WO2010004861A1 - 酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法 - Google Patents

酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法 Download PDF

Info

Publication number
WO2010004861A1
WO2010004861A1 PCT/JP2009/061352 JP2009061352W WO2010004861A1 WO 2010004861 A1 WO2010004861 A1 WO 2010004861A1 JP 2009061352 W JP2009061352 W JP 2009061352W WO 2010004861 A1 WO2010004861 A1 WO 2010004861A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
powder
oxide
lanthanum oxide
lanthanum
Prior art date
Application number
PCT/JP2009/061352
Other languages
English (en)
French (fr)
Inventor
佐藤 和幸
由将 小井土
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Priority to CN200980126610.3A priority Critical patent/CN102089258B/zh
Priority to EP09794307A priority patent/EP2298715A4/en
Priority to KR1020117000153A priority patent/KR101222789B1/ko
Priority to US13/002,577 priority patent/US20110114481A1/en
Priority to JP2010519717A priority patent/JP5301541B2/ja
Publication of WO2010004861A1 publication Critical patent/WO2010004861A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present invention relates to a lanthanum oxide-based sintered body comprising lanthanum oxide (La) as a basic component and comprising an added oxide comprising one or more of titanium (Ti), zirconium (Zr), and hafnium (Hf), and the same TECHNICAL FIELD
  • the present invention relates to a sputtering target comprising a body, a method for producing a lanthanum oxide-based sintered body, and a method for producing a sputtering target by the production method.
  • an effective work function of a metal gate electrode is controlled using La 2 Hf 2 O 7 in particular as a LaHfO-based material (see Patent Document 1).
  • lanthanum is a material that has attracted attention.
  • Lanthanum (La) is contained in rare earth elements, but is contained in the earth's crust as a mixed complex oxide as a mineral resource. Since rare earth elements were separated from relatively rare (rare) minerals, they were named as such, but they are not rare when viewed from the entire crust.
  • Lanthanum is a white metal having an atomic number of 57 and an atomic weight of 138.9, and has a double hexagonal close-packed structure at room temperature. The melting point is 921 ° C., the boiling point is 3500 ° C., and the density is 6.15 g / cm 3.
  • the surface is oxidized in the air and gradually dissolved in water. Soluble in hot water and acid. There is no ductility, but there is slight malleability.
  • the resistivity is 5.70 ⁇ 10 ⁇ 6 ⁇ cm. It burns at 445 ° C or higher to become oxide (La 2 O 3 ) (see Physics and Chemistry Dictionary).
  • oxide La 2 O 3
  • rare earth elements compounds having an oxidation number of 3 are generally stable, but lanthanum is also trivalent.
  • lanthanum metal Since lanthanum metal has a problem that it is easily oxidized during purification, it is difficult to achieve high purity, and there has been no high purity product. Further, when metal lanthanum is left in the air, it oxidizes in a short time and turns black, so that there is a problem that handling is not easy.
  • lanthanum lanthanum oxide
  • the metal lanthanum itself exists as a sputtering target material
  • covering with oil / fat involves a work of removing oil / fat for a sputtering target that requires high cleanliness, and similarly involves a complicated operation. Because of these problems, the lanthanum element target material has not yet been put into practical use. As described above, a lanthanum oxide target that can withstand practical use could not be produced.
  • the process using a lanthanum oxide target is simpler than the method of performing reactive sputtering of metal lanthanum with oxygen or the method of oxidizing metal lanthanum after film formation, Film formation with a uniform amount of oxygen is possible.
  • lanthanum oxide reacts with moisture in the air faster than metal lanthanum, becomes powdered in a very short time, and eventually completely disintegrates. Accordingly, when an La 2 O 3 film is to be produced by an industrially common PVD method, particularly a sputtering method, it is extremely difficult to supply a sputtering target that can withstand practical use.
  • metal lanthanum is easily bonded to oxygen, and lanthanum oxide is bonded to moisture or carbon dioxide gas to form a hydroxide or the like and changes into a powder form. It was difficult to make a product as a sputtering target.
  • the present invention relates to a lanthanum oxide-based sintered body comprising lanthanum oxide (La) as a basic component and comprising an added oxide comprising one or more of titanium (Ti), zirconium (Zr), and hafnium (Hf), and the same
  • a sputtering target comprising a body, a method for producing a lanthanum oxide-based sintered body, and a method for producing a sputtering target by the production method, thereby forming a hydroxide or the like by combining with moisture or carbon dioxide gas. It prevents the powder from changing and enables long-term storage. It is another object of the present invention to provide a technique capable of efficiently and stably providing a high-k gate insulating film oxide by forming a film using this sputtering target.
  • lanthanum metal is easily bonded to oxygen, and lanthanum oxide is bonded to moisture to form a hydroxide, both of which are difficult to store for a long time.
  • lanthanum oxide is used as a basic component, and one or more of titanium oxide, zirconium oxide, and hafnium oxide are added to this and used as a sintered body or sputtering target.
  • the component composition of these sintered bodies and targets includes a new substance.
  • the present invention is 1) A sintered body containing lanthanum oxide as a basic component, containing one or more of titanium oxide, zirconium oxide and hafnium oxide, and the balance being lanthanum oxide and inevitable impurities 2.
  • Base sintered body 2 The amount of the metal elements of titanium, zirconium, and hafnium is 1 mol% or more and less than 50 mol% with respect to the total component amount of the metal elements in the sintered body.
  • the lanthanum oxide-based sintered body 3) The above 1) characterized in that the amount of metal elements of titanium, zirconium and hafnium is 10 mol% or more and less than 50 mol% with respect to the total amount of metal elements in the sintered body.
  • the lanthanum oxide-based sintered body 4) Hydrogen and carbon are each 25 wtppm or less, the relative density is 96% or more, the maximum particle size is 50 ⁇ m or less, and the average particle size is 5 ⁇ m or more.
  • Hydrogen and carbon are each 25 wtppm or less, the relative density is 96% or more, the maximum particle size is 50 ⁇ m or less, and the average particle size is 5 ⁇ m or more.
  • Hydrogen and carbon are each 25 wtppm or less, the relative density is 96% or more, the maximum particle size is 50 ⁇ m or less, and the average particle size is 5 ⁇ m or more.
  • a lanthanum oxide-based sintered body according to any one of 1) to 3) above and a sputtering target comprising the sintered body according to any one of 1) to 4) above.
  • the present invention 6) La 2 (CO 3 ) 3 powder or La 2 O 3 powder as lanthanum oxide raw material powder and TiO 2 , ZrO 2 , one or more of HfO 2 powder as additive oxide, and oxide for La
  • the mixed powder is heated and synthesized in the atmosphere, and then the synthetic material is pulverized into a powder.
  • a method for producing a lanthanum oxide-based sintered body characterized in that it is hot pressed into a sintered body 7) La 2 (CO 3 ) 3 powder or La 2 O 3 powder as an lanthanum oxide raw material powder, and an added oxide TiO 2 , ZrO 2 , or one or more of HfO 2 powders, and after mixing and mixing the composition ratio of the metal component of the oxide additive with respect to La to a predetermined value, Heating in air The synthetic material is then pulverized into a powder, and then the synthetic powder is hot-pressed to obtain a sintered body.
  • the sputtering target of sintered lanthanum oxide If the sputtering target of sintered lanthanum oxide is left in the air for a long time, it will be in a state where it reacts with moisture due to deliquescence and is covered with a white powder of hydroxide, causing a problem that normal sputtering cannot be performed. . In addition, it absorbs carbon dioxide in the air and collapses into lanthanum carbonate powder.
  • the target of the present invention can delay the occurrence of such a problem and can be stored until a period of no practical problem.
  • Titanium oxide, zirconium oxide, and hafnium oxide as additive oxides are all effective as high-k materials, but particularly Hf oxidation used as HfO-based, HfON-based, HfSiO-based, or HfSiON-based (High-k materials). It is considered that the addition of the product is less effective than the one containing titanium oxide and zirconium oxide, and that the problem of increase in leakage current due to diffusion of titanium and zirconium to the High-k material side is less.
  • the oxide sintered body sputtering target of the present invention is a sintered body containing lanthanum oxide as a basic component, and contains one or more of titanium oxide, zirconium oxide, hafnium oxide, and the remainder is lanthanum oxide and unavoidable.
  • a lanthanum oxide-based sintered body characterized by being an impurity and a sputtering target using the sintered body.
  • this sintered body and target react with moisture due to deliquescence and are covered with a white powder of hydroxide or collapse, or absorb carbon dioxide in the air and lanthanum carbonate powder There is a remarkable effect that it is possible to greatly suppress the collapse. This is the central technical idea of the present invention.
  • hafnium oxide is particularly effective as an oxide for a high-k gate insulating film. This is because when titanium oxide or zirconium oxide is used, there is a problem that a small amount of titanium or zirconium is diffused to the High-k material side and the leakage current is slightly increased. Hafnium oxide does not cause this problem.
  • the metal components of La and added oxides in the oxide (total of titanium, zirconium, and hafnium)
  • the metal component of the additive oxide (total of titanium, zirconium, and hafnium) that is, (Ti, Zr, Hf) / (La + Ti, Zr, Hf) is 1 mol% to 50 mol% with respect to the total amount of It is good to make it less than. In order to prevent collapse more effectively, 10 mol% or more is good.
  • the effect of preventing lanthanum oxide from collapsing due to deliquescence is small, and if it is 50 mol% or more, it is effective for the effect of preventing disintegration, but the effect using the characteristics of lanthanum oxide is reduced. It is.
  • the characteristics of high dielectric constant oxides for example, La 2 Hf 2 O 7 and La 2 Zr 2 O 7 ) are dominant and the characteristics are different.
  • the present invention is premised on the use as a High-k material, and is for obtaining characteristics such as lowering the threshold voltage by using lanthanum oxide (La 2 O 3 ) in combination.
  • the present invention provides a lanthanum oxide-based sintered body and a target in which hydrogen and carbon are each 25 wtppm or less, relative density is 96% or more, maximum particle size is 50 ⁇ m or less, average particle size is 5 ⁇ m or more, and 20 ⁇ m or less. To do. It is effective to reduce the presence of hydrogen and carbon in the sintered body and the target because it serves as a starting point for reaction with moisture and carbon dioxide in the atmosphere. Further, the density improvement is necessary to reduce the contact area with the atmosphere.
  • the density is more preferably 98%. This is because penetrating pores in the sintered body are reduced, and collapse from the inside can be prevented. Furthermore, the crystal grain size of the sintered body can be made relatively large, the grain boundaries can be reduced, and the collapse from the grain boundaries can be reduced. Thus, increasing the crystal grain size reduces the interfacial area of the grain, which is effective in reducing collapse from the grain boundary. However, increasing the crystal grain size makes it difficult to improve the density. In order to improve this, it can be said that the maximum particle size is preferably 50 ⁇ m or less. However, these are merely additional preferable requirements, and needless to say, it is not necessary to be bound by these conditions.
  • La 2 (CO 3 ) 3 powder or La 2 O 3 powder is used as a raw material powder, and one or more of TiO 2 , ZrO 2 , and HfO 2 powder are used as additive oxides.
  • the total amount of titanium, zirconium, and hafnium that are metal components in the additive oxide is 1 mol% or more and 50 mol with respect to the total measurement of La of the metal and titanium, zirconium, and hafnium that are the metal components in the additive oxide. It mix
  • the oxide is not necessarily limited to the above oxide as long as the oxide can be formed by heat treatment or the like.
  • the oxide can be formed by heat treatment or the like.
  • metal lanthanum can also be used if sufficient management is possible.
  • a metal powder or a hydrogenated powder with good grindability may be used if sufficient management is possible. After mixing this, it can synthesize
  • hydrogenated powder titanium hydride, zirconium hydride, hafnium hydride
  • performing the hot pressing at 1200 to 1500 ° C. in a vacuum for 1 to 5 hours is also a recommended production condition as a sintering condition.
  • the above are the conditions for efficiently performing synthesis and sintering. Therefore, it should be understood that other conditions and other conditions can be added.
  • an oxide sintered sputtering target having a relative density of 96% or more, more preferably 98% or more, and a maximum particle size of 50 ⁇ m or less, more preferably an average particle size of 5 ⁇ m or more and 20 ⁇ m or less can be obtained.
  • improving the density and reducing the crystal grain size are preferable conditions that can suppress the generation of nodules and particles and can form a uniform film.
  • rare earth elements contained in lanthanum are Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.
  • Ce approximates La
  • Ce it is not easy to reduce Ce.
  • these rare earth elements have similar properties, it will be understood that there is no particular problem if the total rare earth elements are less than 1000 wtppm. Therefore, the use of lanthanum in the present invention allows the inclusion of rare earth elements at this level as an inevitable impurity.
  • the present invention since the present invention is intended to suppress the decay of lanthanum oxide to obtain a practical sputtering target, it includes these inevitable impurities.
  • a purity of 3N or higher is preferred except for the above-mentioned special inevitable impurities and excluding gas components.
  • C, N, O, S, and H exist as gas components.
  • C and H it is also important to reduce C and H.
  • C and H not only promote the reaction with carbon dioxide and moisture in the storage atmosphere, but also react with the oxygen in the atmosphere and oxygen in the atmosphere to form lanthanum carbonate and lanthanum hydroxide to disintegrate into powder. It is important to reduce it. For this reason, it is preferable to sinter by a hot press in an inert gas in a vacuum rather than sintering in an oxygen (atmosphere) atmosphere.
  • La 2 (CO 3 ) 3 powder and HfO 2, ZrO 2 , and TiO 2 powder are used as raw material powder, and the amount of Hf 3 , Zr, and Ti is 0.5 to 4 with respect to the total amount of metal components including La. It mix
  • the size of the sintered body was ⁇ 80 mm, and the press pressure was 300 kg / cm 2 .
  • the present embodiment describes the case of using La 2 (CO 3) 3 powder.
  • the sintered body was a composite oxide of these.
  • the sintered body for evaluation was examined for stability in the air or in a constant temperature and humidity chamber (temperature 40 ° C., humidity 90%). It was confirmed by XRD that the powdered material was mainly lanthanum hydroxide (La (OH) 3 ).
  • the sintered body shown in the embodiment can be used in an actual semiconductor manufacturing process by bonding to a backing plate as a target and vacuum-sealing (or in an inert gas atmosphere) as necessary.
  • the mixing conditions, synthesis conditions, and hot press conditions for the raw material powder are all representative conditions. Suitable conditions described in paragraph [0011] can be arbitrarily selected.
  • the composite oxide sintered body of Reference Example 1 is a composite oxide sintered body (lanthanum oxide and hafnium oxide) containing 0.5 mol% of hafnium in terms of metal, that is, a mole of Hf / (La + Hf). %, So that Hf is 0.5%.
  • the composition of La 2 Hf 2 O 7 is 50 mol%
  • La 2 O 3 is 33.3 mol%
  • HfO 2 is 66.7 mol%.
  • the carbon content was 35 ppm
  • the hydrogen was 29 ppm
  • the relative density was 95%
  • the maximum particle size was 41 ⁇ m
  • the average particle size was 12 ⁇ m.
  • the amount of HfO 2 was slightly less than the preferred condition of the present invention
  • the carbon content was slightly larger than the preferred condition of the present invention
  • the relative density was slightly low at 95%.
  • the sintered body collapsed into powder after 3 weeks in the atmosphere.
  • surface pulverization was not observed in the vacuum pack until 4 months.
  • this level of sintered body has a somewhat high rate of decay, it can be said that it is within a practical level if a vacuum pack is used.
  • the evaluation is ⁇ .
  • Reference Example 2 The composite oxide sintered body of Reference Example 2 contains 0.5 mol% in terms of metal and ZrO 2 in terms of Zr.
  • the carbon content was 23 ppm, hydrogen 19 ppm, the relative density was 97%, the maximum particle size was 37 ⁇ m, and the average particle size was 9 ⁇ m.
  • the amount of ZrO 2 was slightly smaller than the preferred conditions of the present invention, but the relative density was slightly high at 97%.
  • the sintered body collapsed into a powder after 4 weeks in the atmosphere. It was slightly improved from Reference Example 1. However, surface pulverization was not observed in the vacuum pack until 4 months. Although this level of sintered body has a somewhat high rate of decay, it can be said that it is within a practical level if a vacuum pack is used.
  • the evaluation is ⁇ .
  • the composite oxide sintered body of Reference Example 3 contains 0.5 mol% of TiO 2 as Ti in terms of metal.
  • the carbon content was 46 ppm
  • hydrogen was 50 ppm
  • the relative density was 95%
  • the maximum particle size was 53 ⁇ m
  • the average particle size was 11 ⁇ m.
  • the amount of TiO 2 is slightly less than the preferred condition of the present invention
  • the carbon content and the amount of hydrogen are slightly larger than the preferred condition of the present invention
  • the maximum particle size is slightly large as 53 ⁇ m
  • the relative density is slightly as 95%. It was low.
  • the sintered body collapsed into powder after 3 weeks in the atmosphere.
  • surface pulverization was not observed in the vacuum pack until 4 months.
  • this level of sintered body has a somewhat high rate of decay, it can be said that it is within a practical level if a vacuum pack is used.
  • the evaluation is ⁇ .
  • Example 1 The composite oxide sintered body of Example 1 contains 1 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 37 ppm
  • hydrogen was 30 ppm
  • the relative density was 95%
  • the maximum particle size was 40 ⁇ m
  • the average particle size was 10 ⁇ m.
  • the amount of HfO 2 meets the preferable conditions of the present invention.
  • the carbon content and hydrogen content were slightly higher than the preferred conditions of the present invention, and the relative density was slightly low at 95%.
  • the sintered body collapsed into a powder form in the fourth week in a constant temperature (40 ° C.) and constant humidity (humidity 90%) bath as an accelerated test.
  • surface pulverization was not observed in 6 months until 6 months.
  • the presence of this HfO 2 was confirmed to have a great effect of suppressing the collapse of the sintered body. It is a practical level and is evaluated as ⁇ .
  • Example 2 The composite oxide sintered body of Example 2 contains 1 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 15 ppm
  • hydrogen was 20 ppm
  • the relative density was 97%
  • the maximum particle size was 42 ⁇ m
  • the average particle size was 15 ⁇ m.
  • all of the conditions matched the preferable conditions of the present invention.
  • surface pulverization was not observed until 10 months. It was confirmed that the presence of this HfO 2 and the optimization of additional conditions have a great effect of suppressing the collapse of the sintered body. It is a practical level and is evaluated as ⁇ .
  • Example 3 The composite oxide sintered body of Example 3 contains 5 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 53 ppm
  • hydrogen was 47 ppm
  • the relative density was 97%
  • the maximum particle size was 41 ⁇ m
  • the average particle size was 5 ⁇ m.
  • the contents of carbon and hydrogen were high, but other conditions were suitable for the preferred conditions of the present invention.
  • Example 4 The composite oxide sintered body of Example 4 contains 5 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 26 ppm
  • hydrogen was 28 ppm
  • the relative density was 98%
  • the maximum particle size was 36 ⁇ m
  • the average particle size was 13 ⁇ m.
  • carbon and hydrogen are present in a slight excess in the composite oxide sintered body.
  • the amount is less than in Example 6.
  • surface pulverization was not observed until 10 months.
  • Example 4 It was confirmed that the presence of slightly excess carbon and hydrogen in the composite oxide sintered body was a factor for facilitating the decay. However, it was confirmed that the composite oxide sintered body of Example 4 had a greater effect of suppressing collapse than that of Example 6. It is a practical level and is evaluated as ⁇ .
  • Example 5 The complex oxide sintered body of Example 5 contains 10 mol% of HfO 2 in terms of metal and Hf.
  • the carbon content was 76 ppm
  • hydrogen was 28 ppm
  • the relative density was 95%
  • the maximum particle size was 63 ⁇ m
  • the average particle size was 3 ⁇ m.
  • carbon and hydrogen are excessively present in the composite oxide sintered body, and additional requirements such as maximum particle size and average particle size are not in the optimum range.
  • the accelerated test which was a constant temperature (40 ° C.) and constant humidity (humidity 90%)
  • the powder was not collapsed even in the eighth week.
  • the surface hardness was measured, there was a slight downward trend.
  • Example 6 The composite oxide sintered body of Example 6 contains 10 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 18 ppm
  • hydrogen was 20 ppm
  • the relative density was 96%
  • the maximum particle size was 23 ⁇ m
  • the average particle size was 15 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powder was not collapsed even in the eighth week.
  • no powdering was observed in the vacuum pack even after one year. It was confirmed that this composite oxide sintered body has a remarkable effect of suppressing collapse when the presence of Hf and other additional factors meet the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 7 The composite oxide sintered body of Example 7 contains 35 mol% of HfO 2 in terms of metal and Hf.
  • the carbon content was 73 ppm
  • hydrogen was 52 ppm
  • the relative density was 98%
  • the maximum particle size was 37 ⁇ m
  • the average particle size was 8 ⁇ m.
  • carbon and hydrogen were present in a considerable excess in the composite oxide sintered body.
  • Other additional requirements are in the optimal range.
  • the powder was not collapsed even in the eighth week.
  • the surface hardness was measured, there was a slight downward trend.
  • the vacuum pack surface powdering was finally observed after one year.
  • this composite oxide sintered body has a remarkable effect of suppressing collapse when the presence of Hf and other additional factors meet the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 8 The composite oxide sintered body of Example 8 contains 35 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 13 ppm
  • hydrogen was 21 ppm
  • the relative density was 98%
  • the maximum particle size was 30 ⁇ m
  • the average particle size was 13 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powder was not collapsed even in the eighth week.
  • no powdering was observed in the vacuum pack even after one year. It was confirmed that this composite oxide sintered body has a remarkable effect of suppressing collapse when the presence of Hf and other additional factors meet the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 9 The composite oxide sintered body of Example 9 contains 45 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 73 ppm
  • hydrogen was 52 ppm
  • the relative density was 98%
  • the maximum particle size was 37 ⁇ m
  • the average particle size was 8 ⁇ m.
  • carbon and hydrogen were present in a considerable excess in the composite oxide sintered body.
  • Other additional requirements are in the optimal range.
  • the powder was not collapsed even in the eighth week.
  • the surface hardness was measured, there was a slight downward trend.
  • surface powdering was finally observed after one year. It was confirmed that this composite oxide sintered body has a remarkable effect of suppressing collapse when the presence of Hf and other additional factors meet the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 10 The composite oxide sintered body of Example 10 contains 45 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 10 ppm
  • hydrogen was 25 ppm
  • the relative density was 98%
  • the maximum particle size was 31 ⁇ m
  • the average particle size was 14 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powder was not collapsed even in the eighth week.
  • no powdering was observed in the vacuum pack even after one year. It was confirmed that this composite oxide sintered body has a remarkable effect of suppressing collapse when the presence of Hf and other additional factors meet the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 11 The composite oxide sintered body of Example 11 contains 48 mol% in terms of metal and HfO 2 in terms of Hf.
  • the carbon content was 23 ppm
  • hydrogen was 24 ppm
  • the relative density was 97%
  • the maximum particle size was 18 ⁇ m
  • the average particle size was 10 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powder was not collapsed even in the eighth week.
  • no powdering was observed in the vacuum pack even after one year. It was confirmed that this composite oxide sintered body has a remarkable effect of suppressing collapse when the presence of Hf and other additional factors meet the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 12 The composite oxide sintered body of Example 12 contains 5 mol% in terms of metal and ZrO 2 in terms of Zr.
  • the carbon content was 20 ppm
  • hydrogen was 14 ppm
  • the relative density was 98%
  • the maximum particle size was 20 ⁇ m
  • the average particle size was 12 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the constant temperature (40 ° C.) and constant humidity (humidity 90%) bath which is an accelerated test, only the surface of the sintered body collapsed into a powder form in the fourth week.
  • the vacuum pack surface pulverization was confirmed after 10 months.
  • This composite oxide sintered body was confirmed to have a collapse-inhibiting effect when the presence of Zr and other additional factors matched the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 13 The composite oxide sintered body of Example 13 contains 25 mol% in terms of metal and ZrO 2 in terms of Zr.
  • the carbon content was 23 ppm
  • hydrogen was 15 ppm
  • the relative density was 98%
  • the maximum particle size was 19 ⁇ m
  • the average particle size was 11 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powder was not collapsed even in the eighth week.
  • the powdering of the surface was not confirmed even after one year.
  • This composite oxide sintered body was confirmed to have a collapse-inhibiting effect when the presence of Zr and other additional factors matched the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 14 The composite oxide sintered body of Example 14 contains 48 mol% in terms of metal and ZrO 2 in terms of Zr.
  • the carbon content was 73 ppm
  • hydrogen was 65 ppm
  • the relative density was 99%
  • the maximum particle size was 17 ⁇ m
  • the average particle size was 3 ⁇ m.
  • this composite oxide sintered body has a high density, it has a high carbon and hydrogen content and a fine particle size.
  • the powder was not collapsed even in the eighth week.
  • the surface hardness was measured, there was a slight downward trend.
  • surface powdering was finally observed after one year. It was confirmed that this composite oxide sintered body has a remarkable effect of suppressing collapse when the presence of Zr and other additional factors meet the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 15 The composite oxide sintered body of Example 15 contains 1 mol% of TiO 2 as Ti in terms of metal.
  • the carbon content was 37 ppm
  • hydrogen was 30 ppm
  • the relative density was 95%
  • the maximum particle size was 40 ⁇ m
  • the average particle size was 10 ⁇ m.
  • this composite oxide sintered body had a large amount of oxygen and hydrogen, and a relatively low relative density of 95%.
  • the sintered body collapsed into a powder form in the fourth week in a constant temperature (40 ° C.) and constant humidity (humidity 90%) bath as an accelerated test.
  • the surface was confirmed to be powdered after 6 months.
  • This composite oxide sintered body was confirmed to have a moderate collapse suppression effect due to the presence of Ti and other additional factors.
  • the evaluation is ⁇ .
  • Example 16 The composite oxide sintered body of Example 16 contains 10 mol% of TiO 2 as Ti in terms of metal.
  • the carbon content was 25 ppm
  • hydrogen was 21 ppm
  • the relative density was 98%
  • the maximum particle size was 28 ⁇ m
  • the average particle size was 13 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powder was not collapsed even in the eighth week. In the vacuum pack, powdering was not confirmed even after one year.
  • This composite oxide sintered body was confirmed to have a collapse-inhibiting effect when the presence of Ti and other additional factors matched the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 17 The composite oxide sintered body of Example 17 contains 30 mol% in terms of metal and TiO 2 in terms of Ti.
  • the carbon content was 25 ppm
  • hydrogen was 21 ppm
  • the relative density was 98%
  • the maximum particle size was 28 ⁇ m
  • the average particle size was 13 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powdered collapse of the sintered body was not observed even in the eighth week in the constant temperature (40 ° C.) and constant humidity (humidity 90%) bath as an acceleration test. .
  • In the vacuum pack powdering was not confirmed even after one year.
  • This composite oxide sintered body was confirmed to have a collapse-inhibiting effect when the presence of Ti and other additional factors matched the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 18 The composite oxide sintered body of Example 18 contains 49 mol% of TiO 2 in terms of metal and in terms of Ti.
  • the carbon content was 19 ppm
  • hydrogen was 25 ppm
  • the relative density was 97%
  • the maximum particle size was 20 ⁇ m
  • the average particle size was 11 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • In the vacuum pack powdering was not confirmed even after one year.
  • This composite oxide sintered body was confirmed to have a collapse-inhibiting effect when the presence of Ti and other additional factors matched the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 19 The composite oxide sintered body of Example 19 contains TiO 2 and ZrO 2 in terms of metal, a ratio of 1: 1, and 10 mol% in terms of Ti and Zr metal. .
  • the carbon content was 20 ppm
  • hydrogen was 23 ppm
  • the relative density was 97%
  • the maximum particle size was 19 ⁇ m
  • the average particle size was 9 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powdered collapse of the sintered body was not observed even in the eighth week in the constant temperature (40 ° C.) and constant humidity (humidity 90%) bath as an acceleration test. .
  • In the vacuum pack powdering was not confirmed even after one year.
  • This composite oxide sintered body was confirmed to have a collapse-inhibiting effect when the presence of the metal composed of Ti and Zr and other additional factors matched the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 20 The composite oxide sintered body of Example 20 contains TiO 2 and ZrO 2 in terms of metal, a ratio of 1: 1, and contains 30 mol% in terms of Ti and Zr metal. .
  • the carbon content was 17 ppm
  • hydrogen was 18 ppm
  • the relative density was 97%
  • the maximum particle size was 26 ⁇ m
  • the average particle size was 15 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powdery collapse of the sintered body was not recognized even in the eighth week. .
  • Example 21 The composite oxide sintered body of Example 21 contains TiO 2 and HfO 2 in terms of metal, a ratio of 1: 1, and 20 mol% in terms of Ti and Hf metal. .
  • the carbon content was 18 ppm
  • the hydrogen was 19 ppm
  • the relative density was 97%
  • the maximum particle size was 23 ⁇ m
  • the average particle size was 12 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powdered collapse of the sintered body was not observed even in the eighth week in the constant temperature (40 ° C.) and constant humidity (humidity 90%) bath as an accelerated test. .
  • In the vacuum pack powdering was not confirmed even after one year.
  • This composite oxide sintered body was confirmed to have a collapse-inhibiting effect when the presence of the metal composed of Ti and Hf and other additional factors matched the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 22 The composite oxide sintered body of Example 22 contains TiO 2 and HfO 2 in terms of metal, a ratio of 1: 1, and contains 40 mol% in terms of Ti and Hf metal. .
  • the carbon content was 25 ppm
  • hydrogen was 20 ppm
  • the relative density was 97%
  • the maximum particle size was 23 ⁇ m
  • the average particle size was 17 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powdered collapse of the sintered body was not observed even in the eighth week in the constant temperature (40 ° C.) and constant humidity (humidity 90%) bath as an acceleration test. .
  • In the vacuum pack powdering was not confirmed even after one year.
  • This composite oxide sintered body was confirmed to have a collapse-inhibiting effect when the presence of the metal composed of Ti and Hf and other additional factors matched the conditions of the present invention.
  • the evaluation is ⁇ .
  • Example 23 In the composite oxide sintered body of Example 23, in terms of metal, TiO 2 , ZrO 2 and HfO 2 had a ratio of 1: 1: 1, and in terms of metal of Ti, Zr and Hf, 6 mol%. Is contained. The carbon content was 53 ppm, hydrogen was 37 ppm, the relative density was 96%, the maximum particle size was 48 ⁇ m, and the average particle size was 3 ⁇ m. In this case, this composite oxide sintered body was in a condition suitable for the present invention, except that the carbon content and hydrogen content were remarkably large and the average particle size was fine.
  • the sintered body collapsed into a powder form in the fourth week in a constant temperature (40 ° C.) and constant humidity (humidity 90%) bath as an accelerated test.
  • the surface was confirmed to be powdered after 6 months. This composite oxide sintered body is evaluated as “Good”.
  • Example 24 In the composite oxide sintered body of Example 24, in terms of metal, TiO 2 , ZrO 2, and HfO 2 were in a ratio of 1: 1: 1, and in terms of the metal of Ti, Zr, and Hf, 24 mol%. Is contained. The carbon content was 23 ppm, hydrogen was 24 ppm, the relative density was 97%, the maximum particle size was 23 ⁇ m, and the average particle size was 16 ⁇ m. In this case, the composite oxide sintered body was in a condition suitable for the present invention. As a result, in the accelerated test, which was a constant temperature (40 ° C.) and constant humidity (humidity 90%), the powder was not collapsed even in the eighth week.
  • Example 25 The composite oxide sintered body of Example 25 is 45 mol% in terms of metal, in which the ratio of TiO 2 , ZrO 2, and HfO 2 is 1: 1: 1 and in terms of the metal of Ti, Zr, and Hf. Is contained.
  • the carbon content was 23 ppm
  • hydrogen was 24 ppm
  • the relative density was 97%
  • the maximum particle size was 28 ⁇ m
  • the average particle size was 15 ⁇ m.
  • the composite oxide sintered body was in a condition suitable for the present invention.
  • the powder was not collapsed even in the eighth week.
  • Comparative Example 1 The oxide sintered body of Comparative Example 1 is La 2 O 3 .
  • the carbon content was 31 ppm
  • the hydrogen was 27 ppm
  • the relative density was 96%
  • the maximum particle size and average particle size could not be measured. In this case, it was allowed to stand in the atmosphere for 2 weeks and disintegrated into a white powder. In this case, the shape of the sintered body could not be maintained.
  • the evaluation is x. The results are shown in Table 1.
  • the sputtering target of sintered lanthanum oxide If the sputtering target of sintered lanthanum oxide is left in the air for a long time, it will react with moisture due to deliquescence and become covered with white hydroxide powder, causing a problem that normal sputtering cannot be performed. . In addition, it absorbs carbon dioxide in the air and collapses into lanthanum carbonate powder.
  • the target of the present invention can delay the occurrence of such a problem, and has a remarkable effect that it can be stored until a period in which there is no practical problem. In particular, it provides an oxide for a high-k gate insulating film efficiently and stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

酸化ランタンを基本成分とする焼結体であって、酸化チタン、酸化ジルコニウム、酸化ハフニウムの一又は二以上を含有し、残部が酸化ランタン及び不可避的不純物である酸化ランタン基焼結体。酸化ランタン原料粉末としてLa(CO粉末又はLa粉末と、添加酸化物としてTiO、ZrO、HfO粉末の一又は二以上とを使用し、メタル換算で添加酸化物の金属成分の組成比を所定の値になるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とする酸化ランタン基焼結体の製造方法。本発明は、水分や炭酸ガスと結合して水酸化物などを形成し粉状に変化するのを防止し、長期間の保管を可能とするものである。また、このスパッタリングターゲットを使用して成膜することにより、High-kゲート絶縁膜用酸化物を効率的かつ安定して提供できる技術を提供する。

Description

酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法
 本発明は、酸化ランタン(La)を基本成分とし、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)の一又は二以上からなる添加酸化物からなる酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法に関する。
 最近、次世代のMOSFETにおけるゲート絶縁膜として薄膜化が要求されているが、これまでゲート絶縁膜として使用されてきたSiOでは、トンネル効果によるリーク電流が増加し、正常動作が難しくなってきた。
 このため、それに変わるものとして、高い誘電率、高い熱的安定性、シリコン中の正孔と電子に対して高いエネルギー障壁を有するHfO、ZrO、Al、La等のいわゆるHigh-k材料が提案されている。
 これらの材料の中で有力視されているのがHfOを基本とする材料系で、次世代のMOSFETにおけるゲート絶縁膜としての研究報告がなされており、最近ではHfO系あるいはHfON系のHigh-k材料と酸化ランタン(La)を組み合わせて使用することにより、閾値電圧を引き下げるなどの特性向上が得られるという報告がなされている(非特許文献1参照)。また、LaHfO系の材料として、特にLaHfを用いて金属ゲート電極の実効仕事関数を制御することが開示されている(特許文献1参照)。
 このようにランタンは注目を集めている材料である。
 ランタン(La)は希土類元素の中に含まれるものであるが、鉱物資源として混合複合酸化物として地殻に含有されている。希土類元素は比較的希(まれ)に存在する鉱物から分離されたので、このような名称がついたが、地殻全体からみると決して希少ではない。
 ランタンの原子番号は57、原子量138.9の白色の金属であり、常温で複六方最密構造を備えている。融点は921°C、沸点3500°C、密度6.15g/cmであり、空気中では表面が酸化され、水には徐々にとける。熱水、酸に可溶である。延性はないが、展性はわずかにある。抵抗率は5.70×10-6Ωcmである。445°C以上で燃焼して酸化物(La)となる(理化学辞典参照)。
 希土類元素は、一般に酸化数3の化合物が安定であるが、ランタンも3価である。
 金属ランタンは、精製時に酸化し易いという問題があるため、高純度化が難しい材料であり、高純度製品は存在していなかった。また、金属ランタンを空気中に放置した場合には短時間で酸化し黒色に変色するので、取り扱いが容易でないという問題がある。
 このようにランタン(酸化ランタン)については、まだ研究の段階にあると言えるが、このようなランタン(酸化ランタン)の特性を調べる場合において、金属ランタン自体がスパッタリングターゲット材として存在すれば、基板上にランタンの薄膜を形成することが可能であり、またシリコン基板との界面の挙動、さらにはランタン化合物を形成して、高誘電率ゲート絶縁膜等の特性を調べることが容易であり、また製品としての自由度が増すという大きな利点を持つものである。
 しかしながら、ランタンスパッタリングターゲットを作製しても、上記の通り、空気中で短時間に(10分程度で)酸化してしまう。ターゲットに酸化膜が形成されると、電気伝導度の低下がおき、スパッタリングの不良を招く。また、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われるという状態に至り、正常なスパッタリングができないという問題すら起こる。
 このために、ターゲット作製後、すぐ真空パックするか又は油脂で覆い酸化防止策を講ずる必要があるが、随時真空パックすることは著しく煩雑な作業である。同様に、油脂で覆うことは清浄度を要求されるスパッタリングターゲットには、油脂の除去という作業を伴うので、同様に煩雑な作業を伴う。
 このような問題から、ランタン元素のターゲット材は、実用化に至っていないのが現状である。 上記のように、実用に耐える酸化ランタンターゲットは製造できなかった。
 一方、酸化ランタン膜を作成するには、酸化ランタンターゲットを用いた方が、金属ランタンを酸素とのリアクティブスパッタリングを行う方法又は金属ランタン成膜後に酸化する方法よりも、工程が簡単であり、酸素量の均一な成膜が可能である。しかし、酸化ランタンは、空気中の水分との反応が金属ランタンよりも早く発生し、非常に短時間で粉状になり、遂には完全に崩壊してしまう。従って、La膜を工業的に一般的であるPVD法、特にスパッタリング法で作成しようとする場合には、実用に耐え得るスパッタリングターゲットの供給が極めて困難である。
ALSHAREEF H.N.,QUEVEDO-LOPEZ M., WEN H. C.,HARRIS R.,KIRSCH P.,MAJHI P.,LEE B. H.,JAMMY R.,著「Work function engineering using lanthanum oxide interfacial layers 」 Appl.Phys.Lett.,Vol.89 No.23 Page.232103-232103-3, (2006) 特開2007-324593号公報
 上記従来技術に記載するように、金属ランタンは酸素と結合し易く、また、酸化ランタンは、水分や炭酸ガスと結合して水酸化物などを形成し粉状に変化するため、長期間の保管が難しく、スパッタリングターゲットとして製品化が困難であった。
 本発明は、酸化ランタン(La)を基本成分とし、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)の一又は二以上からなる添加酸化物からなる酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法を提供するものであり、これによって、水分や炭酸ガスと結合して水酸化物などを形成し粉状に変化するのを防止し、長期間の保管を可能とするものである。また、このスパッタリングターゲットを使用して成膜することにより、High-kゲート絶縁膜用酸化物を効率的かつ安定して提供できる技術を提供することを課題とする。
 上記発明が解決しようとする課題に記載するように、金属ランタンは酸素と結合し易く、また、酸化ランタンは水分と結合して水酸化物を形成し、いずれも長期間の保管が難しい。本願発明は、酸化ランタンを基本成分とし、これに酸化チタン、酸化ジルコニウム、酸化ハフニウムの一又は二つ以上を添加し、焼結体又はスパッタリングターゲットとして利用するものである。さらにこれらの焼結体及びターゲットの成分組成は、新規物質を含む。
 以上から、本願発明は、
1)酸化ランタンを基本成分とする焼結体であって、酸化チタン、酸化ジルコニウム、酸化ハフニウムの一又は二以上を含有し、残部が酸化ランタン及び不可避的不純物であることを特徴とする酸化ランタン基焼結体
2)焼結体中の金属元素の合計成分量に対して、チタン、ジルコニウム、ハフニウムの金属元素の量が1mol%以上50mol%未満であることを特徴とする上記1)記載の酸化ランタン基焼結体
3)焼結体中の金属元素の合計成分量に対して、チタン、ジルコニウム、ハフニウムの金属元素の量が10mol%以上50mol%未満であることを特徴とする上記1)記載の酸化ランタン基焼結体
4)水素及び炭素が各々25wtppm以下、相対密度96%以上、最大粒径が50μm以下、平均粒径5μm以上であることを特徴とする上記1)~3)のいずれか一項に記載の酸化ランタン基焼結体
5)上記1)~4)のいずれか一項に記載の焼結体からなるスパッタリングターゲット、を提供する。
 さらに、本願発明は、
6)酸化ランタン原料粉末としてLa(CO粉末又はLa粉末と、添加酸化物としてTiO、ZrO、HfO粉末の一又は2以上とを使用し、Laに対する酸化物添加剤の金属成分の組成比を所定の値になるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする酸化ランタン基焼結体の製造方法
7)酸化ランタン原料粉末としてLa(CO粉末又はLa粉末と、添加酸化物としてTiO、ZrO、HfO粉末の一又は2以上とを使用し、Laに対する酸化物添加剤の金属成分の組成比を所定の値になるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする上記1)~5)のいずれか一項に記載の酸化ランタン基焼結体の製造方法
8)混合を湿式ボールミルにより行い、合成を大気中1350~1550°C、5~25時間加熱して製造することを特徴とする上記6)又は7)記載の酸化ランタン基焼結体の製造方法
9)ホットプレスを1200~1500°C、真空中、1~5時間で行うことを特徴とする上記6)~8)のいずれか一項に記載の酸化ランタン基焼結体の製造方法
10)上記6)~8)のいずれか一項に記載の酸化ランタン基焼結体の製造方法によるスパッタリングターゲットの製造方法、を提供する。
 酸化ランタン焼結体スパッタリングターゲットを空気中に長時間放置しておくと、潮解性によって水分と反応して水酸化物の白い粉で覆われるという状態になり、正常なスパッタリングができないという問題が起きる。また空気中の炭酸ガスを吸収して炭酸ランタンの粉末に崩壊してしまう。本発明のターゲットは、このような問題の発生を遅らせることができ、実用上問題ならない期間まで保管できる。
 添加酸化物として、酸化チタン、酸化ジルコニウム、酸化ハフニウムは、High-k材料としていずれも有効であるが、特にHfO系あるいはHfON系、HfSiO系あるいはHfSiON系(High-k材料)として用いられるHf酸化物を添加したものは、酸化チタン、酸化ジルコニウムを含むものよりも、チタン、ジルコニウムのHigh-k材料側への拡散に伴うリーク電流増加の問題が少ないと考えられ、より有効である。
 本発明の酸化物焼結体スパッタリングターゲットは、酸化ランタンを基本成分とする焼結体であって、酸化チタン、酸化ジルコニウム、酸化ハフニウムの一又は二以上を含有し、残部が酸化ランタン及び不可避的不純物であることを特徴とする酸化ランタン基焼結体及びこの焼結体を用いたスパッタリングターゲットである。
 この焼結体及びターゲットは、ランタン又は酸化ランタンに比べ、潮解性によって水分と反応して水酸化物の白い粉で覆われ崩壊するという現象又は空気中の炭酸ガスを吸収して炭酸ランタンの粉末に崩壊してしまうということを大きく抑制できるという著しい効果がある。これが、本願発明の中心的技術思想である。本出願人が調査した従来技術において、焼結体又はターゲットとして、このような組成を持った、焼結体及びターゲットは存在しない。
 上記ランタン又は酸化ランタンの崩壊抑制の理論は、必ずしも明らかでないが、添加成分である酸化チタン、酸化ジルコニウム、酸化ハフニウムの添加が大きく寄与していることが、数多くの実験から明らかである。これについては、後述する実施例及び比較例により詳細に説明する。
 酸化チタン、酸化ジルコニウム、酸化ハフニウムの添加は、ランタン又は酸化ランタン単独の利用ではないので、材料の使用に制約がある。しかし、これらの材料は、High-kゲート絶縁膜用酸化物として、いずれも有効に利用できるものであるから、添加自体はマイナス効果を生ずるものではない。
 その添加量は、使用目的及び用途によって選択が可能である。これらの中で、High-kゲート絶縁膜用酸化物としては、特に酸化ハフニウムの添加が有効である。酸化チタン、酸化ジルコニウムを使用した場合には、微量のチタン又はジルコニウムが、High-k材料側へ拡散し、リーク電流が、やや増加するという問題が発生するからである。酸化ハフニウムは、この問題は発生しない。
 ランタン(La)と、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)の酸化物の添加について考慮すると、酸化物中のLaと添加酸化物のメタル成分(チタン、ジルコニウム、ハフニウムの合計)の合計量に対して、前記添加酸化物のメタル成分(チタン、ジルコニウム、ハフニウムの合計)、すなわち(Ti、Zr、Hf)/(La+Ti、Zr、Hf)が、1モル%以上~50モル%未満とするのが良い。より効果的に崩壊を防止するには、10モル%以上が良い。
 1モル%未満では、酸化ランタンの潮解性による崩壊を防止する効果が少なく、50モル%以上では、崩壊防止の効果には有効であるが、酸化ランタンとしての特性を利用した効果が小さくなるからである。例えば、Hfがより多くなった場合には、高誘電率酸化物(例えばLaHf7、LaZr)の特性が優位となり、特性が異なってしまうからである。
 本願発明は、High-k材料としての利用を前提とするものであり、酸化ランタン(La)を組み合わせて使用することにより、閾値電圧を引き下げるなどの特性を得るためのものである。
 さらに、付加的な要件として、焼結体の水素含有量及び炭素含有量を低下させること、密度向上させること、最適な結晶粒径にすることも、本願発明の焼結体及びターゲットの特性をさらに向上させるために有効である。この目的のために、本願発明は水素及び炭素が各々25wtppm以下、相対密度96%以上、最大粒径が50μm以下、平均粒径5μm以上、20μm以下とする酸化ランタン基焼結体及びターゲットを提供する。
 焼結体及びターゲット中の水素及び炭素の存在は、雰囲気中の水分や炭酸ガスとの反応を起こす基点となるために低減させるのが有効である。また密度向上は、上記雰囲気との接触面積を減少させるのに必要である。密度は、より好ましくは98%とすることが良い。これによって、焼結体中の貫通ポアが減少し、内部からの崩壊を防止できるためである。
 さらに、焼結体の結晶粒径を比較的大きくし、粒界を減少させ、粒界からの崩壊を低下することができる。このように、結晶粒径を大きくすれば粒界面積が少なくなるので、粒界からの崩壊を低減するのに有効であるが、あまり結晶粒径を大きくすると密度向上が困難になるので、密度を向上させるには最大粒径50μm以下とすることが良いと言える。
 しかし、これらは、あくまで付加的な好ましい要件とするものであり、これらの条件に拘束される必要がないことは言うまでもない。
 この酸化物焼結体ターゲットの製造に際しては、原料粉末としてLa(CO粉末又はLa粉末と、添加酸化物としてTiO、ZrO、HfO粉末の一又は二以上とを使用する。メタルのLaと、添加酸化物中の金属成分であるチタン、ジルコニウム、ハフニウムとの総合計量に対して、添加酸化物中の金属成分であるチタン、ジルコニウム、ハフニウムの合計量が、1mol%以上50mol%未満となるように配合する。この配合比は、特に10mol%以上50mol%未満とするのが良い。
 但し、熱処理などで、酸化物にすることが出来るのであれば、上記の酸化物に限定する必要はない。例えば、そのような原料としては Laに関しては、水酸化ランタン、硝酸ランタン、塩化ランタン等がある。また、十分な管理が可能ならば金属ランタンを使用することもできる。
 Ti、Zr,Hfに関しては、十分な管理が可能ならば、金属粉末や粉砕性の良い水素化粉末を使用しても良い。これを混合した後、酸化雰囲気大気中で加熱合成し、次にこの合成材料を粉砕して粉末とし、さらにこの合成粉末をホットプレスして焼結体とすることにより製造することができる。
 水素化粉末(水素化チタン、水素化ジルコニウム、水素化ハフニウム)を原料とする場合には、真空雰囲気や不活性ガス雰囲気で充分、脱水素処理を行う必要がある。
 混合は湿式ボールミルにより行い、合成を大気中1350~1550°C、5~25時間程度、加熱して行うことが推奨される製造条件である。
 また、ホットプレスを1200~1500°C、真空中、1~5時間で行うことも焼結条件として、同様に推奨される製造条件である。以上は、合成及び焼結を能率的に行う条件である。したがって、これ以外の条件とすること及び他の条件を付加することは、当然なし得ることは理解されるべきことである。
 これによって、相対密度96%以上、より好ましくは98%以上、最大粒径が50μm以下、より好ましくは平均粒径が5μm以上、20μm以下である酸化物焼結体スパッタリングターゲットを得ることができる。密度の向上と結晶粒径を微細化することは、ノジュールやパーティクルの発生を抑制でき、均一な成膜を行うことができる好ましい条件でもあることは言うまでもない。
 一般に、ランタンに含有される希土類元素には、ランタン(La)以外に、Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luがあるが、特性が似ているために、Laから分離精製することが難しい。特に、CeはLaと近似しているので、Ceの低減化は容易ではない。
 しかしながら、これらの希土類元素は、性質が近似しているが故に、希土類元素合計で1000wtppm未満であれば、特に問題となるものでないことは理解されるであろう。したがって、本願発明におけるランタンの使用は、このレベルの希土類元素の含有は、不可避的不純物として許容される。
 これ以外にも、不可避的に混入する不純物が存在する。例えば、Ti、Zr、Hfは化学的特性が近く、ZrとHfは分離が困難とされている。Hf中にも、微量のZrが含まれてしまう。また、Zr中にも微量のHfが含まれてしまうが、これらはいずれも大きな問題ではない。しかし、Hf(酸化ハフニウム)添加の特性を明確に活かすためには、不可避的に混入するZrも低減させることは当然好ましいと考えられる。これは、上記の通り、High-k(高誘電体)材としてのHfをベースとするHfO、HfON,HfSiOやHfSiON中にZrが拡散して誘電率を変化させてしまう虞があるためである。
 だだし、本願発明は、酸化ランタンの崩壊を抑制して実用的なスパッタリングターゲットとすることが目的であるので、これら不可避不純物を包含するものである。また純度的には、上述した特別な不可避不純物を除き、ガス成分を除き3N以上の純度が好ましい。
 一般に、ガス成分として、C、N、O、S、Hが存在する。酸化ランタンの場合は、C、Hを低下させることも重要である。C、Hはそれぞれ、保管雰囲気中の炭酸ガス、水分との反応を促進させるだけでなく、自身の酸素と雰囲気中の酸素と反応して炭酸ランタン、水酸化ランタンを形成して粉状に崩壊してしまうので低下させることが重要である。このために、酸素(大気)雰囲気中の焼結よりも真空中、不活性ガス中のホットプレスで焼結させることが好ましい。
 次に、実施例について説明する。なお、この実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内における、他の実施例及び変形は、本発明に含まれるものである。なお、下記において、参考例として掲げるものは、本願も目的からみて十分ではないが、本願発明に近似する特性の向上が認められるものである。比較例1については、最後尾の段落[0054]に記載した。
(参考例1-3、実施例1-25)
 原料粉末としてLa(CO粉末とHfO2、ZrO、TiO粉末を使用し、Laを含む金属成分の合計量に対して、HfZr、Tiの量が、0.5~49mol%となるように配合し、混合を湿式ボールミルにより混合した。この混合粉末を大気中で1450°C、20時間加熱して合成した。
 この合成材料を、ボールミルにより16時間湿式粉砕して粉末とした。この合成粉末を真空中で、1400°Cで2時間ホットプレスして焼結体とした。焼結体のサイズはφ80mmであり、プレス圧は300kg/cmで実施した。
 なお、La酸化物として、La粉末を使用した場合においても、同様の結果になったので、本実施例については、La(CO粉末を用いた場合について説明する。
 これを機械加工して評価用の焼結体とした。焼結体はこれらの複合酸化物となっていた。評価用焼結体は、大気中、あるいは恒温恒湿槽(温度40°C、湿度90%)中にて安定性を調べた。粉末化したものはXRDにより、主にランタンの水酸化物(La(OH))であることを確認した。
 実施例に示した焼結体は、ターゲットとしてバッキングプレートとボンディングし、必要に応じて真空密封(あるいは不活性ガス雰囲気中)して、実際の半導体製造プロセスに使用できるものである。
 なお、上記原料粉末の混合条件、合成条件、ホットプレス条件は、いずれも代表的な条件を示すものである。段落[0011]に記載する好適な条件は、任意に選択できるものである。
(参考例1)
 参考例1の複合酸化物焼結体は、複合酸化物焼結体(酸化ランタンと酸化ハフニウム)のメタル換算で、ハフニウムを0.5モル%含有させたもの、すなわちHf/(La+Hf)のモル%で、Hfが0.5%となるように含有させたものである。以下、他の参考例及び実施例も同様である。なお、参考までに、50モル%で、LaHfの組成となり、Laが33.3モル%、HfOが66.7モル%となる。
 炭素含有量が35ppm、水素29ppm、相対密度は95%、最大粒径は41μm、平均粒径は12μmであった。この場合、HfO量が本願発明の好ましい条件から、やや少なく、炭素含有量も本願発明の好ましい条件からやや多く、相対密度が95%と若干低かった。この結果、大気中で3週間を経て、焼結体が粉末状に崩壊した。
 しかし、真空パック中では、4ヶ月間に至るまで、表面の粉末化は認められなかった。このレベルの焼結体は、やや崩壊の進む速度が大きいが、真空パックを使用すれば、実用的レベルの範囲であると言える。評価としては△である。
(参考例2)
 参考例2の複合酸化物焼結体は、メタル換算で、ZrOをZr換算として、0.5モル%を含有させたものである。炭素含有量が23ppm、水素19ppm、相対密度は97%、最大粒径は37μm、平均粒径は9μmであった。この場合、ZrO量が本願発明の好ましい条件から、やや少なかったが、相対密度が97%と若干高かった。この結果、大気中で4週間を経て、焼結体が粉末状に崩壊した。参考例1よりは若干改善されていた。
 しかし、真空パック中では、4ヶ月間に至るまで、表面の粉末化は認められなかった。このレベルの焼結体は、やや崩壊の進む速度が大きいが、真空パックを使用すれば、実用的レベルの範囲であると言える。評価としては△である。
(参考例3)
 参考例3の複合酸化物焼結体は、メタル換算で、TiOをTi換算として、0.5モル%を含有させたものである。炭素含有量が46ppm、水素50ppm、相対密度は95%、最大粒径は53μm、平均粒径は11μmであった。この場合、TiO量が本願発明の好ましい条件から、やや少なく、炭素含有量及び水素量が、本願発明の好ましい条件からやや多く、最大粒径が53μmとやや大きく、相対密度が95%と若干低かった。この結果、大気中で3週間を経て、焼結体が粉末状に崩壊した。
 しかし、真空パック中では、4ヶ月間に至るまで、表面の粉末化は認められなかった。このレベルの焼結体は、やや崩壊の進む速度が大きいが、真空パックを使用すれば、実用的レベルの範囲であると言える。評価としては△である。
(実施例1)
 実施例1の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、1モル%を含有させたものである。炭素含有量が37ppm、水素30ppm、相対密度は95%、最大粒径は40μm、平均粒径は10μmであった。この場合、HfO量が本願発明の好ましい条件に適合している。炭素含有量、水素含有量は、本願発明の好ましい条件からやや多く、相対密度が95%と若干低かった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、4週間目で、焼結体が粉末状に崩壊した。なおかつ、真空パック中では、6ヶ月では、6ヶ月間に至るまで、表面の粉末化は認められなかった。このHfOの存在は、焼結体の崩壊の抑制効果が大きいことが確認できた。実用的レベルであり、評価としては○である。
(実施例2)
 実施例2の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、1モル%を含有させたものである。炭素含有量が15ppm、水素20ppm、相対密度は97%、最大粒径は42μm、平均粒径は15μmであった。この場合、いずれの条件も本願発明の好ましい条件に適合していた。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、4週間目で、焼結体の表面のみが粉末状に崩壊した。なおかつ、真空パック中では、10ヶ月間に至るまで、表面の粉末化は認められなかった。このHfOの存在とさらに付加的条件の最適化は、焼結体の崩壊の抑制効果が大きいことが確認できた。実用的レベルであり、評価としては○である。
(実施例3)
 実施例3の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、5モル%を含有させたものである。炭素含有量が53ppm、水素47ppm、相対密度は97%、最大粒径は41μm、平均粒径は5μmであった。この場合、炭素と水素の含有量が多かったが、他の条件は本願発明の好ましい条件に適合していた。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、4週間目で、焼結体の粉末状に崩壊した。なおかつ、真空パック中では、6ヶ月間に至るまで、表面の粉末化は認められなかった。この複合酸化物焼結体中の過剰な炭素と水素の存在は、やや崩壊の助長要因となることが確認できた。しかし、この実施例3の複合酸化物焼結体は、全体として、崩壊の抑制効果が大きいことが確認できた。実用的レベルであり、評価としては○である。
(実施例4)
 実施例4の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、5モル%を含有させたものである。炭素含有量が26ppm、水素28ppm、相対密度は98%、最大粒径は36μm、平均粒径は13μmであった。この場合、この複合酸化物焼結体中に炭素と水素がやや過剰に存在する。しかし、実施例6よりも、その量は少ない。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、4週間目で、焼結体の表面のみが粉末状に崩壊した。なおかつ、真空パック中では、10ヶ月間に至るまで、表面の粉末化は認められなかった。
 この複合酸化物焼結体中のやや過剰な炭素と水素の存在は、やや崩壊の助長要因となることが確認できた。しかし、この実施例4の複合酸化物焼結体は、実施例6よりも、崩壊の抑制効果が大きいことが確認できた。実用的レベルであり、評価としては○である。
(実施例5)
 実施例5の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、10モル%を含有させたものである。炭素含有量が76ppm、水素28ppm、相対密度は95%、最大粒径は63μm、平均粒径は3μmであった。この場合、この複合酸化物焼結体中に炭素と水素が過剰に存在し、最大粒径、平均粒径の、付加的要件は最適範囲にない。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。但し、表面の硬さを測定したところ若干低下傾向にあった。
 なおかつ、真空パック中では、1年を経て、ようやく表面の粉末化は認められた。この複合酸化物焼結体は、Hfの存在が大きく、他の付加的要因が本願発明の条件から外れていても、崩壊の抑制効果が大きいことが確認できた。評価としては◎である。
(実施例6)
 実施例6の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、10モル%を含有させたものである。炭素含有量が18ppm、水素20ppm、相対密度は96%、最大粒径は23μm、平均粒径は15μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なおかつ、真空パック中では、1年を経ても粉末化は認められなかった。この複合酸化物焼結体は、Hfの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果が著しいことが確認できた。評価としては◎である。
(実施例7)
 実施例7の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、35モル%を含有させたものである。炭素含有量が73ppm、水素52ppm、相対密度は98%、最大粒径は37μm、平均粒径は8μmであった。この場合、この複合酸化物焼結体中に炭素と水素が、かなり過剰に存在していた。他の付加的要件は最適範囲にある。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。但し、表面の硬さを測定したところ若干低下傾向にあった。
 なおかつ、真空パック中では、1年を経て、ようやく表面の粉末化は認められた。但し、表面の硬さを測定したところ若干低下傾向にあった。
 この複合酸化物焼結体は、Hfの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果が著しいことが確認できた。評価としては◎である。
(実施例8)
 実施例8の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、35モル%を含有させたものである。炭素含有量が13ppm、水素21ppm、相対密度は98%、最大粒径は30μm、平均粒径は13μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なおかつ、真空パック中では、1年を経ても粉末化は認められなかった。この複合酸化物焼結体は、Hfの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果が著しいことが確認できた。評価としては◎である。
(実施例9)
 実施例9の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、45モル%を含有させたものである。炭素含有量が73ppm、水素52ppm、相対密度は98%、最大粒径は37μm、平均粒径は8μmであった。この場合、この複合酸化物焼結体中に炭素と水素が、かなり過剰に存在していた。他の付加的要件は最適範囲にある。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。但し、表面の硬さを測定したところ若干低下傾向にあった。
 なおかつ、真空パック中では、1年を経て、ようやく表面の粉末化は認められた。この複合酸化物焼結体は、Hfの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果が著しいことが確認できた。評価としては◎である。
(実施例10)
 実施例10の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、45モル%を含有させたものである。炭素含有量が10ppm、水素25ppm、相対密度は98%、最大粒径は31μm、平均粒径は14μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なおかつ、真空パック中では、1年を経ても粉末化は認められなかった。この複合酸化物焼結体は、Hfの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果が著しいことが確認できた。評価としては◎である。
(実施例11)
 実施例11の複合酸化物焼結体は、メタル換算で、HfOをHf換算として、48モル%を含有させたものである。炭素含有量が23ppm、水素24ppm、相対密度は97%、最大粒径は18μm、平均粒径は10μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なおかつ、真空パック中では、1年を経ても粉末化は認められなかった。この複合酸化物焼結体は、Hfの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果が著しいことが確認できた。評価としては◎である。
(実施例12)
 実施例12の複合酸化物焼結体は、メタル換算で、ZrOをZr換算として、5モル%を含有させたものである。炭素含有量が20ppm、水素14ppm、相対密度は98%、最大粒径は20μm、平均粒径は12μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、4週間目で焼結体の表面のみが粉末状に崩壊した。なお、真空パック中では、10ヶ月を経て、表面の粉末化が確認された。この複合酸化物焼結体は、Zrの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては○である。
(実施例13)
 実施例13の複合酸化物焼結体は、メタル換算で、ZrOをZr換算として、25モル%を含有させたものである。炭素含有量が23ppm、水素15ppm、相対密度は98%、最大粒径は19μm、平均粒径は11μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、表面の粉末化は確認されなかった。この複合酸化物焼結体は、Zrの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例14)
 実施例14の複合酸化物焼結体は、メタル換算で、ZrOをZr換算として、48モル%を含有させたものである。炭素含有量が73ppm、水素65ppm、相対密度は99%、最大粒径は17μm、平均粒径は3μmであった。この場合、この複合酸化物焼結体は、密度は高いものの、炭素、水素含有量も多く、粒径も細かいものであった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。但し、表面の硬さを測定したところ若干低下傾向にあった。なおかつ、真空パック中では、1年を経て、ようやく表面の粉末化は認められた。
 この複合酸化物焼結体は、Zrの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果が著しいことが確認できた。評価としては◎である。
(実施例15)
 実施例15の複合酸化物焼結体は、メタル換算で、TiOをTi換算として、1モル%を含有させたものである。炭素含有量が37ppm、水素30ppm、相対密度は95%、最大粒径は40μm、平均粒径は10μmであった。この場合、この複合酸化物焼結体は、酸素量、水素量が多く、また相対密度が95%と若干低い条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、4週間目で焼結体が粉末状に崩壊した。なお、真空パック中では、6ヶ月を経て、表面の粉末化が確認された。この複合酸化物焼結体は、Tiの存在と他の付加的要因により、適度の崩壊の抑制効果があることが確認できた。評価としては○である。
(実施例16)
 実施例16の複合酸化物焼結体は、メタル換算で、TiOをTi換算として、10モル%を含有させたものである。炭素含有量が25ppm、水素21ppm、相対密度は98%、最大粒径は28μm、平均粒径は13μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。
 この複合酸化物焼結体は、Tiの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例17)
 実施例17の複合酸化物焼結体は、メタル換算で、TiOをTi換算として、30モル%を含有させたものである。炭素含有量が25ppm、水素21ppm、相対密度は98%、最大粒径は28μm、平均粒径は13μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、実施例16と同様に、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。この複合酸化物焼結体は、Tiの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例18)
 実施例18の複合酸化物焼結体は、メタル換算で、TiOをTi換算として、49モル%を含有させたものである。炭素含有量が19ppm、水素25ppm、相対密度は97%、最大粒径は20μm、平均粒径は11μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、実施例17と同様に、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。
 この複合酸化物焼結体は、Tiの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例19)
 実施例19の複合酸化物焼結体は、メタル換算で、TiOとZrOを、その比を1:1とし、TiとZrのメタルの換算として、10モル%を含有させたものである。炭素含有量が20ppm、水素23ppm、相対密度は97%、最大粒径は19μm、平均粒径は9μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、実施例18と同様に、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。この複合酸化物焼結体は、TiとZrからなるメタルの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例20)
 実施例20の複合酸化物焼結体は、メタル換算で、TiOとZrOを、その比を1:1とし、TiとZrのメタルの換算として、30モル%を含有させたものである。炭素含有量が17ppm、水素18ppm、相対密度は97%、最大粒径は26μm、平均粒径は15μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、実施例19と同様に、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。この複合酸化物焼結体は、TiとZrからなるメタルの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例21)
 実施例21の複合酸化物焼結体は、メタル換算で、TiOとHfOを、その比を1:1とし、TiとHfのメタルの換算として、20モル%を含有させたものである。炭素含有量が18ppm、水素19ppm、相対密度は97%、最大粒径は23μm、平均粒径は12μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、実施例20と同様に、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。この複合酸化物焼結体は、TiとHfからなるメタルの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例22)
 実施例22の複合酸化物焼結体は、メタル換算で、TiOとHfOを、その比を1:1とし、TiとHfのメタルの換算として、40モル%を含有させたものである。炭素含有量が25ppm、水素20ppm、相対密度は97%、最大粒径は23μm、平均粒径は17μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、実施例21と同様に、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。この複合酸化物焼結体は、TiとHfからなるメタルの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例23)
 実施例23の複合酸化物焼結体は、メタル換算で、TiOとZrOとHfOを、その比を1:1:1とし、TiとZrとHfのメタルの換算として、6モル%を含有させたものである。炭素含有量が53ppm、水素37ppm、相対密度は96%、最大粒径は48μm、平均粒径は3μmであった。この場合、この複合酸化物焼結体は、炭素含有量、水素含有量が著しく多く平均粒径は細かい点を除いて、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、4週間目で焼結体が粉末状に崩壊した。なお、真空パック中では、6ヶ月を経て、表面の粉末化が確認された。この複合酸化物焼結体は評価としては○である。
(実施例24)
 実施例24の複合酸化物焼結体は、メタル換算で、TiOとZrOとHfOを、その比を1:1:1とし、TiとZrとHfのメタルの換算として、24モル%を含有させたものである。炭素含有量が23ppm、水素24ppm、相対密度は97%、最大粒径は23μm、平均粒径は16μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。この複合酸化物焼結体は、TiとZrとHfからなるメタルの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(実施例25)
 実施例25の複合酸化物焼結体は、メタル換算で、TiOとZrOとHfOを、その比を1:1:1とし、TiとZrとHfのメタルの換算として、45モル%を含有させたものである。炭素含有量が23ppm、水素24ppm、相対密度は97%、最大粒径は28μm、平均粒径は15μmであった。この場合、この複合酸化物焼結体は、いずれも条件も本願発明に適合する条件にあった。
 この結果、加速試験である恒温(40°C)、恒湿(湿度90%)の槽中、8週間目でも、焼結体の粉末状の崩壊は認められなかった。なお、真空パック中では、1年を経ても、粉末化は確認されなかった。この複合酸化物焼結体は、TiとZrとHfからなるメタルの存在と他の付加的要因が本願発明の条件に適合している場合には、崩壊の抑制効果があることが確認できた。評価としては◎である。
(比較例1)
 この比較例1の酸化物焼結体は、Laである。炭素含有量が31ppm、水素27ppm、相対密度は96%、最大粒径及び平均粒径は測定できなかった。この場合、大気中2週間放置で、白い粉末状に崩壊した。この場合は、焼結体の形状を維持できなかった。評価としては×である。
 以上の結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 酸化ランタン焼結体スパッタリングターゲットを空気中に長時間放置しておくと、潮解性によって水分と反応して水酸化物の白い粉で覆われるという状態になり、正常なスパッタリングができないという問題が起きる。また空気中の炭酸ガスを吸収して炭酸ランタンの粉末に崩壊してしまう。本発明のターゲットは、このような問題の発生を遅らせることができ、実用上問題ならない期間まで保管できる著しい効果を有し、特にHigh-kゲート絶縁膜用酸化物を効率的かつ安定して提供できる酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法として有用である。

Claims (10)

  1.  酸化ランタンを基本成分とする焼結体であって、酸化チタン、酸化ジルコニウム、酸化ハフニウムの一又は二以上を含有し、残部が酸化ランタン及び不可避的不純物であることを特徴とする酸化ランタン基焼結体。
  2.  焼結体中の金属元素の合計成分量に対して、チタン、ジルコニウム、ハフニウムの金属元素の量が1mol%以上50mol%未満であることを特徴とする請求項1記載の酸化ランタン基焼結体。
  3.  焼結体中の金属元素の合計成分量に対して、チタン、ジルコニウム、ハフニウムの金属元素の量が10mol%以上50mol%未満であることを特徴とする請求項1記載の酸化ランタン基焼結体。
  4.  水素及び炭素が各々25wtppm以下、相対密度96%以上、最大粒径が50μm以下、平均粒径5μm以上であることを特徴とする請求項1~3のいずれか一項に記載の酸化ランタン基焼結体。
  5.  請求項1~4のいずれか一項に記載の焼結体からなるスパッタリングターゲット。
  6.  酸化ランタン原料粉末としてLa(CO粉末又はLa粉末と、添加酸化物としてTiO、ZrO、HfO粉末の一又は二以上とを使用し、Laに対する添加酸化物の金属成分の組成比を所定の値になるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする酸化ランタン基焼結体の製造方法。
  7.  酸化ランタン原料粉末としてLa(CO粉末又はLa粉末と、添加酸化物としてTiO、ZrO、HfO粉末の一又は二以上とを使用し、Laに対する添加酸化物の金属成分の組成比を所定の値になるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする請求項1~5のいずれか一項に記載の酸化ランタン基焼結体の製造方法。
  8.  混合を湿式ボールミルにより行い、合成を大気中1350~1550°C、5~25時間加熱して製造することを特徴とする請求項6又は7記載の酸化ランタン基焼結体の製造方法。
  9.  ホットプレスを1200~1500°C、真空中、1~5時間で行うことを特徴とする請求項6~8のいずれか一項に記載の酸化ランタン基焼結体の製造方法。
  10.  請求項6~8のいずれか一項に記載の酸化ランタン基焼結体の製造方法によるスパッタリングターゲットの製造方法。
     
PCT/JP2009/061352 2008-07-07 2009-06-23 酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法 WO2010004861A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980126610.3A CN102089258B (zh) 2008-07-07 2009-06-23 氧化镧基烧结体、包含该烧结体的溅射靶、氧化镧基烧结体的制造方法及通过该制造方法制造溅射靶的方法
EP09794307A EP2298715A4 (en) 2008-07-07 2009-06-23 LANTHANE OXIDE SINTERED OBJECT, SPRAYING TARGET COMPRISING THE SINTERED OBJECT, PROCESS FOR PRODUCING THE LANTHANE OXIDE SINTERED OBJECT, AND PROCESS FOR PRODUCING A SPRAYING TARGET USING THE METHOD
KR1020117000153A KR101222789B1 (ko) 2008-07-07 2009-06-23 산화란탄기 소결체, 동 소결체로 이루어지는 스퍼터링 타겟, 산화란탄기 소결체의 제조 방법 및 동 제조 방법에 의한 스퍼터링 타겟의 제조 방법
US13/002,577 US20110114481A1 (en) 2008-07-07 2009-06-23 Lanthanum Oxide-based Sintered Compact, Sputtering Target Composed of said Sintered Compact, Method of Producing Lanthanum Oxide-based Sintered Compact, and Method of Producing Sputtering Target based on said Production Method
JP2010519717A JP5301541B2 (ja) 2008-07-07 2009-06-23 酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-176538 2008-07-07
JP2008176538 2008-07-07

Publications (1)

Publication Number Publication Date
WO2010004861A1 true WO2010004861A1 (ja) 2010-01-14

Family

ID=41506980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061352 WO2010004861A1 (ja) 2008-07-07 2009-06-23 酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法

Country Status (7)

Country Link
US (1) US20110114481A1 (ja)
EP (1) EP2298715A4 (ja)
JP (1) JP5301541B2 (ja)
KR (1) KR101222789B1 (ja)
CN (1) CN102089258B (ja)
TW (1) TW201002645A (ja)
WO (1) WO2010004861A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301542B2 (ja) * 2008-07-07 2013-09-25 Jx日鉱日石金属株式会社 酸化物焼結体、同焼結体からなるスパッタリングターゲット、同焼結体の製造方法及び同焼結体スパッタリングターゲットゲートの製造方法
JP2020096179A (ja) * 2018-11-30 2020-06-18 株式会社リコー 絶縁性酸化物膜用スパッタリングターゲット、絶縁性酸化物膜の形成方法、及び電界効果型トランジスタの製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008344685B2 (en) * 2007-12-28 2012-09-27 Jx Nippon Mining & Metals Corporation Highly pure lanthanum, sputtering target comprising highly pure lanthanum, and metal gate film mainly composed of highly pure lanthanum
CN102356180B (zh) 2009-03-27 2013-11-06 吉坤日矿日石金属株式会社 溅射用镧靶
CN102378825B (zh) 2009-03-31 2013-10-23 吉坤日矿日石金属株式会社 溅射用镧靶
WO2011062003A1 (ja) 2009-11-17 2011-05-26 Jx日鉱日石金属株式会社 ランタン酸化物ターゲットの保管方法及び真空密封したランタン酸化物ターゲット
KR101291822B1 (ko) 2010-07-30 2013-07-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 스퍼터링 타깃 및/또는 코일 그리고 이들의 제조 방법
AU2011330345B2 (en) 2010-11-19 2015-12-10 Jx Nippon Mining & Metals Corporation Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
US9013009B2 (en) 2011-01-21 2015-04-21 Jx Nippon Mining & Metals Corporation Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having highy-purity lanthanum as main component
US9404175B2 (en) 2013-02-04 2016-08-02 Blackberry Limited Method of forming a target for deposition of doped dielectric films by sputtering
EP2762462B1 (en) * 2013-02-04 2020-12-23 NXP USA, Inc. Method of forming a target and depositing doped dielectric films by sputtering
WO2019022668A1 (en) * 2017-07-26 2019-01-31 National University Of Singapore POLYACRYLONITRILE MEMBRANES, METHODS AND USES THEREOF
US11274363B2 (en) * 2019-04-22 2022-03-15 Nxp Usa, Inc. Method of forming a sputtering target
CN113336543B (zh) * 2021-06-09 2022-11-29 Oppo广东移动通信有限公司 电子设备及其壳体、氧化锆陶瓷涂料的制备方法
CN117105657B (zh) * 2023-09-18 2024-05-07 深圳市华辰新材料科技有限公司 纳米级钛酸镧的低温烧结制备方法及设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164858A (ja) * 1990-10-30 1992-06-10 Onoda Cement Co Ltd 軽希土類酸化物焼結体、その製造方法及びそれよりなるルツボ
JP2000001362A (ja) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk 耐食性セラミックス材料
JP2001505620A (ja) * 1996-12-10 2001-04-24 シーメンス アクチエンゲゼルシヤフト 高温ガスに曝される断熱層を備えた製品ならびにその製造方法
JP2001342056A (ja) * 2000-05-29 2001-12-11 Chubu Kiresuto Kk 高密度ランタンクロマイト系酸化物成形体の製法
JP2004327210A (ja) * 2003-04-24 2004-11-18 Honda Motor Co Ltd 酸化物イオン伝導体およびその製造方法
JP2004339035A (ja) * 2003-05-19 2004-12-02 Nissan Motor Co Ltd ランタンガレート系焼結体およびその製造方法、ならびにそれを用いた用途
WO2006025350A1 (ja) * 2004-08-30 2006-03-09 The University Of Tokyo 半導体装置及びその製造方法
JP2007324593A (ja) 2006-05-29 2007-12-13 Interuniv Micro Electronica Centrum Vzw 実効仕事関数を調整するための方法
WO2007142333A1 (ja) * 2006-06-08 2007-12-13 Mitsubishi Materials Corporation 高強度光記録媒体保護膜形成用スパッタリングターゲット
JP2007334357A (ja) * 2006-06-14 2007-12-27 Schott Ag 光学素子並びにマッピング部品

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030052000A1 (en) * 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
WO2001040536A1 (fr) * 1999-11-29 2001-06-07 Fujikura Ltd. Film mince polycristallin et procede de preparation de ce dernier, oxyde supraconducteur et son procede de preparation associe
EP1743949B1 (en) 2000-10-02 2012-02-15 JX Nippon Mining & Metals Corporation High-purity zirconium or hafnium metal for sputter targets and thin film applications
US6620713B2 (en) * 2002-01-02 2003-09-16 Intel Corporation Interfacial layer for gate electrode and high-k dielectric layer and methods of fabrication
JP4322469B2 (ja) * 2002-04-26 2009-09-02 東京エレクトロン株式会社 基板処理装置
KR100724256B1 (ko) 2003-03-04 2007-05-31 닛코킨조쿠 가부시키가이샤 스퍼터링 타겟트 및 그 제조 방법
JP4210620B2 (ja) * 2003-07-24 2009-01-21 パナソニック株式会社 情報記録媒体とその製造方法
TW201506921A (zh) * 2003-07-24 2015-02-16 Panasonic Corp 資訊記錄媒體及其製造方法
JP4970550B2 (ja) * 2007-12-18 2012-07-11 Jx日鉱日石金属株式会社 酸化チタンを主成分とする薄膜、酸化チタンを主成分とする薄膜の製造に適した焼結体スパッタリングターゲット及び酸化チタンを主成分とする薄膜の製造方法
AU2008344685B2 (en) * 2007-12-28 2012-09-27 Jx Nippon Mining & Metals Corporation Highly pure lanthanum, sputtering target comprising highly pure lanthanum, and metal gate film mainly composed of highly pure lanthanum
KR101412404B1 (ko) * 2008-07-07 2014-06-25 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 산화물 소결체, 산화물 소결체로 이루어지는 스퍼터링 타깃, 산화물 소결체의 제조 방법 및 산화물 소결체 스퍼터링 타깃 게이트의 제조 방법
WO2010050409A1 (ja) * 2008-10-29 2010-05-06 日鉱金属株式会社 希土類金属又はこれらの酸化物からなるターゲットの保管方法
JP5214745B2 (ja) * 2009-02-05 2013-06-19 Jx日鉱日石金属株式会社 酸化チタンを主成分とする薄膜及び酸化チタンを主成分とする焼結体スパッタリングターゲット
CN102356180B (zh) * 2009-03-27 2013-11-06 吉坤日矿日石金属株式会社 溅射用镧靶
CN102365385B (zh) * 2009-03-27 2014-07-30 吉坤日矿日石金属株式会社 Ti-Nb系氧化物烧结体溅射靶、Ti-Nb系氧化物薄膜及该薄膜的制造方法
CN102378825B (zh) * 2009-03-31 2013-10-23 吉坤日矿日石金属株式会社 溅射用镧靶
WO2011062003A1 (ja) * 2009-11-17 2011-05-26 Jx日鉱日石金属株式会社 ランタン酸化物ターゲットの保管方法及び真空密封したランタン酸化物ターゲット

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164858A (ja) * 1990-10-30 1992-06-10 Onoda Cement Co Ltd 軽希土類酸化物焼結体、その製造方法及びそれよりなるルツボ
JP2001505620A (ja) * 1996-12-10 2001-04-24 シーメンス アクチエンゲゼルシヤフト 高温ガスに曝される断熱層を備えた製品ならびにその製造方法
JP2000001362A (ja) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk 耐食性セラミックス材料
JP2001342056A (ja) * 2000-05-29 2001-12-11 Chubu Kiresuto Kk 高密度ランタンクロマイト系酸化物成形体の製法
JP2004327210A (ja) * 2003-04-24 2004-11-18 Honda Motor Co Ltd 酸化物イオン伝導体およびその製造方法
JP2004339035A (ja) * 2003-05-19 2004-12-02 Nissan Motor Co Ltd ランタンガレート系焼結体およびその製造方法、ならびにそれを用いた用途
WO2006025350A1 (ja) * 2004-08-30 2006-03-09 The University Of Tokyo 半導体装置及びその製造方法
JP2007324593A (ja) 2006-05-29 2007-12-13 Interuniv Micro Electronica Centrum Vzw 実効仕事関数を調整するための方法
WO2007142333A1 (ja) * 2006-06-08 2007-12-13 Mitsubishi Materials Corporation 高強度光記録媒体保護膜形成用スパッタリングターゲット
JP2007334357A (ja) * 2006-06-14 2007-12-27 Schott Ag 光学素子並びにマッピング部品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALSHAREEF H.N.; QUEVEDO-LOPEZ M.; WEN H.C.; HARRIS R.; KIRSCH P.; MAJHI P.; LEE B.H.; JAMMY R.: "Work function engineering using lanthanum oxide interfacial layers", APPL. PHYS. LETT., vol. 89, no. 23, 2006, pages 232103 - 232103,3
YAMING JI ET AL.,: "Fabrication of transparent La2Hf207 ceramics from combustion synthesized powders", MATERIALS RESEARCH BULLETIN, vol. 40, no. ISS.3, - 8 March 2005 (2005-03-08), pages 553 - 559, XP004753215 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301542B2 (ja) * 2008-07-07 2013-09-25 Jx日鉱日石金属株式会社 酸化物焼結体、同焼結体からなるスパッタリングターゲット、同焼結体の製造方法及び同焼結体スパッタリングターゲットゲートの製造方法
JP2020096179A (ja) * 2018-11-30 2020-06-18 株式会社リコー 絶縁性酸化物膜用スパッタリングターゲット、絶縁性酸化物膜の形成方法、及び電界効果型トランジスタの製造方法

Also Published As

Publication number Publication date
JPWO2010004861A1 (ja) 2011-12-22
JP5301541B2 (ja) 2013-09-25
CN102089258B (zh) 2014-04-16
US20110114481A1 (en) 2011-05-19
KR101222789B1 (ko) 2013-01-15
EP2298715A4 (en) 2011-11-23
CN102089258A (zh) 2011-06-08
EP2298715A1 (en) 2011-03-23
KR20110020291A (ko) 2011-03-02
TW201002645A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
JP5301541B2 (ja) 酸化ランタン基焼結体、同焼結体からなるスパッタリングターゲット、酸化ランタン基焼結体の製造方法及び同製造方法によるスパッタリングターゲットの製造方法
JP5301542B2 (ja) 酸化物焼結体、同焼結体からなるスパッタリングターゲット、同焼結体の製造方法及び同焼結体スパッタリングターゲットゲートの製造方法
CN113264769A (zh) 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
JP6083673B2 (ja) 高純度ランタンからなるスパッタリングターゲット
TWI418638B (zh) High purity lanthanum, high purity lanthanum composed of sputtering target and high purity lanthanum as the main component of the metal gate film
Liu et al. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures
Kosyanov et al. Effect of Nd3+ ions on phase transformations and microstructure of 0–4 at.% Nd3+: Y3Al5O12 transparent ceramics
EP2189431B1 (en) Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same
Fisher et al. Inhibition of abnormal grain growth in BaTiO3 by addition of Al2O3
JP5234861B2 (ja) 酸化物焼結体スパッタリングターゲット及び同ターゲットの製造方法
Li et al. Fast firing of bismuth doped yttria-stabilized zirconia for enhanced densification and ionic conductivity
EP4339160A1 (en) Aliovalent multi-cation doping of li-garnet for stabilization of cubic llzo
RU2751917C1 (ru) Металлокерамический композит на основе серебра для селективных кислородных мембран и способ его получения
JP6877994B2 (ja) アパタイト型複合酸化物およびその製造方法、固体電解質型素子並びにスパッタリングターゲット
CN116986892A (zh) 一种铁酸铋基无铅储能陶瓷材料及其制备方法
TWI542704B (zh) A high purity lanthanum, a high purity lanthanum, a sputtering target composed of a high purity lanthanum, and a metal gate film having a high purity lanthanum as a main component
Pan et al. Physical Properties and Ferroelectric Characteristics of Bifeo3 Thin Films with Re2o3 Buffer Layers
JPS63303851A (ja) 超電導セラミックス焼結体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126610.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519717

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009794307

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117000153

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13002577

Country of ref document: US