 32, and output signals corresponding to the received light intensity.
  • the blood flow measurement unit 20 includes a rechargeable battery 33, a control unit 37, and a wireless communication device 39.
  • the control unit 37 supplies the current from the battery 33 to the light emitting unit 32 to emit light, and reads light reception signals from the light receiving units 34 and 36 that have received the light propagated through the skin surface 10.
  • the wireless communication device 39 performs wireless communication with the control device 50 and transmits light reception signals from the light receiving units 34 and 36 to the control device 50 wirelessly. Further, an indicator lamp 22a is provided at the downstream inclined position of the conical portion 22 to notify the light emitting portion 32 that it is on the downstream side (the light receiving portions 34, 36 side).
  • the indicator lamp 22a is, for example, a movement direction indicator lamp that includes a light emitting diode or the like and blinks at a constant cycle to indicate a light receiving direction (movement direction).
  • the indicator lamp 22a also serves as a warning lamp for preventing loss due to wireless and a charging instruction lamp for instructing charging by switching from blinking to lighting when charging of the battery 33 becomes necessary.
  • the blood flow measurement unit 20 is a wireless unit that can perform near field communication with the control device 50 by weak radio waves, it can freely move to the measurement area.
  • the rechargeable battery (battery) 33 of the blood flow measurement unit 20 is appropriately charged when it is not used without blood flow measurement.
  • the light emitting unit 32 and the pair of light receiving units 34 and 36 are provided on the same plane as the measurement surface 24 formed on the lower surface of the sensor unit 30. Therefore, when the laser light A from the light emitting unit 32 is irradiated on the skin surface 10 in an arbitrary measurement target region, the laser light A is reflected on the skin surface 10 and the blood vessel 12 disposed below the skin surface 10. Is transmitted to the measurement surface 24 through the blood flow.
  • the pair of light receiving units 34 and 36 each receive light emitted from the skin surface 10 (light including reflected light and transmitted light) and output an electrical signal corresponding to the received light amount (light intensity). Then, the control unit 37 of the blood flow measurement unit 20 converts the detection signal detected by the light receiving units 34 and 36 into a wireless signal by the wireless communication device 39 and transmits it to the control device 50.
  • the detection signals from the light receiving units 34 and 36 are output as a predetermined cycle or a continuous signal according to the light emission signal from the light emitting unit 32.
  • the wireless communication device 39 is provided at the upper end of the grip portion 26 that easily transmits the detection signal of the blood flow measurement portion 20, and is protected by a hemispherical protective cover.
  • the electrocardiograph 40 measures the electrocardiogram generated according to the movement of the heart 110 by the electrode 42 attached to the skin of the subject.
  • the attachment position of the electrode 42 should just be a position which is easy to detect an electrocardiogram near the heart.
  • electrodes are attached to four places for limb guidance attached to the limbs and six places for chest guidance attached to the chest of the subject.
  • the blood vessel characteristics are measured by using the waveform of the electrocardiogram as a trigger, and therefore, only one location to be measured for the electrocardiogram may be used.
  • the control device 50 is composed of a personal computer or the like, and has a blood flow measuring means 60 that reads each control program stored in the storage device 52 and performs each control process, a blood vessel displacement deriving means 70, and a blood vessel state deriving means 80. .
  • the blood flow measuring means 60 measures the displacement of the blood vessel and the tissue around the blood vessel due to the blood flow, based on the light intensity when the light emitted from the light emitting unit 32 of the sensor unit 30 is received by the light receiving units 34 and 36.
  • the blood vessel displacement deriving means 70 derives the displacement of the inner wall of the blood vessel 12 based on the displacement of the blood vessel and the tissue around the blood vessel.
  • the blood vessel state deriving means 80 obtains the pulse wave propagation velocity at each measurement position from the phase difference between the waveform of the electrocardiogram signal of the electrocardiograph 40 and the waveform of the detection signal obtained from the light receiving units 34 and 36, and the pulse wave The displacement state of the inner wall of the blood vessel 12 is derived from the propagation speed.
  • control device 50 includes a storage device 52, a wireless communication device 54, and a charging device 56.
  • storage device 52 forms the database which stores the measurement data, the calculation result, etc. which were transmitted from each said control program and the blood-flow measurement part 20.
  • the wireless communication device 54 performs data communication wirelessly with the wireless communication device 39 of the blood flow measurement unit 20.
  • the charging device 56 is mounted with the blood flow measurement unit 20 and charges the battery 33 of the blood flow measurement unit 20.
  • the control device 50 When receiving the measurement data transmitted from the blood flow measurement unit 20 by the wireless communication device 54, the control device 50 automatically stores the measurement data in the database of the storage device 52.
  • blood vessel inner wall displacement data (contraction of the inner diameter of the blood vessel) corresponding to the measurement result of the displacement of the blood vessel due to blood flow and the tissue around the blood vessel, the electrocardiographic signal waveform of the electrocardiograph 40 and the light receiving unit 34,
  • the blood vessel characteristic data corresponding to the phase difference T with the 36 detection signal waveforms is stored in advance.
  • the blood vessel characteristics include the proportion of blood vessel elasticity, the amount of plaque in the blood vessel (swelling of the intima), the proportion of arteriosclerosis and the like.
  • the control device 50 is connected to a monitor 90, generates image data from blood flow measurement data measured by the sensor unit 30 of the blood flow measurement unit 20, and generates a blood flow measurement image 92 and blood vessel characteristics based on the image data.
  • the result image 94 is displayed on the monitor 90.
  • the measurer faces the measurement surface 24 close to the subject's skin surface 10 while holding the blood flow measurement unit 20 in his / her hand while viewing the measurement image 92 and the blood vessel characteristic result image 94 displayed on the monitor 90 (non-contact). It is possible to check whether the blood flow is normal.
  • the blood vessel characteristic measuring apparatus 100 can move the blood flow measuring unit 20 to an arbitrary region to be measured, it is possible to measure the blood vessel characteristic of any part of the subject. Furthermore, since the blood flow measurement unit 20 is non-contact, measurement work can be easily performed without restraining the subject, and attachment / detachment work is unnecessary as in the method of contacting the subject, and blood vessel characteristics can be efficiently performed in a short time. Can be measured.
  • FIG. 2 is a diagram for explaining the principle of the blood flow measurement method. As shown in FIG. 2, when the blood is irradiated with laser light A from the outside, the laser light A that has entered the blood layer 130 has a reflected scattered light component due to normal red blood cells 140 and a reflected scattered light component due to attached thrombus. It travels through the blood as light of both components.
  • the light emitting unit 32 and the light receiving unit 32 of the sensor unit 30 receive light.
  • the blood vessels on the skin surface 10 facing the portions 34 and 36 and the surrounding tissues are deformed, so that the state of the light transmission amount and the light reflection amount changes, and the detection signals of the light receiving portions 34 and 36 change. To do.
  • the blood flow measuring unit 20 light is emitted from the light emitting unit 32 toward the skin surface 10, and the light received by the light receiving units 34 and 36 passes through the skin and reaches the blood vessel. Some components arrive and pass through the blood and are received by the light receiving portions 34 and 36, and some components are reflected by the skin surface 10 and received by the light receiving portions 34 and 36. That is, since the light receiving component of the light reflected and received by the skin surface 10 is larger than the amount of light transmitted through the blood vessel, the displacement of the tissue around the blood vessel displaced with the pulsation of the blood vessel is reflected from the skin surface 10. It becomes possible to measure with light.
  • hematocrit volume ratio of erythrocytes per unit volume, that is, the volume concentration of erythrocytes per unit volume, also expressed as Ht
  • Ht volume ratio of erythrocytes per unit volume
  • the optical properties of blood are determined by blood cell components (especially hemoglobin inside the cells of red blood cells).
  • red blood cells have a property that hemoglobin easily binds to oxygen, so that they also serve to transport oxygen to brain cells.
  • the oxygen saturation of blood is a numerical value representing what percentage of hemoglobin in the blood is bound to oxygen.
  • the oxygen saturation is correlated with the oxygen partial pressure (PaO2) in arterial blood and is an important index of respiratory function (gas exchange).
  • Factors affecting oxygen partial pressure include alveolar ventilation, and also the environment such as atmospheric pressure and inhaled oxygen concentration (FiO2), ventilation / blood flow ratio, gas diffusion capacity, There is gas exchange in the alveoli, such as the short circuit rate.
  • the control device 50 has arithmetic means for processing a signal corresponding to the amount of light (light intensity) received by the light receiving portions 34 and 36 of the sensor unit 30.
  • calculation means calculation processing for detecting the displacement state of the blood vessel and the tissue around the blood vessel based on the blood flow is performed based on the measurement values output from the light receiving units 34 and 36 of the sensor unit 30 as described later.
  • the laser light A of the light emitting unit 32 is irradiated as pulsed light or continuous light that is intermittently emitted at a predetermined time interval (for example, 10 Hz to 1 MHz).
  • a point reduction frequency which is a frequency at which the pulsed light is reduced, is determined according to the blood flow velocity, and is measured continuously or at least twice the sampling frequency. Measure with When continuous light is used, the measurement sampling frequency is determined according to the blood flow velocity and measured.
  • Hemoglobin (Hb) in the blood undergoes a chemical reaction with oxygen in the lungs by breathing to become HbO2 and take in oxygen into the blood.
  • the degree of oxygen in the blood depending on the state of breathing (Oxygen saturation) is slightly different. That is, in the present invention, when light is irradiated to blood, a phenomenon is found in which the light absorption rate changes depending on the oxygen saturation, and this phenomenon becomes a disturbance factor in the blood flow measurement by the laser light A. We decided to remove the influence of saturation.
  • FIG. 3 is a graph showing the relationship between the wavelength of laser light and the light absorption state when the oxygen saturation of blood is changed.
  • hemoglobin contained in red blood cells is divided into oxygenated hemoglobin combined with oxygen (HbO2: graph II, indicated by a broken line) and non-oxidized hemoglobin (Hb: graph I, indicated by a solid line).
  • HbO2 graph II, indicated by a broken line
  • Hb non-oxidized hemoglobin
  • the light absorptance with respect to light is greatly different. For example, blood containing plenty of oxygen is vivid as fresh blood.
  • venous blood is darker than it is because it has released oxygen.
  • the wavelength region of the laser beam A used in the present invention is from about 600 nm to 1500 nm, and thereby the light absorption rate of hemoglobin (Hb) is practically low and includes the isosbestic point X in the region. Therefore, it can be considered as an isosbestic point for calculation by utilizing measurement points of two wavelengths or more. That is, it is possible to make the specification not affected by the oxygen saturation.
  • the calculation formula (1) of the red blood cell concentration R when the one-point one-wavelength method performed by the conventional measurement method is used can be expressed as the following formula.
  • the red blood cell concentration is the incident transmitted light amount Iin of the laser beam A emitted from the light emitting unit 32, the distance (optical path length) L between the light emitting unit 32 and the light receiving units 34 and 36, and the hematocrit described above. It becomes a function with (Ht). Therefore, when the red blood cell concentration is determined by the method of formula (1), the red blood cell concentration varies depending on three factors, and it is difficult to accurately measure the red blood cell concentration.
  • the calculation formula (2) of the red blood cell concentration Rp when the two-point one-wavelength method according to the present embodiment is used can be expressed as the following formula.
  • the red blood cell concentration is between the two light receiving portions 34 and 36. This is a function of the distance ⁇ L and the above-described hematocrit (Ht).
  • the red blood cell concentration is obtained by the method of equation (2), since the distance ⁇ L between the light receiving parts 34 and 36 is known in advance among the two factors, the red blood cell concentration is measured as a value using the hematocrit (Ht) as a coefficient. Is done. Therefore, in this calculation method, it is possible to accurately measure the red blood cell concentration as a measured value corresponding to hematocrit (Ht).
  • the calculation formula (3) of the red blood cell concentration Rpw when the two-point two-wavelength method according to the modification of the present embodiment is used can be expressed as the following formula.
  • the red blood cell concentration Rp flowing through the blood vessel 12 is measured by the two-point one-wavelength measurement method using the above-described arithmetic expression (2).
  • the red blood cell concentration is a function of the distance ⁇ L between the two light receiving portions 34 and 36 and the above-described hematocrit (Ht). Therefore, when the red blood cell concentration Rp is obtained, since the distance ⁇ L between the light receiving units 34 and 36 of the two factors is known in advance, the red blood cell concentration is measured as a value with the hematocrit (Ht) as a coefficient. Therefore, according to the calculation method, it is possible to accurately measure the red blood cell concentration as a measurement value corresponding to hematocrit (Ht), and it is possible to accurately measure the blood flow state. In this way, since the blood flow state can be measured without being affected by disturbance light or the like, it is not necessary to bring the sensor unit into close contact with the surface of the measurement area.
  • the measurement control process executed by the control device 50 will be described with reference to the flowchart of FIG. In S11 of FIG. 4, when measurement data (detection signal) detected by the light receiving units 34 and 36 of the sensor unit 30 is received by the wireless communication device 54, the measurement data is read.
  • the read measurement data is stored in the database of the storage device 52.
  • the process proceeds to S13, and the concentration of red blood cells Rp flowing through the blood vessel 12 is calculated by the above-described calculation formula (2) by the two-point one-wavelength measurement method.
  • the blood flow change in the measurement region obtained based on the red blood cell concentration Rp is stored in the database of the storage device 52, and at the same time, the monitor 90 shows the displacement state of the blood vessel and the tissue around the blood vessel by the current blood flow. A corresponding blood flow measurement image 92 is displayed.
  • blood vessel inner wall displacement data (contraction of the inner diameter of the blood vessel) corresponding to the displacement state of the blood vessel due to blood flow and the tissue around the blood vessel is derived from the database.
  • the process proceeds to S16, and the electrocardiographic signal detected by the electrocardiograph 40 is read.
  • the electrocardiographic signal waveform of the electrocardiograph 40 is compared with the detection signal waveforms of the light receiving units 34 and 36 (or the waveform of the inner wall displacement data corresponding to the blood flow change).
  • FIG. 5 is a diagram comparing the cardiac potential signal waveform (A) and the light receiving portion detection signal waveform (B).
  • S17 as shown in FIG. 5, the point corresponding to the peak value of the R wave out of the Q wave, R wave, and S wave of the electrocardiographic signal waveform (A) and the highest light receiving part detection signal waveform (B).
  • the phase difference T from the point indicating the value is obtained.
  • the pulse wave propagation velocity is obtained by dividing the distance from the heart to the measurement region by the phase difference T between the electrocardiogram signal waveform of the electrocardiograph 40 and the detection signal waveforms of the light receiving units 34 and 36. Furthermore, the blood vessel characteristics of the measurement region corresponding to the pulse wave velocity (the elasticity ratio of the blood vessel, the amount of plaque in the blood vessel, the ratio of arteriosclerosis) are derived from the database, and the arteriosclerosis degree of the blood vessel in the measurement region is calculated. To derive.
  • the degree of arteriosclerosis which is the derivation result of the blood vessel characteristic, is stored in the database of the storage device 52, and the blood vessel characteristic result image 94 corresponding to the degree of arteriosclerosis obtained this time is displayed on the monitor 90.
  • next S20 it is checked whether or not the sensor unit 30 has moved.
  • S20 when the detection signal waveforms of the light receiving sections 34 and 36 change, it is determined that the sensor unit 30 has moved from the position facing the measurement area, the process returns to S11, and the control processes of S11 to S20 are performed. repeat.
  • S20 described above for example, when the measurement surface 24 is separated from the skin 10 by a predetermined distance or more and the light receiving units 34 and 36 cannot receive the light from the light emitting unit 32, and the level of the detection signal is reduced to zero, the sensor unit 30 Is determined to have moved. Further, for example, when the measurement surface 24 is stationary with a constant distance from the skin 10 and the level of the detection signal from the light receiving units 34 and 36 is constant, it is determined that the sensor unit 30 has not moved. .
  • S20 if the detection signal waveforms of the light receiving portions 34 and 36 do not fluctuate, it is determined that the sensor unit 30 has not moved from the position opposed to the measurement area, and the process proceeds to S21, where the sensor unit 30 is stationary. It is checked whether or not the state has continued for a predetermined time (for example, 30 seconds). In S21, when the stationary state of the sensor unit 30 is less than the predetermined time, the process of S20 is repeated. However, when the stationary state of the sensor unit 30 is continued for a predetermined time or more in S21, the measurement process is performed in the same measurement area. Therefore, the process proceeds to S22 and the measurement process is stopped and the blood flow measurement unit 20 is stopped. The consumption of the battery 33 mounted on the battery is avoided.
  • a predetermined time for example, 30 seconds
  • the blood flow measuring unit 20 is placed on the charging device 56 and the battery 33 is charged in the stop state of S22. Then, when the blood flow measurement unit 20 is picked up from the charging device 56, the process returns to S11 again, and the measurement process is resumed.
  • FIG. 6 is a longitudinal sectional view showing a first modification of the blood flow measurement unit 20.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the sensor unit 30A of the blood flow measurement unit 20A of the first modification includes the light emitting unit 32 and the pair of light receiving units 34 and 36 described above, and an optical path separating member 38.
  • the optical path separation member 38 is made of, for example, a holographic optical element (HOE) using a hologram, and the light emitting portion 32 and the pair of light receiving portions 34 and 36 are mounted on the upper surface, and the measurement surface 24 is formed on the lower surface. is doing. Therefore, when the laser light A from the light emitting unit 32 passes through the optical path separating member 38 and is irradiated onto the skin surface 10 in an arbitrary measurement region, a part of the light component of the laser light A is reflected by the skin surface 10. The remaining light component passes through the blood flow flowing through the blood vessel 12 disposed below the skin surface 10 and propagates to the measurement surface 24.
  • the pair of light receiving units 34 and 36 each receive the light propagated to the optical path separating member 38 and output a detection signal corresponding to the received light amount (the light intensity of the reflected light and the transmitted light).
  • FIG. 7A is a longitudinal sectional view showing a second modification of the blood flow measurement unit 20.
  • FIG. 7B is a bottom view of Modification 2 of the blood flow measurement unit 20.
  • 7A and 7B the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the sensor unit 30B of the blood flow measurement unit 20B according to Modification 2 has a light emitting unit 32 attached to the center (viewed from below) of the measurement surface 24.
  • a plurality of light receiving portions 34 1 to 34 n are arranged in a spiral around the light emitting portion 32. That is, the plurality of light receiving portions 34 1 to 34 n are provided at predetermined intervals in the circumferential direction at different radial positions from the light emitting portion 32.
  • the light emitted from the light emitting unit 32 to the skin surface 10 is divided into light reflected by the skin surface 10 and light transmitted through the skin surface 10 and received by the plurality of light receiving units 34 1 to 34 n. .
  • the plurality of light receiving units 34 1 to 34 n receive the amount of light according to the distance (radial position) from the light emitting unit 32 and output detection signals according to the displacement state of the blood vessel and the tissue around the blood vessel.
  • the plurality of light receiving portions 34 1 to 34 n are arranged so as to surround the light emitting portion 32, any direction around the light emitting portion 32 (in a plane orthogonal to the axis of the light emitting portion 32) It is also possible to detect the light propagation intensity in each direction. Therefore, the blood flow measuring unit 20B is not restricted in the moving direction in a state where the measurement surface 24 is closely opposed to the skin of the subject, and in any direction in which the plurality of light receiving units 34 1 to 34 n are arranged. It can be moved.
  • FIG. 8 is a system configuration diagram showing a cerebral blood vessel characteristic measuring system using the second embodiment of the blood vessel characteristic measuring apparatus according to the present invention.
  • the cerebral vascular characteristic measurement system 200 includes a vascular characteristic measurement device 210 and a data management device 250.
  • the data management device 250 manages the data measured by the blood vessel characteristic measurement device 210.
  • the blood vessel characteristic measuring device 210 is shown only on one side of the head, but the opposite side, which is the back side of the paper surface, has the same configuration.
  • the blood vessel characteristic measurement device 210 includes a blood flow measurement unit 220, a control unit 230, and a wireless communication device 240.
  • the blood flow measurement unit 220 includes a net-like base 222 formed in a hemispherical shape corresponding to the outer shape of the head so as to be worn on the head, and a large number of sensor units 224. Each sensor unit 224 is supported at predetermined intervals by the net base 222 and outputs a detection signal of the transmitted light amount measured at each measurement point of the head to the control unit 230.
  • the control unit 230 derives the blood vessel characteristics of the brain based on the detection signals detected by the sensor units 224, and measures the brain activity state (red blood cell distribution). In addition, the control unit 230 stores a control program for performing a calculation process that cancels a component due to oxygen saturation included in signals obtained from at least two light receiving units.
  • the wireless communication device 240 wirelessly transmits the measurement result (blood flow data) output from the control unit 230 to an external device.
  • the blood vessel characteristic measuring apparatus 210 has the optical sensor unit 224 (224A to 224N) disposed on the net-like base 222, the blood flow of the entire head can be simultaneously measured.
  • Each sensor unit 224 is held in a state of penetrating through the intersection of the net base 222. Further, the net-like base 222 can be deformed into a spherical shape corresponding to the head surface shape because the square connection structure is deformed into a rhombus shape and expands and contracts according to the mounted head surface shape.
  • the net-like base 222 has net-like arm portions (four to eight) connected to each crossing portion made of an elastic resin material.
  • the measurement surfaces of the plurality of sensor units 224 can be brought close to each other. Moreover, it becomes possible to make the front-end
  • the diameter of the sensor unit 224 is about 10 mm to 50 mm, about 150 to 300 sensor units 224 are attached to the hemispherical net base 222 with a predetermined arrangement pattern (predetermined interval). It has been. A large number of sensor units 224 are individually managed in advance by address data corresponding to measurement positions to be measured, and the measurement data obtained from each sensor unit 224 is transmitted and stored together with the respective address data.
  • the arrangement pattern of a large number of sensor units 224 is preferably arranged in a matrix at regular intervals.
  • the shape of the head to be measured is not constant, and the head of the subject depends on the subject. Since the size and the curved surface shape are various, they may be arranged at irregular intervals.
  • the blood vessel characteristic measuring device 210 includes the wireless communication device 240 as an output unit, in this embodiment, the blood vessel characteristic measuring device 210 is used in combination with a data management device 250 that manages blood flow data transmitted from the wireless communication device 240.
  • the blood vessel characteristic measuring apparatus 210 can also transmit data to other external devices (for example, electronic devices such as personal computers or devices to be controlled such as actuators).
  • the data management device 250 includes a wireless communication device 260, a storage device 270, a measurement data image display control device 280, and a monitor 290.
  • the wireless communication device 260 receives the measurement data transmitted from the wireless communication device 240.
  • the storage device 270 stores measurement data including the address of the light emitting point obtained from the wireless communication device 260, the address of the received light receiving unit, and the measurement signal (light reception signal) corresponding to the received light amount.
  • the measurement data image display control device 280 is based on blood vessel characteristic measurement data (ratio of blood vessel elasticity, amount of plaque in blood vessel, rate of arteriosclerosis) corresponding to the pulse wave propagation velocity supplied via the storage device 270. Create image data.
  • the monitor 290 displays the measurement result image data generated by the measurement data image display control device 280.
  • the data management device 250 can perform wireless communication with the blood vessel characteristic measurement device 210, it can be installed in a place away from the blood vessel characteristic measurement device 210.
  • the data management device 250 can be installed in a place that cannot be seen by the subject. Is possible.
  • FIG. 9 is an enlarged view showing the mounting structure of the sensor unit 224.
  • FIG. 9 shows a state in which sensor units 224A, 224B, and 224C are mounted among the many sensor units 224 arranged.
  • each sensor unit 224A, 224B, 224C is fixed to a flexible net-like base 222 with an adhesive or the like. Therefore, each sensor unit 224A, 224B, 224C is held in such a manner that the tip portion contacts the subject's head surface 300 by being fixed to the mounting hole 26 of the net-like base 222.
  • the sensor units 224A, 224B, and 224C have the same configuration, and the same reference numerals are given to the same portions.
  • the sensor unit 224 includes a light emitting unit 320, a light receiving unit 330, and an optical path separating member 340.
  • the light emitting unit 320 includes a laser diode, and irradiates the head surface 300 with laser light (emitted light) A.
  • the light receiving unit 330 includes a light receiving element that outputs an electrical signal corresponding to the amount of transmitted light.
  • the optical path separating member 340 includes a refractive index for the laser light A emitted from the light emitting unit 320 toward the measurement region, and a refractive index of incident light B and C that passes through the measurement region and proceeds to the light receiving unit 330.
  • HOE holographic optical elements
  • an electroencephalogram measurement electrode 350 for measuring an electroencephalogram is fitted to the outer periphery of the optical path separation member 340, and the electroencephalogram measurement electrode 350 is formed in a cylindrical shape. Is formed. The upper end of the electroencephalogram measurement electrode 350 is electrically connected to the wiring pattern of the flexible wiring board 360.
  • the upper surface side of the light emitting unit 320 and the light receiving unit 330 is mounted on the lower surface side of the flexible wiring board 360.
  • a wiring pattern connected to the control unit 230 is formed on the flexible wiring board 360, and the connection terminals of the light emitting unit 320 and the light receiving unit 330 are soldered to the wiring pattern at positions corresponding to the sensor units 224. Electrically connected.
  • the flexible wiring board 360 can bend according to the shape of the head when the tip of the sensor unit 224 comes into contact with the measurement target area, so that disconnection does not occur when performing attachment or detachment operation. It is configured.
  • the electroencephalogram measurement electrode 350 In the electroencephalogram measurement electrode 350, a contact 352 bent inward at the tip protrudes from the end face of the optical path separation member 340. Therefore, when the end surface of the optical path separation member 340 comes into contact with the measurement target region, the contact 352 also comes into contact with the measurement target region, and the electroencephalogram measurement becomes possible. Further, the electroencephalogram measurement electrode 350 can be formed by a method in which a conductive film is coated on the outer periphery and the front end edge of the optical path separation member 340 by a thin film forming method such as vapor deposition or plating.
  • the electroencephalogram measurement electrode 350 for example, a transparent conductive film made of indium tin oxide called ITO (Indium Tin Oxide) can be formed on the outer periphery and the edge of the optical path separation member 340.
  • ITO Indium Tin Oxide
  • the electroencephalogram measurement electrode 350 is formed of the transparent conductive film, since the electroencephalogram measurement electrode 350 has translucency, the outer periphery and the entire distal end surface of the optical path separation member 340 are covered with the electroencephalogram measurement electrode 350. It becomes possible to cover with.
  • each sensor unit 224 can be performed without contact with the head of the subject. In addition, when each sensor unit 224 is not contacted, the electroencephalogram measurement by the electroencephalogram measurement electrode 350 is not performed.
  • the control unit 230 selects an arbitrary sensor unit 224 from among the many sensor units 224 arranged, and causes the light emitting unit 320 of the sensor unit 224 to emit laser light A. At this time, the laser light emitted from the light emitting unit 320 is output at a wavelength ⁇ ( ⁇ 805 nm) that is not affected by the oxygen saturation.
  • each sensor unit 224 is held in a state in which the tip (end surface of the optical path separation member 340) is in contact with the measurement area of the head.
  • the laser beam A emitted from the light emitting unit 320 passes through the optical path separating member 340 and is incident on the scalp of the head from the vertical direction toward the inside of the brain. Inside the brain, the laser beam A travels toward the center of the brain, and the laser beam A propagates toward the periphery along the brain surface with the incident position as a base point.
  • the light propagation path 370 in the brain of the laser light A is formed in an arc shape when viewed from the side, passes through the blood vessel 380 on the head, and returns to the scalp surface 300.
  • the light passing through the light propagation path 370 in this way reaches the light receiving side sensor units 224B and 224C while changing to a transmitted light amount corresponding to the amount or density of red blood cells contained in the blood flowing through the blood vessel 380. Further, since the amount of transmitted light of the laser light A gradually decreases in the process of propagating inside the brain, the light reception level of the light receiving unit 330 decreases in proportion to the distance as the laser light A moves away from the base point. Accordingly, the amount of transmitted light varies depending on the separation distance from the incident position of the laser beam A.
  • the blood flow measurement unit 220 of the blood vessel characteristic measuring apparatus 210 is attached to the head of the subject and the blood vessel characteristics of the subject's head are measured, the following data processing is performed. For example, since the degree of arteriosclerosis of the subject is considered to change only at a slower rate than the scanning speed of each light emitting point, the received light data (measurement data) is scanned while sequentially scanning the light emitting points by the light emitting unit 320. Store in the database of the storage device 270. The detection value (received light intensity) at each measurement point does not change greatly each time the light emission point moves. The electrocardiogram waveform and pulse wave at each measurement point are measured regardless of the light emission point. The phase difference values T are substantially the same.
  • a large number of sensor units 224 are evenly arranged over the entire head, and when a light emitting unit 320 emits light, the detection signals from all the light receiving units 330 are temporarily read. Is possible. However, in actual measurement of the blood vessel characteristics of the head, measurement data in the range of the light receiving unit 330 adjacent to the light emitting unit 320 at the measurement position and the light receiving unit 330 adjacent to the light receiving unit (intensity effective for measurement). Using a detection signal obtained by receiving light) enables effective measurement.
  • measurement data (phase difference or various types) based on a light receiving signal (detection signal) from the light receiving unit 330 within a predetermined range (two or more adjacent from the light emitting point, or all). Blood vessel characteristics) are associated with each measurement position via the wireless communication devices 240 and 260 and stored in the database of the storage device 270. Thereby, the measurement data of the entire head is collected in the database of the storage device 270 when the scanning of all the light emitting units 320 is completed.
  • the data management device 250 while the light emitting units from the first (address 1) light emitting unit 320 to the last (address N) light emitting unit 320 emit light sequentially, the data management device 250 is adjacent to each other within a predetermined range from the light emitting point.
  • the total value obtained by adding the blood vessel characteristic values (for example, the degree of arteriosclerosis) at each measurement position sequentially obtained by the light receiving unit 330 for each measurement position is stored in the database of the storage device 270.
  • the measurement data image display control device 280 generates a blood vessel characteristic measurement image representing the distribution of the degree of arteriosclerosis of the head based on the measurement data of the entire head stored in the database of the storage device 270 and displays it on the monitor 290. indicate.
  • the data management device 250 obtains an average value of the measurement data for each measurement position, and stores the average value for each measurement position in the database of the storage device 270. Then, the measurement data image display control device 280 may generate a blood vessel characteristic measurement image representing the distribution of the degree of arteriosclerosis of the head based on the average value of the measurement data and display it on the monitor 290.
  • the sensor unit 224A located at the left end is the light emitting side base point
  • the sensor unit 224A itself, the right adjacent sensor unit 224B, and the right adjacent sensor unit 224C are the light receiving side base point (measurement point).
  • the optical path separating member 340 is formed to change the density distribution of a transparent acrylic resin, for example, so that the laser light A travels straight and guides the incident lights B and C to the light receiving unit 330. Further, the optical path separation member 340 includes an emission side transmission region 342, an incident side transmission region 344, and a refraction region 346.
  • the emission side transmission region 342 transmits the laser light A emitted from the light emitting unit 320 from the base end side (upper surface side in FIG. 9) to the distal end side (lower surface side in FIG. 9).
  • the incident-side transmission region 344 transmits light propagating in the brain from the distal end side (lower surface side in FIG. 9) to the proximal end side (upper surface side in FIG. 9).
  • the refraction region 346 is formed between the emission side transmission region 342 and the incident side transmission region 344.
  • the refracting region 346 transmits the laser light A but has a property of reflecting the light (incident light B and C) that has passed through the bloodstream.
  • the refractive region 346 is formed, for example, by changing the density of the acrylic resin, providing a metal thin film in the region, or dispersing fine metal particles. As a result, all the light incident from the tip of the optical path separating member 340 is collected on the light receiving unit 330.
  • FIG. 10A is a diagram schematically illustrating an artery when the head is viewed from behind.
  • FIG. 10B is a diagram schematically showing an artery when the head is viewed from the left side.
  • the artery supplying blood to the brain has a middle cerebral artery 410 and an anterior cerebral artery 420.
  • the arteries connected to the upstream of the middle cerebral artery 410 and the anterior cerebral artery 420 are not measured in the present embodiment, and therefore, the description other than the middle cerebral artery 410 and the anterior cerebral artery 420 is omitted here.
  • blood vessel characteristic measuring apparatus 210 positions a plurality of sensor units 224 at respective measurement points on the head by the elasticity of net-like base 222 and sets each measurement surface to the head. It is held in a state facing the surface 300.
  • the plurality of sensor units 224 transmit pulse waves in the brain arteries from changes in the amount of light received by irradiating the brain surface with light and propagating in the brain.
  • the blood vessel characteristics of the middle cerebral artery 410 and the anterior cerebral artery 420 the elasticity ratio of the blood vessel, the amount of plaque in the blood vessel, the ratio of arteriosclerosis
  • FIG. 11 is a plan view of the head of the subject as viewed from above.
  • the measurement positions that receive light propagating through the brain when irradiated with light are S1, S2, and S3.
  • the pulse wave propagation velocity due to the blood flowing through the middle cerebral artery 410 and the anterior cerebral artery 420 is detected by each sensor unit 224 arranged at the measurement positions S1, S2, S3.
  • the waveform of the electrocardiogram obtained from the electrocardiograph 40 and the waveform of the signal output from each sensor unit 224 at the measurement position are compared, the pulse wave propagation velocity is obtained from the phase difference, and the pulse wave A method of deriving blood vessel characteristics corresponding to the propagation speed is used.
  • FIG. 12 is a waveform diagram showing a detection signal waveform of the electrocardiograph 40 and a detection signal waveform of each sensor unit 224 at the positions to be measured S1, S2, and S3.
  • the electrocardiographic signal waveform (A) detected by the electrocardiograph 40 is compared with the light receiving portion detection signal waveforms (B) to (D)
  • the Q of the electrocardiographic signal waveform (A) is compared.
  • Phase differences T1 to T3 between the peak value of the R wave of the waves, the R wave, and the S wave and the lowest value of the light receiving unit detection signals (B) to (D) are obtained.
  • the phase differences T1 to T3 have a relationship of T1 ⁇ T3 ⁇ T2, and change according to the pulse wave propagation velocity. For example, if the normal value (threshold value) of the phase difference value is T0, and T1 ⁇ T3 ⁇ T0 and T0 ⁇ T2, the pulse wave propagation speed of the middle cerebral artery 410 of the right brain is slower than the normal value. It has become. As a result, it is possible to determine that the vascular characteristics have deteriorated in the middle cerebral artery 410 of the right brain and arteriosclerosis has occurred.
  • FIG. 13 is a diagram for explaining the principle in the case of detecting blood vessel characteristics from the blood flow of the brain.
  • the brain 400 is covered with a cerebrospinal fluid 450, a skull 460, and a scalp 470.
  • Each sensor unit 224 of the blood flow measurement unit 220 measures blood flow by causing the front end surface of the optical path separation member 340 to face the scalp 470 in close proximity (non-contact).
  • a part of the laser light A emitted from the light emitting unit 320 of the sensor unit 224A is reflected by the scalp 470, but the remaining light passes through the scalp 470, the skull 460, and the cerebrospinal fluid 450 and travels into the brain 400.
  • the light traveling to the brain propagates in the radial direction (depth direction and radial direction) in an arc-shaped pattern 480 as shown by a broken line in FIG.
  • the light propagation path becomes longer and the light transmittance decreases as the distance from the base point 490 irradiated with the laser beam increases in the radial direction. For this reason, the light reception level (transmitted light amount) of the sensor unit 224B adjacent to the light emitting side sensor unit 224A with a predetermined distance is strongly detected. Then, the received light level (transmitted light amount) of the sensor unit 224C provided adjacent to the sensor unit 224B at a predetermined distance is detected to be weaker than the received light level of the sensor unit 224B. Further, the light from the brain 400 is also received by the light receiving unit of the light emitting side sensor unit 224A.
  • a detection signal corresponding to the light intensity received by the plurality of sensor units 224 is stored in the storage device 270 as measurement data. Then, the control unit 230 compares the waveform of each measurement data of each sensor unit 224 with the waveform of the electrocardiogram signal from the electrocardiograph 40 to derive the blood vessel characteristic at each measurement position. In addition, the measurement data image display control device 280 performs mapping processing on these detection results to obtain graphic data indicating the distribution of arteriosclerosis according to the pulse wave velocity.
  • the detection signals of all the sensor units 224 arranged around the sensor unit 224A that has emitted the laser light A are transmitted to the data management device 250.
  • next S35 it is checked whether or not all sensor units 224 emit light. If all the sensor units 224 have not completed light emission in S35, the laser light A is emitted from the light emitting unit 320 of the n + 1 sensor unit 224B, and the processes of S31 to S35 are repeated.
  • measurement data image display processing executed by the measurement data image display control device 280 of the data management device 250 will be described with reference to the flowchart of FIG.
  • the measurement data image display control device 280 reads the measurement data (data by the transmitted light amount corresponding to the blood flow) stored in the database of the storage device 270 in S41 of FIG. Then, it progresses to S42 and calculates red blood cell density
  • a change in the displacement state of the blood vessel and the tissue around the blood vessel due to the blood flow is obtained from the change in the red blood cell concentration at each measurement position, and based on the displacement state of the blood vessel and the tissue around the blood vessel, Deriving blood vessel characteristics.
  • blood vessel inner wall displacement data contraction of the inner diameter of the blood vessel
  • corresponding to the blood flow change is derived from the database.
  • the process proceeds to S44, and the electrocardiographic signal detected by the electrocardiograph 40 is read.
  • the electrocardiographic signal waveform of the electrocardiograph 40 is compared with the detection signal waveform output from each sensor unit 224 (or the waveform of the inner wall displacement data corresponding to the blood flow change).
  • the pulse wave propagation velocity is obtained by dividing the distance from the heart to the measurement region by the phase difference T between the electrocardiogram signal waveform of the electrocardiograph 40 and the detection signal waveform from each sensor unit 224. Further, the blood vessel characteristics (the ratio of the elasticity of the blood vessel, the amount of plaque in the blood vessel, the ratio of arteriosclerosis) corresponding to the pulse wave propagation velocity are derived from the database of the storage device 270, and the blood vessels in the measurement area are measured. Deriving the degree of arteriosclerosis.
  • the degree of arteriosclerosis which is the result of derivation of the blood vessel characteristics, is stored in the database of the storage device 270, and the blood vessel characteristic result image corresponding to the degree of arteriosclerosis obtained this time is displayed on the monitor 290.
  • the blood vessel characteristic data at each measurement position is mapped to the head.
  • the presence or absence of arteriosclerosis in the cerebral artery (the middle cerebral artery 410, the anterior cerebral artery 420, etc.) can be displayed on the monitor 290 as image data.
  • the arteriosclerosis data of the head obtained by the mapping process is stored in the database of the storage device 270.
  • each sensor unit 224 (light emitting unit 320, light receiving unit 330) is associated with the actual measurement position on the head. Subsequently, the position (coordinates and depth) of the measurement region is obtained from the addresses of the light emitting unit 320 and the light receiving unit 330. Further, the position of the region to be measured is associated with the measured measurement data of arteriosclerosis (the blood vessel inner wall displacement data corresponding to the displacement state of the blood vessel due to blood flow and the tissue around the blood vessel). To define where each sensor unit 224 is actually placed on the head, a rough position is set in advance based on where each sensor unit 224 is attached to the net-like base 222. I can leave.
  • the head on which the blood flow measuring unit 220 is attached is changed at various angles (front, back, left and right).
  • Direction, upward direction, etc.) the address of each sensor unit 224 is preferably associated with the image.
  • the image by superimposing the measurement results on the image and displaying the image, it is possible to display the blood flow state of the subject's head and the degree of arteriosclerosis, for example, color-coded by color display. Therefore, it is possible to easily find a site where the blood flow state of the subject's head is significantly reduced.

Abstract

 血管特性計測装置100は、被験者の被計測領域の皮膚表面10に対向する位置に保持される血流計測部20と、血流計測部20に内蔵された光学式のセンサユニット30と、心電計40と、制御装置50とを有する。制御装置50は、血流計測手段60と、血管変位導出手段70と、血管状態導出手段80を有する。血流計測手段60は、センサユニット30の発光部32から出射された光を受光部34,36で受光したときの光強度に基づいて、血流による血管および血管周辺の組織の変位を計測する。血管変位導出手段70は、血管および血管周辺の組織の変位に基づいて血管12の内壁の変位を導出する。血管状態導出手段80は、心電計40の心電信号の波形と受光部34,36から得られた検出信号の波形との位相差により各計測位置における脈波伝播速度を求め、当該脈波伝播速度から血管12の内壁の変位状態を導出する。

Description

血管特性計測装置及び血管特性計測方法
 本発明は、血液が流れる血管内の状態を非接触で計測するよう構成された血管特性計測装置及び血管特性計測方法に関する。
 例えば、心臓から吐出された血液が圧力によって血管内を送液される際、圧力の高い領域が伝搬する部分では、血管の内径が圧力によって拡径される。血管の拡径部分が伝搬する伝搬速度(脈波伝搬速度とも言う)を計測することで血管(動脈)の内部の変化を測定する脈波伝搬速度測定装置の開発が進められている(例えば、特許文献1参照)。
 脈波伝搬速度測定装置は、心電誘導装置により検出された心電誘導波形の周期毎に発生する所定の部位から圧脈波センサにより検出された脈波の周期毎に発生する所定部位までの時間差が算出されると、当該時間差に基づいて動脈内の脈波の伝播速度が算出される。当該伝播速度は、心臓に連結された大動脈内の伝播を含む距離を基礎として算出される。このことから、脈波伝搬速度測定装置においては、伝播距離が長く、且つ大動脈の径が大きいために動脈内の脈波伝播速度が低くなって伝播時間すなわち時間差が長くなると、脈波伝播速度の精度が高くなる。
 また、被験者の被測定領域に光を照射して血管を透過した光を受光したときの信号の波形から脈波を測定する脈波センサがある(例えば、特許文献2参照)。
特開平8-257002号公報 特開2004-467号公報
 しかしながら、上記特許文献1に記載された装置では、血圧測定器具のように被測定部にカフを巻き付けてカフに圧力を加えて脈波を測定するものであるので、直接被験者に圧力を付加して脈波センサを被験者の被測定部分に密着させる必要がある。また、特許文献1に記載された装置では、計測中は被験者を拘束することになるため、同一の被験者に対して複数箇所の計測を行なう場合には、当該被装着者を長時間拘束しなければならず、被験者の負担が増大するという問題がある。
 また、上記特許文献2に記載された脈波センサでは、指先に光を照射して光の検出信号から血流を測定する方式であるが、指先を強く押圧した場合、指先の皮膚が受光部に接触して指先が圧迫されてしまうため、指先の血管における血流が変化して計測精度が低下するという問題がある。
 そこで、本発明は上記事情に鑑み、上記被験者の負担を軽減すると共に、計測精度の低下を解決することを課題とする。
 上記課題を解決するため、本発明は以下のような手段を有する。
(1)本発明は、被験者の被計測領域に対向する位置に設けられ、前記被計測領域に光を照射する発光部と前記被計測領域を伝搬した光を非接触で受光する受光部とを有するセンサユニットと、前記発光部から出射された光を前記受光部で受光したときの光強度に基づいて、前記被計測領域における血流による血管および血管周辺の組織の変位を計測する血流計測手段と、該血流計測手段により得られた前記血管および血管周辺の組織の変位に基づいて血管壁の変位を導出する血管変位導出手段と、前記被験者の心電信号を計測する心電計測手段と、前記心電信号の波形と前記受光部から得られた検出信号の波形との差に基づいて各計測位置における血管の内壁状態を導出する血管状態導出手段と、を有することにより、上記課題を解決するものである。
(2)本発明は、(1)に記載の血管特性計測装置であって、前記血管状態導出手段は、前記心電信号の波形と前記受光部から得られた前記検出信号の波形との位相差に基づいて各計測位置における血管の内壁状態を導出することにより、上記課題を解決するものである。
(3)本発明は、(1)に記載の血管特性計測装置であって、前記血管の内壁の状態に応じた血球成分を光学的に計測することにより、上記課題を解決するものである。
(4)本発明は、(1)に記載の血管特性計測装置であって、前記センサユニットは、被験者の複数の被計測点に光を照射する複数の発光部と前記複数の被計測点を伝搬した光を非接触で受光する複数の受光部とを有し、前記血管状態導出手段は、前記心電信号の波形と前記複数の受光部から得られた前記複数の検出信号の波形との差に基づいて各計測位置における血管の内壁状態を導出することにより、上記課題を解決するものである。
(5)本発明は、(4)に記載の血管特性計測装置であって、前記複数の受光部は、被計測領域に存在する血管の上流で光の伝搬強度を計測する第1の受光部と、前記第1の受光部より当該血管の下流に配され、被計測領域に存在する血管の下流で光の伝搬強度を計測する第2の受光部と、を有することにより、上記課題を解決するものである。
(6)本発明は、(4)に記載の血流特性計測装置であって、前記複数の受光部は、前記発光部を中心とする異なる半径位置に周方向に所定間隔毎に配されることにより、上記課題を解決するものである。
(7)本発明は、(1)に記載の血管特性計測装置であって、
 前記センサユニットは、移動可能な血流計測部に設けられ、任意の被計測領域における光の伝搬強度を計測することにより、上記課題を解決するものである。
(8)本発明は、(7)に記載の血管特性計測装置であって、
 前記血流計測部は、
 前記センサユニットに電流を供給するバッテリと、
 前記センサユニットで検出された検出信号を無線信号で送信する無線通信装置と、
 を有することにより、上記課題を解決するものである。
(9)本発明は、(1)に記載の血管特性計測装置であって、
 前記センサユニットは、前記被験者の頭部に装着されるネット状ベースの複数箇所に支持され、前記被験者の頭部の複数の各計測位置における光の伝搬強度を計測することにより、上記課題を解決するものである。
(10)本発明は、(9)に記載の血管特性計測装置であって、前記複数の受光部は、頭部の表面に対して外側から対向するように所定間隔毎に配置され、前記血管状態導出手段は、前記心電信号の波形と前記複数の受光部から得られた前記複数の検出信号の波形との差に基づいて前記頭部の各計測位置における血管の内壁状態を導出することにより、上記課題を解決するものである。
(11)本発明は、(9)に記載の血管特性計測装置であって、前記血流計測手段は、前記複数の受光部から得られた各計測データを前記頭部に対する各アドレス毎にマッピング処理し、各アドレスに対応する計測位置毎に血管の変位をデータベースに格納し、前記血管状態導出手段は、各計測位置毎の血管の変位を前記データベースから読み出し、各アドレスに対応する血管の変位を抽出して前記頭部の各計測位置における血管の状態を導出し、前記頭部全体の血管特性の画像を生成することにより、上記課題を解決するものである。
(12)本発明は、被験者の任意の被計測領域に対向するように配されたセンサユニットの発光部より前記被計測領域に光を照射し、前記被計測領域を伝搬した光を受光部で受光する手順と、
 前記発光部から出射された光を前記受光部で受光したときの光強度の検出信号に基づいて、前記被計測領域における血流による血管および血管周辺の組織の変位を計測する手順と、
 前記血管および血管周辺の組織の変位に基づいて血管壁の変位を導出する手順と、
 前記被験者の心電信号を計測する手順と、
 前記心電信号の波形と前記受光部から得られた検出信号の波形との差に基づいて各計測位置における血管の内壁状態を導出する手順と、
 を実行することにより、上記課題を解決するものである。
 本発明によれば、被計測領域を伝搬した光を非接触で受光する受光部の波形と心電信号の波形との差に基づいて各計測位置における血管の内壁状態を導出するため、被験者に接触せずに血管の状態を計測することができ、被験者を拘束することがないので、被験者の負担を軽減することが可能になる。また、本発明によれば、血管を圧迫せずに血管の状態を計測するため、計測精度が高く、例えば、複数の血管が配される頭部においても、血管の内壁状態に応じた血管特性のデータを計測することが可能である。
本発明による血管特性計測装置の実施例1の概略構成を示すシステム系統図である。 血流計測方法の原理を説明するための図である。 レーザ光の波長と、血液の酸素飽和度を変えた場合の光の吸収状態の関係を示すグラフである。 制御装置が実行する計測制御処理について説明するフローチャートである。 心電位信号波形(A)と受光部検出信号波形(B)とを比較する図である。 血流計測部の変形例1を示す縦断面図である。 血流計測部の変形例2を示す縦断面図である。 血流計測部の変形例2の底面図である。 本発明による血管特性計測装置の実施例2を用いた脳血管特性計測システムのシステム構成図である。 センサユニットの取付構造を拡大して示す図である。 頭部を後方から見た場合の動脈を模式的に示す図である。 頭部を左側方から見た場合の動脈を模式的に示す図である。 被験者の頭部を上方からみた平面図である。 心電計の検出信号波形、被計測位置S1,S2,S3の各センサユニットの検出信号波形を示す波形図である。 脳の血流から血管特性を検出する場合の原理を説明するための図である。 脳血管特性計測システムの制御部が実行する脳の血流計測処理を説明するためのフローチャートである。 データ管理装置の計測データ画像表示制御装置が実行する計測データ画像表示処理を説明するためのフローチャートである。
 本発明をより詳細に説明するために、以下、図面を参照して本発明を実施の形態について説明する。
 図1は本発明による血管特性計測装置の実施例1の概略構成を示すシステム系統図である。図1に示されるように、血管特性計測装置100は、移動式の血流計測部20と、光学式のセンサユニット30と、心電計(心電計測手段)40と、制御装置50とを有する。血流計測部20は、被験者の被計測領域の皮膚表面10に対向する位置の血流を計測する。センサユニット30は、血流計測部20に内蔵され血管内を流れる血流を非接触で計測する光学式のセンサを有する。心電計(心電計測手段)40は、心電位を計測し、心電位信号を出力する。制御装置50は、センサユニット30の検出信号と心電計40の心電位信号との差により血管の内壁変位および血管周辺の組織の変位を求め、これに基づいて血管特性(血管の弾性の割合、血管内のプラーク量、動脈硬化の割合)を導出する。
 血流計測部20は、手に持って移動させることができる大きさに形成されており、例えば、人体のどの箇所の血流を計測するかによって適宜移動させることができ、任意の被計測領域における血流を計測することが可能である。また、血流計測部20は、円錐状部22の底面が被計測領域に対向(非接触で近接した状態)される計測面24であり、円錐状部22の上部には把持部26が突出している。従って、血管特性の計測を行なう計測者は、把持部26を把持して底面側の計測面24を適宜被計測領域の皮膚表面10に対向させることで、当該被計測領域の血流による血管および血管周辺の組織の変位の計測を非接触で行える。
 センサユニット30は、発光部32と、一対の受光部34,36とを有する。発光部32は、レーザ光を被検者に照射する光源である。一対の受光部34,36は、それぞれ発光部32の光出射点から血流の下流に配されており、受光した光強度に応じた信号を出力する。
 また、血流計測部20は、充電式のバッテリ33と、制御部37と、無線通信装置39とを有する。制御部37は、バッテリ33からの電流を発光部32に通電して発光させると共に、皮膚表面10を伝搬した光を受光した受光部34,36からの受光信号を読み込む。無線通信装置39は、制御装置50と無線による通信を行なっており、受光部34,36からの受光信号を制御装置50に無線で送信する。
さらに、円錐状部22の下流傾斜位置には、発光部32に対して下流側(受光部34,36側)であることを知らせるための表示灯22aが設けられている。表示灯22aは、例えば、発光ダイオードなどからなり、一定の周期で点滅することで受光方向(移動方向)を示す移動方向指示灯である。また、表示灯22aは、ワイヤレスによる紛失を防止するための警告灯、及びバッテリ33の充電が必要になった時点で点滅から点灯に切り替わることで充電を指示する充電指示灯も兼ねる。
 血流計測部20は、制御装置50と微弱電波による近接通信が可能なワイヤレスユニットであるので、被測定領域への移動が自由に行える。また、血流計測部20の充電式のバッテリ(電池)33は、血流計測を行なわない不使用時に適宜充電される。
 発光部32及び一対の受光部34,36は、夫々の発光面、受光面がセンサユニット30の下面に形成された計測面24と同一平面に設けられている。そのため、発光部32からのレーザ光Aが任意の被計測領域の皮膚表面10に照射されると、レーザ光Aは皮膚表面10に反射すると共に、皮膚表面10の下側に配された血管12を流れる血流を透過して計測面24に伝搬する。
 一対の受光部34,36では、夫々皮膚表面10から放射された光(反射光及び透過光を含む光)を受光し、受光した光量(光強度)に応じた電気信号を出力する。そして、血流計測部20の制御部37は、受光部34,36によって検出された検出信号を無線通信装置39により無線信号に変換して制御装置50に送信する。尚、受光部34,36からの検出信号は、発光部32からの発光信号によって所定の周期、あるいは連続した信号として出力される。
 また、無線通信装置39は、血流計測部20の検出信号を送信しやすい把持部26の上端に設けられており、半球状の保護カバーにより保護されている。
 心電計40は、被験者の皮膚に貼着された電極42により心臓110の動きに応じて発生する心電位を計測する。尚、電極42の取付位置は、心臓の近くで心電位を検出しやすい位置であれば良い。一般的な心電図の計測を行なう場合には、四肢に取り付けられる肢誘導用の4箇所と被験者の胸部に取り付けられる胸部誘導用の6箇所に電極を取付けることになる。しかしながら、本発明においては、心電図から心臓の動きを観察するのでなく、心電位の波形をトリガにして血管特性を計測するため、心電位の被計測位置としては1箇所のみとしても良い。
 制御装置50は、パーソナルコンピュータなどからなり、記憶装置52に格納された各制御プログラムを読み込んで各制御処理を行なう血流計測手段60と、血管変位導出手段70と、血管状態導出手段80を有する。血流計測手段60は、センサユニット30の発光部32から出射された光を受光部34,36で受光したときの光強度に基づいて、血流による血管および血管周辺の組織の変位を計測する。血管変位導出手段70は、血管および血管周辺の組織の変位に基づいて血管12の内壁の変位を導出する。血管状態導出手段80は、心電計40の心電信号の波形と受光部34,36から得られた検出信号の波形との位相差により各計測位置における脈波伝播速度を求め、当該脈波伝播速度から血管12の内壁の変位状態を導出する。
 さらに、制御装置50は、記憶装置52と、無線通信装置54と、充電装置56とを有する。記憶装置52は、上記各制御プログラム及び血流計測部20から送信された計測データ及び演算結果などを格納するデータベースを形成する。無線通信装置54は、血流計測部20の無線通信装置39と無線でデータ通信を行なう。充電装置56は、非計測時になると、血流計測部20が装着されると共に、血流計測部20のバッテリ33を充電する。
 制御装置50は、無線通信装置54で血流計測部20から送信された計測データを受信すると、当該計測データを自動的に記憶装置52のデータベースに格納する。当該データベースには、血流による血管および血管周辺の組織の変位の計測結果に対応する血管の内壁変位データ(血管の内径の収縮)、及び心電計40の心電位信号波形と受光部34,36の検出信号波形との位相差Tに対応する血管特性のデータが予め格納されている。上記血管特性には、血管の弾性の割合、血管内のプラーク量(内膜の盛上がり)、動脈硬化の割合などが含まれる。
 制御装置50は、モニタ90に接続されており、血流計測部20のセンサユニット30によって計測された血流の計測データから画像データを生成し、当該画像データによる血流計測画像92及び血管特性結果画像94をモニタ90に表示させる。
これにより、計測者は、モニタ90に表示された計測画像92及び血管特性結果画像94を見ながら血流計測部20を手に持ったまま計測面24を被験者の皮膚表面10に近接対向(非接触)させて血流が正常か否かを確認することが可能になる。
 このように、血管特性計測装置100は、血流計測部20を任意の被測定領域に移動させることが可能であるので、被験者のどの部位の血管特性でも計測することが可能である。さらに、血流計測部20が非接触であるので、被験者を拘束することなく計測作業を容易に行えると共に、被験者に接触させる方式のように着脱作業が不用になり、短時間で効率良く血管特性を計測することができる。
 ここで、血流計測方法の原理について説明する。
 図2は血流計測方法の原理を説明するための図である。図2に示されるように、外部から血液に対しレーザ光Aを照射すると、血液層130に入射したレーザ光Aは、通常の赤血球140による反射散乱光成分、及び付着血栓による反射散乱光成分の両成分の光として、血液中を透過して進行する。
 光が血液層を透過する過程において受ける影響は、血液の状態によって刻々と変化するため、透過光量(反射光量としてもよい)を連続的に計測し、当該光量変化を観測することによりさまざまな血液の状態の変化を観察することが可能となる。
 上記血流計測部20を用いて被験者の血管特性を計測する場合、血流計測部20の計測面24を計測対象となる皮膚表面10に近接対向させると、センサユニット30の発光部32と受光部34,36との間に対向する皮膚表面10の血管や周辺の組織が変形することで、光の透過量、光の反射量の状態が変化して受光部34,36の検出信号が変化する。
 従って、血流計測部20においては、発光部32から光が皮膚表面10に向けて出射されることで、受光部34,36で受光される光の中には、皮膚を透過して血管まで到達して血液を通り抜けて受光部34,36に受光される成分もあるし、皮膚表面10で反射されて受光部34,36に受光される成分もある。すなわち、皮膚表面10で反射されて受光される光の受光成分は、血管を透過する光量よりも大きいため、血管の拍動に伴って変位した血管周辺の組織の変位を皮膚表面10からの反射光で計測することが可能になる。
 ここで、ヘマトクリット(Hct:単位体積当たりの赤血球の体積比、即ち、単位体積当たりの赤血球の体積濃度を示す。Htとも表記する。)等の変化も同様にヘモグロビン密度の変化に関係する要因であり、光量変化に影響を及ぼす。本実施例における基本的な原理は、このようにレーザ光Aを用いた、血流による光路・透過光量の変化で血流の状態を計測し、さらには脳内の血流状態から脳活動状態を計測する点である。
 さらに、本発明の特徴を原理的な構成で説明する。血液の光学的特性は、血球成分(特に赤血球の細胞内部のヘモグロビン)によって決定される。また、赤血球は、ヘモグロビンが酸素と結合しやすい性質を有しているので、脳細胞に酸素を運搬する役目も果たしている。そして、血液の酸素飽和度は、血液中のヘモグロビンの何%が酸素と結合しているかを表す数値である。また、酸素飽和度は動脈血液中の酸素分圧(PaO2)と相関があり、呼吸機能(ガス交換)の重要な指標である。
 酸素分圧が高ければ酸素飽和度も高くなることが分かっており、酸素飽和度が変動すると、血液を透過した光の透過光量も変動する。そのため、血流の計測を行なう際は、酸素飽和度の影響を除くことでより正確な計測が可能になる。
 また、酸素分圧(PaO2)に影響を与えている因子としては、肺胞換気量があり、さらには大気圧や吸入酸素濃度(FiO2)などの環境、換気/血流比やガス拡散能、短絡率などの肺胞でのガス交換がある。
 制御装置50は、上記センサユニット30の受光部34,36に受光された光量(光強度)に応じた信号の処理を行なう演算手段を有する。当該演算手段では、後述するようにセンサユニット30の受光部34,36から出力された計測値に基づいて血流による血管および血管周辺の組織の変位状態を検出するための演算処理を行なう。
 発光部32のレーザ光Aは、所定時間間隔(例えば、10Hz~1MHz)で間欠的に照射されるパルス光又は連続光として照射する。このように、パルス光を用いる場合には、パルス光の点減する周波数である点減周波数を、血液流速に応じて決定し、連続的に又は該点減周波数の2倍以上の計測サンプリング周波数で計測する。また、連続光を用いる場合には、計測サンプリング周波数を、血液流速に応じて決定して計測する。
 血液中のヘモグロビン(Hb)は、呼吸をすることにより肺で酸素と化学反応を生じてHbO2となり血液中に酸素を取り込むこととなるが、呼吸の状態等により、血液に酸素を取り込んだ度合(酸素飽和度)が微妙に異なる。すなわち、本発明では、血液に光を照射すると、酸素飽和度によって光の吸収率が変化するという現象を発見し、当該現象は上記レーザ光Aによる血流の計測において外乱要素となるため、酸素飽和度による影響を除去することにした。
 図3はレーザ光の波長と、血液の酸素飽和度を変えた場合の光の吸収状態の関係を示すグラフである。体内では赤血球に含まれるヘモグロビンは、酸素と結合した酸化ヘモグロビン(HbO2:グラフII、破線で示す)と酸化されていないヘモグロビン(Hb:グラフI、実線で示す)に分けられる。2つのグラフに示す状態では、光に対する光吸収率が大きく異なる。例えば、酸素をたっぷりと含んだ血液は鮮血として色鮮やかである。一方、静脈血は酸素を手放しているのでどんよりと黒ずんでいる。これらの光吸収率の状態は、図3のグラフI,IIに示すように広い光の波長領域で変化している。
 図3のグラフI,IIから特定の波長を選択することにより、生体内の酸素代謝などにより赤血球中のヘモグロビンの酸素飽和度が大きく変動しても、光吸収率が影響を受けないで血液に光を照射して血流を計測できることが分かる。
 赤血球中のヘモグロビンの酸素飽和度によらず、ある波長領域では光吸収率が小さくなっている。これにより、光が波長λによって血液層を通過しやすいか否かが決まることになる。従って、所定の波長領域(例えば、λ=800nm近辺から1300nm近辺)の光を用いれば、酸素飽和度の影響を小さく抑制して血流を計測することが可能となる。
 よって、本発明で用いるレーザ光Aの波長領域は、ほぼ600nm近辺から1500nmを利用し、これにより、ヘモグロビン(Hb)の光吸収率が実用上十分低くかつ、当該領域に等吸収点Xを含むため、2波長以上の計測点を活用し、計算上、等吸収点とみなせる。つまり、酸素飽和度の影響を受けない仕様とすることが可能となる。尚、それ以外の波長領域では、λ=600nm未満では、光吸収率が高くなりS/Nが低下し、λ=1500nmをこえた波長では、受光部34,36の受光感度が十分でなく血液中の他の成分等の外乱が影響し精度のよい計測ができなくなる。
 このため、本実施例では、発光部32に波長可変半導体レーザからなる発光素子を用い、発光部32から発光されるレーザ光Aの波長を、グラフI,IIで等吸収点Xとなるλ1=805nm(第1の光)と、グラフIにおいて光吸収率が最も低い波長λ2=680nm(第2の光)の2種類に設定する。
 ここで、レーザ光Aが光伝搬経路を介して伝搬した光を受光する場合の透過光量に基づく赤血球濃度R,Rp,Rpwの検出方法について説明する。
 従来の計測方法で行なわれた1点1波長方式を用いた場合の赤血球濃度Rの演算式(1)は、次式のように表せる。
R=log10(Iin/Iout)=f(Iin,L,Ht)…(1)
(1)式の方法では、赤血球濃度が発光部32から出射されたレーザ光Aの入射透過光量Iinと、発光部32と受光部34,36との距離(光路長)Lと、前述したヘマトクリット(Ht)との関数になる。そのため、(1)式の方法で赤血球濃度を求める際は、3つの因子によって赤血球濃度が変動するため、赤血球濃度を正確に計測することが難しい。
 本実施例による2点1波長方式を用いた場合の赤血球濃度Rpの演算式(2)は、次式のように表せる。
Rp=log10{Iout/(Iout-ΔIout)}=Φ(ΔL,Ht)…(2)
(2)式の方法では、図1に示すようにレーザ光Aから距離の異なる2点(センサユニット30の受光部34,36)で受光するため、赤血球濃度は2つの受光部34,36間距離ΔLと、前述したヘマトクリット(Ht)との関数になる。そのため、(2)式の方法で赤血球濃度を求める際は、2つの因子のうち受光部34,36間距離ΔLが予め分かっているので、赤血球濃度がヘマトクリット(Ht)を係数とした値として計測される。よって、当該演算方法では、赤血球濃度をヘマトクリット(Ht)に応じた計測値として正確に計測することが可能になる。
 さらに、本実施例の変形例による2点2波長方式を用いた場合の赤血球濃度Rpwの演算式(3)は、次式のように表せる。
Rpw
=[log10{Iout/(Iout-ΔIout)}λ1]/[log10{Iout/(Iout-ΔIout)}λ2] 
=ξ(Ht)・・・(3)
(3)式の方法では、発光部32から出射されるレーザ光Aの波長を異なるλ1,λ2(本実施例では、λ1=805nm、λ2=680nmに設定する)とすることで赤血球濃度をヘマトクリット(Ht)のみの関数として計測される。よって、当該演算方法によれば、赤血球濃度をヘマトクリット(Ht)に応じた計測値として正確に計測することが可能になる。本実施例では、前述した演算式(2)を用いて2点1波長方式の計測方法により血管12を流れる赤血球濃度Rpを計測する。
 すなわち、赤血球濃度は、2つの受光部34,36間距離ΔLと、前述したヘマトクリット(Ht)との関数となる。そのため、赤血球濃度Rpを求める際は、2つの因子のうち受光部34,36間距離ΔLが予め分かっているので、赤血球濃度がヘマトクリット(Ht)を係数とした値として計測される。よって、当該演算方法によれば、赤血球濃度をヘマトクリット(Ht)に応じた計測値として正確に計測することが可能になり、血流の状態を正確に計測することができる。このように、外乱光などの影響を受けないで血流の状態を計測することができるので、センサユニットを被計測領域の表面に密着させる必要がない。
 ここで、図4のフローチャートを参照して制御装置50が実行する計測制御処理について説明する。図4のS11では、センサユニット30の受光部34,36で検出された計測データ(検出信号)を無線通信装置54で受信すると、当該計測データを読み込む。
 次のS12では、読み込まれた計測データを記憶装置52のデータベースに格納する。
 続いて、S13に進み、前述した前述した演算式(2)を用いて2点1波長方式の計測方法により血管12を流れる赤血球濃度Rpを演算する。そして、S14では、赤血球濃度Rpに基づいて得られた被測定領域における血流変化を記憶装置52のデータベースに格納すると共に、モニタ90に今回の血流による血管および血管周辺の組織の変位状態に対応する血流計測画像92を表示する。
 次のS15では、血流による血管および血管周辺の組織の変位状態に対応する血管の内壁変位データ(血管の内径の収縮)をデータベースから導出する。
 続いて、S16に進み、心電計40により検出された心電位の信号を読み込む。そして、S17では、心電計40の心電位信号波形と受光部34,36の検出信号波形(または血流変化に対応する内壁変位データの波形)とを比較する。
 図5は心電位信号波形(A)と受光部検出信号波形(B)とを比較する図である。S17においては、図5に示されるように、心電位信号波形(A)のQ波、R波、S波のうちR波のピーク値に対応するポイントと受光部検出信号波形(B)の最高値を示すポイントとの位相差Tを求める。
 S18では、心臓から被測定領域までの距離を心電計40の心電位信号波形と受光部34,36の検出信号波形との位相差Tで除算することで脈波伝搬速度を求める。さらに、脈波伝搬速度に対応する被測定領域の血管特性(血管の弾性の割合、血管内のプラーク量、動脈硬化の割合)をデータベースから導出して当該被測定領域における血管の動脈硬化度を導出する。続いて、S19では、血管特性の導出結果である動脈硬化度を記憶装置52のデータベースに格納すると共に、今回得られた動脈硬化度に対応した血管特性結果画像94をモニタ90に表示する。
 次のS20では、センサユニット30が移動したか否かをチェックする。S20において、受光部34,36の検出信号波形が変動した場合には、センサユニット30が被測定領域の対向位置から移動したものと判断し、上記S11の処理に戻り、S11~S20の制御処理を繰り返す。上記S20において、例えば、計測面24が皮膚10から所定距離以上離間して受光部34,36が発光部32からの光を受光できなくなり、検出信号のレベルがゼロに低下した場合にセンサユニット30が移動したと判断する。また、例えば、計測面24が皮膚10から一定距離を保ったまま静止して受光部34,36からの検出信号のレベルが一定である場合には、センサユニット30が移動していないと判断する。
 また、S20において、受光部34,36の検出信号波形が変動しない場合には、センサユニット30が被測定領域の対向位置から移動していないものと判断し、S21に進み、センサユニット30の静止状態が所定時間(例えば、30秒間)継続されたか否かをチェックする。S21において、センサユニット30の静止状態が所定時間未満の場合には、上記S20の処理を繰り返す。しかしながら、S21にセンサユニット30の静止状態が所定時間以上継続された場合には、同じ被測定領域での計測処理となるので、S22に進み、計測処理を一担停止して血流計測部20に搭載されたバッテリ33の消耗を回避する。尚、S22の停止状態のとき、血流計測部20を充電装置56に載置しており、バッテリ33への充電が行なわれる。そして、血流計測部20が充電装置56から取り上げられると、再びS11の処理に戻り、計測処理を再開する。
 図6は血流計測部20の変形例1を示す縦断面図である。尚、図6において、上記実施例1と同一部分には、同一符号を付して説明は省略する。
 図6に示されるように、変形例1の血流計測部20Aのセンサユニット30Aは、前述した発光部32及び一対の受光部34,36と、光路分離部材38とを有する。
 光路分離部材38は、例えば、ホログラムを利用したホログラフィック光学素子(HOE:Holographic Optical Element)からなり、上面に発光部32及び一対の受光部34,36が搭載され、下面が計測面24を形成している。そのため、発光部32からのレーザ光Aが光路分離部材38を通過して任意の被計測領域の皮膚表面10に照射されると、レーザ光Aは一部の光成分が皮膚表面10で反射し、残りの光成分が皮膚表面10の下側に配された血管12を流れる血流を透過して計測面24に伝搬する。そして、一対の受光部34,36では、夫々光路分離部材38に伝搬した光を受光し、受光した光量(反射光及び透過光の光強度)に応じた検出信号を出力する。
 図7Aは血流計測部20の変形例2を示す縦断面図である。図7Bは血流計測部20の変形例2の底面図である。尚、図7A、図7Bにおいて、上記実施例1と同一部分には、同一符号を付して説明は省略する。
 図7A、図7Bに示されるように、変形例2の血流計測部20Bのセンサユニット30Bは、計測面24の中心(下方から見て)に発光部32が取り付けられている。そして、発光部32の周囲には、複数の受光部34~34が螺旋状の配されている。すなわち、複数の受光部34~34は、夫々発光部32から異なる半径位置の周方向に所定間隔で設けられている。
 発光部32から皮膚表面10に照射された光は、皮膚表面10で反射した光と、皮膚表面10を透過して伝搬する光とに分かれ、複数の受光部34~34で受光される。
 複数の受光部34~34は、発光部32からの距離(半径位置)に応じた光量を受光すると共に、血管及び血管周辺の組織の変位状態に応じた検出信号を出力する。変形例2では、複数の受光部34~34が発光部32の周囲を囲むように配置されているので、発光部32を中心とするどの方向(発光部32の軸線と直交する平面内の各方向)の光伝搬強度でも検出することが可能である。そのため、血流計測部20Bは、被験者の皮膚に対して計測面24を近接対向させた状態で移動方向が規制されず、複数の受光部34~34が配置されているどの方向にも移動させることが可能になる。
 図8は本発明による血管特性計測装置の実施例2を用いた脳血管特性計測システムを示すシステム構成図である。図8に示されるように、脳血管特性計測システム200は、血管特性計測装置210と、データ管理装置250とを有する。データ管理装置250は、血管特性計測装置210によって計測されたデータを管理する。尚、図8では、血管特性計測装置210を頭部片側のみ図示しているが、紙面の裏側となる反対側も同様な構成になっている。
 血管特性計測装置210は、血流計測部220と、制御部230と、無線通信装置240とを有する。血流計測部220は、頭部に装着されるように頭部の外形に応じた半球状に形成されたネット状ベース222と、多数のセンサユニット224とからなる。各センサユニット224は、ネット状ベース222により所定間隔毎に支持されており、頭部の各計測点で計測された透過光量の検出信号を制御部230に出力する。
 制御部230は、各センサユニット224により検出された検出信号に基づいて脳の血管特性を導出し、脳の活動状態(赤血球の分布)を計測する。また、制御部230は、少なくとも2つ以上の受光部から得られた信号に含まれる酸素飽和度による成分をキャンセルするような演算処理を行なう制御プログラムが格納されている。
 無線通信装置240は、制御部230から出力された計測結果(血流データ)を外部機器に無線で送信する。
 血管特性計測装置210は、ネット状ベース222に配された光学式センサユニット224(224A~224N)を有するため、頭部全体の血流を同時に計測することができる。
 各センサユニット224は、ネット状ベース222の交差部分に貫通した状態に保持されている。また、ネット状ベース222は、装着された頭部表面形状に応じて四角状の連結構造が菱形状に変形して伸縮するため、頭部表面形状に対応した球状に変形することができる。
 ネット状ベース222は、各交差部分に接続されるネット状の腕部(4本~8本)が弾性を有する樹脂材により形成されているので、材質自体の弾性によって装着された頭部表面に複数のセンサユニット224の計測面を近接させることが可能になる。また、被験者の頭部表面形状に拘わらず、複数のセンサユニット224の先端部を計測対象である頭部表面に近接(非接触)させることが可能になる。
 本実施例では、センサユニット224の直径が10mm~50mm程度であるので、半球形状のネット状ベース222には、150~300個程度のセンサユニット224が所定の配置パターン(所定の間隔)で取り付けられている。多数のセンサユニット224は、予め計測対象の計測位置に応じたアドレスデータによって個々に管理されており、各センサユニット224から得られた計測データは、夫々のアドレスデータと共に送信されて保存される。
 尚、多数のセンサユニット224(224A~224N)の配置パターンは、一定の間隔毎にマトリックス状に配列されることが望ましいが、被計測体となる頭部形状が一定ではなく、被験者によって頭部の大きさも曲面形状も様々であるので、不規則な間隔で配置されるようにしても良い。
 また、血管特性計測装置210は、出力手段として無線通信装置240を有するため、本実施例において、無線通信装置240から送信された血流データを管理するデータ管理装置250と組み合わせて使用される。また、血管特性計測装置210は、他の外部機器(例えば、パーソナルコンピュータなどの電子機器あるいはアクチュエータなどの制御対象となる機器)にデータを送信することも可能である。
 データ管理装置250は、無線通信装置260と、記憶装置270と、計測データ画像表示制御装置280と、モニタ290とを有する。無線通信装置260は、無線通信装置240から送信された計測データを受信する。記憶装置270は、無線通信装置260から得られた発光点のアドレス、受光した受光部のアドレス、受光した光量に応じた計測信号(受光信号)を含む計測データを格納する。計測データ画像表示制御装置280は、記憶装置270を介して供給された脈波伝搬速度に対応する血管特性計測データ(血管の弾性の割合、血管内のプレーク量、動脈硬化の割合)に基づいて画像データを作成する。モニタ290は、計測データ画像表示制御装置280によって生成された計測結果の画像データを表示する。
 また、データ管理装置250は、血管特性計測装置210と無線通信が行えるので、血管特性計測装置210から離れた場所に設置することも可能であり、例えば、被験者から見えない場所に設置することも可能である。
 図9はセンサユニット224の取付構造を拡大して示す図である。尚、図9においては、多数配置されたセンサユニット224のうちセンサユニット224A,224B,224Cが装着された状態を示している。図9に示されるように、各センサユニット224A,224B,224Cは、可撓性を有するネット状ベース222に接着剤などにより固定される。従って、各センサユニット224A,224B,224Cは、ネット状ベース222の取付孔26に固定されることで先端部分が被験者の頭部表面300に接触するように保持される。各センサユニット224A,224B,224Cは、夫々が同一構成であり、同一箇所に同一符号を付す。
 センサユニット224は、発光部320と、受光部330と、光路分離部材340とを有する。発光部320は、レーザダイオードからなり、頭部表面300にレーザ光(出射光)Aを照射する。受光部330は、受光した透過光量に応じた電気信号を出力する受光素子からなる。光路分離部材340は、発光部320から被計測領域に向けて照射されたレーザ光Aに対する屈折率と、被計測領域を通過して入射され受光部330に進む入射光B、Cの屈折率とが異なるように構成されたホログラムを利用したホログラフィック光学素子(HOE:Holographic Optical Element)からなる。
 また、光路分離部材340の外周には、脳波を計測するための脳波計測用電極350が嵌合しており、脳波計測用電極350は円筒形状に形成され、光路分離部材340の先端面から側面に形成されている。脳波計測用電極350の上端は、フレキシブル配線板360の配線パターンに電気的に接続されている。
 発光部320及び受光部330は、上面側がフレキシブル配線板360の下面側に実装されている。フレキシブル配線板360には、制御部230に接続される配線パターンが形成されており、配線パターンには各センサユニット224に対応する位置に発光部320及び受光部330の接続端子が半田付けなどによって電気的に接続されている。尚、フレキシブル配線板360は、センサユニット224の先端が被計測領域に接触した際の頭部の形状に応じて撓むことができるので、装着または脱着操作を行なう際に断線が起きないように構成されている。
 脳波計測用電極350は、先端で内側に折り曲げられた接触子352が光路分離部材340の端面よりも突出している。そのため、光路分離部材340の端面が被計測領域に当接したとき、接触子352も当該被計測領域に接触して脳波計測が可能になる。また、脳波計測用電極350は、光路分離部材340の外周及び先端縁部に蒸着やめっき等の薄膜形成法により導電性膜を被覆する方法で形成することも可能である。さらに、脳波計測用電極350の材質として、例えば、ITO(Indium Tin Oxide)と呼ばれる酸化インジウム錫による透明な導電性膜を光路分離部材340の外周及び先端縁部に形成することも可能である。当該透明導電性膜で脳波計測用電極350を形成した場合には、脳波計測用電極350が透光性を有することになるため、光路分離部材340の外周及び先端面全体を脳波計測用電極350で覆うことが可能になる。
 また、通常では、脳の断層写真を撮影する等して血流の状態を計測しながら脳波を計測することはできないが、センサユニット224に脳波計測用電極350を設けることにより、血流と脳波を同時に計測することが可能になり、脳内の血流と脳波との相関関係を詳しく分析することが可能になる。尚、脳の脈波伝搬速度を計測する際は、各センサユニット224は被験者の頭部に非接触で行なうことも可能である。また、各センサユニット224を非接触とする場合には、脳波計測用電極350による脳波の計測は行なわない。
 脳の血管特性の計測を行なう際、制御部230は、多数配列されたセンサユニット224の中から任意のセンサユニット224を選択し、当該センサユニット224の発光部320からレーザ光Aを発光させる。このとき、発光部320から出射されるレーザ光は、酸素飽和度の影響を受けない波長λ(λ≒805nm)で出力される。
 また、各センサユニット224は、先端(光路分離部材340の端面)が頭部の被計測領域に当接した状態に保持されている。発光部320から出射されるレーザ光Aは、光路分離部材340を透過して頭部の頭皮に対して垂直方向から脳内部に向けて入射される。脳内部においては、レーザ光Aが脳中心部に向けて進行すると共に、レーザ光Aが入射位置を基点として脳表面に沿うように周辺に向けて伝搬する。レーザ光Aの脳内の光伝搬経路370は、側方からみると円弧状に形成され、頭部の血管380を通過して頭皮表面300に戻る。
 このように光伝搬経路370を通過した光は、血管380を流れる血液に含まれる赤血球の量または密度に応じた透過光量に変化しながら受光側のセンサユニット224B,224Cに到達する。また、レーザ光Aは、脳内部を伝搬する過程で透過光量が徐々に低下するため、レーザ光Aが入射位置を基点から離れる程、距離に比例して受光部330の受光レベルが低下する。従って、レーザ光Aの入射位置からの離間距離よっても受光される透過光量が変化する。
 ここで、上記血管特性計測装置210の血流計測部220を被験者の頭部に装着して被験者の頭部の血管特性を計測する際は、以下のようなデータ処理が行なわれる。例えば、被験者の動脈硬化度は、各発光点の走査速度と比べてゆっくりした早さでしか変わらないものと考えられるので、発光部320による発光点を順に走査しながら受光データ(計測データ)を記憶装置270のデータベースに格納する。各計測点についての検出値(受光した光強度)は発光点が移動するごとに大きく変化するものではなく、どこの発光点の光で計測しても各計測点での心電波形と脈派の位相差の値Tはほぼ同じになる。
 また、血管特性計測装置210は、多数のセンサユニット224が頭部全体に均等に配置されており、ある発光部320が発光した際には一応すべての受光部330からの検出信号を読み込むことは可能である。しかし、実際の頭部血管特性の計測には、当該計測位置の発光部320に隣接された受光部330及び当該受光部の隣の受光部330くらいの範囲の計測データ(計測に有効な強度の光を受けて得られる検出信号)を用いると効果的な計測が可能になる。従って、各発光部320が順次発光するごとに、所定の範囲(発光点から隣接する2つ以上、または全部)の受光部330からの受光信号(検出信号)に基づく計測データ(位相差または各種血管特性)を無線通信装置240,260を介して各計測位置と関連付けて記憶装置270のデータベースに格納する。これにより、記憶装置270のデータベースには、全ての発光部320の走査を一巡した時点で頭部全体の計測データが収集される。
 また、データ管理装置250では、最初(アドレス1)の発光部320から最後(アドレスN)の発光部320までの各発光部が順次発光して行く間に、発光点から所定範囲で隣接する各受光部330で順次得られる各計測位置での血管特性の値(例えば動脈硬化度)を、各計測位置毎に足し合わせた合計値を記憶装置270のデータベースに格納する。そして、計測データ画像表示制御装置280は、記憶装置270のデータベースに格納された頭部全体の計測データに基づいて頭部の動脈硬化度の分布を表す血管特性計測画像を生成してモニタ290に表示する。
 また、データ管理装置250は、各計測位置毎の計測データの平均値を求め、各計測位置毎の平均値を記憶装置270のデータベースに格納する。そして、計測データ画像表示制御装置280は、計測データの平均値による頭部の動脈硬化度の分布を表す血管特性計測画像を生成してモニタ290に表示しても良い。
 図9において、左端に位置するセンサユニット224Aを発光側基点とすると、センサユニット224A自身と、右隣りのセンサユニット224Bと、さらに右隣りのセンサユニット224Cとは、受光側基点(計測ポイント)となる。
 光路分離部材340は、例えば、透明なアクリル樹脂の密度分布を変化させることで、レーザ光Aを直進させ、入射光B、Cを受光部330に導くように形成されている。また、光路分離部材340は、出射側透過領域342と、入射側透過領域344と、屈折領域346とを有する。出射側透過領域342は、発光部320から出射されたレーザ光Aを基端側(図9では上面側)から先端側(図9では下面側)に透過させる。入射側透過領域344は、脳内を伝搬した光を先端側(図9では下面側)から基端側(図9では上面側)に透過させる。屈折領域346は、出射側透過領域342と入射側透過領域344との間に形成される。屈折領域346は、レーザ光Aを透過させるが、血流を通過した光(入射光B、C)を反射させる性質を有する。また、屈折領域346は、例えば、アクリル樹脂の密度を変化させたり、当該領域に金属薄膜を設けたり、金属の微粒子を分散させることにより形成される。これにより、光路分離部材340の先端から入射された光は全て受光部330に集光される。
 ここで、被計測領域となる脳の動脈について説明する。図10Aは頭部を後方から見た場合の動脈を模式的に示す図である。図10Bは頭部を左側方から見た場合の動脈を模式的に示す図である。図10A及び図10Bに示されるように、脳に血液を供給する動脈は、中大脳動脈410と前大脳動脈420とを有する。尚、中大脳動脈410、前大脳動脈420の上流に繋がる動脈は、本実施例で計測しないので、ここでは、中大脳動脈410、前大脳動脈420以外の説明を省略する。
 血管特性計測装置210は、血流計測部220を被験者の頭部に装着すると、ネット状ベース222の弾性により複数のセンサユニット224が頭部の各計測点に位置決め、且つ各計測面を頭部表面300に対向させた状態に保持される。血流計測部220が頭部に装着された状態において、複数のセンサユニット224は、脳の表面に光を照射して脳内を伝搬した光の受光量の変化から脳の動脈における脈波伝搬速度を計測して中大脳動脈410、前大脳動脈420の血管特性(血管の弾性の割合、血管内のプレーク量、動脈硬化の割合)を計測することができる。
 ここで、脳の動脈の脈波伝搬速度を計測する原理について説明する。図11は被験者の頭部を上方からみた平面図である。図11及び図10Aに示されるように、例えば、光の照射した際の脳を伝搬した光を受光する被計測位置をS1,S2,S3とする。被計測位置S1,S2,S3に配された各センサユニット224によって、中大脳動脈410、前大脳動脈420を流れる血流による脈波伝搬速度を検出する。測定方法としては、心電計40から得られる心電位の波形と被計測位置の各センサユニット224から出力された信号の波形とを比較し、位相差から脈波伝搬速度を求め、当該脈波伝搬速度に対応する血管特性を導出する方法を用いる。
 図12は心電計40の検出信号波形、被計測位置S1,S2,S3の各センサユニット224の検出信号波形を示す波形図である。図12に示されるように、心電計40により検出された心電位信号波形(A)と受光部検出信号波形(B)~(D)とを比較すると、心電位信号波形(A)のQ波、R波、S波のうちR波のピーク値と受光部検出信号(B)~(D)の最低値との位相差T1~T3を求める。
 位相差T1~T3は、T1<T3<T2の関係にあり、脈波伝搬速度に応じて変化する。例えば、位相差の値の正常値(閾値)をT0とした場合、T1<T3<T0、T0<T2である場合には、右脳の中大脳動脈410の脈波伝搬速度が正常値よりも遅くなっている。これにより、右脳の中大脳動脈410において血管特性が低下して動脈硬化が生じているものと判定することが可能になる。
 図13は脳の血流から血管特性を検出する場合の原理を説明するための図である。図13に示されるように、脳400は、髄液450、頭蓋骨460、頭皮470によって覆われている。血流計測部220の各センサユニット224は、光路分離部材340の先端面を頭皮470に近接対向(非接触)させて血流の計測を行なう。センサユニット224Aの発光部320から出射されたレーザ光Aは、一部の光が頭皮470で反射するが、残りの光は頭皮470、頭蓋骨460、髄液450を透過して脳400内部に進行する。そして、頭部に照射された光のうち脳に進行した光は、図13中破線で示すような円弧状パターン480で放射方向(深さ方向及び半径方向)に伝搬する。
 脳内を透過する光の伝搬は、レーザ光が照射された基点490から半径方向に離間するほど光伝搬経路が長くなって光透過率が低下する。このため、発光側のセンサユニット224Aに所定距離離間して隣接されたセンサユニット224Bの受光レベル(透過光量)は強く検出される。そして、センサユニット224Bの隣りに所定距離離間して設けられたセンサユニット224Cの受光レベル(透過光量)がセンサユニット224Bの受光レベルより弱く検出される。また、発光側のセンサユニット224Aの受光部でも、脳400からの光を受光する。これらの複数のセンサユニット224で受光された光強度に応じた検出信号を計測データとして記憶装置270に記憶される。そして、制御部230は、各センサユニット224の各計測データの波形を心電計40からの心電位信号の波形とを比較して各計測位置の血管特性を導出する。また、計測データ画像表示制御装置280において、これらの検出結果をマッピング処理することで脈波伝搬速度に応じた動脈硬化の分布を示す図形データが得られる。
 従って、各センサユニット224の検出信号波形により中大脳動脈410、前大脳動脈420を流れる血流の変化を計測し、当該血流変化の計測データから脳400における脈波伝搬速度を検出することが可能になる。
 ここで、図14のフローチャートを参照して血管特性計測装置210の制御部230が実行する脳の血流計測処理について説明する。図14に示されるように、先ず、制御部230は、S31で多数配置されたセンサユニットから任意のセンサユニット224A(アドレス番号n=1のセンサユニット)を選択し、当該センサユニット224Aの発光部320からレーザ光を被計測領域に照射させる。続いて、S32では、アドレス番号n=1に隣接するn=n+1のセンサユニット24Bの受光部130から出力された検出信号(受光した透過光量に対応する電気信号)を無線通信装置240からデータ管理装置250に送信する。データ管理装置250では、無線通信装置260から得られたn=n+1のデータを記憶装置270のデータベースに格納する。
 次のS33では、アドレス番号n=n+1に隣接するn=n+2のセンサユニット224Cの受光部330から出力された検出信号(受光した透過光量に対応する電気信号)を無線通信装置240からデータ管理装置250に送信する。データ管理装置250では、無線通信装置260から得られたn=n+2のデータを記憶装置270のデータベースに格納する。
 このように、レーザ光Aを発光したセンサユニット224Aを基点として周囲に配置された全てのセンサユニット224の検出信号をデータ管理装置250に送信する。
 そして、S34では、発光点となるセンサユニットのアドレスをn+1に変更する。次のS35では、全てのセンサユニット224が発光したか否かをチェックする。S35において、全てのセンサユニット224が発光完了していないときは、上記n+1のセンサユニット224Bの発光部320からレーザ光Aを照射させてS31~S35の処理を繰り返す。
 また、S35において、全てのセンサユニット224が発光完了したときは、S36に進み、当該被験者に対する脳の血管特性計測処理が完了したことをデータ管理装置250に送信する。
 ここで、データ管理装置250の計測データ画像表示制御装置280が実行する計測データ画像表示処理について図15のフローチャートを参照して説明する。計測データ画像表示制御装置280は、図15のS41で記憶装置270のデータベースに格納された計測データ(血流に応じた透過光量によるデータ)を読み込む。続いて、S42に進み、計測データと前述した演算式(2)または(3)を用いて赤血球濃度RpまたはRpwを演算する。
 次のS43では、各計測位置毎の赤血球濃度の変化から血流による血管および血管周辺の組織の変位状態の変化を求め、当該血管および血管周辺の組織の変位状態に基づいて各計測位置毎の血管特性を導出する。すなわち、血流変化に対応する血管の内壁変位データ(血管の内径の収縮)をデータベースから導出する。
 続いて、S44に進み、心電計40により検出された心電位の信号を読み込む。そして、S45では、心電計40の心電位信号波形と各センサユニット224から出力された検出信号波形(または血流変化に対応する内壁変位データの波形)とを比較する。S46においては、図12に示されるように、心電位信号波形(A)のQ波、R波、S波のうちR波のピーク値と受光部検出信号(B)~(D)の最低値との位相差T1~T3を求める。
 S46では、心臓から被測定領域までの距離を心電計40の心電位信号波形と各センサユニット224からの検出信号波形との位相差Tで除算することで脈波伝搬速度を求める。さらに、当該脈波伝搬速度に対応する被測定領域の血管特性(血管の弾性の割合、血管内のプラーク量、動脈硬化の割合)を記憶装置270のデータベースから導出して当該被測定領域における血管の動脈硬化度を導出する。続いて、S47では、血管特性の導出結果である動脈硬化度を記憶装置270のデータベースに格納すると共に、今回得られた動脈硬化度に対応した血管特性結果画像をモニタ290に表示する。
 次のS48では、各計測位置における血管特性のデータを頭部に対するマッピング処理を行なう。これにより、脳の動脈(中大脳動脈410、前大脳動脈420等)における動脈硬化の有無を画像データとしてモニタ290に表示することが可能になる。そして、当該マッピング処理により得られた頭部の動脈硬化データを記憶装置270のデータベースに格納する。
 上記マッピング処理では、まず各センサユニット224(発光部320、受光部330)のアドレスと、頭部における実際の計測位置とを対応させる。続いて、発光部320と受光部330のアドレスから被計測領域の位置(座標および深さ)を求める。さらに、被計測領域の位置と計測された動脈硬化の計測データ(血流による血管および血管周辺の組織の変位状態に対応する血管の内壁変位データ)を関連付ける。各センサユニット224が実際に頭部のどこに配置されているかを定義するには、各センサユニット224がネット状ベース222のどの位置に取り付けられているかに基づいて、大まかな位置を予め設定しておくことができる。また、更に詳細な位置を求めるためには、センサユニット224のアドレスと頭部の実際の位置とを関連付ける際に、血流計測部220を装着した頭部を様々な角度(前方、後方、左右方向、上方向など)から撮影し、画像に各センサユニット224のアドレスを対応させるようにすると良い。さらに、画像に計測結果を重ね合わせて画像表示させることで、被験者の頭部の血流の状態や動脈硬化の度合いを、例えば、カラー表示により色分けする表示することが可能になる。そのため、被験者の頭部の血流の状態が著しく低下した部位を容易に発見することが可能になる。
 続いて、S49に進み、各センサユニット224による全計測位置についての血管特性の検出が完了したか否かをチェックする。S49において、全計測ポイントについての血管特性の計測が完了していないときは、上記S41に戻り、S41以降の処理を繰り返す。
 また、S49において、全計測位置についての血管特性の検出が完了したときは、S50に進み、頭部全体の血管特性の分布を示した脳血管特性状態を表す画像(例えば、被験者の脳の動脈硬化の有無を色分けして示す)を生成し、脳血管特性分布図をモニタ290に表示する。
 このように、血管特性計測装置210によって計測された脈波伝搬速度に応じた血管特性データから得られた頭部全体の脳血管特性状態を表す画像がモニタ290に表示されるため、被験者の血管特性の状態を正確に把握することが可能になる。
 本国際出願は、2008年7月11日に出願した日本国特許出願2008-181471号に基づく優先権を主張するものであり、日本国特許出願2008-181471号の全内容を本国際出願に援用する。
10 皮膚表面
20,20A,20B,220 血流計測部
24 計測面
26 把持部
30,30A,30B センサユニット
32 発光部
33 バッテリ
34,(34~34),36 受光部
37 制御部
38 光路分離部材
39 無線通信装置
40 心電計(心電計測手段)
42 電極
50 制御装置
52 記憶装置
54 無線通信装置
60 血流計測手段
70 血管変位導出手段
80 血管状態導出手段
90 モニタ
92 計測画像
94 血管特性結果画像
100,210 血管特性計測装置
200 脳血管特性計測システム
222 ネット状ベース
224(224A~224N) センサユニット
230 制御部
240,260 無線通信装置
250 データ管理装置
270 記憶装置
280 計測データ画像表示制御装置
290 モニタ
300 頭部表面
320 発光部
330 受光部
340 光路分離部材
342 出射側透過領域
350 脳波計測用電極
360 フレキシブル配線板
370 光伝搬経路
380 血管
400 脳
410 中大脳動脈
420 前大脳動脈
490 基点

Claims (12)

  1.  被験者の被計測領域に対向する位置に設けられ、前記被計測領域に光を照射する発光部と前記被計測領域を伝搬した光を非接触で受光する受光部とを有するセンサユニットと、
     前記発光部から出射された光を前記受光部で受光したときの光強度に基づいて、前記被計測領域における血流による血管および血管周辺の組織の変位を計測する血流計測手段と、
     該血流計測手段により得られた前記血管および血管周辺の組織の変位に基づいて血管壁の変位を導出する血管変位導出手段と、
     前記被験者の心電信号を計測する心電計測手段と、
     前記心電信号の波形と前記受光部から得られた検出信号の波形との差に基づいて各計測位置における血管の内壁状態を導出する血管状態導出手段と、
     を有することを特徴とする血管特性計測装置。
  2.  請求項1に記載の血管特性計測装置であって、
     前記血管状態導出手段は、前記心電信号の波形と前記受光部から得られた前記検出信号の波形との位相差に基づいて各計測位置における血管の内壁状態を導出することを特徴とする血管特性計測装置。
  3.  請求項1に記載の血管特性計測装置であって、
     前記血流計測手段は、前記血管の内壁の状態に応じた血球成分を光学的に計測することを特徴とする血管特性計測装置。
  4.  請求項1に記載の血管特性計測装置であって、
     前記センサユニットは、被験者の複数の被計測点に光を照射する複数の発光部と前記複数の被計測点を伝搬した光を非接触で受光する複数の受光部とを有し、
     前記血管状態導出手段は、前記心電信号の波形と前記複数の受光部から得られた前記複数の検出信号の波形との差に基づいて各計測位置における血管の内壁状態を導出することを特徴とする血管特性計測装置。
  5.  請求項4に記載の血管特性計測装置であって、
     前記複数の受光部は、
     被計測領域に存在する血管の上流で光の伝搬強度を計測する第1の受光部と、
     前記第1の受光部より当該血管の下流に配され、被計測領域に存在する血管の下流で光の伝搬強度を計測する第2の受光部と、
     を有することを特徴とする血管特性計測装置。
  6.  請求項4に記載の血管特性計測装置であって、
     前記複数の受光部は、前記発光部を中心とする異なる半径位置の周方向に所定間隔毎に配されたことを特徴とする血管特性計測装置。
  7.  請求項1に記載の血管特性計測装置であって、
     前記センサユニットは、移動可能な血流計測部に設けられ、任意の被計測領域における光の伝搬強度を計測することを特徴とする血管特性計測装置。
  8.  請求項7に記載の血管特性計測装置であって、
     前記血流計測部は、
     前記センサユニットに電流を供給するバッテリと、
     前記センサユニットで検出された検出信号を無線信号で送信する無線通信装置と、
     を有することを特徴とする血管特性計測装置。
  9.  請求項1に記載の血管特性計測装置であって、
     前記センサユニットは、前記被験者の頭部に装着されるネット状ベースの複数箇所に支持され、前記被験者の頭部の複数の各計測位置における光の伝搬強度を計測することを特徴とする血管特性計測装置。
  10.  請求項9に記載の血管特性計測装置であって、
     前記血管状態導出手段は、前記心電信号の波形と前記複数のセンサユニットから得られた前記複数の検出信号の波形との差に基づいて前記頭部の各計測位置における血管の状態を導出することを特徴とする血管特性計測装置。
  11.  請求項9に記載の血管特性計測装置であって、
     前記血流計測手段は、前記複数の受光部から得られた各計測データを前記頭部に対する各アドレス毎にマッピング処理し、各アドレスに対応する計測位置毎に血管の変位をデータベースに格納し、
     前記血管状態導出手段は、各計測位置毎の血管の変位を前記データベースから読み出し、各アドレスに対応する血管の変位を抽出して前記頭部の各計測位置における血管の状態を導出し、前記頭部全体の血管特性の画像を生成することを特徴とする血管特性計測装置。
  12.  被験者の任意の被計測領域に対向するように配されたセンサユニットの発光部より前記被計測領域に光を照射し、前記被計測領域を伝搬した光を受光部で受光する手順と、
     前記発光部から出射された光を前記受光部で受光したときの光強度の検出信号に基づいて、前記被計測領域における血流による血管および血管周辺の組織の変位を計測する手順と、
     前記血管および血管周辺の組織の変位に基づいて血管壁の変位を導出する手順と、
     前記被験者の心電信号を計測する手順と、
     前記心電信号の波形と前記受光部から得られた検出信号の波形との差に基づいて各計測位置における血管の内壁状態を導出する手順と、
     を含むことを特徴とする血管特性計測方法。
PCT/JP2009/062217 2008-07-11 2009-07-03 血管特性計測装置及び血管特性計測方法 WO2010004940A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200980127040XA CN102088899B (zh) 2008-07-11 2009-07-03 血管特性测量装置及血管特性测量方法
EP09794385.6A EP2314210B1 (en) 2008-07-11 2009-07-03 Blood vessel characteristics measurement device and method for measuring blood vessel characteristics
US13/003,017 US9113797B2 (en) 2008-07-11 2009-07-03 Blood vessel characteristics measuring apparatus and blood vessel characteristics measuring method
KR1020117000687A KR101248517B1 (ko) 2008-07-11 2009-07-03 혈관특성 계측장치 및 혈관특성 계측방법
JP2010519760A JP5283700B2 (ja) 2008-07-11 2009-07-03 血管特性計測装置及び血管特性計測方法
HK11112116.1A HK1157608A1 (en) 2008-07-11 2011-11-09 Blood vessel characteristics measurement device and method for measuring blood vessel characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008181471 2008-07-11
JP2008-181471 2008-07-11

Publications (1)

Publication Number Publication Date
WO2010004940A1 true WO2010004940A1 (ja) 2010-01-14

Family

ID=41507054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062217 WO2010004940A1 (ja) 2008-07-11 2009-07-03 血管特性計測装置及び血管特性計測方法

Country Status (7)

Country Link
US (1) US9113797B2 (ja)
EP (1) EP2314210B1 (ja)
JP (1) JP5283700B2 (ja)
KR (1) KR101248517B1 (ja)
CN (1) CN102088899B (ja)
HK (1) HK1157608A1 (ja)
WO (1) WO2010004940A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189576A (ja) * 2008-02-14 2009-08-27 Univ Of Tsukuba 血流計測装置及び血流計測装置を用いた脳活動計測装置
GB2478291A (en) * 2010-03-02 2011-09-07 Univ Lancaster Endothelium assessment probe
WO2012110042A1 (en) * 2011-02-17 2012-08-23 Sense A/S A method of and a system for determining a cardiovascular quantity of a mammal
JP2013106641A (ja) * 2011-11-17 2013-06-06 Univ Of Tsukuba 血流脈波検査装置
JP2014507991A (ja) * 2011-02-09 2014-04-03 オルサン メディカル テクノロジーズ リミテッド 脳血液動態状態を監視するためのデバイスおよび方法
JP2016539697A (ja) * 2013-11-27 2016-12-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被検体のパルス移動時間及び/又はパルス波速度情報を獲得するためのデバイスおよび方法
JP2017148139A (ja) * 2016-02-22 2017-08-31 株式会社東芝 生体情報測定装置
CN107550498A (zh) * 2016-06-30 2018-01-09 北京超思电子技术有限责任公司 一种血氧测量装置及其测量方法
JP2018007907A (ja) * 2016-07-14 2018-01-18 セイコーエプソン株式会社 検出装置および測定装置
JP2018514244A (ja) * 2015-04-15 2018-06-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血液灌流パラメータを測定するための光学レーザスペックルセンサ
JP2018094065A (ja) * 2016-12-13 2018-06-21 セイコーエプソン株式会社 測定装置、血圧測定装置および測定方法
JP2019000723A (ja) * 2018-10-11 2019-01-10 三星電子株式会社Samsung Electronics Co.,Ltd. 生体情報取得装置及び腕時計端末
CN109645972A (zh) * 2019-01-08 2019-04-19 研和智能科技(杭州)有限公司 一种用于测量心率和血氧的阵列排布电路

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248517B1 (ko) * 2008-07-11 2013-04-03 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 혈관특성 계측장치 및 혈관특성 계측방법
CN104825177B (zh) * 2014-02-11 2018-02-13 西门子(中国)有限公司 修正脑血容积的方法及装置、血管照影设备
US10405784B2 (en) 2014-05-14 2019-09-10 Stryker Corporation Tissue monitoring apparatus and method
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US11169988B2 (en) 2014-08-22 2021-11-09 Google Llc Radar recognition-aided search
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US10820859B2 (en) * 2014-10-30 2020-11-03 Stryker Corporation Systems and methods for detecting pulse wave velocity
US10064582B2 (en) 2015-01-19 2018-09-04 Google Llc Noninvasive determination of cardiac health and other functional states and trends for human physiological systems
KR102390369B1 (ko) 2015-01-21 2022-04-25 삼성전자주식회사 생체 정보 검출 장치
US10016162B1 (en) 2015-03-23 2018-07-10 Google Llc In-ear health monitoring
US9848780B1 (en) 2015-04-08 2017-12-26 Google Inc. Assessing cardiovascular function using an optical sensor
EP3202315A4 (en) * 2015-04-21 2018-06-20 Olympus Corporation Medical device and operating method for medical device
CN111522434A (zh) 2015-04-30 2020-08-11 谷歌有限责任公司 用于手势跟踪和识别的基于rf的微运动跟踪
EP3289434A1 (en) 2015-04-30 2018-03-07 Google LLC Wide-field radar-based gesture recognition
CN107466389B (zh) 2015-04-30 2021-02-12 谷歌有限责任公司 用于确定类型不可知的rf信号表示的方法和装置
US10080528B2 (en) 2015-05-19 2018-09-25 Google Llc Optical central venous pressure measurement
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US10376195B1 (en) 2015-06-04 2019-08-13 Google Llc Automated nursing assessment
US11638550B2 (en) 2015-07-07 2023-05-02 Stryker Corporation Systems and methods for stroke detection
US10817065B1 (en) 2015-10-06 2020-10-27 Google Llc Gesture recognition using multiple antenna
CN105662367A (zh) * 2016-02-25 2016-06-15 北京航空航天大学 一种头戴式多点脉搏波检测方法及装置
US10085652B2 (en) * 2016-03-18 2018-10-02 Qualcomm Incorporated Optical measuring device for cardiovascular diagnostics
WO2017192167A1 (en) 2016-05-03 2017-11-09 Google Llc Connecting an electronic component to an interactive textile
JP6742196B2 (ja) 2016-08-24 2020-08-19 Cyberdyne株式会社 生体活動検出装置および生体活動検出システム
CN110574092B (zh) * 2017-05-02 2021-10-12 国立大学法人东北大学 管腔脏器模型单元以及管腔脏器模型单元的制造方法
US11800986B2 (en) 2020-12-28 2023-10-31 Industrial Technology Research Institute Non-pressure continuous blood pressure measuring device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252494A (en) * 1975-10-24 1977-04-27 Minolta Camera Kk Probe for device for measuring fatal living body phenomenon
JPS6239703U (ja) * 1985-08-29 1987-03-10
JPS6481471A (en) 1987-09-24 1989-03-27 Hitachi Ltd Picture information reader
JPH028A (ja) 1987-10-19 1990-01-05 Casio Comput Co Ltd 液晶表示素子
JPH0866377A (ja) * 1994-06-21 1996-03-12 Nippon Koden Corp 多機能血圧計
JPH08257002A (ja) 1995-03-27 1996-10-08 Nippon Colin Co Ltd 脈波伝播速度測定装置
JP2004000467A (ja) 2002-03-15 2004-01-08 U-Medica Inc 脈波センサ
JP2008048987A (ja) * 2006-08-25 2008-03-06 Mcm Japan Kk 脈波測定装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239703A (ja) 1985-08-16 1987-02-20 Nippon Kokan Kk <Nkk> 形板の切断装置
US5033472A (en) * 1989-02-23 1991-07-23 Nihon Kohden Corp. Method of and apparatus for analyzing propagation of arterial pulse waves through the circulatory system
US5853370A (en) * 1996-09-13 1998-12-29 Non-Invasive Technology, Inc. Optical system and method for non-invasive imaging of biological tissue
CN1045529C (zh) * 1993-12-20 1999-10-13 林计平 心脏潜力综合检测仪
US5603329A (en) * 1994-06-21 1997-02-18 Nihon Kohden Corporation Multi-functional blood pressure monitor
US5513642A (en) * 1994-10-12 1996-05-07 Rensselaer Polytechnic Institute Reflectance sensor system
JP3602880B2 (ja) * 1995-02-17 2004-12-15 コーリンメディカルテクノロジー株式会社 末梢循環状態監視装置
US5995856A (en) * 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US6280390B1 (en) * 1999-12-29 2001-08-28 Ramot University Authority For Applied Research And Industrial Development Ltd. System and method for non-invasively monitoring hemodynamic parameters
US6475153B1 (en) * 2000-05-10 2002-11-05 Motorola Inc. Method for obtaining blood pressure data from optical sensor
CN1582845A (zh) * 2003-08-22 2005-02-23 香港中文大学 采用温度补偿的基于光电容积描记信号的血压测量方法
DE60335921D1 (de) 2003-11-14 2011-03-10 Hitachi Medical Corp Thrombusdetektor, vorrichtung zur behandlung von thromben und verfahren dafür
US20050234317A1 (en) * 2004-03-19 2005-10-20 Kiani Massi E Low power and personal pulse oximetry systems
GB0607270D0 (en) * 2006-04-11 2006-05-17 Univ Nottingham The pulsing blood supply
US20100234744A1 (en) * 2006-05-16 2010-09-16 Retinal Information Diagnosis Research Institute Inc. Blood vessel senescence detection system
KR101248517B1 (ko) * 2008-07-11 2013-04-03 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 혈관특성 계측장치 및 혈관특성 계측방법
US8532751B2 (en) * 2008-09-30 2013-09-10 Covidien Lp Laser self-mixing sensors for biological sensing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252494A (en) * 1975-10-24 1977-04-27 Minolta Camera Kk Probe for device for measuring fatal living body phenomenon
JPS6239703U (ja) * 1985-08-29 1987-03-10
JPS6481471A (en) 1987-09-24 1989-03-27 Hitachi Ltd Picture information reader
JPH028A (ja) 1987-10-19 1990-01-05 Casio Comput Co Ltd 液晶表示素子
JPH0866377A (ja) * 1994-06-21 1996-03-12 Nippon Koden Corp 多機能血圧計
JPH08257002A (ja) 1995-03-27 1996-10-08 Nippon Colin Co Ltd 脈波伝播速度測定装置
JP2004000467A (ja) 2002-03-15 2004-01-08 U-Medica Inc 脈波センサ
JP2008048987A (ja) * 2006-08-25 2008-03-06 Mcm Japan Kk 脈波測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2314210A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189576A (ja) * 2008-02-14 2009-08-27 Univ Of Tsukuba 血流計測装置及び血流計測装置を用いた脳活動計測装置
GB2478291A (en) * 2010-03-02 2011-09-07 Univ Lancaster Endothelium assessment probe
JP2014507991A (ja) * 2011-02-09 2014-04-03 オルサン メディカル テクノロジーズ リミテッド 脳血液動態状態を監視するためのデバイスおよび方法
WO2012110042A1 (en) * 2011-02-17 2012-08-23 Sense A/S A method of and a system for determining a cardiovascular quantity of a mammal
CN103648374A (zh) * 2011-02-17 2014-03-19 森思公司 用于确定哺乳动物心血管分量的方法和系统
US9603533B2 (en) 2011-02-17 2017-03-28 Qualcomm Incorporated Method of and a system for determining a cardiovascular quantity of a mammal
JP2013106641A (ja) * 2011-11-17 2013-06-06 Univ Of Tsukuba 血流脈波検査装置
JP2016539697A (ja) * 2013-11-27 2016-12-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被検体のパルス移動時間及び/又はパルス波速度情報を獲得するためのデバイスおよび方法
US10292662B2 (en) 2013-11-27 2019-05-21 Koninklijke Philips N.V. Device and method for obtaining pulse transit time and/or pulse wave velocity information of a subject
JP2018514244A (ja) * 2015-04-15 2018-06-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血液灌流パラメータを測定するための光学レーザスペックルセンサ
JP2017148139A (ja) * 2016-02-22 2017-08-31 株式会社東芝 生体情報測定装置
CN107550498A (zh) * 2016-06-30 2018-01-09 北京超思电子技术有限责任公司 一种血氧测量装置及其测量方法
CN107550498B (zh) * 2016-06-30 2024-02-09 北京超思电子技术有限责任公司 一种血氧测量装置及其测量方法
JP2018007907A (ja) * 2016-07-14 2018-01-18 セイコーエプソン株式会社 検出装置および測定装置
JP2018094065A (ja) * 2016-12-13 2018-06-21 セイコーエプソン株式会社 測定装置、血圧測定装置および測定方法
JP2019000723A (ja) * 2018-10-11 2019-01-10 三星電子株式会社Samsung Electronics Co.,Ltd. 生体情報取得装置及び腕時計端末
CN109645972A (zh) * 2019-01-08 2019-04-19 研和智能科技(杭州)有限公司 一种用于测量心率和血氧的阵列排布电路

Also Published As

Publication number Publication date
EP2314210B1 (en) 2014-09-10
KR20110017913A (ko) 2011-02-22
CN102088899A (zh) 2011-06-08
JPWO2010004940A1 (ja) 2012-01-05
US20110118564A1 (en) 2011-05-19
EP2314210A1 (en) 2011-04-27
US9113797B2 (en) 2015-08-25
JP5283700B2 (ja) 2013-09-04
EP2314210A4 (en) 2012-10-31
HK1157608A1 (en) 2012-07-06
KR101248517B1 (ko) 2013-04-03
CN102088899B (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5283700B2 (ja) 血管特性計測装置及び血管特性計測方法
JP5295584B2 (ja) 血流計測装置及び血流計測装置を用いた脳活動計測装置
JP5717064B2 (ja) 血流計測装置及び血流計測装置を用いた脳活動計測装置
KR101954548B1 (ko) 진단 측정 기구
CN102014737B (zh) 患者的非接触呼吸监测和用于光电容积描记术测量的光学传感器
JP2016168177A (ja) 生体情報検出装置および背もたれ付シート
US20130324866A1 (en) Indications of cross-section of small branched blood vessels
GB2524160A (en) Obtaining cardiovascular parameters using arterioles related transient time
JPWO2003068070A1 (ja) 生体機能診断装置
EP3165157A1 (en) Biological information detection device, seat with backrest, and cardiopulmonary function monitoring device
US20170055855A1 (en) Method and apparatus for acquiring bioinformation and apparatus for testing bioinformation
JP2013106641A (ja) 血流脈波検査装置
JP2012161507A (ja) 脈波計測装置およびプログラム
WO2006134197A1 (es) Método para procesar señales fotopletismográficas obtenidas de una persona o animal, y oxímetro que utiliza dicho método
US20140323833A1 (en) System and Method for Differentiating Between Tissue-Specific and Systemic Causes of Changes in Oxygen Saturation in Tissue and Organs
US10265544B2 (en) Real-time tumor perfusion imaging during radiation therapy delivery
JP2016168104A (ja) 脳活動計測装置及びセンサユニット
US20230157572A1 (en) Continuous Self-Recalibrating System and Method for Monitoring Oxygen Saturation
US20020100867A1 (en) Amusement system using living body measurement by light, head setter for the amusement system, and program for use in the amusement system
KR101628218B1 (ko) 혈류계측장치 및 혈류계측장치를 이용한 뇌활동 계측장치
JP2006026209A (ja) ロボット
JP6933836B2 (ja) 挟持型生体組織情報測定器、及び挟持型生体組織情報測定方法
CA2671221C (en) Blood flow measuring apparatus and brain activity measuring apparatus using the same
EP2272428B1 (en) Blood flow measuring apparatus and brain activity measuring apparatus using the same
Rackebrandt et al. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS: Preliminary results of model evaluation measurements

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127040.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13003017

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117000687

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010519760

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009794385

Country of ref document: EP