WO2010003827A1 - PROCÉDÉ DE FABRICATION INDUSTRIELLE DE COMPOSITIONS À BASE DE SULFATE DE CALCIUM ANHYDRE SOUS FORME β ANHYDRITE III', COMPOSITIONS ET LIANTS CORRESPONDANTS - Google Patents

PROCÉDÉ DE FABRICATION INDUSTRIELLE DE COMPOSITIONS À BASE DE SULFATE DE CALCIUM ANHYDRE SOUS FORME β ANHYDRITE III', COMPOSITIONS ET LIANTS CORRESPONDANTS Download PDF

Info

Publication number
WO2010003827A1
WO2010003827A1 PCT/EP2009/057937 EP2009057937W WO2010003827A1 WO 2010003827 A1 WO2010003827 A1 WO 2010003827A1 EP 2009057937 W EP2009057937 W EP 2009057937W WO 2010003827 A1 WO2010003827 A1 WO 2010003827A1
Authority
WO
WIPO (PCT)
Prior art keywords
dryer
gaseous fluid
outlet
anhydrite
fluid
Prior art date
Application number
PCT/EP2009/057937
Other languages
English (en)
Inventor
Christophe Baux
Original Assignee
K And Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K And Co filed Critical K And Co
Priority to EA201100179A priority Critical patent/EA201100179A1/ru
Priority to EP09793913A priority patent/EP2310334A1/fr
Publication of WO2010003827A1 publication Critical patent/WO2010003827A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/05Calcium sulfate cements obtaining anhydrite, e.g. Keene's cement

Definitions

  • compositions based on anhydrous calcium sulphate in ⁇ -anhydrite form III ' compositions and corresponding binders.
  • the present invention relates to the field of gypsum heat treatment processes.
  • the invention relates to an industrial process for the thermal treatment of gypsum with a view to obtaining compositions based on anhydrous calcium sulfate in the form of anhydrite III '.
  • the invention also relates to hydraulic binders consisting of or containing compositions based on anhydrous calcium sulfate in ⁇ anhydrite HF form obtained by such a method.
  • hydraulic binders consisting of or containing compositions based on anhydrous calcium sulfate in ⁇ anhydrite HF form obtained by such a method.
  • Gypsum or calcium sulfate dihydrate (CaSO 4 H 2 O), is a basic material for the development of binders widely used in industry, particularly in the plaster industry.
  • Gypsum is available in its natural state as well as in synthetic form. In its natural state, it is found in various macrocrystallized or microcrystallized forms. In the plaster industry, the natural gypsum used is more or less fine grain gypsum which is usually mixed with impurities (clay, silica %) in number and proportion depending on the quarries from which it comes.
  • gypsum is available mainly in the form of phosphogypsum and desulfogypsum.
  • Phosphogypsum is a by-product of the phosphate fertilizer industry.
  • Desulphogypsum is in turn a product for desulphurizing gases, in particular combustion gases from thermal power plants.
  • a large part of the plaster produced in Europe, the United States and Japan is from desulphogypsum.
  • the binders obtained from the gypsum are obtained by the more or less intensive thermal dehydration of this material to eliminate all or part of its constitution water. They have the property, when brought into contact with water, to reconstitute after drying a hardened material called "hardened plaster" or sometimes improperly gypsum.
  • the gypsum (CaSO 4 .2H 2 O) dehydrates partially or totally.
  • Partial dehydration of the gypsum leads to calcium hemihydrate (CaSO 4 .1 / 2 H 2 O), also called calcium hemihydrate or "calcined gypsum" which crystallizes in the rhombohedral system, then to anhydrite III ( CaSO 4 ⁇ H 2 O, with ⁇ taking variable values in the literature according to the authors but generally considered to be between 0.06 and 0.11) also called "soluble anhydrite” which crystallizes in the hexagonal system and in which there remains in fact a small proportion of water of constitution.
  • the dehydrated forms hemihydrate and anhydrite III are reputed metastable phases.
  • dehydration reactions of gypsum to hemihydrate and hemihydrate to anhydrite III are reversible reactions.
  • anhydrite III very easily restores the hemihydrate which easily restores gypsum.
  • anhydrite III is often described as unstable or metastable.
  • Dry dehydration at atmospheric pressure is the most widely used dewatering technique on an industrial scale. It leads to 100 ° C. to the hemihydrate form ⁇ , around 200 ° C. to the ⁇ anhydrite form III and around 350 ° C. to the anhydrite II.
  • the dehydrated product obtained consisting mainly of ⁇ -hemihydrate, anhydrite II or a mixture of these compounds may, depending on the applications envisaged for it, be micronized after cooking during an additional step.
  • the ⁇ hemihydrate is used in commercial plaster casts and is in this case accompanied by anhydrite II in variable proportions.
  • ⁇ Hemihydrate is also used in the production of plasters and in the manufacture of pre-fabricated building products (tiles, slabs,
  • the ⁇ -hemihydrate which forms part of the composition of certain plasters, has a solubility in water that is lower than that of ⁇ -hemihydrate.
  • This form leads to plasters requiring a smaller amount of mixing water and higher mechanical characteristics than plasters containing none.
  • the phenomena that occur during wet dewatering are poorly known.
  • the production costs of these ⁇ plasters are much higher than those relating to the production of ⁇ plasters.
  • the improvement of the mechanical performances is sometimes attributed to the presence of ⁇ anhydrite III, without knowing exactly the proportion of this variety in these products, nor the conditions which make it possible to obtain it in a stable and reproducible manner.
  • Sulfate binders from industrial processes of the prior art are poor precursors to obtain hardened plaster of high quality. Indeed, these methods use solid-state chemistry methods that do not lead to the production of materials having a high degree of homogeneity and purity and free of defects in crystallization. Only chemical methods in solution allowing the synthesis of final products directly in the reaction medium could lead to the production of products having a high homogeneity and purity and which would lead to hardened plasters of very high quality. However, such solution chemistry methods are not easily adaptable at the industrial stage.
  • ⁇ -hemihydrate-based binders in practice require quantities of mixing water that are much greater than the quantities of water stoichiometrically necessary for the complete rehydration of the hemihydrates in water.
  • gypsum CaSO 4 H 2 O
  • Much of the water added to the binder therefore does not contribute to the rehydration of hemihydrate gypsum (CaSO 4 .2H 2 O) but is only intended to facilitate the implementation of the binder. To optimize the mechanical characteristics of the tempered binder it is therefore necessary to eliminate this excess water later.
  • the presence of moisture in the hardened plaster significantly reduces the mechanical properties thereof.
  • the binder requires stoichiometric water of hydration, the time required for drying and evacuation of the excess water of the tempered product will be long.
  • the greater the quantity of excess water required the more the material obtained once this excess water has been removed, will be porous and therefore have weakened mechanical properties and be more sensitive to moisture.
  • binders consisting of the pure ⁇ hemihydrate form have a theoretical water requirement corresponding to 18.62% of their weight to rehydrate in gypsum.
  • these binders must be implemented with quantities of water corresponding to much larger proportions.
  • Anhydrite II which also exists in its natural state, is used to produce, in the presence of an activator, fluid screeds called “anhydrite screeds". These screeds are made from a mixture of anhydrite II, sand and an activator (K 2 SO 4 in particular). This type of mixture has the advantage of allowing good workability and the advantage of involving a much smaller shrinkage than that observed with cement screeds during drying but also the disadvantage of not drying quickly. Indeed, anhydrite II is known to rehydrate slowly. These anhydrite screeds are used in particular to form floors.
  • anhydrite III (or "soluble anhydrite") can be mixed in greater or lesser amounts with these products. Given its instability, anhydrite III is not, as such, specific applications. In certain applications, it is also sought to eliminate anhydrite III by subjecting the binders that may contain a wet cure also called ripening, of knowingly expose the binder to moisture to allow rehydration of water. anhydrite III to hemihydrate.
  • the patent application WO2005 / 00766 describes in a comparative example 1 a process consisting of cooking in a rotary double oven type crushed gypsum casing of particle size less than 100 microns at a temperature of 230 0 C for 40 minutes and then to subject the product obtained a thermal quenching by lowering its temperature to 80 0 C in 4 seconds.
  • the anhydrite binder III thus stabilized is known to those skilled in the art under the trade name GYPEMENT.
  • the international patent application WO2005 / 00766 proposes a close method, however, making it possible to obtain binders that are better stabilized than the GYPCEMENT product and that consists in using a starting pulverulent material mainly comprising hemihydrate and milled to a particle size of less than 100 ⁇ m. to firing this starting pulverulent material at a temperature of 220 0 C to 320 0 C to form soluble anhydrite III and then to subject it to a thermal tempering, that is to say a lowering of its temperature of at least 150 ° C. in less than 2 minutes, preferably in less than 20 seconds.
  • ⁇ -anhydrite III is formed directly from calcium sulfate dihydrate, that is to say gypsum, without intermediate hemihydrate formation. It has different physical characteristics of the ⁇ anhydrite III form. In particular, this form ⁇ anhydrite III 'has a specific surface area up to 10 times greater than that of the form ⁇ anhydrite III. This text also specifies that the hemihydrate obtained by hydration of the ⁇ -anhydrite form III 'has different physical properties of the hemihydrate formed by hydration of the ⁇ anhydrite III form.
  • the main objective of the present invention is therefore to provide a method of manufacturing on an industrial scale compositions based on calcium sulfate in the form of anhydrite III 'from natural gypsum or synthetic.
  • Another objective of the invention is to propose such a method which is particularly simple to implement and which, in particular, does not require the implementation of a post-micronization step or a quench step step. thermal energy hungry. Such steps also have the disadvantages of requiring the implementation of special equipment and lengthen the manufacturing time.
  • Yet another object of the invention is to provide a process for the production of calcium sulphate compositions in the form ⁇ anhydrite III 'having a small particle size and a high specific surface. It is also an object of the invention to provide such compositions containing at least 70% by weight of calcium sulphate in metastable ⁇ anhydrite HF form.
  • Yet another object of the invention is to provide binders based on such compositions and adapted uses thereof. Presentation of the invention
  • the invention which relates to a process for obtaining in the dry process a pulverulent composition comprising at least 70% by weight of calcium sulphate under the metastable form ⁇ anhydrite III 'from a natural or synthetic gypsum powder material (CaSO 4 .2 H 2 O).
  • said method is characterized: said method being characterized in that it comprises a step of quasi-instantaneous drying of said powdery material by direct contact with and entrainment by a gaseous fluid hot in a dryer having a substantially toroidal conduit (1) placed under vacuum at a pressure of between 50 mbar and 150 mbar, said dryer being provided with means (2) for supplying said material, means (3) for supplying said hot gaseous fluid, means (4) for adjusting the temperature of said gaseous fluid at its inlet into said dryer, means (6) for measuring the temperature of said fluid at the outlet of said dryer, means (7) for adjusting the the speed of said gaseous fluid during its entry into said dryer, means (8) of suction for adjusting the speed of said gaseous fluid at its outlet of said dryer, means for measuring the pressure (9) in said toroidal conduit, and an exhaust duct (10) of the dried material communicating with said substantially toroidal conduit (1) and said suction means (8); in that the temperature of said gaseous fluid at the inlet of said dryer is
  • the speed of the gaseous fluid at the inlet of said dryer is set between 8 m / s and 10 m / s
  • the speed of said gaseous fluid at the outlet of said dryer is set between 24 m / s and 30 m / s so that an autogenous micronization of said material occurs within said dryer and that the temperature of said fluid at the outlet of said dryer between 260 ° C. and 310 ° C.
  • said powdery composition has a particle size of between 5 ⁇ m and 100 ⁇ m and a specific surface area of greater than 10 m 2 / g, said process not including any post-processing step.
  • micronization and no thermal quenching step Within the scope of the present description, the specific surface area values indicated are similar to those measured according to the technique known as "BET under nitrogen" well known to those skilled in the art.
  • the grain size values indicated are those corresponding to the diameter of 50% by volume of the material under consideration (D50).
  • the invention therefore proposes treating a powdery material based on gypsum (CaSO 4 .2H 2 O) according to a process that includes quasi-instantaneous drying by entrainment by a hot gaseous fluid in a dryer including an essentially toroidal conduit employing very specific conditions of pressure, fluid inlet speed in the dryer and output speed of said fluid to obtain a composition containing at least 70% by weight of calcium sulfate in the form of anhydrite III ', form which has a hydration kinetics faster than the hydration kinetics of calcium anhydrite in the anhydrite III form stabilized according to the prior art.
  • the remaining 30% by weight of the composition in question may consist of impurities whose nature and quantity will depend on the source of the gypsum used.
  • the hydration kinetics of the compositions obtained can be determined according to a simple protocol of following the mass evolution of samples thereof.
  • the term "gypsum powder material (CaSO 4 .2 H 2 O)” means a material consisting of at least 70% by weight, preferably at least 90% by weight of Calcium sulphate dihydrate (CaSO 4 .2H 2 O), the remainder of the material may consist of various impurities whose proportion and nature depend on the quarry from which the gypsum is derived if it is natural gypsum, or depend on industrial process of which it is a by-product if it is synthetic gypsum.
  • This gypsum-based material may be a material of the type conventionally used in the plaster industry and in particular be of granular class 0 / 0.2 to 0/20.
  • drying means drying which consists in thermally treating a powdery composition for very short times, of the order of a few tenths of a second to a few seconds.
  • the quasi-instantaneous drying, also called “flash calcination", in an installation including an essentially toroidal conduit has, as indicated above, already been used to treat gypsum or hemihydrate, under different conditions including pressure, namely in overpressure, and for to achieve a goal opposite to that of the present invention, namely to obtain a stabilized product having rehydration kinetics slowed compared to that of anhydrite III.
  • the Applicant has found that by placing the duct of the essentially toroidal dryer in a vacuum at a pressure of between 50 mbar and 150 mbar by using specific speeds of the hot gaseous fluid at its inlet and its outlet. the dryer, an inlet temperature of the gaseous fluid selected in a particular temperature range and confining the temperature of the fluid to its exit from the dryer in a particular temperature range, it was possible to obtain a reverse effect to that continued by this prior art, namely to obtain a composition having a higher hydration kinetics than the rehydration kinetics of anhydrite III.
  • the almost instantaneous drying in a dryer including an essentially toroidal duct placed under vacuum and implemented according to the parameters recommended by the present invention makes it possible to subject the grains of the powder-based gypsum material to a heat shock of calculated amplitude aimed at : to provoke the vaporization of the water of constitution present in the crystals of calcium sulphate dihydrate and the explosion of the grains of gypsum under the effect of this vaporization leading to an autogenous micronization of the material and to a very strong increase of the surface specific of it; retain, by virtue of the toroidal conformation of the drying duct, by centrifugal effect, the particles in this duct as long as they have a particle size greater than 100 ⁇ m and evacuate through the evacuation duct, under the effect of the suction means , the dried particles having a particle size less than 100 microns.
  • the process according to the invention is carried out in the absence of of any thermal tempering step, that is to say of sudden lowering of the temperature of the dried material.
  • the method according to this invention comprises a step of automatically controlling said feed means of said dryer of powder material to said temperature of said fluid at the outlet of said dryer. Thanks to such a characteristic, the temperature of the fluid at its exit from the dryer can easily be maintained in the range of temperatures essential for the formation of the ⁇ anhydrite III '. As soon as the temperature of the pulverulent composition approaches the high terminal of this range, it may be envisaged to bring the gypsum material into the dryer at a rate higher than the nominal flow rate. Conversely, when this temperature approaches the low end of this range, it will be necessary to enter the gypsum material into the dryer at a rate lower than the nominal flow.
  • the gaseous fluid used in the context of the process according to the invention is ambient air.
  • the toroidal duct is placed at a pressure of about 100 mbar.
  • the speed of said gaseous fluid at the inlet of said dryer is set at 9 m / s, and the speed at the outlet of said dryer is adjusted, thanks to the suction means, at 30 m / s.
  • the process according to this invention comprises a further step of removing from the composition obtained at the outlet of said dryer the gas phase associated therewith.
  • This step may be implemented in any type of phase separation device, such as in particular a battery of bag filters.
  • the method comprises a step of conditioning in the absence of the humidity of the air of said composition obtained.
  • the invention also relates to any powder composition based on calcium sulphate in the metastable form ⁇ anhydrite III 'obtained by the method described above, said powdery composition having a mean particle size of between 5 ⁇ m and 100 ⁇ m and a higher specific surface area. at 10 m 2 / g.
  • such a composition is intended to be implemented with a mixing ratio of between 60% and 120%.
  • the invention also relates to any hydraulic binder characterized in that it comprises a mixture of at least one water-reducing additive and the pulverulent composition based on calcium sulphate in the metastable form ⁇ anhydrite III 'obtained by the process described above.
  • a water-reducing additive is free of formaldehyde.
  • said water-reducing additive is selected from the group consisting of polycarboxylates, polyacrylates, phosphonates or a mixture thereof.
  • a hydraulic binder is intended to be implemented with a mixing ratio of between 20% and 80%.
  • binders according to the invention containing ⁇ anhydrite III 'require more stoichiometric water of hydration than binders based on hemihydrate. They therefore allow a better consumption of the mixing water and can be implemented with lower mixing water levels than those used with such binders based on hemihydrate. They therefore lead to improving the mechanical strength of the cured and dry product.
  • the binders according to the invention can also be used in particular as accelerators for setting and stiffening products formulated from calcium sulfate hemihydrate ("plasters") and / or calcium sulfate anhydrite II, cements, mortars and concretes.
  • plasters calcium sulfate hemihydrate
  • anhydrite II cements, mortars and concretes.
  • FIG. 1 schematically represents an example of an installation that can be used for carrying out the method according to the invention
  • FIG. 2 is a graph showing the kinetics of hydration under ambient air, on the one hand a hydraulic binder according to the present invention and, on the other hand, a hydraulic binder of stabilized anhydrite III according to Comparative Example 1 WO 2005/00766 and known to those skilled in the art under the name GYPCEMENT
  • the installation shown comprises a device for virtually instant drying of powder material.
  • This type of device is particularly known under the terms “flash computer” or “flash dryer”.
  • drying device hereinafter sometimes called “dryer”
  • conduit 1 of essentially toroidal shape in which the product is driven by hot air to be micronized and dried and a straight line 11 disposed immediately upstream of the toroidal duct 1.
  • the dryer in question is provided with means 3 for supplying ambient air including a fan 7.
  • the flow rate of this fan 7 is adjustable so as to make it possible to regulate the speed of the air brought into the duct 11 of the dryer by these means.
  • means 3 include a plurality of ducts 31 which make it possible to inject the drying air into the duct 11.
  • Means 4 including a combustion chamber are also provided to adjust the temperature of this air during its introduction into the dryer.
  • the dryer is also provided with feed means 2 of the powder material.
  • These supply means 2 comprise a reservoir 21 of said powder material, an endless screw 22 and a pipe 23 making it possible to bring by gravity the powder material in contact with the hot air dispensed by the means 3 in the conduit 11.
  • the device also comprises a discharge duct 10 of the dried material extracted from the toroidal duct 1.
  • the device comprises means 6 including a thermometer making it possible to measure the temperature of the air leaving the device via the duct 10.
  • the device comprises means including a manometer 9 for measuring the pressure in the conduit 11.
  • Suction means 8 including a fan are provided in communication with the pipe 10 to allow the creation of a vacuum within the toroidal conduit 1 and the evacuation via line 10 of the micronized material and dried. These means 8 make it possible to regulate the output speed of the drying air of the dryer.
  • the installation also comprises a phase separation device 12 in which the dried material from the pipe 10 is purged of the gas phase that it contains.
  • this phase separation device consists of a battery of bag filters.
  • a worm 13 is provided in the lower part of the phase separation device 12 which allows the dried micronized material to be discharged and subsequently packaged in sealed bags.
  • the particles thus dried and micronized transit through the toroidal duct 1, under the effect of the suction caused by the fan 8, until they have been sufficiently micronized and they have not reached a critical size. allowing them to be extracted through the duct 10 of this toroidal duct 1 by centrifugal effect.
  • This toroidal conduit is therefore intended to allow the separation of the dried particles having a diameter less than a predetermined value.
  • Calcium sulphate dihydrate (CaSO 4 .2H 2 O): 75% Impurities (carbonates, clay, silica): 25%
  • Air temperature at the inlet of the dryer 495 0 C
  • Air velocity at the inlet of the device 9 m / s
  • Air velocity at the dryer outlet 30 m / s
  • the particle size of the composition obtained was measured using a Mastersizer 2000 apparatus marketed by the company MALVERN and found that the composition had a D50 of 22 microns.
  • the specific surface area was measured by the BET method under nitrogen and it was found that the composition had a specific surface area of 11.54 m 2 / g.
  • composition obtained has been implemented to produce binders designed to meet different uses:
  • Tempering rates were 35%.
  • a knife was observed at 120 min while a 10 min knife setting was observed for the binder according to the present invention.
  • the SHORE A hardness of 40 was observed at 150 min after the start of mixing for the conventional binder and at 20 min for the binder according to the present invention.
  • Anhydrite screed with early hardening A screed was made from anhydrite II as a binder at the rate of
  • An anhydrite screed was then made from the composition according to the present invention.
  • This screed allowed a re-circulation of the site after 4 hours.
  • the resulting screed exhibited a mechanical strength superior to that of the prior art, namely 30 MPa at 40 MPa.
  • a binder according to the present invention it is therefore conceivable, by using a binder according to the present invention to reduce the level of binder in the formula.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Procédé d'obtention en voie sèche d'une composition pulvérulente comprenant au moins 70 % en poids de sulfate de calcium sous la forme métastable β anhydrite III' à partir d'un matériau pulvérulent à base de gypse naturel ou de synthèse, le procédé étant caractérisé en ce qu'il comprend une étape de séchage quasi-instantanée du matériau pulvérulent par contact direct avec, et entraînement par, un fluide gazeux chaud dans un sécheur présentant un conduit essentiellement toroïdal placé en dépression à une pression comprise entre 50 mbar et 150 mbar, en ce que la température du fluide gazeux à l'entrée du sécheur est réglée entre 400°C et 500°C, la vitesse du fluide gazeux à l'entrée du sécheur est réglée entre 8 m/s et 10 m/s, et la vitesse du fluide gazeux à la sortie du sécheur est réglée entre 24 m/s et 30 m/s de façon telle qu'il se produise une micronisation autogène du matériau au sein du sécheur et que la température du fluide à la sortie dudit sécheur soit comprise entre 260°C et 310°C, et en ce que la composition pulvérulente présente une granulométrie comprise entre 5 μm et 100 μm et une surface spécifique supérieure à 10 m2/g, le procédé n'incluant aucune étape de post-micronisation et aucune étape de trempe thermique.

Description

Procédé de fabrication industrielle de compositions à base de sulfate de calcium anhydre sous forme β anhydrite III', compositions et liants correspondants.
Domaine technique de l'invention La présente invention concerne le domaine des procédés de traitement thermique du gypse.
Plus précisément, l'invention concerne un procédé industriel de traitement thermique du gypse en vue de l'obtention de compositions à base de sulfate de calcium anhydre sous forme β anhydrite III'. L'invention concerne également des liants hydrauliques constitués de ou contenant des compositions à base de sulfate de calcium anhydre sous forme β anhydrite HF obtenues grâce à un tel procédé. État de la technique
Le gypse, ou sulfate de calcium dihydraté (CaSO4^H2O), est un matériau de base pour l'élaboration de liants abondamment utilisé dans l'industrie, notamment dans l'industrie du plâtre.
Le gypse est disponible à l'état naturel ainsi que sous forme synthétique. A l'état naturel, on le trouve sous différentes formes macrocristallisées ou microcristallisées. Dans l'industrie du plâtre, le gypse naturel utilisé est du gypse à grains plus ou moins fins qui se trouve généralement mélangé à des impuretés (argile, silice...) en nombre et proportion variables selon les carrières dont il provient.
Sous forme synthétique, le gypse est disponible principalement sous formes de phosphogypse et de désulfogypse. Le phosphogypse est un sous-produit notamment de l'industrie des engrais phosphatés. Le désulfogypse est quant à lui notamment un produit de désulfuration des gaz, en particulier des gaz de combustion des centrales thermiques. Une partie importante du plâtre produit en Europe, aux Etats-Unis et au Japon l'est à partir de désulfogypse.
Les liants obtenus à partir du gypse sont obtenus par la déshydratation thermique plus ou moins poussée de ce matériau visant à en éliminer tout ou partie de son eau de constitution. Ils ont la propriété, lorsqu'ils sont mis en contact avec de l'eau, de reconstituer après séchage un matériau durci appelé « plâtre durci » ou parfois, improprement, gypse.
Soumis à l'action de la chaleur, le gypse (CaSO4.2H2O ) s e déshydrate partiellement ou totalement.
La déshydratation partielle du gypse conduit à l'hémihydrate de calcium (CaSO4.1/2 H2O), également appelé semi-hydrate de calcium ou « gypse calciné » qui cristallise dans le système rhomboédrique, puis à l'anhydrite III (CaSO4. ε H2O, avec ε prenant des valeurs variables dans la littérature selon les auteurs mais généralement considérées comme comprises entre 0,06 et 0,11) également appelée « anhydrite soluble » qui cristallise dans le système hexagonal et dans laquelle subsiste en fait une faible proportion d'eau de constitution. Les formes déshydratées hémihydrate et anhydrite III sont des phases réputées métastables. En d'autres termes, les réactions de déshydratation du gypse en hémihydrate et de l'hémihydrate en anhydrite III sont des réactions réversibles. En présence d'eau, l'anhydrite III redonne très facilement de l'hémihydrate qui redonne facilement du gypse. A ce sujet, l'anhydrite III est souvent qualifiée d'instable ou de métastable.
La déshydratation totale du gypse conduit à l'anhydrite II (CaSO4), également appelée « anhydrite insoluble » ou « gypse surcuit », qui cristallise dans le système orthorombique et se réhydrate lentement puis à l'anhydrite I (CaSO4 ou plus exactement CaO+SOs) également appelé « gypse cuit à mort (dead burnt en anglais) » qui cristallise dans le système cubique à face centrée et qui ne se réhydrate que très difficilement.
Dans la pratique, les différents procédés de déshydratation thermique du gypse ont des implications complexes mettant en jeu des phénomènes de cristallisation conduisant, selon les conditions dans lesquelles ils sont menés, à différents types de formes d' hémihydrates ou d'anhydrites qui montrent des propriétés physico-chimiques différentes.
Le chapitre « Plâtre », par Daniel Daligand, du traité Construction des Techniques de l'Ingénieur, C910 publié en 2002 présente une synthèse sur les principales différentes formes de sulfate de calcium obtenues par déshydratation thermique du gypse.
La déshydratation en voie sèche à la pression atmosphérique est la technique de déshydratation la plus utilisée à l'échelle industrielle. Elle conduit vers 1000C à la forme hémihydrate β, vers 2000C à la forme β anhydrite III et vers 3500C à l' anhydrite II. Industriellement, le produit déshydraté obtenu constitué principalement d'hémihydrate β , d'anhydrite II ou d'un mélange de ces composés peut, en fonction des applications envisagées pour celui-ci, être micronisé après cuisson lors d'une étape supplémentaire. L 'hémihydrate β entre dans la composition des plâtres pour enduits du commerce et est dans ce cas accompagné d'anhydrite II en proportions variables. L'hémihydrate β est également utilisé pur dans l'élaboration de plâtres à mouler et dans l'élaboration de produits de construction pré-fabriqués (carreaux, plaques,
La déshydratation en voie humide, réalisée sous pression de 5 à 10 bars saturante de vapeur d'eau dans des autoclaves conduit vers 1000C à la forme hémihydrate α. L'hémihydrate α conduit vers 2000C à la forme α anhydrite III et vers 2200C à l'anhydrite IL
L'hémihydrate α, qui entre dans la compo sition de certains plâtres présente une solubilité dans l'eau inférieure à celle de l'hémihydrate β. Cette forme conduit à des plâtres nécessitant une plus petite quantité d'eau de gâchage et des caractéristiques mécaniques plus élevées que celles des plâtres n'en contenant pas. Cependant, les phénomènes qui se déroulent au cours de la déshydratation par voie humide sont mal connus. En outre, les coûts de production de ces plâtres α sont beaucoup plus élevés que ceux relatifs à la production des plâtres β. On attribue parfois l'amélioration des performances mécaniques à la présence d'α anhydrite III, sans que l'on connaisse exactement la proportion de cette variété dans ces produits, ni les conditions qui permettent de l'obtenir de façon stable et reproductible. Les liants sulfatiques issus des procédés industriels de l'art antérieur constituent toutefois de mauvais précurseurs à l'obtention de plâtres durcis de très grande qualité. En effet, ces procédés mettent en oeuvre des méthodes de chimie du solide qui ne conduisent pas à l'obtention de matériaux présentant un grand degré d'homogénéité et de pureté et exempts de défaut de cristallisation. Seules des méthodes de chimie en solution permettant la synthèse de produits finaux directement dans le milieu réactionnel pourraient conduire à l'obtention de produits présentant une homogénéité et une pureté élevées et qui conduiraient à des plâtres durcis de très grande qualité. Toutefois, de telles méthodes de chimie en solution ne sont pas facilement adaptables au stade industriel.
Par ailleurs, pour conduire à des pâtes présentant des rhéologies permettant leur bonne ouvrabilité, les liants à base d'hémihydrate β nécessitent en pratique des quantités d'eau de gâchage bien supérieures aux quantités d'eau stoechiométriquement nécessaires à la réhydratation complète des hémihydrates en gypse (CaSO4^H2O). En pratique, une grande quantité de cette eau de gâchage est dévolue à l'obtention de cette bonne ouvrabilité. Une bonne partie de l'eau ajoutée au liant ne concourt donc pas à la réhydratation de l'hémihydrate en gypse (CaSO4.2H2O) mais a uniquement pour vocation de faciliter la mise en oeuvre du liant. Pour optimiser les caractéristiques mécaniques du liant gâché il convient donc d'éliminer ultérieurement cet excès d'eau. En effet, la présence d'humidité dans le plâtre durci diminue considérablement les propriétés mécaniques de celui- ci. Ainsi, moins le liant nécessite d'eau stoechiométrique d'hydratation, plus le temps nécessaire au séchage et à l'évacuation de l'eau excédentaire du produit gâché sera long. On notera également que, plus la quantité d'eau excédentaire nécessaire sera importante, plus le matériau obtenu une fois cette eau excédentaire évacuée, sera poreux et présentera donc des propriétés mécaniques affaiblies et sera plus sensible à l'humidité.
Ainsi, les liants constitués de la forme hémihydrate β pure ont un besoin théorique en eau correspondant à 18,62 % de leur poids pour se réhydrater en gypse. Toutefois, en pratique, pour permettre leur bonne ouvrabilité, ces liants doivent être mis en œuvre avec des quantités d'eau correspondant à des proportions bien plus importantes.
L'anhydrite II, qui existe aussi à l'état naturel, est quant à lui utilisé pour réaliser, en présence d'un activateur, des chapes fluides dites « chapes anhydrites ». Ces chapes sont réalisées à partir d'un mélange d'anhydrite II, de sable et d'un activateur (K2SO4 notamment). Ce type de mélanges présente l'avantage de permettre une bonne ouvrabilité et l'avantage d'impliquer un retrait beaucoup moins important que celui observé avec des chapes ciment lors du séchage mais aussi l'inconvénient de ne pas sécher rapidement. En effet, l'anhydrite II est connue pour se réhydrater lentement. Ces chapes anhydrites sont notamment mises en œuvre pour constituer des planchers.
Les différents produits de la déshydratation du gypse ayant une application industrielle dans la fabrication des plâtres et des ciments sont donc l' hémihydrate α, l' hémihydrate β et l'anhydrite II (ou « anhydrite insoluble »). En outre, selon le procédé de cuisson du gypse utilisé, l'anhydrite III (ou « anhydrite soluble ») peut se trouver mélangée en quantité plus ou moins importantes à ces produits. Compte tenu de son instabilité, l'anhydrite III ne fait pas l'objet, en tant que telle, d'applications particulières. Dans certaines applications, on cherche d'ailleurs à éliminer l'anhydrite III en faisant subir aux liants susceptibles d'en contenir une cure humide appelée aussi mûrissage, consistant à exposer sciemment le liant à l'humidité afin d'autoriser la réhydratation de l'anhydrite III en hémihydrate.
On notera qu'il a toutefois été proposé dans l'art antérieur divers procédés visant à stabiliser cette anhydrite III. En pratique, cette opération de stabilisation vise à fixer la structure cristalline de l'anhydrite III pour ralentir fortement sa cinétique de réhydratation. L'anhydrite III stabilisée est présentée dans l'art antérieur comme ayant des propriétés de résistance mécanique améliorées ainsi qu'une faible conductivité thermique.
Ainsi, la demande de brevet WO2005/00766 décrit dans un exemple comparatif 1 un procédé consistant à cuire dans un four du type rotatif à double enveloppe du gypse broyé de granulométrie inférieure à 100 μm à une température de 230 0C pendant 40 minutes puis à faire subir au produit obtenu une trempe thermique en abaissant sa température à 80 0C en 4 secondes. Le liant à base d'anhydrite III ainsi stabilisée est connu de l'homme de l'art sous la dénomination commerciale GYPCEMENT.
La demande de brevet internationale WO2005/00766 propose un procédé proche, permettant toutefois d'obtenir des liants mieux stabilisés que le produit GYPCEMENT et consistant à utiliser une matière pulvérulente de départ comprenant majoritairement de l' hémihydrate et broyée à une granulométrie inférieure à 100 μm, à cuire cette matière pulvérulente de départ à une température de 220 0C à 320 0C pour former de l'anhydrite III soluble puis à faire subir à celle-ci une trempe thermique, c'est-à-dire un abaissement de sa température d'au moins 150 0C en moins de 2 minutes, de préférence en moins de 20 secondes. Selon encore une autre technique, décrite dans la demande de brevet internationale WO2007/065527 il est proposé un procédé visant à obtenir une stabilisation encore meilleure de l'anhydrite III que les procédés visés aux deux paragraphes précédents. Ce procédé consiste à appliquer une contrainte mécanique sur les particules d' anhydrite III. Le procédé est mené sous atmosphère saturée en vapeur d'eau dans une installation incluant un conduit d'impactage de forme toroïdale dans lequel les particules d'anhydrite III sont entraînées à vitesse élevée pour permettre leur impactage sur les parois de ce conduit. Selon cette technique une telle installation comprend préférentiellement un dispositif de pressurisation aménagé de manière à créer une surpression dans celle-ci.
Enfin, la demande de brevet internationale WO2007/066167 propose quant à elle de chauffer une composition pulvérulente à base de sulfate de calcium pour former de l'anhydrite III soluble métastable puis de réaliser une post- micronisation (c'est-à-dire une micronisation de la composition après séchage de celle-ci) de la composition obtenue à l'étape précédente pour stabiliser cet anhydrite III soluble.
La littérature fait par ailleurs état, dans l'article « Calcium sulfate » de Frans Wirsching paru dans Ullmann's Encyclopedia of Industrial Chemistry, Fifth Edition in English, Wolfgang Gerhartz, Gail Schulz, et al, 1985-1986, volume A4 pp 555-584 d'une forme particulière de sulfate de calcium appelée β anhydrite IIF et d'un procédé de laboratoire permettant son obtention par déshydratation thermique du gypse à très faible pression.
Selon cet art antérieur, la β anhydrite III' se forme directement à partir du dihydrate de sulfate de calcium, c' est-à-dire du gypse, sans formation d'hémihydrate intermédiaire. Elle présente des caractéristiques physiques différentes de la forme β anhydrite III. Notamment, cette forme β anhydrite III' possède une surface spécifique jusqu'à 10 fois supérieure à celle de la forme β anhydrite III. Ce texte précise aussi que l'hémihydrate obtenu par hydratation de la forme β anhydrite III' présente des propriétés physiques différentes de l'hémihydrate formé par hydratation de la forme β anhydrite III.
La Déposante a eu la curiosité de s'intéresser à cette forme particulière de sulfate de calcium, qui ne peut être obtenue à partir d'hémihydrate mais qui, par hydratation dans le milieu réactionnel peut donner un hémihydrate β'. Des tests lui ont permis de confirmer que cette forme présentait effectivement une surface spécifique très élevée et une cinétique d'hydratation plus élevée que celle de l'anhydrite III. En d'autres termes, cette forme β anhydrite III' est encore plus instable que la forme β anhydrite III. Toutefois, cette surface spécifique très élevée la rend tout particulièrement intéressante pour certaines applications nécessitant une réactivité avec l'eau très élevée et une cinétique de reprise de masse à l'air libre particulièrement rapide.
Toutefois, la Déposante s'est heurtée au fait qu'il n'existait pas de procédé de fabrication de sulfate de calcium anhydre sous forme β anhydrite III' à l'échelle industrielle. Objectifs de l'invention.
L'objectif principal de la présente invention est donc de proposer un procédé de fabrication à l'échelle industrielle de compositions à base de sulfate de calcium sous la forme β anhydrite III' à partir de gypse naturel ou de synthèse.
Un autre objectif de l'invention est de proposer un tel procédé qui soit particulièrement simple à mettre en œuvre et qui, notamment, ne nécessite pas la mise en œuvre d'une étape de post-micronisation ou d'une d'étape de trempe thermique gourmandes en énergie. De telles étapes présentent de surcroît les inconvénients de nécessiter la mise en œuvre d'équipements spéciaux et de rallonger les temps de fabrication. Encore un objectif de l'invention est de proposer un procédé permettant la production de compositions de sulfate de calcium sous la forme β anhydrite III' présentant une granulométrie faible et une surface spécifique élevée. Egalement un objectif de l'invention est de proposer de telles compositions contenant au moins 70% en poids de sulfate de calcium sous la forme métastable β anhydrite HF.
Encore un autre objectif de l'invention est de proposer des liants à base de telles compositions et des utilisations adaptées pour ceux-ci. Exposé de l'invention
Ces différents objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints grâce à l'invention qui concerne un procédé d'obtention en voie sèche d'une composition pulvérulente comprenant au moins 70 % en poids de sulfate de calcium sous la forme métastable β anhydrite III' à partir d'un matériau pulvérulent à base de gypse (CaSO4.2 H2O) naturel ou de synthèse. Selon l'invention ledit procédé est caractérisé : ledit procédé étant caractérisé en ce qu'il comprend une étape de séchage quasi- instantanée dudit matériau pulvérulent par contact direct avec, et entraînement par, un fluide gazeux chaud dans un sécheur présentant un conduit essentiellement toroïdal (1) placé en dépression à une pression comprise entre 50 mbar et 150 mbar, ledit sécheur étant pourvu de moyens (2) d'alimentation dudit matériau, de moyens (3) d'amenée dudit fluide gazeux chaud, de moyens (4) de réglage de la température dudit fluide gazeux à son entrée dans ledit sécheur, de moyens (6) de mesure de la température dudit fluide à la sortie dudit sécheur, de moyens (7) de réglage de la vitesse dudit fluide gazeux lors de son entrée dans ledit sécheur, de moyens (8) d'aspiration permettant de régler la vitesse dudit fluide gazeux à sa sortie dudit sécheur, de moyens de mesure de la pression (9) dans ledit conduit toroïdal, et d'un conduit d' évacuation ( 10) du matériau séché communiquant avec ledit conduit essentiellement toroïdal (1) et lesdits moyens d'aspiration (8) ; en ce que la température dudit fluide gazeux à l'entrée dudit sécheur est réglée entre 4000C et 500 0C, la vitesse du fluide gazeux à l'entrée dudit sécheur est réglée entre 8 m/s et 10 m/s, et la vitesse dudit fluide gazeux à la sortie dudit sécheur est réglée entre 24 m/s et 30 m/s de façon telle qu'il se produise une micronisation autogène dudit matériau au sein dudit sécheur et que la température dudit fluide à la sortie dudit sécheur soit comprise entre 2600C et 310 0C , et en ce que ladite composition pulvérulente présente une granulométrie comprise entre 5 μm et 100 μm et une surface spécifique supérieure à 10 m2/g, ledit procédé n'incluant aucune étape de post-micronisation et aucune étape de trempe thermique Dans le cadre de la présente description, les valeurs de surfaces spécifiques indiquées s'entendent comme celles mesurées selon la technique dite « BET sous azote » bien connue de l'homme de l'art.
Dans le cadre de la présente description, les valeurs de granulométrie indiquées s'entendent comme celles correspondant au diamètre passant de 50 % en volume de la matière considérée (D50). L'invention propose donc de traiter un matériau pulvérulent à base de gypse (CaSO4.2H2O) selon un procédé incluant un séchage quasi-instantané par entraînement par un fluide gazeux chaud dans un sécheur incluant un conduit essentiellement toroïdal mettant en oeuvre des conditions très spécifiques de pression, de vitesse d'entrée du fluide dans le sécheur et de vitesse de sortie dudit fluide pour obtenir une composition contenant au moins 70 % en poids de sulfate de calcium sous la forme β anhydrite III', forme qui présente une cinétique d'hydratation plus rapide que la cinétique d'hydratation de l'anhydrite de calcium sous la forme anhydrite III stabilisé selon l'art antérieur. Les 30% en poids restant de la composition en question pourront être constitués d'impuretés dont la nature et la quantité dépendront de la source du gypse utilisé. La cinétique d'hydratation des compositions obtenues pourra être déterminée selon un protocole simple consistant à suivre l'évolution massique d'échantillons de celles-ci. On entend, dans la présente description, par « matériau pulvérulent à base de gypse (CaSO4.2 H2O) » un matériau constitué d'au moins 70 % en poids, préférentiellement d'au moins 90 % en poids de grains de sulfate de calcium dihydraté (CaSO4.2H2O), le reste du matériau pouvant être constitué de diverses impuretés dont la proportion et la nature dépendent de la carrière dont provient le gypse s'il s'agit de gypse naturel, ou dépendent du processus industriel dont il est un sous-produit s'il s'agit de gypse synthétique. Ce matériau à base de gypse pourra être un matériau du type classiquement utilisé dans l'industrie du plâtre et notamment être de classe granulaire 0/0,2 à 0/20.
On entend par « séchage quasi-instantané » un séchage qui consiste à traiter thermiquement une composition pulvérulente pendant des temps très courts, de l'ordre de quelques dixièmes de secondes à quelques secondes.
Le séchage quasi-instantané, encore appelé « calcination flash », dans une installation incluant un conduit essentiellement toroïdal a, comme indiqué ci- dessus, déjà été utilisé pour traiter du gypse ou de l'hémihydrate, dans des conditions notamment de pression différentes, à savoir en surpression, et pour atteindre un but opposé à celui de la présente invention, à savoir l'obtention d'un produit stabilisé présentant une cinétique de réhydratation ralentie par rapport à celle de l'anhydrite III.
De façon tout à fait surprenante, la Déposante a constaté qu'en plaçant le conduit du sécheur essentiellement toroïdal en dépression à une pression comprise entre 50 mbar et 150 mbar en mettant en oeuvre des vitesses spécifiques du fluide gazeux chaud à son entrée et à sa sortie du sécheur, une température d'entrée du fluide gazeux choisie dans une gamme de températures particulière et en cantonnant la température du fluide à sa sortie du sécheur dans une gamme de températures également particulière, il était possible d'obtenir un effet inverse à celui poursuivi par cet art antérieur, à savoir obtenir une composition présentant une cinétique d'hydratation plus élevée que la cinétique de réhydratation de l'anhydrite III.
Le séchage quasi-instantané dans un sécheur incluant un conduit essentiellement toroïdal placé en dépression et mis en œuvre selon les paramètres préconisés par la présente invention permet de faire subir aux grains du matériau pulvérulent à base de gypse un choc thermique d'amplitude calculée visant à : provoquer la vaporisation de l'eau de constitution présente dans les cristaux de sulfate de calcium dihydraté et l'explosion des grains de gypse sous l'effet de cette vaporisation conduisant à une micronisation autogène du matériau et à une très forte augmentation de la surface spécifique de celui-ci ; retenir, grâce à la conformation toroïdale du conduit de séchage, par effet centrifuge, les particules dans ce conduit tant qu'elles présentent une granulométrie supérieure à 100 μm et évacuer par le conduit d'évacuation, sous l'effet des moyens d'aspiration, les particules séchées présentant une granulométrie inférieure à 100 μm.
Le procédé selon l'invention impliquant une micronisation autogène du matériau traité permet ainsi de s'affranchir de toute étape de post-micronisation. On notera que du fait de la vitesse de fluide mise en oeuvre à la sortie dudit sécheur, une telle étape de micronisation se produit essentiellement sans impactage des particules contre les parois du conduit toroïdal.
Par ailleurs, l'objectif du procédé n'étant pas d'obtenir un matériau dont la cinétique d'hydratation aurait été ralentie par rapport à celle de l'anhydrite III, le procédé selon l'invention est mis en œuvre en l'absence de toute étape de trempe thermique c'est-à-dire d'abaissement brutal de la température du matériau séché.
Selon une variante préférentielle de l'invention, le procédé selon celle-ci comprend une étape d'asservissement automatique desdits moyens d'alimentation dudit sécheur en matériau pulvérulent à ladite température dudit fluide à la sortie dudit sécheur. Grâce à une telle caractéristique, la température du fluide à sa sortie du sécheur pourra être facilement maintenue dans la fourchette de températures indispensables à la formation de la β anhydrite III'. Dès que la température de la composition pulvérulente s'approchera de la borne haute de cette fourchette, il pourra être envisagé de faire entrer le matériau à base de gypse dans le sécheur à un débit supérieur au débit nominal. Inversement, lorsque cette température s'approchera de la borne basse de cette fourchette, il conviendra de faire entrer le matériau à base de gypse dans le sécheur à un débit inférieur au débit nominal.
Préférentiellement, le fluide gazeux utilisé dans le cadre du procédé selon l'invention est de l'air ambiant. Selon une variante préférée entre toutes, le conduit toroïdal est placé à une pression de 100 mbar environ. Avantageusement, pour ce faire, la vitesse dudit fluide gazeux à l'entrée dudit sécheur est réglée à 9 m/s, et la vitesse à la sortie dudit sécheur est réglée, grâce aux moyens d'aspiration, à 30 m/s. Cette dépression, créée avantageusement grâce à ces valeurs de vitesses de fluide, permet d'optimiser le rendement de formation de β anhydrite III'
Selon une variante préférentielle de l'invention, le procédé selon celle-ci comprend une étape supplémentaire consistant à évacuer de la composition obtenue à la sortie dudit sécheur la phase gazeuse qui lui est associée.
Cette étape pourra être mise en œuvre dans tout type de dispositif de séparation de phases, tel que notamment une batterie de filtres à manches. Egalement selon une variante préférentielle, le procédé comprend une étape de conditionnement à l'abri de l'humidité de l'air de ladite composition obtenue.
L'invention concerne également toute composition pulvérulente à base de sulfate de calcium sous la forme métastable β anhydrite III' obtenue grâce au procédé décrit ci-dessus, ladite composition pulvérulente présentant une granulométrie moyenne comprise entre 5 μm et 100 μm et une surface spécifique supérieure à 10 m2/g.
Préférentiellement, une telle composition est destinée à être mise en œuvre avec un taux de gâchage compris entre 60 % et 120 %.
L'invention concerne également tout liant hydraulique caractérisé en ce qu'il comprend un mélange d'au moins un additif réducteur d'eau et de la composition pulvérulente à base de sulfate de calcium sous la forme métastable β anhydrite III' obtenue grâce au procédé décrit ci-dessus. Préférentiellement, un tel additif réducteur d'eau est exempt de formaldéhyde.
Avantageusement, ledit additif réducteur d'eau est choisi dans le groupe constitué par les polycarboxylates, les polyacrylates, les phosphonates ou un mélange de ceux-ci. Selon une variante intéressante, un tel liant hydraulique est destiné à être mis en œuvre avec un taux de gâchage compris entre 20 % et 80 %.
Les liants selon l'invention contenant de la β anhydrite III' nécessitent davantage d' eau stoechiométrique d'hydratation que les liants à base d' hémihydrate. Ils autorisent donc une meilleure consommation de l'eau de gâchage et peuvent être mis en œuvre avec des taux d'eau de gâchage inférieurs à ceux mis en œuvre avec de tels liants à base d' hémihydrate. Ils conduisent donc à améliorer les résistances mécaniques du produit durci et sec.
La cinétique d'hydratation de cette β anhydrite III' étant particulièrement rapide, les liants selon l'invention pourront aussi être utilisés notamment en tant qu'accélérateurs de prise et de raidissement des produits formulés à partir d' hémihydrate de sulfate de calcium (« plâtres ») et/ou d'anhydrite II de sulfate de calcium, des ciments, mortiers et bétons.
Modes de réalisation
L'invention, ainsi que les différents avantages qu'elle présente, seront plus facilement compris grâce à la description qui va suivre de modes de réalisation de celle-ci donnés en référence aux dessins selon lesquels ; la figure 1 représente de façon schématique un exemple d'installation utilisable pour la mise en œuvre du procédé selon l'invention ; la figure 2 est un graphe traduisant les cinétiques d'hydratation sous air ambiant, d'une part d'un liant hydraulique selon la présente invention et d'autre part d'un liant hydraulique d'anhydrite III stabilisée selon l'exemple comparatif 1 de WO 2005/00766 et connu de l'homme de l'art sous la dénomination GYPCEMENT
En référence à la figure 1, l'installation représentée comprend un dispositif de séchage quasi- instantané de matériau pulvérulent. Ce type de dispositif est notamment connu sous les termes "calculateur flash" ou "sécheur flash".
Ce dispositif de séchage, ci-après appelé parfois « sécheur », inclut un conduit 1 de forme essentiellement toroïdal dans lequel le produit est entrainé par de l'air chaud pour y être micronisé et séché et un conduit 11 rectiligne disposé immédiatement en amont du conduit toroïdal 1.
Le sécheur en question est pourvu de moyens 3 d'amenée d'air ambiant incluant un ventilateur 7. Le débit de ce ventilateur 7 est réglable de façon à permettre de régler la vitesse de l'air amené dans le conduit 11 du sécheur par ces moyens 3. Ces moyens 3 incluent une pluralité de canalisations 31 qui permettent d'injecter l'air de séchage dans le conduit 11.
Des moyens 4 incluant une chambre de combustion sont également prévus pour régler la température de cet air lors de son introduction dans le sécheur.
Le sécheur est par ailleurs pourvu de moyens d'amenée 2 du matériau pulvérulent. Ces moyens d'amenée 2 comprennent un réservoir 21 dudit matériau pulvérulent, une vis sans fin 22 ainsi qu'une canalisation 23 permettant d'amener par gravité le matériau pulvérulent en contact avec l'air chaud dispensé par les moyens 3 dans le conduit 11.
Le dispositif comprend par ailleurs un conduit d'évacuation 10 du matériau séché extrait du conduit toroïdal 1. Le dispositif comprend des moyens 6 incluant un thermomètre permettant de mesurer la température de l'air sortant du dispositif par la canalisation 10.
Le dispositif comprend des moyens incluant un manomètre 9 permettant de mesurer la pression dans le conduit 11. Des moyens d'aspiration 8 incluant un ventilateur sont prévus en communication avec la canalisation 10 pour permettre la création d'une dépression au sein du conduit toroïdal 1 et l'évacuation par la canalisation 10 du matériau micronisé et séché. Ces moyens 8 permettent de régler la vitesse de sortie de l'air de séchage du sécheur.
L'installation comprend également un dispositif de séparation de phases 12 dans lequel le matériau séché provenant de la canalisation 10 est purgé de la phase gazeuse qu'il contient. Dans le cadre du présent mode de réalisation ce dispositif de séparation de phases est constitué par une batterie de filtres à manches. Une vis sans fin 13 est prévue dans la partie inférieure du dispositif de séparation de phases 12 qui permet d'évacuer le matériau micronisé séché pour le conditionner ensuite en sacs étanches. A son arrivée dans le conduit 11 le matériau de base subit une élévation de température violente lors de sa mise en contact avec l'air chaud. Cette élévation de température violente conduit à la vaporisation de l'eau qu'il contient et à la micronisation autogène du matériau.
Les particules ainsi séchées et micronisées transitent dans le conduit toroïdal 1, sous l'effet de l'aspiration provoquée par le ventilateur 8, tant qu'elles n'ont pas été suffisamment micronisées et qu'elles n'ont pas atteint une taille critique leur permettant d'être extraites par le conduit 10 de ce conduit toroïdal 1 par effet centrifuge. Ce conduit toroïdal a donc pour objet de permettre la séparation des particules séchées présentant un diamètre inférieur à une valeur prédéterminable. L'installation décrite en référence à la figure 1 a été utilisée pour traiter un matériau à base de gypse de classe granulaire 0/4 mm présentant la composition pondérale suivante :
Sulfate de calcium dihydraté (CaSO4.2H2O) : 75 % Impuretés (carbonates, argile, silice) : 25 %
Les paramètres de mise en œuvre ont été les suivants :
Température de l'air à l'entrée du sécheur : 495 0C Vitesse de l'air à l'entrée du dispositif : 9 m/s Vitesse de l'air à la sortie du sécheur : 30 m/s Température de l'air à la sortie du sécheur : 310 0C
Pression au sein du conduit essentiellement toroïdal : 100 mbar
Le respect de ces paramètres a conduit à un débit d'alimentation en matériau dans le sécheur de 465 kg/h. On notera qu'en pratique, selon les modes de réalisation, des débits de 400 kg à 10 tonnes par heure pourront être mis en œuvre dans le cadre de la présente invention.
La granulométrie de la composition obtenue a été mesurée grâce à un appareillage Mastersizer 2000 commercialisé par la société MALVERN et a permis de constater que la composition présentait un D50 de 22 μm .
La surface spécifique a été mesurée par la méthode BET sous azote et a permis de constater que la composition présentait une surface spécifique de 11,54 m2/g.
La cinétique d'hydratation sous air ambiant du composé obtenu a été étudiée au regard de celle du produit à base d'anhydrite III de l'art antérieur GYPCEMENT.
Cette étude de la cinétique d'hydratation a été menée selon le protocole suivant.
A une température de 200C, un échantillon de 15 grammes de chaque produit a été uniformément réparti sur une platine exposée à un air ambiant présentant une humidité relative de 60 %. L'évolution massique de chacun de ces échantillons à été suivie par pesée avec un relevé toutes les 6 minutes, jusqu'à stabilisation. Les courbes représentatives de la cinétique de reprise de masse (degré d'avancement de la réaction de réhydratation) pour l'échantillon de la composition selon l'invention et pour l'échantillon selon l'art antérieur sont portées sur la figure 2.
Ces courbes montrent que la composition obtenue selon la présente invention présente une cinétique d'hydratation plus rapide que le produit GYPCEMENT constitué d'anhydrite III stabilisée.
Exemples d'utilisation de la composition obtenue. La composition obtenue a été mise en œuvre pour réaliser des liants visant à répondre à différentes utilisations :
1°) Accélérateur de prise durcisseur d'un liant sulfatique classique. On a réalisé d'une part un gypse durci par gâchage d'un liant constitué à
100% d'anhydrite II synthétique (hors pureté) et d'autre part d'un liant selon la présente invention constitué à 80% en poids de la même anhydrite II mais avec 20% en poids de la composition obtenue grâce au procédé selon l'invention.
On a mis en œuvre des taux de gâchage de 35%. Pour le liant classique, on a observé une prise de couteau à 120 min alors que l'on observait une prise de couteau à 10 min pour le liant selon la présente invention.
La dureté SHORE A de 40 a été observée à 150 min après le début du gâchage pour le liant classique et à 20 min pour le liant selon la présente invention.
2°) Accélérateur de raidissement d'un béton vibrocompacté On a réalisé un béton vibro-compacté selon une technique connue de l'art antérieur ayant la composition suivante :
Ciment : 300 kg/m3 Sable : 920kg/m3 Gravier : 1000 kg/m3 Eau : 95 kg/m3
Une partie de ce mélange a été traitée sans ajout de la composition selon l'invention et une autre partie a été traitée en y ajoutant 17,5% en poids, calculés sur le poids de ciment, de la composition selon la présente invention, en conservant une consistance comparable. Les deux mélanges obtenus ont chacun été utilisés pour réaliser des tuyaux.
Les tuyaux de béton obtenus en l'absence de l'incorporation de la composition selon la présente invention dans le mélange en question ont conduit à la nécessité de les équiper de bagues et de les stocker verticalement pendant 1 à 2 jours avant toute manutention et retournement, ceci afin de permettre le maintien de leur forme.
Par contre les tuyaux réalisés à partir du mélange intégrant 17,5% en poids de ciment d'une composition selon la présente invention se sont présentés sous forme de produits raides dès la sortie de presse. La mise en œuvre de l'invention dans le cadre de cet exemple a permis de n'attendre qu'une à deux heures avant de pouvoir manutentionner ou de retourner ceux-ci. Il n'était dans ce cas pas nécessaire de doter les tuyaux obtenus de bagues de maintien de forme.
3°) Chape anhydrite à durcissement précoce On a réalisé une chape à partir d'anhydrite II en tant que liant à raison de
700 kg/m3 et de sable. Cette chape a durci au bout de 48 h. Pendant ce délai, de grands soins ont dû être pris pour éviter des courants d'air trop violents ou une exposition au soleil trop intense ceci afin de maintenir suffisamment d'eau dans la chape et éviter un séchage précoce dû à l'évaporation. La chape à 700 kg/m d'anhydrite II a présenté une résistance finale à la compression comprise entre 20 MPa et 30 MPa.
On a ensuite réalisé une chape anhydrite à partir de la composition selon la présente invention. Cette chape a permis une mise en re-circulation du chantier au bout de 4 h. La chape obtenue a présenté une résistance mécanique supérieure à celle de l'art antérieur, à savoir 30 MPa à 40 MPa. Pour obtenir une chape présentant une résistance mécanique de 20 MPa il est donc envisageable, en mettant en oeuvre un liant selon la présente invention de diminuer le taux de liant dans la formule

Claims

REVENDICATIONS
1. Procédé d'obtention en voie sèche d'une composition pulvérulente comprenant au moins 70 % en poids de sulfate de calcium sous la forme métastable β anhydrite III' à partir d'un matériau pulvérulent à base de gypse (CaSO4.2H2O) naturel ou de synthèse,
ledit procédé étant caractérisé
en ce qu'il comprend une étape de séchage quasi-instantanée dudit matériau pulvérulent par contact direct avec, et entraînement par, un fluide gazeux chaud dans un sécheur présentant un conduit essentiellement toroïdal (1) placé en dépression à une pression comprise entre 50 mbar et 150 mbar,
ledit sécheur étant pourvu de moyens (2) d'alimentation dudit matériau, de moyens (3) d'amenée dudit fluide gazeux chaud, de moyens (4) de réglage de la température dudit fluide gazeux à son entrée dans ledit sécheur, de moyens (6) de mesure de la température dudit fluide à la sortie dudit sécheur, de moyens (7) de réglage de la vitesse dudit fluide gazeux lors de son entrée dans ledit sécheur, de moyens (8) d'aspiration permettant de régler la vitesse dudit fluide gazeux à sa sortie dudit sécheur, de moyens de mesure de la pression (9) dans ledit conduit toroïdal, et d'un conduit d' évacuation ( 10) du matériau séché communiquant avec ledit conduit essentiellement toroïdal (1) et lesdits moyens d'aspiration (8) ;
en ce que la température dudit fluide gazeux à l'entrée dudit sécheur est réglée entre 4000C et 500 0C, la vitesse du fluide gazeux à l'entrée dudit sécheur est réglée entre 8 m/s et 10 m/s, et la vitesse dudit fluide gazeux à la sortie dudit sécheur est réglée entre 24 m/s et 30 m/s de façon telle qu'il se produise une micronisation autogène dudit matériau au sein dudit sécheur et que la température dudit fluide à la sortie dudit sécheur soit comprise entre 2600C et 310 0C , et en ce que ladite composition pulvérulente présente une granulométrie comprise entre 5 μm et 100 μm et une surface spécifique supérieure à 10 m2/g, ledit procédé n'incluant aucune étape de post-micronisation et aucune étape de trempe thermique.
2. Procédé selon la revendication 1 caractérisé en ce qu'il comprend une étape d'asservissement automatique desdits moyens d'alimentation dudit sécheur en matériau pulvérulent à ladite température dudit fluide à la sortie dudit sécheur.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit fluide gazeux est de l'air ambiant.
4. Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que ledit conduit essentiellement toroïdal est placé en dépression à une pression de lOO mbar.
5. Procédé selon la revendication 4 caractérisé en ce que la vitesse du fluide gazeux à l'entrée dudit sécheur est réglée à 9 m/s, et la vitesse dudit fluide gazeux à la sortie dudit sécheur est réglée à 30 m/s.
6. Procédé selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'il comprend une étape supplémentaire consistant à séparer la composition obtenue à la sortie dudit sécheur de façon à évacuer la phase gazeuse qui lui est associée
7. Procédé selon la revendication 6 caractérisé en ce qu'il comprend une étape de conditionnement à l'abri de l'humidité de l'air de ladite composition obtenue.
PCT/EP2009/057937 2008-07-11 2009-06-25 PROCÉDÉ DE FABRICATION INDUSTRIELLE DE COMPOSITIONS À BASE DE SULFATE DE CALCIUM ANHYDRE SOUS FORME β ANHYDRITE III', COMPOSITIONS ET LIANTS CORRESPONDANTS WO2010003827A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EA201100179A EA201100179A1 (ru) 2008-07-11 2009-06-25 СПОСОБ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА КОМПОЗИЦИЙ НА БАЗЕ БЕЗВОДНОГО СУЛЬФАТА КАЛЬЦИЯ В ФОРМЕ β АНГИДРИТА III'
EP09793913A EP2310334A1 (fr) 2008-07-11 2009-06-25 Procédé de fabrication industrielle de compositions à base de sulfate de calcium anhydre sous forme anhydrite iii', compositions et liants correspondants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0854764 2008-07-11
FR0854764A FR2933688B1 (fr) 2008-07-11 2008-07-11 Procede de fabrication industrielle de compositions a base de sulfate de calcium anhydre sous forme beta anhydrite iii' compositions et liants correspondants.

Publications (1)

Publication Number Publication Date
WO2010003827A1 true WO2010003827A1 (fr) 2010-01-14

Family

ID=39831617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/057937 WO2010003827A1 (fr) 2008-07-11 2009-06-25 PROCÉDÉ DE FABRICATION INDUSTRIELLE DE COMPOSITIONS À BASE DE SULFATE DE CALCIUM ANHYDRE SOUS FORME β ANHYDRITE III', COMPOSITIONS ET LIANTS CORRESPONDANTS

Country Status (4)

Country Link
EP (1) EP2310334A1 (fr)
EA (1) EA201100179A1 (fr)
FR (1) FR2933688B1 (fr)
WO (1) WO2010003827A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112060A1 (fr) * 2012-01-27 2013-08-01 Columbeanu Ion Liant hydraulique à base de sulfate de calcium, procédé de production de ce dernier et applications spécifiques associées

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB696799A (en) * 1951-03-03 1953-09-09 Joseph Lecher Improvements in or relating to processing materials
FR2276276A1 (fr) * 1974-06-28 1976-01-23 Rhone Poulenc Ind Procede de preparation de platre
US4080422A (en) * 1975-06-30 1978-03-21 United States Gypsum Company Method for producing insoluble calcium sulfate anhydrite
EP0447800A1 (fr) * 1990-02-19 1991-09-25 Rüdersdorfer Zement GmbH Procédé de traitement de plâtre
DE4208836A1 (de) * 1992-03-19 1993-09-23 Zementanlagen Und Maschinenbau Verfahren und vorrichtung zur herstellung von branntgips
WO1997007073A1 (fr) * 1995-08-15 1997-02-27 United States Gypsum Company Procede et systeme de calcination du gypse en plusieurs etapes, pour produire de l'anhydrite
US20030080224A1 (en) * 2001-03-16 2003-05-01 Rowley Frank F. Two-stage comminuting and dehydrating system and method
WO2005000766A2 (fr) * 2003-06-26 2005-01-06 Jean Couturier Procede de preparation d'anhydrite iii stabilise a partir de platre et liant hydraulique obtenu
WO2007066167A1 (fr) * 2005-12-07 2007-06-14 Gypsmix (Sarl) Procede de preparation d'un liant hydraulique a base d'anhydrite iii soluble stabilise', liant hydraulique obtenu, utilisation de ce liant et installation industrielle pour la mise en oeuvre du procede'
WO2007065527A2 (fr) * 2005-12-07 2007-06-14 Gypsmix (Sarl) Procede pour stabiliser de l’anhydrite iii soluble metastable, procede de preparation d’un liant hydraulique a base d’anhydrite iii soluble stabilise, liant hydraulique obtenu, utilisation de ce liant et installation industrielle pour la mise en oeuvre d’un tel procede
WO2007080202A2 (fr) * 2006-01-13 2007-07-19 Christian Palacios Gazules Procede d'obtention d'anhydrite iii stabilisee

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB696799A (en) * 1951-03-03 1953-09-09 Joseph Lecher Improvements in or relating to processing materials
FR2276276A1 (fr) * 1974-06-28 1976-01-23 Rhone Poulenc Ind Procede de preparation de platre
US4080422A (en) * 1975-06-30 1978-03-21 United States Gypsum Company Method for producing insoluble calcium sulfate anhydrite
EP0447800A1 (fr) * 1990-02-19 1991-09-25 Rüdersdorfer Zement GmbH Procédé de traitement de plâtre
DE4208836A1 (de) * 1992-03-19 1993-09-23 Zementanlagen Und Maschinenbau Verfahren und vorrichtung zur herstellung von branntgips
WO1997007073A1 (fr) * 1995-08-15 1997-02-27 United States Gypsum Company Procede et systeme de calcination du gypse en plusieurs etapes, pour produire de l'anhydrite
US20030080224A1 (en) * 2001-03-16 2003-05-01 Rowley Frank F. Two-stage comminuting and dehydrating system and method
WO2005000766A2 (fr) * 2003-06-26 2005-01-06 Jean Couturier Procede de preparation d'anhydrite iii stabilise a partir de platre et liant hydraulique obtenu
WO2007066167A1 (fr) * 2005-12-07 2007-06-14 Gypsmix (Sarl) Procede de preparation d'un liant hydraulique a base d'anhydrite iii soluble stabilise', liant hydraulique obtenu, utilisation de ce liant et installation industrielle pour la mise en oeuvre du procede'
WO2007065527A2 (fr) * 2005-12-07 2007-06-14 Gypsmix (Sarl) Procede pour stabiliser de l’anhydrite iii soluble metastable, procede de preparation d’un liant hydraulique a base d’anhydrite iii soluble stabilise, liant hydraulique obtenu, utilisation de ce liant et installation industrielle pour la mise en oeuvre d’un tel procede
WO2007080202A2 (fr) * 2006-01-13 2007-07-19 Christian Palacios Gazules Procede d'obtention d'anhydrite iii stabilisee

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ULLMANNS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY", 1 January 1985, VCH VERLAG, WEINHEIM, XP008097789 *
DATABASE WPI Week 200765, Derwent World Patents Index; AN 2007-701208, XP002500644 *
WIRSCHING FRANZ: "Calcium Sulfate", 19850101, vol. A4, 1 January 1985 (1985-01-01), pages 555 - 584, XP008097789 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112060A1 (fr) * 2012-01-27 2013-08-01 Columbeanu Ion Liant hydraulique à base de sulfate de calcium, procédé de production de ce dernier et applications spécifiques associées

Also Published As

Publication number Publication date
FR2933688A1 (fr) 2010-01-15
EA201100179A1 (ru) 2011-06-30
FR2933688B1 (fr) 2011-05-13
EP2310334A1 (fr) 2011-04-20

Similar Documents

Publication Publication Date Title
US5015449A (en) Process for making construction grade calcium sulfate alpha-hemihydrate from moist finely divided gypsum obtained from a power plant flue gas desulfurization
CA3041936A1 (fr) Composition de construction seche projetable en voie humide a l'aide d'une pompe a vis et comprenant un liant et une charge biosourcee - preparation et applications d'une telle composition
CN101563303A (zh) 半水合硫酸钙的处理方法
WO2001074737A1 (fr) Liant hydraulique resultant du melange d'un liant sulfatique et d'un liant comprenant le compose mineralogique c4a3s
EP2079669A1 (fr) Procede de preparation d'un liant hydraulique a base d'anhydrite iii soluble stabilise', liant hydraulique obtenu, utilisation de ce liant et installation industrielle pour la mise en oeuvre du procede'
FR2970962A1 (fr) Composition hydraulique a faible teneur en clinker
WO2016051085A1 (fr) Bloc béton isolant et a base de granulats végétaux
FR2946640A1 (fr) Materiau composite de construction incorporant de la chenevotte de chanvre.
EP1991509B1 (fr) Procede pour stabiliser de l anhydrite iii soluble metastable, procede de preparation d un liant hydraulique a base d anhydrite iii soluble stabilise, liant hydraulique obtenu, utilisation de ce liant et installation industrielle pour la mise en oeuvre d un tel procede
CA3125574A1 (fr) Nouvelle formulation pour liant de construction bas carbone, procede de preparation et materiaux de construction
EP3018109B1 (fr) Mélange hydraulique comprenant des granulats d'origine végétale et procédé de préparation de béton ou mortier à partir dudit mélange
EP2310334A1 (fr) Procédé de fabrication industrielle de compositions à base de sulfate de calcium anhydre sous forme anhydrite iii', compositions et liants correspondants
EP2173680B1 (fr) Installation de production d'un liant sulfatique multicomposants à hautes performances mécaniques, à partir de gypse et/ou de ses dérivés, procédé de fabrication d'un tel liant et liant ainsi obtenu
FR2947258A1 (fr) Procede d'obtention en voie seche de sulfate de calcium anhydre sous forme beta anhydrite iii a partir d'hemihydrate de sulfate de calcium.
WO2014140488A1 (fr) Nouveau clinker sulfo-alumineux à faible teneur en bélite
OA13182A (fr) Procédé de préparation d'anhydrite III stabilisé àpartir de platre et liant hydraulite obtenu.
WO2023012424A1 (fr) Procédé de carbonatation accélérée et sa mise en œuvre dans un procédé de valorisation de déchets de béton et de rejets gazeux industriels
WO2020025783A1 (fr) Utilisation d'une argile pour la préparation d'un matériau pouzzolanique
FR3065455B1 (fr) Utilisation d’un agent entraineur d’air pour diminuer le temps de sechage d’une chape a base de sulfate de calcium
EP3166397B1 (fr) Chaux vive a reactivite ralentie, son procede de fabrication et son utilisation
Gara et al. Recipe-technological features of carbonization hardening of lightweight concrete
BE1020340A3 (fr) Liant pour enduit de mur interieur.
WO2016113513A1 (fr) Nouveau liant hydraulique et composition hydraulique le comprenant
RU2167126C2 (ru) Способ изготовления стеновых керамических изделий
JP5030061B2 (ja) 軽量気泡コンクリートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09793913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201100179

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2009793913

Country of ref document: EP