WO2010001958A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2010001958A1
WO2010001958A1 PCT/JP2009/062114 JP2009062114W WO2010001958A1 WO 2010001958 A1 WO2010001958 A1 WO 2010001958A1 JP 2009062114 W JP2009062114 W JP 2009062114W WO 2010001958 A1 WO2010001958 A1 WO 2010001958A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
circuit
film
diode
resistor
Prior art date
Application number
PCT/JP2009/062114
Other languages
French (fr)
Japanese (ja)
Inventor
下村 奈良和
理史 橋本
吉田 健一
光昭 田渕
浩一 上山
敏雄 三本
朋世 藤井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010001958A1 publication Critical patent/WO2010001958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0676Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type comprising combinations of diodes, or capacitors or resistors

Definitions

  • the present invention relates to a semiconductor device having an electrostatic discharge protection circuit for a power supply terminal or a reference power supply terminal for supplying a voltage to the semiconductor integrated circuit from the outside.
  • Electronic devices used in various electronic devices may be destroyed (deteriorated) due to electrostatic discharge during the manufacturing process or mounting on electronic devices. Therefore, when designing an electronic device, it is necessary to ensure a sufficient resistance against static electricity.
  • HBM human-body model
  • CDM charged-device model
  • MM machine model
  • HBM and MM are modes in which the electronic device itself is not charged, but discharge occurs when another electrostatically charged object (human or machine) touches the terminal of the electronic device, thereby destroying the electronic device. is there.
  • CDM is a mode in which the electronic device itself is charged by friction, dielectrics, or direct contact with a charged object, and the electronic device is destroyed by discharge that occurs when an external conductor contacts the terminal of the electronic device.
  • the International Electrotechnical Commission (IEC) has established an IEC-61000-4-2 test standard as an immunity test for electrostatic discharge.
  • the test based on the IEC-61000-4-2 test standard is performed for the purpose of simulating electrostatic discharge from a charged human body or object to the evaluation target device, and an ESD is schematically shown in the circuit diagram of FIG.
  • an applicator called a gun that can apply a high voltage, a high voltage is applied to the evaluation target device, and whether the evaluation target device operates normally after the application is tested.
  • the waveform of the output current of the applicator is determined according to the IEC-61000-4-2 test standard as shown in the waveform diagram shown in FIG. 16. The strength of immunity tolerance is judged.
  • a semiconductor device is one that has a weak immunity resistance.
  • a protection circuit that does not allow surge noise such as static electricity to flow into the semiconductor device is devised in Patent Document 1.
  • surge noise such as static electricity is prevented from flowing into a semiconductor device by providing a low-pass filter including a constant voltage diode (zener diode), a resistor, and a capacitor at a terminal portion of the semiconductor device.
  • a low-pass filter including a constant voltage diode (zener diode), a resistor, and a capacitor at a terminal portion of the semiconductor device.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-228807 (published on August 25, 2005)”
  • the capacitor formed by the method disclosed in Patent Document 1 is a MIS capacitor (MIS capacitor, MetalMetaInsulator Semiconductor capacitor) made of metal, an insulating film and a P-type semiconductor.
  • a depletion layer is formed on the surface of the P-type semiconductor. For this reason, the electrostatic capacity of the MIS capacitor decreases. Therefore, the cut-off frequency increases, and the filter capability as a low-pass filter decreases.
  • the display panel driving LSI is often mounted on a film carrier called COF (Chip On Film).
  • COF Chip On On Film
  • the LSI input terminals, output terminals, reference power supply terminals and power supply terminals are mounted in a manner facing the wiring pattern formed on the film carrier. For this reason, it is difficult to take out the electrode from the back surface of the LSI.
  • the protection circuit devised in Patent Document 1 is required to form a Zener diode having a high Zener voltage and to form a capacitor having a high breakdown voltage.
  • There are problems such as electrode area, electrode formation on the backside of the LSI accompanying COF (Chip On On Film) mounting.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a semiconductor device that improves immunity resistance by allowing immunity noise flowing into the interior to escape to a ground terminal.
  • a semiconductor device is a semiconductor device, which is supplied with a voltage from the outside of the semiconductor device, one end connected to a voltage supply terminal, and the other end connected to an internal circuit of the semiconductor device. And a first circuit protection means connected between the voltage supply terminal and a ground terminal that is electrically grounded, wherein one end of the first circuit protection means and one end of the resistor are Connected to the voltage supply terminal, the other end of the first circuit protection means is connected to the ground terminal, and the first circuit protection means is any one having a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure. Or one.
  • a voltage is applied to the first circuit protection means.
  • a reverse bias voltage is applied to the first diode, and the reverse bias voltage exceeds the breakdown voltage of the first diode.
  • the drain-source voltage of the PMOS transistor exceeds the drain-source breakdown voltage of the MOS transistor.
  • a current flows through the first circuit protection means.
  • the diode is used as the first circuit protection means, a large current flows due to avalanche breakdown from the cathode of the diode to the anode of the diode.
  • the PMOS transistor is used as the first circuit protection means, a large current flows due to avalanche breakdown from the source of the first PMOS transistor to the drain of the first PMOS transistor.
  • immunity noise flowing into the semiconductor device can be released to the ground terminal, and the immunity resistance of the semiconductor device can be improved.
  • the current flowing into the internal circuit is reduced by interposing the resistor between the voltage supply terminal and the internal circuit.
  • the diode when used as the first circuit protection means, since a normal avalanche diode is used, it is not necessary to form a Zener diode or capacitor having a high Zener voltage.
  • the semiconductor device further includes second circuit protection means, one end of the second circuit protection means is connected to the other end of the resistor, and the other end of the second circuit protection means is connected to the ground terminal.
  • the connected second circuit protection means may be any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
  • surge noise during an electrostatic breakdown test in the HBM model or MM model is caused by the grounding after passing through the resistor.
  • Surge noise goes to the terminal.
  • the diode is used as the first circuit protection means
  • the surge noise is released to the ground terminal by utilizing the reverse direction characteristic of the diode.
  • the reverse direction characteristic of the diode is provided through the resistor. May worsen and the tolerance may decrease.
  • the semiconductor device may further include third circuit protection means having one end connected to the input terminal or the output terminal of the internal circuit and the other end connected to one end of the first circuit protection means.
  • the third circuit protection means may be any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
  • the voltage supply terminal and the ground terminal may be formed on the same surface of the semiconductor substrate forming the semiconductor device.
  • the resistor may be a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are stacked.
  • the first circuit protection means is any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
  • 1 is a cross-sectional view of an electrostatic discharge protection circuit according to an embodiment of the present invention. It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on the Example of this invention. It is a cross-sectional view of an electrostatic discharge protection circuit according to another embodiment of the present invention. 6 is an equivalent circuit of an electrostatic discharge protection circuit according to another embodiment of the present invention. It is a cross-sectional view of an electrostatic discharge protection circuit according to still another embodiment of the present invention. It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on another Example of this invention. It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on another Example of this invention. It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on another Example of this invention. It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on another Example of this invention.
  • FIG. 1 is a cross-sectional view of the electrostatic discharge protection circuit 10 according to the first embodiment.
  • the element isolation part 2 is formed of an oxide film having a thickness (length in the Y direction) of 0.2 ⁇ m to 0.8 ⁇ m on the P-type semiconductor substrate 1 implanted with boron.
  • the substrate concentration of the P-type semiconductor substrate 1 is 1 ⁇ 10 15 / cm 3 to 1 ⁇ 10 18 / cm 3 .
  • an N-type impurity region 3 implanted with phosphorus or arsenic and a P-type impurity region 4 implanted with boron are formed inside the surface 1a of the P-type semiconductor substrate 1 (Y ⁇ 0).
  • the impurity concentration of the N-type impurity region 3 is 1 ⁇ 10 18 / cm 3 to 5 ⁇ 10 20 / cm 3
  • the impurity concentration of the P-type impurity region 4 is 1 ⁇ 10 18 / cm 3 to 5 ⁇ 10 20 / cm 3. cm 3 .
  • the multilayer film 5 is formed on the surface 1a of the P-type semiconductor substrate 1 (Y> 0).
  • the multilayer film 5 is a polycrystalline silicon film having a thickness of 50 nm to 500 nm and implanted with phosphorus, arsenic, boron, or the like, or a film in which a polycrystalline silicon film and a refractory metal film are laminated.
  • an interlayer insulating film 6 having a thickness of 100 nm to 1500 nm is formed on the surface 1a of the P-type semiconductor substrate 1 (Y> 0), and after opening the connection holes, an aluminum alloy having a thickness of 100 nm to 1500 nm, Metal wiring 7 to metal wiring 9 made of a multilayer film containing at least one of titanium alloy or copper, or aluminum alloy, titanium alloy and copper are formed.
  • the N-type impurity region 3, the P-type semiconductor substrate 1, and the P-type impurity region 4 form a diode D.
  • the N-type impurity region 3 is a cathode electrode of the diode D
  • the P-type impurity region 4 is an anode electrode of the diode D.
  • the P-type semiconductor substrate 1 constitutes the main body of the diode D.
  • the multilayer film 5 which is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated forms a resistor R.
  • the metal wiring 7 connects the P-type impurity region 4 and the ground terminal (ground terminal) of the semiconductor device to which the electrostatic discharge protection circuit 10 is connected.
  • the metal wiring 8 connects the N-type impurity region 3, the multilayer film 5 and the power supply terminal of the semiconductor device, or connects the N-type impurity region 3, the multilayer film 5 and the reference power supply terminal of the semiconductor device.
  • the metal wiring 9 connects the multilayer film 5 and the internal circuit of the semiconductor device.
  • the power supply terminal and the reference power supply terminal are voltage supply terminals.
  • FIG. 2 is an equivalent circuit of the electrostatic discharge protection circuit 10.
  • a diode D is provided between the power supply terminal or the reference power supply terminal and the ground terminal to release immunity noise
  • a resistor is provided between the power supply terminal or the reference power supply terminal and the internal circuit of the semiconductor device. The current flowing into the internal circuit of the semiconductor device is reduced by passing through the body R.
  • the resistance value of the resistor R needs to be selected in consideration of the current flowing through the power supply line inside the LSI during LSI operation and the voltage drop caused by the resistor R during LSI operation, and is usually about 1 ⁇ to 10 ⁇ . It is desirable to select a resistance value.
  • the diode D may be divided into a plurality of diodes and connected in parallel, but the total perimeter is preferably selected in the range of 1000 ⁇ m to 20000 ⁇ m.
  • the electrostatic discharge protection circuit 10 when immunity noise that flows into the semiconductor device flows, a reverse bias voltage is applied to the diode D, and the reverse bias voltage is , Exceeding the breakdown voltage of the diode D.
  • the electrostatic discharge protection circuit 10 according to the first embodiment uses a normal avalanche diode, it is not necessary to form a Zener diode or a capacitor having a high Zener voltage. Further, the electrodes (the cathode electrode of the diode D and the anode electrode of the diode D) can be formed only on the surface 1 a side of the P-type semiconductor substrate 1. For these reasons, the electrostatic discharge protection circuit 10 according to the first embodiment is suitable for a semiconductor device that performs COF (Chip-On-Film) mounting.
  • COF Chip-On-Film
  • FIG. 3 is a cross-sectional view of the electrostatic discharge protection circuit 20 according to the second embodiment.
  • the element isolation portion 22 is formed of an oxide film having a thickness of 0.2 ⁇ m to 0.8 ⁇ m on the P-type semiconductor substrate 21 into which boron is implanted.
  • the substrate concentration of the P-type semiconductor substrate 21 is 1 ⁇ 10 15 / cm 3 to 1 ⁇ 10 18 / cm 3 .
  • the impurity concentration of the N-type impurity region 23a and the N-type impurity region 23b is 1 ⁇ 10 18 / cm 3 to 5 ⁇ 10 20 / cm 3
  • the impurity concentration of the P-type impurity region 24a and the P-type impurity region 24b is 1 ⁇ 10 18 / cm 3 to 5 ⁇ 10 20 / cm 3 .
  • the multilayer film 25 is formed on the surface 21a (Y> 0) of the P-type semiconductor substrate 21.
  • the multilayer film 25 has a thickness of 50 nm to 500 nm and is a polycrystalline silicon film into which phosphorus, arsenic, boron, or the like is implanted, or a film in which a polycrystalline silicon film and a refractory metal film are stacked.
  • an interlayer insulating film 26 having a thickness of 100 nm to 1500 nm is formed on the surface 21a of the P-type semiconductor substrate 21 (Y> 0), and after opening the connection holes, an aluminum alloy having a thickness of 100 nm to 1500 nm, Metal wiring 27 to metal wiring 29 made of a multilayer film containing at least one of titanium alloy or copper, or aluminum alloy, titanium alloy and copper are formed.
  • the N-type impurity region 23a, the P-type semiconductor substrate 21 and the P-type impurity region 24a form the first diode D1
  • the N-type impurity region 23b, the P-type semiconductor substrate 21 and the P-type impurity are formed.
  • Region 24b forms second diode D2.
  • the N-type impurity region 23a is the cathode electrode of the first diode D1
  • the P-type impurity region 24a is the anode electrode of the first diode D1
  • the P-type semiconductor substrate 21 constitutes the main body of the first diode D1.
  • the N-type impurity region 23b is the cathode electrode of the second diode D2
  • the P-type impurity region 24b is the anode electrode of the second diode D2
  • the P-type semiconductor substrate 21 is connected to the second diode D2. Configure the body.
  • the multilayer film 25 which is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated forms a resistor R.
  • the metal wiring 27 connects the P-type impurity region 24a and the ground terminal of the semiconductor device to which the electrostatic discharge protection circuit 20 is connected.
  • the metal wiring 28 connects the N-type impurity region 23a, the multilayer film 25, and the power supply terminal of the semiconductor device, or connects the N-type impurity region 23a, the multilayer film 25, and the reference power supply terminal of the semiconductor device.
  • the metal wiring 29 connects the multilayer film 25, the N-type impurity region 23b, and the internal circuit of the semiconductor device.
  • the P-type impurity region 24b is connected to the ground terminal of the semiconductor device in the same manner as the P-type impurity region 24a.
  • FIG. 4 is an equivalent circuit of the electrostatic discharge protection circuit 20.
  • the first diode D1 is provided between the power supply terminal or the reference power supply terminal and the ground terminal to release immunity noise, and between the power supply terminal or the reference power supply terminal and the internal circuit of the semiconductor device. Further, the current flowing into the internal circuit of the semiconductor device is reduced through the resistor R.
  • the electrostatic breakdown test includes standards based on the HBM model (human-body model) and MM model (machine model). .
  • HBM model human-body model
  • MM model machine model
  • surge noise such as static electricity
  • surge noise entered from the input terminal and output terminal is installed at the input terminal and output terminal. It goes to the ground terminal through the electrostatic protection element and internal circuit.
  • a second diode D2 is provided between the power supply line P and the ground line G, and static electricity in the HBM model and the MM model is provided. Surge noise during the electric breakdown test can escape to the ground terminal via the second diode D2 without passing through the resistor R. For this reason, the tolerance of the electrostatic breakdown test in the HBM model and the MM model can be improved.
  • the resistance value of the resistor R it is desirable to select a resistance value of about 1 ⁇ to 10 ⁇ as in the first embodiment.
  • each diode a plurality of divided diodes may be connected in parallel as in the first embodiment, but the total perimeter of the first diode D1 is preferably selected from the range of 1000 ⁇ m to 20000 ⁇ m, The total perimeter of the diode D2 is preferably selected from the range of 1000 to 10,000 um.
  • the electrodes (the cathode electrode of the diode D1, the anode electrode of the diode D1, the cathode electrode of the diode D2, and the anode electrode of the diode D2) can be formed only on the surface 21a side of the P-type semiconductor substrate 21.
  • the electrostatic discharge protection circuit 20 according to the second embodiment is suitable for a semiconductor device in which COF (Chip On On Film) mounting is performed.
  • FIG. 5 is a cross-sectional view of the electrostatic discharge protection circuit 30 according to the third embodiment.
  • phosphorus is further injected into the P-type semiconductor substrate 31 into which boron has been injected, and an N-type impurity well 32 is formed in the P-type semiconductor substrate 31.
  • the element isolation portion 33 is formed on the P-type semiconductor substrate 31 with an oxide film having a thickness (length in the Y direction) of 0.2 ⁇ m to 0.8 ⁇ m.
  • the substrate concentration of the P-type semiconductor substrate 31 is 1 ⁇ 10 15 / cm 3 to 1 ⁇ 10 18 / cm 3 .
  • the impurity concentration of the N-type impurity well 32 is 1 ⁇ 10 15 / cm 3 to 1 ⁇ 10 18 / cm 3 , and the depth (the length in the Y direction) of the N-type impurity well 32 is 0.5 ⁇ m to 5 ⁇ m.
  • a gate electrode is formed on the surface 31a of the P-type semiconductor substrate 31 (Y> 0) with the oxide film 34 having a thickness of 10 nm to 100 nm and the multilayer film 35 having a thickness of 50 nm to 500 nm.
  • the multilayer film 35 is a polycrystalline silicon film implanted with phosphorus, arsenic, boron, or the like, or a film in which a polycrystalline silicon film and a refractory metal film are stacked.
  • a drain region is formed by a P-type impurity region 36a into which boron is implanted.
  • a source region is formed by a P-type impurity region 36b implanted with boron on the inner side (Y ⁇ 0) side of the surface 31a of the P-type semiconductor substrate 31.
  • the impurity concentration of the P-type impurity region 36a and the P-type impurity region 36b is 1 ⁇ 10 18 / cm 3 to 5 ⁇ 10 20 / cm 3 .
  • an N well contact region is formed by an N type impurity region 37 implanted with phosphorus or arsenic.
  • the impurity concentration of the N-type impurity region 37 is 1 ⁇ 10 18 / cm 3 to 5 ⁇ 10 20 / cm 3 .
  • a channel injection region 38 for adjusting the threshold voltage is formed at a position facing the oxide film 34 on the inner side (Y ⁇ 0) side of the surface 31a of the P-type semiconductor substrate 31.
  • a multilayer film 39 is formed on the surface 31a of the P-type semiconductor substrate 31 (Y> 0).
  • the multilayer film 39 has a thickness of 50 nm to 500 nm and is a polycrystalline silicon film in which phosphorus, arsenic, boron, or the like is implanted, or a film in which a polycrystalline silicon film and a refractory metal film are stacked.
  • an interlayer insulating film 41 having a thickness of 100 nm to 1500 nm is formed on the surface 31a of the P-type semiconductor substrate 31 (Y> 0), and after opening the connection holes, an aluminum alloy having a thickness of 100 nm to 1500 nm, Metal wiring 42 to metal wiring 44 made of a multilayer film containing at least one of titanium alloy or copper, or aluminum alloy, titanium alloy and copper are formed.
  • N-type impurity well 32, oxide film 34, the multilayer film 35, P-type impurity region 36a, P-type impurity region 36b and the N-type impurity region 37 form a PMOS transistor M P.
  • P-type impurity region 36a is a drain electrode of the PMOS transistor M P
  • P-type impurity region 36b is the source electrode of the PMOS transistor M P
  • N-type impurity region 37 is an N-well contact electrode of the PMOS transistor M P
  • multilayer film 35 is a gate electrode of the PMOS transistor M P.
  • N-type impurity well 32 constitutes the N-well region of the PMOS transistor M P.
  • the multilayer film 39 which is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated forms a resistor R.
  • the metal wiring 42 connects the P-type impurity region 36a and the ground terminal of the semiconductor device to which the electrostatic discharge protection circuit 30 is connected.
  • the metal wiring 43 connects the P-type impurity region 36b, the N-type impurity region 37, the multilayer film 35, the multilayer film 39, and the power supply terminal of the semiconductor device, or connects the P-type impurity region 36b, the N-type impurity region 37, and the multilayer.
  • the film 35, the multilayer film 39, and the reference power supply terminal of the semiconductor device are connected.
  • the metal wiring 44 connects the multilayer film 39 and the internal circuit of the semiconductor device.
  • FIG. 6 is an equivalent circuit of the electrostatic discharge protection circuit 30.
  • the equivalent circuit of FIG. 6 between the power supply terminal or the reference power supply terminal and the ground terminal is provided with a PMOS transistor M P connected source electrode, the gate electrode and the N-well contact electrode in common.
  • the resistance value of the resistor R it is desirable to select a resistance value of about 1 ⁇ to 10 ⁇ as in the first embodiment.
  • Channel length of the PMOS transistor M P is desirably chosen from the range of 0.5 [mu] m ⁇ 10 [mu] m, the channel width of the PMOS transistor M P is preferably selected from the range of 300 ⁇ m ⁇ 7000 ⁇ m.
  • PMOS transistors M P may be connected to those division into a plurality of PMOS transistors in parallel, but the total channel width is desirably selected within the range of 300um ⁇ 7000um.
  • the drain of the PMOS transistor M P - source voltage, the drain of the PMOS transistor M P - The breakdown voltage between sources is exceeded.
  • the electrode (gate electrode of the PMOS transistor M P, the source electrode of the PMOS transistor M P, the drain electrode of the PMOS transistor M P, N well contact electrode of the PMOS transistor M P) is a surface 31a side of the P-type semiconductor substrate 31 Can only be formed.
  • the electrostatic discharge protection circuit 30 according to the third embodiment is suitable for a semiconductor device that performs COF (Chip On Film) mounting.
  • FIG. 7 is an equivalent circuit of the electrostatic discharge protection circuit 40 of the fourth embodiment.
  • the second PMOS transistor MP2 is provided between the power supply line P and the ground line G, similarly to the electrostatic discharge protection circuit 20 of the second embodiment.
  • a first PMOS transistor MP1 is provided between the power supply terminal or the reference power supply terminal and the ground terminal.
  • the resistance value of the resistor R it is desirable to select a resistance value of about 1 ⁇ to 10 ⁇ as in the first embodiment.
  • Each PMOS transistors, as in Example 3 may be connected to those divided into a plurality in parallel, but the total channel width of the first PMOS transistor M P1 is desirably selected within the range of 300 ⁇ m ⁇ 7000 ⁇ m , the total channel width of the second PMOS transistor M P2, it is desirable to select from a range of 300 ⁇ m ⁇ 3500 ⁇ m.
  • Example 5 An equivalent circuit of a more general electrostatic discharge protection circuit is an equivalent circuit as shown in FIG. 8 of the fifth embodiment and FIG. 9 of the sixth embodiment described later.
  • FIG. 8 is an equivalent circuit of the electrostatic discharge protection circuit 50 of the fifth embodiment.
  • one electrostatic protection element (first circuit protection means) 51 is used, and the electrostatic protection element 51 is provided between the power supply terminal or the reference power supply terminal and the ground terminal.
  • the resistance value of the resistor R it is desirable to select a resistance value of about 1 ⁇ to 10 ⁇ as in the first embodiment.
  • FIG. 9 is an equivalent circuit of the electrostatic discharge protection circuit 60 of the sixth embodiment.
  • two electrostatic protection elements are used, and a second electrostatic protection element (second circuit protection means) 62 is provided between the power supply line P and the ground line G.
  • a first electrostatic protection element (first circuit protection means) 61 is provided between the power supply terminal or the reference power supply terminal and the ground terminal.
  • the resistance value of the resistor R it is desirable to select a resistance value of about 1 ⁇ to 10 ⁇ as in the first embodiment.
  • an NMOS transistor and a bipolar transistor are used as the electrostatic protection elements 51, 61, and 62 in the equivalent circuit shown in FIGS. 8 and 9, in addition to the diode and the PMOS transistor described in Examples 1 to 4 of this embodiment.
  • an NMOS transistor and a bipolar transistor are used as the electrostatic protection elements 51, 61, and 62 in the equivalent circuit shown in FIGS. 8 and 9, in addition to the diode and the PMOS transistor described in Examples 1 to 4 of this embodiment, an NMOS transistor and a bipolar transistor are used.
  • a transistor or a transistor having a thyristor structure may be used.
  • FIG. 12 is a block diagram illustrating a path of surge noise in the HBM model or the MM model in a semiconductor device including the electrostatic discharge protection circuit 70 according to the seventh embodiment.
  • the surge noise path is a surge noise path with the ground terminal reference + applied.
  • the diode D7 which is an electrostatic protection element, is formed in the same manner as in the first embodiment, but is connected between the input terminal or output terminal and the power supply line P (an electrostatic protection element ( By devising the connection method of one end of the circuit protection device (third circuit protection means) 71, as in the case of the electrostatic discharge protection circuit 20 of the second embodiment, it is possible to improve the tolerance in the HBM model and the MM model. .
  • a diode D7 are connected to a connection point P 71 between the cathode electrode of the resistor and one end of the resistor R.
  • the resistance value of the resistor R it is desirable to select a resistance value of about 1 ⁇ to 10 ⁇ as in the first embodiment.
  • the diode D7 may be divided into a plurality of diodes connected in parallel, but the total perimeter of the diode is preferably selected from a range of 1000 ⁇ m to 20000 ⁇ m.
  • FIG. 13 is a block diagram illustrating a path of surge noise in the HBM model or the MM model in a semiconductor device including the electrostatic discharge protection circuit 80 according to the eighth embodiment.
  • the surge noise path is a surge noise path with the ground terminal reference + applied.
  • the PMOS transistor MP8 which is an electrostatic protection element, is formed in the same manner as in the third embodiment, but is connected between the input terminal and the output terminal and the power supply line P.
  • the connection method of one end of the element (circuit protection device, third circuit protection means) 81 as in the case of the electrostatic discharge protection circuit 40 of the fourth embodiment, it is possible to improve the tolerance in the HBM model and the MM model. It is.
  • one end E 81 of the electrostatic protection element 81 connected between the input terminal or the output terminal and the power supply line P is connected to the PMOS transistor.
  • the source electrode of the M P8 are connected to one end of the connection point P 81 of the gate electrode and the resistor R of the PMOS transistor M P8.
  • the resistance value of the resistor R it is desirable to select a resistance value of about 1 ⁇ to 10 ⁇ as in the first embodiment.
  • PMOS transistor M P8, as in Example 3 may be connected to those divided into a plurality in parallel, but the total channel width of the PMOS transistor is desirably selected from the range of 300 ⁇ m ⁇ 7000 ⁇ m.
  • FIG. 14 is a block diagram illustrating a path of surge noise in the HBM model or the MM model in a semiconductor device including the electrostatic discharge protection circuit 90 according to the ninth embodiment.
  • the surge noise path is a surge noise path with the ground terminal reference + applied.
  • the semiconductor device of FIG. 14 is a semiconductor device provided with a more general electrostatic discharge protection circuit 90.
  • the electrostatic protection element (first circuit protection means) 92 is formed in the same manner as in the fifth embodiment, but is connected between the input terminal or the output terminal and the power supply line P.
  • the connection method of one end of the electrostatic protection element (circuit protection device, third circuit protection means) 91 as in the case of the electrostatic discharge protection circuit 60 of the sixth embodiment, an improvement in withstand capability in the HBM model and the MM model is realized. To do.
  • one end E 91 of the electrostatic protection element 91 connected between the input terminal or the output terminal and the power supply line P is connected to the power supply terminal.
  • it is connected to a connection point P 91 between one end E 92 of the electrostatic protection element 92 and one end of the resistor R, which is connected between the reference power supply terminal and the ground terminal.
  • the resistance value of the resistor R it is desirable to select a resistance value of about 1 ⁇ to 10 ⁇ as in the first embodiment.
  • the electrostatic protection element 92 connected between the power supply terminal or the reference power supply terminal and the ground terminal is described in Examples 1 to 4 of this embodiment.
  • an NMOS transistor, a bipolar transistor, or a thyristor structure may be used.
  • the tolerance of the electrostatic breakdown test in the HBM model or MM model can be improved without adding additional electrostatic protection elements at both ends of the internal circuit. Accordingly, since it is not necessary to increase the size of the semiconductor device, it is possible to improve the tolerance when performing the electrostatic breakdown test in the HBM model or the MM model without increasing the chip cost.
  • NMOS transistors in addition to the diodes and PMOS transistors described in Examples 1 to 4 of the present embodiment, NMOS transistors, A bipolar transistor or a thyristor structure may be used.
  • the present invention when a plurality of electrostatic discharge protections are used at both ends of the resistor R, the same element is used.
  • the present invention is not limited to this, and different elements may be combined.
  • a PMOS transistor may be provided instead of the diode D2.
  • the semiconductor device of the present invention improves the immunity resistance by letting immunity noise flowing into the ground terminal escape to the ground terminal, and therefore can be suitably used for a display panel driving LSI such as a liquid crystal display or a plasma display.
  • Electrostatic discharge protection circuit 32 N Type impurity well 38 channel injection region 51, 92 electrostatic protection element (first circuit protection means) 61 1st electrostatic protection element (1st circuit protection means) 62 Second electrostatic protection element (second circuit protection means) 71, 81, 91 Static electricity protection element (third circuit protection means) D diode (first circuit protection means) D1 first diode (first circuit protection means) D2 Second diode (second circuit protection means) D7 diode (first circuit protection means) E 71 , E 81 , E 91 , E 92 one end G ground line M P , M P

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

One end of an electrostatic protection element (51) and one end of a resistor (R) are connected to a power source terminal or a reference power source terminal.  The other end of the electrostatic protection element (51) is connected to a ground terminal.  The electrostatic protection element (51) has a structure of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, or a thyristor.

Description

半導体装置Semiconductor device
 本発明は、半導体集積回路に外部から電圧を供給する、電源端子または基準電源端子に対する静電気放電保護回路を有する半導体装置に関するものである。 The present invention relates to a semiconductor device having an electrostatic discharge protection circuit for a power supply terminal or a reference power supply terminal for supplying a voltage to the semiconductor integrated circuit from the outside.
 各種の電子機器に用いられる電子デバイスは、その製造過程や電子機器への実装時などにおいて、静電放電により破壊(劣化)することがある。従って、電子デバイスの設計に際しては、静電気に対する耐量を十分に確保することが必要となる。 Electronic devices used in various electronic devices may be destroyed (deteriorated) due to electrostatic discharge during the manufacturing process or mounting on electronic devices. Therefore, when designing an electronic device, it is necessary to ensure a sufficient resistance against static electricity.
 この静電気放電に対する破壊耐量を測定するために、電子デバイスにおける静電気放電をシミュレーションする試験が静電破壊試験であり、近年重要性が指摘されている。従来から、静電破壊のモデルはその発生要因によって、HBM(human-body model:人体モデル)、CDM(charged-device model:帯電デバイス・モデル)、MM(machine model:マシン・モデル)の三つに大別されてきた。 In order to measure the breakdown tolerance against this electrostatic discharge, a test for simulating electrostatic discharge in an electronic device is an electrostatic breakdown test, and the importance has been pointed out in recent years. Conventionally, there are three types of electrostatic breakdown models, HBM (human-body model), CDM (charged-device model), and MM (machine model), depending on the generation factors. Have been broadly divided.
 HBMやMMは、電子デバイス自体は帯電していないが、静電帯電した他の物体(人や機械)が電子デバイスの端子に触れることにより、放電が起こり、これにより電子デバイスが破壊するモードである。CDMは、電子デバイス自体が、摩擦や、誘電あるいは帯電物体との直接な接触により帯電し、電子デバイスの端子へ外部の導体が接触したときに起こる放電によって、電子デバイスが破壊するモードである。 HBM and MM are modes in which the electronic device itself is not charged, but discharge occurs when another electrostatically charged object (human or machine) touches the terminal of the electronic device, thereby destroying the electronic device. is there. CDM is a mode in which the electronic device itself is charged by friction, dielectrics, or direct contact with a charged object, and the electronic device is destroyed by discharge that occurs when an external conductor contacts the terminal of the electronic device.
 この他にも、静電気放電に関連した試験として、電磁妨害に対する耐性を評価するイミュニティ試験があり、複数の電子デバイスで構成された電子機器装置の品質確認のひとつとして採用されている。 In addition to this, there is an immunity test for evaluating resistance to electromagnetic interference as a test related to electrostatic discharge, which is adopted as one of the quality confirmations of an electronic equipment device composed of a plurality of electronic devices.
 国際電気標準会議(International Electrotechnical Commission:IEC)では、静電気放電に関するイミュニティ試験として、IEC-61000-4-2という試験規格を設けている。IEC-61000-4-2試験規格に基づく試験は、帯電した人体や物体から評価対象装置への静電気放電をシミュレーションする目的で行われており、概略構成が図15の回路図で示される、ESDガンと呼ばれる高電圧を印加可能な印加機を用いて、評価対象装置に高電圧を印加し、印加後も評価対象装置が正常動作するかを試験している。 The International Electrotechnical Commission (IEC) has established an IEC-61000-4-2 test standard as an immunity test for electrostatic discharge. The test based on the IEC-61000-4-2 test standard is performed for the purpose of simulating electrostatic discharge from a charged human body or object to the evaluation target device, and an ESD is schematically shown in the circuit diagram of FIG. Using an applicator called a gun that can apply a high voltage, a high voltage is applied to the evaluation target device, and whether the evaluation target device operates normally after the application is tested.
 印加機の出力電流の波形は、IEC-61000-4-2試験規格により図16に示される波形図のように決められており、正常動作が確認できた印加電圧の大小で、評価対象装置のイミュニティ耐性の強弱を判断している。 The waveform of the output current of the applicator is determined according to the IEC-61000-4-2 test standard as shown in the waveform diagram shown in FIG. 16. The strength of immunity tolerance is judged.
 電子機器装置を構成する電子デバイスの中で、上記イミュティ耐性が弱いものとして、半導体装置がある。半導体装置のイミュニティ耐性を向上させるために、半導体装置内に静電気などのサージノイズを流入させない保護回路が特許文献1で考案されている。特許文献1では、定電圧ダイオード(ツェナーダイオード)、抵抗体及びコンデンサーから成るローパスフィルターを、半導体装置の端子部に設けることにより、半導体装置内に静電気などのサージノイズが流入を防止することが開示されている。 Among the electronic devices that constitute the electronic device apparatus, a semiconductor device is one that has a weak immunity resistance. In order to improve the immunity tolerance of a semiconductor device, a protection circuit that does not allow surge noise such as static electricity to flow into the semiconductor device is devised in Patent Document 1. In Patent Document 1, it is disclosed that surge noise such as static electricity is prevented from flowing into a semiconductor device by providing a low-pass filter including a constant voltage diode (zener diode), a resistor, and a capacitor at a terminal portion of the semiconductor device. Has been.
日本国公開特許公報「特開2005-228807号公報(2005年8月25日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-228807 (published on August 25, 2005)”
 しかし、液晶ディスプレイやプラズマディスプレイ等の表示パネル駆動用LSIは、電源電圧が10V以上のものが多く、ツェナー降伏電圧が10V以上となる定電圧ダイオード(ツェナーダイオード)を、表示パネル駆動用LSI内に形成することは困難である。 However, many display panel driving LSIs such as liquid crystal displays and plasma displays have a power supply voltage of 10 V or more, and a constant voltage diode (zener diode) having a Zener breakdown voltage of 10 V or more is included in the display panel driving LSI. It is difficult to form.
 また、特許文献1に開示されている方法で形成されるコンデンサーは、金属、絶縁膜及びP型半導体から成るMIS容量(MISコンデンサー、Metal Insulator Semiconductor capacitor)であるので、高周波ノイズに対しては、P型半導体表面に空乏層が形成される。このため、MISコンデンサーの静電容量が低下する。従って、カットオフ周波数が上昇し、ローパスフィルターとしてのフィルター能力が低下してしまう。 Further, the capacitor formed by the method disclosed in Patent Document 1 is a MIS capacitor (MIS capacitor, MetalMetaInsulator Semiconductor capacitor) made of metal, an insulating film and a P-type semiconductor. A depletion layer is formed on the surface of the P-type semiconductor. For this reason, the electrostatic capacity of the MIS capacitor decreases. Therefore, the cut-off frequency increases, and the filter capability as a low-pass filter decreases.
 また、MISコンデンサーを構成する絶縁膜は、10V以上の電圧に耐える必要があることから膜厚が厚くなり、必要な静電容量を得るのに必要な電極面積が大きくなる。さらに、表示パネル駆動用LSIは、COF(Chip On Film)と呼ばれる、フィルムキャリア上に実装されることが多い。COF(Chip On Film)実装では、LSIの、入力端子、出力端子、基準電源端子及び電源端子と、フィルムキャリア上に形成される配線パターンとが対向する形で実装される。このため、LSIの裏面から電極を取り出すことは困難である。 In addition, since the insulating film constituting the MIS capacitor needs to withstand a voltage of 10 V or more, the film thickness is increased, and the electrode area necessary for obtaining a necessary capacitance is increased. Further, the display panel driving LSI is often mounted on a film carrier called COF (Chip On Film). In COF (Chip On On Film) mounting, the LSI input terminals, output terminals, reference power supply terminals and power supply terminals are mounted in a manner facing the wiring pattern formed on the film carrier. For this reason, it is difficult to take out the electrode from the back surface of the LSI.
 このように、表示パネル駆動用LSIへの適用を考えた場合、特許文献1で考案されている保護回路は、高いツェナー電圧を有するツェナーダイオードの形成、高い耐圧を有するコンデンサーを形成するのに要する電極面積、COF(Chip On Film)実装に伴うLSI裏面での電極形成といった課題がある。 Thus, when considering application to a display panel driving LSI, the protection circuit devised in Patent Document 1 is required to form a Zener diode having a high Zener voltage and to form a capacitor having a high breakdown voltage. There are problems such as electrode area, electrode formation on the backside of the LSI accompanying COF (Chip On On Film) mounting.
 本発明は、上記の問題点に鑑みてなされたものであって、その目的は、内部に流入するイミュニティノイズを接地端子に逃がすことで、イミュニティ耐性を向上させる半導体装置を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a semiconductor device that improves immunity resistance by allowing immunity noise flowing into the interior to escape to a ground terminal.
 本発明の半導体装置は、半導体装置であって、上記半導体装置の外部から電圧を供給される、電圧供給端子に一端が接続され、上記半導体装置の内部回路に他端が接続される抵抗体と、上記電圧供給端子と、電気的に接地される接地端子との間に接続される第1回路保護手段とを備える半導体装置において、上記第1回路保護手段の一端及び抵抗体の一端は、上記電圧供給端子に接続され、上記第1回路保護手段の他端は、上記接地端子に接続され、上記第1回路保護手段は、ダイオード、PMOSトランジスター、NMOSトランジスター、バイポーラトランジスター及びサイリスター構造を有するもののいずれか1つであることを特徴とする。 A semiconductor device according to the present invention is a semiconductor device, which is supplied with a voltage from the outside of the semiconductor device, one end connected to a voltage supply terminal, and the other end connected to an internal circuit of the semiconductor device. And a first circuit protection means connected between the voltage supply terminal and a ground terminal that is electrically grounded, wherein one end of the first circuit protection means and one end of the resistor are Connected to the voltage supply terminal, the other end of the first circuit protection means is connected to the ground terminal, and the first circuit protection means is any one having a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure. Or one.
 上記発明によれば、上記半導体装置の内部にイミュニティノイズが流入する場合、上記第1回路保護手段に電圧が印加される。例えば上記第1回路保護手段として上記ダイオードを用いる場合、上記第1ダイオードに逆バイアスの電圧が印加され、該逆バイアスの電圧が、上記第1ダイオードの降伏電圧を上回る。同様に、上記第1回路保護手段として上記PMOSトランジスターを用いる場合、上記PMOSトランジスターのドレイン-ソース間電圧が、上記MOSトランジスターのドレイン-ソース間耐圧を上回る。 According to the invention, when immunity noise flows into the semiconductor device, a voltage is applied to the first circuit protection means. For example, when the diode is used as the first circuit protection means, a reverse bias voltage is applied to the first diode, and the reverse bias voltage exceeds the breakdown voltage of the first diode. Similarly, when the PMOS transistor is used as the first circuit protection means, the drain-source voltage of the PMOS transistor exceeds the drain-source breakdown voltage of the MOS transistor.
 この時、上記第1回路保護手段に電流が流れる。上記第1回路保護手段として上記ダイオードを用いる場合、上記ダイオードのカソードから上記ダイオードのアノードへアバランシェ降伏により大きな電流が流れる。上記第1回路保護手段として上記PMOSトランジスターを用いる場合、上記第1PMOSトランジスターのソースから上記第1PMOSトランジスターのドレインへアバランシェ降伏により大きな電流が流れる。 At this time, a current flows through the first circuit protection means. When the diode is used as the first circuit protection means, a large current flows due to avalanche breakdown from the cathode of the diode to the anode of the diode. When the PMOS transistor is used as the first circuit protection means, a large current flows due to avalanche breakdown from the source of the first PMOS transistor to the drain of the first PMOS transistor.
 従って、上記半導体装置の内部に流入するイミュニティノイズを上記接地端子に逃がすことが可能となり、上記半導体装置のイミュニティ耐性を向上させることが可能となる。特に、表示パネル駆動用LSIのイミュニティ耐性を向上させることが可能となる。 Therefore, immunity noise flowing into the semiconductor device can be released to the ground terminal, and the immunity resistance of the semiconductor device can be improved. In particular, it is possible to improve the immunity resistance of the display panel driving LSI.
 また、上記電圧供給端子と上記内部回路との間に上記抵抗体を介することで、上記内部回路に流入する電流を低減させている。 Also, the current flowing into the internal circuit is reduced by interposing the resistor between the voltage supply terminal and the internal circuit.
 さらに、上記第1回路保護手段として上記ダイオードを用いる場合、通常のアバランシェダイオードを用いているので、高いツェナー電圧を有するツェナーダイオードやコンデンサーを形成する必要が無い。 Furthermore, when the diode is used as the first circuit protection means, since a normal avalanche diode is used, it is not necessary to form a Zener diode or capacitor having a high Zener voltage.
 上記半導体装置では、第2回路保護手段をさらに備え、上記第2回路保護手段の一端は、上記抵抗体の上記他端に接続され、上記第2回路保護手段の他端は、上記接地端子に接続され、上記第2回路保護手段は、ダイオード、PMOSトランジスター、NMOSトランジスター、バイポーラトランジスター及びサイリスター構造を有するもののいずれか1つであってもよい。 The semiconductor device further includes second circuit protection means, one end of the second circuit protection means is connected to the other end of the resistor, and the other end of the second circuit protection means is connected to the ground terminal. The connected second circuit protection means may be any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
 上記第1回路保護手段のみを備え、上記第2回路保護手段を備えない半導体装置においては、HBMモデルやMMモデルでの静電破壊試験時のサージノイズは、上記抵抗体を通った後に上記接地端子にサージノイズが向かう。例えば上記第1回路保護手段として上記ダイオードを用いる場合、上記ダイオードの逆方向特性を利用して上記接地端子に上記サージノイズを逃がすが、この場合、上記抵抗体を介するので上記ダイオードの逆方向特性が悪くなり、耐量が低下する場合がある。 In a semiconductor device that includes only the first circuit protection means and does not include the second circuit protection means, surge noise during an electrostatic breakdown test in the HBM model or MM model is caused by the grounding after passing through the resistor. Surge noise goes to the terminal. For example, when the diode is used as the first circuit protection means, the surge noise is released to the ground terminal by utilizing the reverse direction characteristic of the diode. In this case, the reverse direction characteristic of the diode is provided through the resistor. May worsen and the tolerance may decrease.
 電源ラインとグランドラインとの間に上記第2回路保護手段を備えることにより、HBMモデルやMMモデルでの静電破壊試験時のサージノイズは、上記抵抗体を介することなく、上記第2回路保護手段を経由して、上記接地端子へ逃げることができる。このため、HBMモデルやMMモデルでの静電破壊試験時の耐量の向上が図られる。 By providing the second circuit protection means between the power supply line and the ground line, surge noise during the electrostatic breakdown test in the HBM model or MM model can be protected without passing through the resistor. It is possible to escape to the ground terminal via the means. For this reason, the tolerance of the electrostatic breakdown test in the HBM model and the MM model can be improved.
 上記半導体装置では、上記内部回路の、入力端子または出力端子に一端が接続され、上記第1回路保護手段の一端に他端が接続される第3回路保護手段をさらに備えてもよい。 The semiconductor device may further include third circuit protection means having one end connected to the input terminal or the output terminal of the internal circuit and the other end connected to one end of the first circuit protection means.
 また、上記半導体装置では、上記第3回路保護手段は、ダイオード、PMOSトランジスター、NMOSトランジスター、バイポーラトランジスター及びサイリスター構造を有するもののいずれか1つであってもよい。 In the semiconductor device, the third circuit protection means may be any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
 これにより、HBMモデルやMMモデルにおいて静電破壊試験を行う時のサージノイズは、抵抗体Rを介することなく、上記第1回路保護手段を経由して、グランド端子へ逃げることができる。このため、HBMモデルやMMモデルでの静電破壊試験時の耐量の向上が図られる。 Thus, surge noise when performing the electrostatic breakdown test in the HBM model or MM model can escape to the ground terminal via the first circuit protection means without passing through the resistor R. For this reason, the tolerance of the electrostatic breakdown test in the HBM model and the MM model can be improved.
 上記いずれかの半導体装置では、前記電圧供給端子と、前記接地端子とは、上記半導体装置を形成する、半導体基板の同じ面に形成されてもよい。 In any of the above semiconductor devices, the voltage supply terminal and the ground terminal may be formed on the same surface of the semiconductor substrate forming the semiconductor device.
 これにより、上記第1回路保護手段を備え、かつCOF(Chip On Film)実装を行う半導体装置を実現できる。 Thereby, it is possible to realize a semiconductor device including the first circuit protection means and performing COF (Chip On Film) mounting.
 上記いずれかの半導体装置では、上記抵抗体は、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜であってもよい。 In any of the above semiconductor devices, the resistor may be a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are stacked.
 これにより、上記内部回路に流入する電流を低減することが可能となる。 This makes it possible to reduce the current flowing into the internal circuit.
 本発明の半導体装置は、以上のように、第1回路保護手段の一端及び抵抗体の一端は、電圧供給端子に接続され、上記第1回路保護手段の他端は、接地端子に接続され、上記第1回路保護手段は、ダイオード、PMOSトランジスター、NMOSトランジスター、バイポーラトランジスター及びサイリスター構造を有するもののいずれか1つであるものである。 In the semiconductor device of the present invention, as described above, one end of the first circuit protection unit and one end of the resistor are connected to the voltage supply terminal, and the other end of the first circuit protection unit is connected to the ground terminal. The first circuit protection means is any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
 それゆえ、内部に流入するイミュニティノイズを接地端子に逃がすことで、イミュニティ耐性を向上させる半導体装置を提供するという効果を奏する。 Therefore, there is an effect of providing a semiconductor device that improves immunity resistance by escaping immunity noise flowing into the interior to the ground terminal.
本発明の実施例に係る静電気放電保護回路の横断面図である。1 is a cross-sectional view of an electrostatic discharge protection circuit according to an embodiment of the present invention. 本発明の実施例に係る静電気放電保護回路の等価回路である。It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on the Example of this invention. 本発明の他の実施例に係る静電気放電保護回路の横断面図である。It is a cross-sectional view of an electrostatic discharge protection circuit according to another embodiment of the present invention. 本発明の他の実施例に係る静電気放電保護回路の等価回路である。6 is an equivalent circuit of an electrostatic discharge protection circuit according to another embodiment of the present invention. 本発明のさらに別の実施例に係る静電気放電保護回路の横断面図である。It is a cross-sectional view of an electrostatic discharge protection circuit according to still another embodiment of the present invention. 本発明のさらに別の実施例に係る静電気放電保護回路の等価回路である。It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on another Example of this invention. 本発明のさらに別の実施例に係る静電気放電保護回路の等価回路である。It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on another Example of this invention. 本発明のさらに別の実施例に係る静電気放電保護回路の等価回路である。It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on another Example of this invention. 本発明のさらに別の実施例に係る静電気放電保護回路の等価回路である。It is the equivalent circuit of the electrostatic discharge protection circuit which concerns on another Example of this invention. 本発明の実施例に係る静電気放電保護回路を備える半導体装置における、HBMモデルまたはMMモデルでのサージノイズの経路を示すブロック図である。It is a block diagram which shows the path | route of the surge noise in a HBM model or a MM model in a semiconductor device provided with the electrostatic discharge protection circuit based on the Example of this invention. 本発明の他の実施例に係る静電気放電保護回路を備える半導体装置における、HBMモデルまたはMMモデルでのサージノイズの経路を示すブロック図である。It is a block diagram which shows the path | route of the surge noise in a HBM model or a MM model in a semiconductor device provided with the electrostatic discharge protection circuit which concerns on the other Example of this invention. 本発明のさらに別の実施例に係る静電気放電保護回路を備える半導体装置における、HBMモデルまたはMMモデルでのサージノイズの経路を示すブロック図である。It is a block diagram which shows the path | route of the surge noise in a HBM model or a MM model in a semiconductor device provided with the electrostatic discharge protection circuit which concerns on another Example of this invention. 本発明のさらに別の実施例に係る静電気放電保護回路を備える半導体装置における、HBMモデルまたはMMモデルでのサージノイズの経路を示すブロック図である。It is a block diagram which shows the path | route of the surge noise in a HBM model or a MM model in a semiconductor device provided with the electrostatic discharge protection circuit which concerns on another Example of this invention. 本発明のさらに別の実施例に係る静電気放電保護回路を備える半導体装置における、HBMモデルまたはMMモデルでのサージノイズの経路を示すブロック図である。It is a block diagram which shows the path | route of the surge noise in a HBM model or a MM model in a semiconductor device provided with the electrostatic discharge protection circuit which concerns on another Example of this invention. IEC-61000-4-2試験用高電圧印加機の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the high voltage applicator for IEC-61000-4-2 testing. IEC-61000-4-2試験用高電圧印加機が出力する電流の波形図である。It is a wave form diagram of the electric current which the IEC-61000-4-2 test high voltage applicator outputs.
 本発明の一実施形態について実施例1~実施例9、及び図1~図14に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described below with reference to Examples 1 to 9 and FIGS. 1 to 14.
 〔実施例1〕
 図1は、本実施例1に係る静電気放電保護回路10の横断面図である。静電気放電保護回路10では、ボロンを注入したP型半導体基板1に厚さ(Y方向の長さ)が0.2μm~0.8μmの酸化膜で素子分離部2を形成する。P型半導体基板1の基板濃度は、1×1015 /cm~1×1018 /cmである。
[Example 1]
FIG. 1 is a cross-sectional view of the electrostatic discharge protection circuit 10 according to the first embodiment. In the electrostatic discharge protection circuit 10, the element isolation part 2 is formed of an oxide film having a thickness (length in the Y direction) of 0.2 μm to 0.8 μm on the P-type semiconductor substrate 1 implanted with boron. The substrate concentration of the P-type semiconductor substrate 1 is 1 × 10 15 / cm 3 to 1 × 10 18 / cm 3 .
 P型半導体基板1の表面1aの内側(Y<0)に、リンや砒素を注入したN型不純物領域3とボロンを注入したP型不純物領域4とを形成する。N型不純物領域3の不純物濃度は、1×1018 /cm~5×1020 /cmであり、P型不純物領域4の不純物濃度は1×1018 /cm~5×1020 /cmである。 Inside the surface 1a of the P-type semiconductor substrate 1 (Y <0), an N-type impurity region 3 implanted with phosphorus or arsenic and a P-type impurity region 4 implanted with boron are formed. The impurity concentration of the N-type impurity region 3 is 1 × 10 18 / cm 3 to 5 × 10 20 / cm 3 , and the impurity concentration of the P-type impurity region 4 is 1 × 10 18 / cm 3 to 5 × 10 20 / cm 3. cm 3 .
 また、P型半導体基板1の表面1a上(Y>0)に、多層膜5を形成する。多層膜5は、厚さが50nm~500nmであり、リンや砒素、ボロンなどを注入した多結晶シリコン膜であるか、または多結晶シリコン膜と高融点金属膜とを積層した膜である。 Also, the multilayer film 5 is formed on the surface 1a of the P-type semiconductor substrate 1 (Y> 0). The multilayer film 5 is a polycrystalline silicon film having a thickness of 50 nm to 500 nm and implanted with phosphorus, arsenic, boron, or the like, or a film in which a polycrystalline silicon film and a refractory metal film are laminated.
 その後、P型半導体基板1の表面1a上(Y>0)に、厚さが100nm~1500nmの層間絶縁膜6を形成し、接続穴を開口後、厚さが100nm~1500nmの、アルミ合金、チタン合金または銅、もしくはアルミ合金、チタン合金及び銅の少なくとも1つを含む多層膜から成るメタル配線7~メタル配線9を形成する。 Thereafter, an interlayer insulating film 6 having a thickness of 100 nm to 1500 nm is formed on the surface 1a of the P-type semiconductor substrate 1 (Y> 0), and after opening the connection holes, an aluminum alloy having a thickness of 100 nm to 1500 nm, Metal wiring 7 to metal wiring 9 made of a multilayer film containing at least one of titanium alloy or copper, or aluminum alloy, titanium alloy and copper are formed.
 本実施例1では、N型不純物領域3、P型半導体基板1及びP型不純物領域4がダイオードDを形成している。N型不純物領域3がダイオードDのカソード電極であり、P型不純物領域4がダイオードDのアノード電極である。P型半導体基板1は、ダイオードDの本体を構成する。 In the first embodiment, the N-type impurity region 3, the P-type semiconductor substrate 1, and the P-type impurity region 4 form a diode D. The N-type impurity region 3 is a cathode electrode of the diode D, and the P-type impurity region 4 is an anode electrode of the diode D. The P-type semiconductor substrate 1 constitutes the main body of the diode D.
 また、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜である多層膜5は、抵抗体Rを形成している。 The multilayer film 5 which is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated forms a resistor R.
 さらに、メタル配線7は、P型不純物領域4と、静電気放電保護回路10が接続される半導体装置のグランド端子(接地端子)とを接続する。メタル配線8は、N型不純物領域3、多層膜5及び上記半導体装置の電源端子を接続するか、N型不純物領域3、多層膜5及び上記半導体装置の基準電源端子を接続する。メタル配線9は、多層膜5と上記半導体装置の内部回路とを接続する。電源端子及び基準電源端子は、電圧供給端子である。 Furthermore, the metal wiring 7 connects the P-type impurity region 4 and the ground terminal (ground terminal) of the semiconductor device to which the electrostatic discharge protection circuit 10 is connected. The metal wiring 8 connects the N-type impurity region 3, the multilayer film 5 and the power supply terminal of the semiconductor device, or connects the N-type impurity region 3, the multilayer film 5 and the reference power supply terminal of the semiconductor device. The metal wiring 9 connects the multilayer film 5 and the internal circuit of the semiconductor device. The power supply terminal and the reference power supply terminal are voltage supply terminals.
 図2は、静電気放電保護回路10の等価回路である。図2の等価回路では、電源端子または基準電源端子とグランド端子との間にダイオードDを設けて、イミュニティノイズを逃がすと共に、電源端子または基準電源端子と上記半導体装置の内部回路との間に抵抗体Rを介することで半導体装置内部回路に流入する電流を低減させている。 FIG. 2 is an equivalent circuit of the electrostatic discharge protection circuit 10. In the equivalent circuit of FIG. 2, a diode D is provided between the power supply terminal or the reference power supply terminal and the ground terminal to release immunity noise, and a resistor is provided between the power supply terminal or the reference power supply terminal and the internal circuit of the semiconductor device. The current flowing into the internal circuit of the semiconductor device is reduced by passing through the body R.
 抵抗体Rの抵抗値は、LSIの動作時にLSI内部の電源ラインに流れる電流と、LSIの動作時に抵抗体Rにより生じる電圧降下とを考慮して選ぶ必要があり、通常は1Ω~10Ω程度の抵抗値を選ぶことが望ましい。また、ダイオードDは複数に分割したものを並列に接続しても良いが、その総周囲長は1000μm~20000μmの範囲で選ぶことが望ましい。 The resistance value of the resistor R needs to be selected in consideration of the current flowing through the power supply line inside the LSI during LSI operation and the voltage drop caused by the resistor R during LSI operation, and is usually about 1Ω to 10Ω. It is desirable to select a resistance value. The diode D may be divided into a plurality of diodes and connected in parallel, but the total perimeter is preferably selected in the range of 1000 μm to 20000 μm.
 以上のように、本実施例1に係る静電気放電保護回路10では、上記半導体装置の内部に流入するイミュニティノイズが流入する場合、ダイオードDに逆バイアスの電圧が印加され、該逆バイアスの電圧が、ダイオードDの降伏電圧を上回る。 As described above, in the electrostatic discharge protection circuit 10 according to the first embodiment, when immunity noise that flows into the semiconductor device flows, a reverse bias voltage is applied to the diode D, and the reverse bias voltage is , Exceeding the breakdown voltage of the diode D.
 この時、ダイオードDのカソードからダイオードDのアノードへらアバランシェ降伏により大きな電流が流れる。これにより、上記半導体装置の内部に流入するイミュニティノイズをグランド端子に逃がすことが可能となり、上記半導体装置のイミュニティ耐性を向上させることが可能となる。特に、表示パネル駆動用LSIのイミュニティ耐性を向上させることが可能となる。 At this time, a large current flows from the cathode of the diode D to the anode of the diode D due to avalanche breakdown. As a result, immunity noise flowing into the semiconductor device can be released to the ground terminal, and the immunity resistance of the semiconductor device can be improved. In particular, it is possible to improve the immunity resistance of the display panel driving LSI.
 本実施例1に係る静電気放電保護回路10は、通常のアバランシェダイオードを用いているので、高いツェナー電圧を有するツェナーダイオードやコンデンサーを形成する必要が無い。また、電極(ダイオードDのカソード電極、ダイオードDのアノード電極)は、P型半導体基板1の表面1a側にのみ形成できる。これらの理由から、本実施例1に係る静電気放電保護回路10は、COF(Chip On Film)実装を行う半導体装置に適している。 Since the electrostatic discharge protection circuit 10 according to the first embodiment uses a normal avalanche diode, it is not necessary to form a Zener diode or a capacitor having a high Zener voltage. Further, the electrodes (the cathode electrode of the diode D and the anode electrode of the diode D) can be formed only on the surface 1 a side of the P-type semiconductor substrate 1. For these reasons, the electrostatic discharge protection circuit 10 according to the first embodiment is suitable for a semiconductor device that performs COF (Chip-On-Film) mounting.
 〔実施例2〕
 図3は、本実施例2に係る静電気放電保護回路20の横断面図である。静電気放電保護回路20では、ボロンを注入したP型半導体基板21に厚さが0.2μm~0.8μmの酸化膜で素子分離部22を形成する。P型半導体基板21の基板濃度は、1×1015 /cm~1×1018 /cmである。
[Example 2]
FIG. 3 is a cross-sectional view of the electrostatic discharge protection circuit 20 according to the second embodiment. In the electrostatic discharge protection circuit 20, the element isolation portion 22 is formed of an oxide film having a thickness of 0.2 μm to 0.8 μm on the P-type semiconductor substrate 21 into which boron is implanted. The substrate concentration of the P-type semiconductor substrate 21 is 1 × 10 15 / cm 3 to 1 × 10 18 / cm 3 .
 P型半導体基板21の表面21aの内側(Y<0)側に、リンや砒素を注入した、N型不純物領域23a及びN型不純物領域23b、並びにボロンを注入した、P型不純物領域24a及びP型不純物領域24bを形成する。N型不純物領域23a及びN型不純物領域23bの不純物濃度は、1×1018 /cm~5×1020 /cmであり、P型不純物領域24a及びP型不純物領域24bの不純物濃度は、1×1018 /cm~5×1020 /cmである。 On the inside (Y <0) side of the surface 21a of the P-type semiconductor substrate 21, N-type impurity regions 23a and N-type impurity regions 23b implanted with phosphorus or arsenic, and P-type impurity regions 24a and P implanted with boron. A type impurity region 24b is formed. The impurity concentration of the N-type impurity region 23a and the N-type impurity region 23b is 1 × 10 18 / cm 3 to 5 × 10 20 / cm 3 , and the impurity concentration of the P-type impurity region 24a and the P-type impurity region 24b is 1 × 10 18 / cm 3 to 5 × 10 20 / cm 3 .
 また、P型半導体基板21の表面21a上(Y>0)に、多層膜25を形成する。多層膜25は、厚さが50nm~500nmであり、リンや砒素、ボロンなどを注入した多結晶シリコン膜であるか、または多結晶シリコン膜と高融点金属膜とを積層した膜である。 Further, the multilayer film 25 is formed on the surface 21a (Y> 0) of the P-type semiconductor substrate 21. The multilayer film 25 has a thickness of 50 nm to 500 nm and is a polycrystalline silicon film into which phosphorus, arsenic, boron, or the like is implanted, or a film in which a polycrystalline silicon film and a refractory metal film are stacked.
 その後、P型半導体基板21の表面21a上(Y>0)に、厚さが100nm~1500nmの層間絶縁膜26を形成し、接続穴を開口後、厚さが100nm~1500nmの、アルミ合金、チタン合金または銅、もしくはアルミ合金、チタン合金及び銅の少なくとも1つを含む多層膜から成るメタル配線27~メタル配線29を形成する。 Thereafter, an interlayer insulating film 26 having a thickness of 100 nm to 1500 nm is formed on the surface 21a of the P-type semiconductor substrate 21 (Y> 0), and after opening the connection holes, an aluminum alloy having a thickness of 100 nm to 1500 nm, Metal wiring 27 to metal wiring 29 made of a multilayer film containing at least one of titanium alloy or copper, or aluminum alloy, titanium alloy and copper are formed.
 本実施例2では、N型不純物領域23a、P型半導体基板21及びP型不純物領域24aが第1のダイオードD1を形成しており、N型不純物領域23b、P型半導体基板21及びP型不純物領域24bが第2のダイオードD2を形成している。 In the second embodiment, the N-type impurity region 23a, the P-type semiconductor substrate 21 and the P-type impurity region 24a form the first diode D1, and the N-type impurity region 23b, the P-type semiconductor substrate 21 and the P-type impurity are formed. Region 24b forms second diode D2.
 N型不純物領域23aが第1のダイオードD1のカソード電極であり、P型不純物領域24aが第1のダイオードD1のアノード電極であり、P型半導体基板21は、第1のダイオードD1の本体を構成する。同様に、N型不純物領域23bが第2のダイオードD2のカソード電極であり、P型不純物領域24bが第2のダイオードD2のアノード電極であり、P型半導体基板21は、第2のダイオードD2の本体を構成する。 The N-type impurity region 23a is the cathode electrode of the first diode D1, the P-type impurity region 24a is the anode electrode of the first diode D1, and the P-type semiconductor substrate 21 constitutes the main body of the first diode D1. To do. Similarly, the N-type impurity region 23b is the cathode electrode of the second diode D2, the P-type impurity region 24b is the anode electrode of the second diode D2, and the P-type semiconductor substrate 21 is connected to the second diode D2. Configure the body.
 さらに、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜である多層膜25は、抵抗体Rを形成している。 Furthermore, the multilayer film 25 which is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated forms a resistor R.
 メタル配線27は、P型不純物領域24aと、静電気放電保護回路20が接続される半導体装置のグランド端子とを接続する。メタル配線28は、N型不純物領域23a、多層膜25及び上記半導体装置の電源端子を接続するか、N型不純物領域23a、多層膜25及び上記半導体装置の基準電源端子を接続する。メタル配線29は、多層膜25、N型不純物領域23b及び上記半導体装置の内部回路を接続する。 The metal wiring 27 connects the P-type impurity region 24a and the ground terminal of the semiconductor device to which the electrostatic discharge protection circuit 20 is connected. The metal wiring 28 connects the N-type impurity region 23a, the multilayer film 25, and the power supply terminal of the semiconductor device, or connects the N-type impurity region 23a, the multilayer film 25, and the reference power supply terminal of the semiconductor device. The metal wiring 29 connects the multilayer film 25, the N-type impurity region 23b, and the internal circuit of the semiconductor device.
 なお、図3には図示していないが、P型不純物領域24bは、P型不純物領域24aと同様に、上記半導体装置のグランド端子に接続される。 Although not shown in FIG. 3, the P-type impurity region 24b is connected to the ground terminal of the semiconductor device in the same manner as the P-type impurity region 24a.
 図4は、静電気放電保護回路20の等価回路である。図4の等価回路では、電源端子または基準電源端子とグランド端子との間に第1のダイオードD1を設け、イミュニティノイズを逃がすと共に、電源端子または基準電源端子と上記半導体装置の内部回路との間に抵抗体Rを介することで、上記半導体装置の内部回路に流入する電流を低減させている。 FIG. 4 is an equivalent circuit of the electrostatic discharge protection circuit 20. In the equivalent circuit of FIG. 4, the first diode D1 is provided between the power supply terminal or the reference power supply terminal and the ground terminal to release immunity noise, and between the power supply terminal or the reference power supply terminal and the internal circuit of the semiconductor device. Further, the current flowing into the internal circuit of the semiconductor device is reduced through the resistor R.
 また、静電破壊試験には、試験規格IEC-61000-4-2の他にも、HBMモデル(human-body model:人体モデル)やMMモデル(machine model:マシン・モデル)による規格も存在する。HBMモデルやMMモデルでの静電破壊試験では、グランド端子を基準とした、入力端子や出力端子へのサージ印加試験の項目がある。 In addition to the test standard IEC-61000-4-2, the electrostatic breakdown test includes standards based on the HBM model (human-body model) and MM model (machine model). . In the electrostatic breakdown test in the HBM model and the MM model, there is an item of a surge application test to the input terminal and the output terminal based on the ground terminal.
 入力端子や出力端子へ、静電気などのサージノイズが印加される場合、図10及び図11に示されるように、入力端子や出力端子から入ったサージノイズは、入力端子や出力端子に設置された静電気保護素子や内部回路の中を通ってグランド端子へと向かう。 When surge noise such as static electricity is applied to the input terminal and output terminal, as shown in FIG. 10 and FIG. 11, surge noise entered from the input terminal and output terminal is installed at the input terminal and output terminal. It goes to the ground terminal through the electrostatic protection element and internal circuit.
 実施例1の静電気放電保護回路10を備える場合、図10に示すように、抵抗体Rを通った後にダイオードの逆方向特性を利用してグランド端子にサージノイズが向かうのであるが、抵抗体Rを介するのでダイオードの逆方向特性が悪くなり耐量が低下する場合がある。 When the electrostatic discharge protection circuit 10 according to the first embodiment is provided, as shown in FIG. 10, surge noise is directed to the ground terminal using the reverse characteristics of the diode after passing through the resistor R. Therefore, the reverse characteristics of the diode may be deteriorated and the withstand capability may be reduced.
 本実施例2の静電気放電保護回路20を備える場合、図11に示すように、電源ラインPとグランドラインGとの間に第2のダイオードD2を設けており、HBMモデルやMMモデルでの静電破壊試験時のサージノイズは、抵抗体Rを介することなく、第2のダイオードD2を経由して、グランド端子へ逃げることができる。このため、HBMモデルやMMモデルでの静電破壊試験時の耐量の向上が図られる。 When the electrostatic discharge protection circuit 20 according to the second embodiment is provided, as shown in FIG. 11, a second diode D2 is provided between the power supply line P and the ground line G, and static electricity in the HBM model and the MM model is provided. Surge noise during the electric breakdown test can escape to the ground terminal via the second diode D2 without passing through the resistor R. For this reason, the tolerance of the electrostatic breakdown test in the HBM model and the MM model can be improved.
 抵抗体Rの抵抗値は、実施例1と同様に1Ω~10Ω程度の抵抗値を選ぶことが望ましい。各ダイオードについては、実施例1と同様に、複数に分割したものを並列に接続しても良いが、第1のダイオードD1の総周囲長は1000μm~20000μmの範囲から選ぶことが望ましく、第2のダイオードD2の総周囲長は1000~10000umの範囲から選ぶことが望ましい。 As for the resistance value of the resistor R, it is desirable to select a resistance value of about 1Ω to 10Ω as in the first embodiment. As for each diode, a plurality of divided diodes may be connected in parallel as in the first embodiment, but the total perimeter of the first diode D1 is preferably selected from the range of 1000 μm to 20000 μm, The total perimeter of the diode D2 is preferably selected from the range of 1000 to 10,000 um.
 なお、電極(ダイオードD1のカソード電極、ダイオードD1のアノード電極、ダイオードD2のカソード電極、ダイオードD2のアノード電極)は、P型半導体基板21の表面21a側にのみ形成できる。これらの理由から、本実施例2に係る静電気放電保護回路20は、COF(Chip On Film)実装を行う半導体装置に適している。 Note that the electrodes (the cathode electrode of the diode D1, the anode electrode of the diode D1, the cathode electrode of the diode D2, and the anode electrode of the diode D2) can be formed only on the surface 21a side of the P-type semiconductor substrate 21. For these reasons, the electrostatic discharge protection circuit 20 according to the second embodiment is suitable for a semiconductor device in which COF (Chip On On Film) mounting is performed.
 〔実施例3〕
 図5は、本実施例3に係る静電気放電保護回路30の横断面図である。静電気放電保護回路30では、ボロンを注入したP型半導体基板31にさらにリンを注入し、N型不純物ウェル32をP型半導体基板31内に形成する。また、P型半導体基板31には、厚さ(Y方向の長さ)が0.2μm~0.8μmの酸化膜で素子分離部33を形成する。
Example 3
FIG. 5 is a cross-sectional view of the electrostatic discharge protection circuit 30 according to the third embodiment. In the electrostatic discharge protection circuit 30, phosphorus is further injected into the P-type semiconductor substrate 31 into which boron has been injected, and an N-type impurity well 32 is formed in the P-type semiconductor substrate 31. Further, the element isolation portion 33 is formed on the P-type semiconductor substrate 31 with an oxide film having a thickness (length in the Y direction) of 0.2 μm to 0.8 μm.
 P型半導体基板31の基板濃度は、1×1015 /cm~1×1018 /cmである。N型不純物ウェル32の不純物濃度は、1×1015 /cm~1×1018 /cmであり、N型不純物ウェル32の深さは(Y方向の長さ)は、0.5μm~5μmである。 The substrate concentration of the P-type semiconductor substrate 31 is 1 × 10 15 / cm 3 to 1 × 10 18 / cm 3 . The impurity concentration of the N-type impurity well 32 is 1 × 10 15 / cm 3 to 1 × 10 18 / cm 3 , and the depth (the length in the Y direction) of the N-type impurity well 32 is 0.5 μm to 5 μm.
 P型半導体基板31の表面31a上(Y>0)に、厚さが10nm~100nmの酸化膜34と、厚さが50nm~500nmの多層膜35とでゲート電極を形成する。多層膜35は、リンや砒素、ボロンなどを注入した多結晶シリコン膜であるか、または多結晶シリコン膜と高融点金属膜とを積層した膜である。 A gate electrode is formed on the surface 31a of the P-type semiconductor substrate 31 (Y> 0) with the oxide film 34 having a thickness of 10 nm to 100 nm and the multilayer film 35 having a thickness of 50 nm to 500 nm. The multilayer film 35 is a polycrystalline silicon film implanted with phosphorus, arsenic, boron, or the like, or a film in which a polycrystalline silicon film and a refractory metal film are stacked.
 P型半導体基板31の表面31aの内側(Y<0)側に、ボロンを注入したP型不純物領域36aでドレイン領域を形成する。同様に、P型半導体基板31の表面31aの内側(Y<0)側に、ボロンを注入したP型不純物領域36bでソース領域を形成する。P型不純物領域36a及びP型不純物領域36bの不純物濃度は、1×1018 /cm~5×1020 /cmである。 On the inner side (Y <0) side of the surface 31a of the P-type semiconductor substrate 31, a drain region is formed by a P-type impurity region 36a into which boron is implanted. Similarly, a source region is formed by a P-type impurity region 36b implanted with boron on the inner side (Y <0) side of the surface 31a of the P-type semiconductor substrate 31. The impurity concentration of the P-type impurity region 36a and the P-type impurity region 36b is 1 × 10 18 / cm 3 to 5 × 10 20 / cm 3 .
 また、リンや砒素を注入したN型不純物領域37でNウェルコンタクト領域を形成する。N型不純物領域37の不純物濃度は、1×1018 /cm~5×1020 /cmである。 Further, an N well contact region is formed by an N type impurity region 37 implanted with phosphorus or arsenic. The impurity concentration of the N-type impurity region 37 is 1 × 10 18 / cm 3 to 5 × 10 20 / cm 3 .
 さらに必要に応じて、P型半導体基板31の表面31aの内側(Y<0)側の、酸化膜34と対向する位置に、閾値電圧を調整するためのチャンネル注入領域38を形成する。 Further, if necessary, a channel injection region 38 for adjusting the threshold voltage is formed at a position facing the oxide film 34 on the inner side (Y <0) side of the surface 31a of the P-type semiconductor substrate 31.
 また、P型半導体基板31の表面31a上(Y>0)に、多層膜39を形成する。多層膜39は、厚さが50nm~500nmであり、リンや砒素、ボロンなどを注入した多結晶シリコン膜であるか、または多結晶シリコン膜と高融点金属膜とを積層した膜である。 Also, a multilayer film 39 is formed on the surface 31a of the P-type semiconductor substrate 31 (Y> 0). The multilayer film 39 has a thickness of 50 nm to 500 nm and is a polycrystalline silicon film in which phosphorus, arsenic, boron, or the like is implanted, or a film in which a polycrystalline silicon film and a refractory metal film are stacked.
 その後、P型半導体基板31の表面31a上(Y>0)に、厚さが100nm~1500nmの層間絶縁膜41を形成し、接続穴を開口後、厚さが100nm~1500nmの、アルミ合金、チタン合金または銅、もしくはアルミ合金、チタン合金及び銅の少なくとも1つを含む多層膜から成るメタル配線42~メタル配線44を形成する。 Thereafter, an interlayer insulating film 41 having a thickness of 100 nm to 1500 nm is formed on the surface 31a of the P-type semiconductor substrate 31 (Y> 0), and after opening the connection holes, an aluminum alloy having a thickness of 100 nm to 1500 nm, Metal wiring 42 to metal wiring 44 made of a multilayer film containing at least one of titanium alloy or copper, or aluminum alloy, titanium alloy and copper are formed.
 本実施例3では、N型不純物ウェル32、酸化膜34、多層膜35、P型不純物領域36a、P型不純物領域36b及びN型不純物領域37がPMOSトランジスターMを形成している。 In Example 3, N-type impurity well 32, oxide film 34, the multilayer film 35, P-type impurity region 36a, P-type impurity region 36b and the N-type impurity region 37 form a PMOS transistor M P.
 また、P型不純物領域36aはPMOSトランジスターMのドレイン電極であり、P型不純物領域36bはPMOSトランジスターMのソース電極である。N型不純物領域37はPMOSトランジスターMのNウェルコンタクト電極であり、多層膜35はPMOSトランジスターMのゲート電極である。N型不純物ウェル32は、PMOSトランジスターMのNウェル領域を構成する。 Further, P-type impurity region 36a is a drain electrode of the PMOS transistor M P, P-type impurity region 36b is the source electrode of the PMOS transistor M P. N-type impurity region 37 is an N-well contact electrode of the PMOS transistor M P, multilayer film 35 is a gate electrode of the PMOS transistor M P. N-type impurity well 32 constitutes the N-well region of the PMOS transistor M P.
 さらに、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜である多層膜39は、抵抗体Rを形成している。 Furthermore, the multilayer film 39 which is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated forms a resistor R.
 メタル配線42は、P型不純物領域36aと、静電気放電保護回路30が接続される半導体装置のグランド端子とを接続する。メタル配線43は、P型不純物領域36b、N型不純物領域37、多層膜35、多層膜39及び上記半導体装置の電源端子を接続するか、またはP型不純物領域36b、N型不純物領域37、多層膜35、多層膜39及び上記半導体装置の基準電源端子を接続する。メタル配線44は、多層膜39と上記半導体装置の内部回路とを接続する。 The metal wiring 42 connects the P-type impurity region 36a and the ground terminal of the semiconductor device to which the electrostatic discharge protection circuit 30 is connected. The metal wiring 43 connects the P-type impurity region 36b, the N-type impurity region 37, the multilayer film 35, the multilayer film 39, and the power supply terminal of the semiconductor device, or connects the P-type impurity region 36b, the N-type impurity region 37, and the multilayer. The film 35, the multilayer film 39, and the reference power supply terminal of the semiconductor device are connected. The metal wiring 44 connects the multilayer film 39 and the internal circuit of the semiconductor device.
 図6は、静電気放電保護回路30の等価回路である。図6の等価回路では、電源端子または基準電源端子とグランド端子との間に、ソース電極、ゲート電極及びNウェルコンタクト電極を共通に接続したPMOSトランジスターMを設けている。 FIG. 6 is an equivalent circuit of the electrostatic discharge protection circuit 30. In the equivalent circuit of FIG. 6, between the power supply terminal or the reference power supply terminal and the ground terminal is provided with a PMOS transistor M P connected source electrode, the gate electrode and the N-well contact electrode in common.
 図6の等価回路では、PMOSトランジスターMを設けることでイミュニティノイズを逃がすと共に、電源端子または基準電源端子と上記半導体装置の内部回路との間に抵抗体を介することで、上記半導体装置の内部回路に流入する電流を低減させている。 In the equivalent circuit of FIG. 6, by via with escape immunity noise by providing the PMOS transistor M P, a resistor between the internal circuit of the power supply terminal or the reference power terminal and said semiconductor device, the inside of the semiconductor device The current flowing into the circuit is reduced.
 抵抗体Rの抵抗値は、実施例1と同様に1Ω~10Ω程度の抵抗値を選ぶことが望ましい。PMOSトランジスターMのチャンネル長は、0.5μm~10μmの範囲から選ぶことが望ましく、PMOSトランジスターMのチャンネル幅は、300μm~7000μmの範囲から選ぶことが望ましい。 As for the resistance value of the resistor R, it is desirable to select a resistance value of about 1Ω to 10Ω as in the first embodiment. Channel length of the PMOS transistor M P is desirably chosen from the range of 0.5 [mu] m ~ 10 [mu] m, the channel width of the PMOS transistor M P is preferably selected from the range of 300μm ~ 7000μm.
 また、PMOSトランジスターMは、複数のPMOSトランジスターに分割したものを並列に接続しても良いが、その総チャンネル幅が300um~7000umの範囲から選ぶことが望ましい。 Moreover, PMOS transistors M P may be connected to those division into a plurality of PMOS transistors in parallel, but the total channel width is desirably selected within the range of 300um ~ 7000um.
 以上のように、本実施例3に係る静電気放電保護回路30では、上記半導体装置の内部にイミュニティノイズが流入する場合、PMOSトランジスターMのドレイン-ソース間電圧が、PMOSトランジスターMのドレイン-ソース間耐圧を上回る。 As described above, in the electrostatic discharge protection circuit 30 according to the third embodiment, when the internal Immunity noise of the semiconductor device flows, the drain of the PMOS transistor M P - source voltage, the drain of the PMOS transistor M P - The breakdown voltage between sources is exceeded.
 この時、PMOSトランジスターMのソースからPMOSトランジスターMのドレインへアバランシェ降伏により大きな電流が流れる。これにより、上記半導体装置の内部に流入するイミュニティノイズを上記接地端子に逃がすことが可能となり、上記半導体装置のイミュニティ耐性を向上させることが可能となる。 In this case, a large current flows due to avalanche breakdown from the source of the PMOS transistor M P to the drain of the PMOS transistor M P. As a result, immunity noise flowing into the semiconductor device can be released to the ground terminal, and the immunity resistance of the semiconductor device can be improved.
 なお、電極(PMOSトランジスターMのゲート電極、PMOSトランジスターMのソース電極、PMOSトランジスターMのドレイン電極、PMOSトランジスターMのNウェルコンタクト電極)は、P型半導体基板31の表面31a側にのみ形成できる。これらの理由から、本実施例3に係る静電気放電保護回路30は、COF(Chip On Film)実装を行う半導体装置に適している。 The electrode (gate electrode of the PMOS transistor M P, the source electrode of the PMOS transistor M P, the drain electrode of the PMOS transistor M P, N well contact electrode of the PMOS transistor M P) is a surface 31a side of the P-type semiconductor substrate 31 Can only be formed. For these reasons, the electrostatic discharge protection circuit 30 according to the third embodiment is suitable for a semiconductor device that performs COF (Chip On Film) mounting.
 〔実施例4〕
 図7は、本実施例4の静電気放電保護回路40の等価回路である。図7の等価回路では、実施例2の静電気放電保護回路20と同様に、電源ラインPとグランドラインGとの間に、第2のPMOSトランジスターMP2を設けている。電源端子または基準電源端子とグランド端子との間には、第1のPMOSトランジスターMP1を設けている。
Example 4
FIG. 7 is an equivalent circuit of the electrostatic discharge protection circuit 40 of the fourth embodiment. In the equivalent circuit of FIG. 7, the second PMOS transistor MP2 is provided between the power supply line P and the ground line G, similarly to the electrostatic discharge protection circuit 20 of the second embodiment. A first PMOS transistor MP1 is provided between the power supply terminal or the reference power supply terminal and the ground terminal.
 静電気放電保護回路40を備える半導体装置では、HBMモデルやMMモデルにおいて静電破壊試験を行う時のサージノイズは、抵抗体Rを介することなく、第2のPMOSトランジスターMP2を経由して、グランド端子へ逃げることができる。このため、HBMモデルやMMモデルにおいて静電破壊試験を行う時の耐量の向上が図られる。 In a semiconductor device including the electrostatic discharge protection circuit 40, surge noise when performing an electrostatic breakdown test in the HBM model or the MM model passes through the second PMOS transistor MP2 without passing through the resistor R. You can escape to the terminal. For this reason, the tolerance of the electrostatic breakdown test in the HBM model or MM model can be improved.
 抵抗体Rの抵抗値は、実施例1と同様に1Ω~10Ω程度の抵抗値を選ぶことが望ましい。各PMOSトランジスターは、実施例3と同様に、複数に分割したものを並列に接続しても良いが、第1のPMOSトランジスターMP1の総チャンネル幅は、300μm~7000μmの範囲から選ぶことが望ましく、第2のPMOSトランジスターMP2の総チャンネル幅は、300μm~3500μmの範囲から選ぶことが望ましい。 As for the resistance value of the resistor R, it is desirable to select a resistance value of about 1Ω to 10Ω as in the first embodiment. Each PMOS transistors, as in Example 3, may be connected to those divided into a plurality in parallel, but the total channel width of the first PMOS transistor M P1 is desirably selected within the range of 300μm ~ 7000μm , the total channel width of the second PMOS transistor M P2, it is desirable to select from a range of 300μm ~ 3500μm.
 〔実施例5〕
 より一般的な静電気放電保護回路の等価回路は、本実施例5の図8、及び後述する実施例6の図9に示されるような等価回路となる。図8は、本実施例5の静電気放電保護回路50の等価回路である。図8の等価回路では、静電気保護素子(第1回路保護手段)51を1つ用いており、電源端子または基準電源端子とグランド端子との間に静電気保護素子51を設けている。
Example 5
An equivalent circuit of a more general electrostatic discharge protection circuit is an equivalent circuit as shown in FIG. 8 of the fifth embodiment and FIG. 9 of the sixth embodiment described later. FIG. 8 is an equivalent circuit of the electrostatic discharge protection circuit 50 of the fifth embodiment. In the equivalent circuit of FIG. 8, one electrostatic protection element (first circuit protection means) 51 is used, and the electrostatic protection element 51 is provided between the power supply terminal or the reference power supply terminal and the ground terminal.
 図8の等価回路では、静電気保護素子51を設けることで、イミュニティノイズを逃がすと共に、電源端子または基準電源端子と、静電気放電保護回路50が接続される半導体装置の内部回路との間に、抵抗体Rを介することで、上記半導体装置の内部回路に流入する電流を低減させている。 In the equivalent circuit of FIG. 8, by providing the electrostatic protection element 51, immunity noise is released, and a resistance is provided between the power supply terminal or the reference power supply terminal and the internal circuit of the semiconductor device to which the electrostatic discharge protection circuit 50 is connected. By passing through the body R, the current flowing into the internal circuit of the semiconductor device is reduced.
 抵抗体Rの抵抗値は、実施例1と同様に1Ω~10Ω程度の抵抗値を選ぶことが望ましい。 As for the resistance value of the resistor R, it is desirable to select a resistance value of about 1Ω to 10Ω as in the first embodiment.
 〔実施例6〕
 図9は、本実施例6の静電気放電保護回路60の等価回路である。図9の等価回路では、静電気保護素子を2つ用いており、電源ラインPとグランドラインGとの間に第2の静電気保護素子(第2回路保護手段)62を設けている。電源端子または基準電源端子とグランド端子との間には、第1の静電気保護素子(第1回路保護手段)61を設けている。
Example 6
FIG. 9 is an equivalent circuit of the electrostatic discharge protection circuit 60 of the sixth embodiment. In the equivalent circuit of FIG. 9, two electrostatic protection elements are used, and a second electrostatic protection element (second circuit protection means) 62 is provided between the power supply line P and the ground line G. A first electrostatic protection element (first circuit protection means) 61 is provided between the power supply terminal or the reference power supply terminal and the ground terminal.
 静電気放電保護回路60を備える半導体装置では、HBMモデルやMMモデルにおいて静電破壊試験を行う時のサージノイズは、抵抗体Rを介することなく、第2の静電気保護素子62を経由して、グランド端子へ逃げることができる。このため、HBMモデルやMMモデルにおいて静電破壊試験を行う時の耐量の向上が図られる。 In a semiconductor device including the electrostatic discharge protection circuit 60, surge noise when performing an electrostatic breakdown test in the HBM model or the MM model passes through the second electrostatic protection element 62 and does not pass through the resistor R. You can escape to the terminal. For this reason, the tolerance of the electrostatic breakdown test in the HBM model or MM model can be improved.
 抵抗体Rの抵抗値は、実施例1と同様に1Ω~10Ω程度の抵抗値を選ぶことが望ましい。 As for the resistance value of the resistor R, it is desirable to select a resistance value of about 1Ω to 10Ω as in the first embodiment.
 図8及び図9で示される等価回路の、静電気保護素子51、61、62としては、本実施形態の実施例1~4で述べている、ダイオードやPMOSトランジスターの他にも、NMOSトランジスターやバイポーラトランジスター、サイリスター構造を有するものを用いても良い。 As the electrostatic protection elements 51, 61, and 62 in the equivalent circuit shown in FIGS. 8 and 9, in addition to the diode and the PMOS transistor described in Examples 1 to 4 of this embodiment, an NMOS transistor and a bipolar transistor are used. A transistor or a transistor having a thyristor structure may be used.
 〔実施例7〕
 図12は、本実施例7の静電気放電保護回路70を備える半導体装置における、HBMモデルまたはMMモデルでのサージノイズの経路を示すブロック図である。上記サージノイズの経路は、グランド端子基準+印加でのサージノイズ経路である。
Example 7
FIG. 12 is a block diagram illustrating a path of surge noise in the HBM model or the MM model in a semiconductor device including the electrostatic discharge protection circuit 70 according to the seventh embodiment. The surge noise path is a surge noise path with the ground terminal reference + applied.
 図12のブロック図では、静電気保護素子であるダイオードD7は、実施例1と同じ要領で形成されるが、入力端子や出力端子と電源ラインPとの間に接続されている、静電気保護素子(回路保護装置、第3回路保護手段)71の一端の接続方法を工夫することにより、実施例2の静電気放電保護回路20と同様に、HBMモデルやMMモデルでの耐量向上を実現するものである。 In the block diagram of FIG. 12, the diode D7, which is an electrostatic protection element, is formed in the same manner as in the first embodiment, but is connected between the input terminal or output terminal and the power supply line P (an electrostatic protection element ( By devising the connection method of one end of the circuit protection device (third circuit protection means) 71, as in the case of the electrostatic discharge protection circuit 20 of the second embodiment, it is possible to improve the tolerance in the HBM model and the MM model. .
 図12の、本実施例8の静電気放電保護回路70を備える半導体装置では、入力端子や出力端子と電源ラインPとの間に接続されている、静電気保護素子71の一端E71を、ダイオードD7のカソード電極と抵抗体Rの一端との接続点P71に接続している。 In Figure 12, in a semiconductor device comprising an electrostatic discharge protection circuit 70 of the present embodiment 8 is connected between the input terminal and the output terminal and the power supply line P, and one end E 71 of the electrostatic protection element 71, a diode D7 Are connected to a connection point P 71 between the cathode electrode of the resistor and one end of the resistor R.
 静電気放電保護回路70を備える半導体装置では、HBMモデルやMMモデルにおいて静電破壊試験を行う時のサージノイズは、抵抗体Rを介することなく、ダイオードD7を経由して、グランド端子へ逃げることができる。このため、HBMモデルやMMモデルでの静電破壊試験時の耐量の向上が図られる。 In a semiconductor device including the electrostatic discharge protection circuit 70, surge noise when performing an electrostatic breakdown test in the HBM model or MM model may escape to the ground terminal via the diode D7 without passing through the resistor R. it can. For this reason, the tolerance of the electrostatic breakdown test in the HBM model and the MM model can be improved.
 抵抗体Rの抵抗値は、実施例1と同様に1Ω~10Ω程度の抵抗値を選ぶことが望ましい。ダイオードD7は、実施例1と同様に、複数に分割したものを並列に接続しても良いが、ダイオードの総周囲長は1000μm~20000μmの範囲から選ぶことが望ましい。 As for the resistance value of the resistor R, it is desirable to select a resistance value of about 1Ω to 10Ω as in the first embodiment. As in the first embodiment, the diode D7 may be divided into a plurality of diodes connected in parallel, but the total perimeter of the diode is preferably selected from a range of 1000 μm to 20000 μm.
 〔実施例8〕
 図13は、本実施例8の静電気放電保護回路80を備える半導体装置における、HBMモデルまたはMMモデルでのサージノイズの経路を示すブロック図である。上記サージノイズの経路は、グランド端子基準+印加でのサージノイズ経路である。
Example 8
FIG. 13 is a block diagram illustrating a path of surge noise in the HBM model or the MM model in a semiconductor device including the electrostatic discharge protection circuit 80 according to the eighth embodiment. The surge noise path is a surge noise path with the ground terminal reference + applied.
 図13のブロック図では、静電気保護素子であるPMOSトランジスターMP8は、実施例3と同じ要領で形成されるが、入力端子や出力端子と電源ラインPとの間に接続されている、静電気保護素子(回路保護装置、第3回路保護手段)81の一端の接続方法を工夫することにより、実施例4の静電気放電保護回路40と同様に、HBMモデルやMMモデルでの耐量向上を実現するものである。 In the block diagram of FIG. 13, the PMOS transistor MP8 , which is an electrostatic protection element, is formed in the same manner as in the third embodiment, but is connected between the input terminal and the output terminal and the power supply line P. By improving the connection method of one end of the element (circuit protection device, third circuit protection means) 81, as in the case of the electrostatic discharge protection circuit 40 of the fourth embodiment, it is possible to improve the tolerance in the HBM model and the MM model. It is.
 図13の、本実施例8の静電気放電保護回路80を備える半導体装置では、入力端子や出力端子と電源ラインPとの間に接続されている、静電気保護素子81の一端E81を、PMOSトランジスターMP8のソース電極、PMOSトランジスターMP8のゲート電極及び抵抗体Rの一端の接続点P81に接続している。 In the semiconductor device including the electrostatic discharge protection circuit 80 of the eighth embodiment shown in FIG. 13, one end E 81 of the electrostatic protection element 81 connected between the input terminal or the output terminal and the power supply line P is connected to the PMOS transistor. the source electrode of the M P8, are connected to one end of the connection point P 81 of the gate electrode and the resistor R of the PMOS transistor M P8.
 静電気放電保護回路80を備える半導体装置では、HBMモデルやMMモデルにおいて静電破壊試験を行う時のサージノイズは、抵抗体Rを介することなく、PMOSトランジスターMP8を経由して、グランド端子へ逃げることができる。このため、HBMモデルやMMモデルでの静電破壊試験時の耐量の向上が図られる。 In a semiconductor device including the electrostatic discharge protection circuit 80, surge noise when performing an electrostatic breakdown test in the HBM model or MM model escapes to the ground terminal via the PMOS transistor MP8 without passing through the resistor R. be able to. For this reason, the tolerance of the electrostatic breakdown test in the HBM model and the MM model can be improved.
 抵抗体Rの抵抗値は、実施例1と同様に1Ω~10Ω程度の抵抗値を選ぶことが望ましい。PMOSトランジスターMP8は、実施例3と同様に、複数に分割したものを並列に接続しても良いが、PMOSトランジスターの総チャンネル幅は300μm~7000μmの範囲から選ぶことが望ましい。 As for the resistance value of the resistor R, it is desirable to select a resistance value of about 1Ω to 10Ω as in the first embodiment. PMOS transistor M P8, as in Example 3, may be connected to those divided into a plurality in parallel, but the total channel width of the PMOS transistor is desirably selected from the range of 300μm ~ 7000μm.
 〔実施例9〕
 図14は、本実施例9の静電気放電保護回路90を備える半導体装置における、HBMモデルまたはMMモデルでのサージノイズの経路を示すブロック図である。上記サージノイズの経路は、グランド端子基準+印加でのサージノイズ経路である。図14の半導体装置は、より一般的な静電気放電保護回路90を備える半導体装置である。
Example 9
FIG. 14 is a block diagram illustrating a path of surge noise in the HBM model or the MM model in a semiconductor device including the electrostatic discharge protection circuit 90 according to the ninth embodiment. The surge noise path is a surge noise path with the ground terminal reference + applied. The semiconductor device of FIG. 14 is a semiconductor device provided with a more general electrostatic discharge protection circuit 90.
 図14のブロック図では、静電気保護素子(第1回路保護手段)92は、実施例5と同じ要領で形成されるが、入力端子や出力端子と電源ラインPとの間に接続されている、静電気保護素子(回路保護装置、第3回路保護手段)91の一端の接続方法を工夫することにより、実施例6の静電気放電保護回路60と同様に、HBMモデルやMMモデルでの耐量向上を実現するものである。 In the block diagram of FIG. 14, the electrostatic protection element (first circuit protection means) 92 is formed in the same manner as in the fifth embodiment, but is connected between the input terminal or the output terminal and the power supply line P. By improving the connection method of one end of the electrostatic protection element (circuit protection device, third circuit protection means) 91, as in the case of the electrostatic discharge protection circuit 60 of the sixth embodiment, an improvement in withstand capability in the HBM model and the MM model is realized. To do.
 図14の、本実施例9の静電気放電保護回路90を備える半導体装置では、入力端子や出力端子と電源ラインPとの間に接続されている、静電気保護素子91の一端E91を、電源端子または基準電源端子とグランド端子との間に接続されている、静電気保護素子92の一端E92と、抵抗体Rの一端との接続点P91に接続している。 In the semiconductor device including the electrostatic discharge protection circuit 90 of the ninth embodiment shown in FIG. 14, one end E 91 of the electrostatic protection element 91 connected between the input terminal or the output terminal and the power supply line P is connected to the power supply terminal. Alternatively, it is connected to a connection point P 91 between one end E 92 of the electrostatic protection element 92 and one end of the resistor R, which is connected between the reference power supply terminal and the ground terminal.
 静電気放電保護回路90を備える半導体装置では、HBMモデルやMMモデルにおいて静電破壊試験を行う時のサージノイズは、抵抗体Rを介することなく、電源端子または基準電源端子とグランド端子との間に接続されている、静電気保護素子92を経由して、グランド端子へ逃げることができる。このため、HBMモデルやMMモデルでの静電破壊試験時の耐量の向上が図られる。 In a semiconductor device including the electrostatic discharge protection circuit 90, surge noise when performing an electrostatic breakdown test in the HBM model or MM model does not pass through the resistor R and is between the power supply terminal or the reference power supply terminal and the ground terminal. It is possible to escape to the ground terminal via the connected electrostatic protection element 92. For this reason, the tolerance of the electrostatic breakdown test in the HBM model and the MM model can be improved.
 抵抗体Rの抵抗値は、実施例1と同様に1Ω~10Ω程度の抵抗値を選ぶことが望ましい。図14に示される静電気放電保護回路90において、電源端子または基準電源端子とグランド端子との間に接続されている、静電気保護素子92としては、本実施形態の実施例1~実施例4で述べている、ダイオードやPMOSトランジスターの他にも、NMOSトランジスターやバイポーラトランジスター、サイリスター構造を有するものでも良い。 As for the resistance value of the resistor R, it is desirable to select a resistance value of about 1Ω to 10Ω as in the first embodiment. In the electrostatic discharge protection circuit 90 shown in FIG. 14, the electrostatic protection element 92 connected between the power supply terminal or the reference power supply terminal and the ground terminal is described in Examples 1 to 4 of this embodiment. In addition to the diode and the PMOS transistor, an NMOS transistor, a bipolar transistor, or a thyristor structure may be used.
 実施例7~実施例9では、内部回路の両端にさらなる静電気保護素子を追加することなく、HBMモデルやMMモデルでの静電破壊試験時の耐量の向上が図られる。従って、半導体装置の大きさを増加させる必要がないので、チップコストを増加させることなく、HBMモデルやMMモデルにおいて静電破壊試験を行う時の耐量の向上が実現できる。 In Embodiments 7 to 9, the tolerance of the electrostatic breakdown test in the HBM model or MM model can be improved without adding additional electrostatic protection elements at both ends of the internal circuit. Accordingly, since it is not necessary to increase the size of the semiconductor device, it is possible to improve the tolerance when performing the electrostatic breakdown test in the HBM model or the MM model without increasing the chip cost.
 また、実施例7~実施例9では、静電気保護素子71、81、91としては、本実施形態の実施例1~実施例4で述べている、ダイオードやPMOSトランジスターの他にも、NMOSトランジスターやバイポーラトランジスター、サイリスター構造を有するものでも良い。 Further, in Examples 7 to 9, as the electrostatic protection elements 71, 81, 91, in addition to the diodes and PMOS transistors described in Examples 1 to 4 of the present embodiment, NMOS transistors, A bipolar transistor or a thyristor structure may be used.
 なお、本実施の形態において、抵抗体Rの両端に複数の静電気放電保護を用いる場合、同じ素子を使用しているが、これに限定されず、異なる素子を組み合わせてもよい。例えば図4において、ダイオードD2の代りにPMOSトランジスターを設けてもよい。 In the present embodiment, when a plurality of electrostatic discharge protections are used at both ends of the resistor R, the same element is used. However, the present invention is not limited to this, and different elements may be combined. For example, in FIG. 4, a PMOS transistor may be provided instead of the diode D2.
 本発明の半導体装置は、内部に流入するイミュニティノイズを接地端子に逃がすことで、イミュニティ耐性を向上させているので、液晶ディスプレイやプラズマディスプレイ等の表示パネル駆動用LSIに好適に用いることが出来る。 The semiconductor device of the present invention improves the immunity resistance by letting immunity noise flowing into the ground terminal escape to the ground terminal, and therefore can be suitably used for a display panel driving LSI such as a liquid crystal display or a plasma display.
 1、21、31 P型半導体基板
 1a、21a、31a 表面
 2、22、33 素子分離部
 3、23a、23b、37 N型不純物領域
 4、24a、24b、36a、36b P型不純物領域
 5、25、35、39 多層膜
 6、26、41 層間絶縁膜
 7~9、27~29、42~44 メタル配線
 10、20、30、40、50、60、70、80、90 静電気放電保護回路
 32 N型不純物ウェル
 38 チャンネル注入領域
 51、92 静電気保護素子(第1回路保護手段)
 61 第1の静電気保護素子(第1回路保護手段)
 62 第2の静電気保護素子(第2回路保護手段)
 71、81、91 静電気保護素子(第3回路保護手段)
 D ダイオード(第1回路保護手段)
 D1 第1のダイオード(第1回路保護手段)
 D2 第2のダイオード(第2回路保護手段)
 D7 ダイオード(第1回路保護手段)
 E71、E81、E91、E92 一端
 G グランドライン
 M、MP1、MP8 PMOSトランジスター(第1回路保護手段)
 MP2 PMOSトランジスター(第2回路保護手段)
 P 電源ライン
 P71、P81、P91 接続点
 R 抵抗体
1, 21, 31 P- type semiconductor substrate 1a, 21a, 31a Surface 2, 22, 33 Element isolation part 3, 23a, 23b, 37 N- type impurity region 4, 24a, 24b, 36a, 36b P- type impurity region 5, 25 , 35, 39 Multilayer film 6, 26, 41 Interlayer insulating film 7-9, 27-29, 42-44 Metal wiring 10, 20, 30, 40, 50, 60, 70, 80, 90 Electrostatic discharge protection circuit 32 N Type impurity well 38 channel injection region 51, 92 electrostatic protection element (first circuit protection means)
61 1st electrostatic protection element (1st circuit protection means)
62 Second electrostatic protection element (second circuit protection means)
71, 81, 91 Static electricity protection element (third circuit protection means)
D diode (first circuit protection means)
D1 first diode (first circuit protection means)
D2 Second diode (second circuit protection means)
D7 diode (first circuit protection means)
E 71 , E 81 , E 91 , E 92 one end G ground line M P , M P1 , M P8 PMOS transistor (first circuit protection means)
MP2 PMOS transistor (second circuit protection means)
P power supply line P 71 , P 81 , P 91 connection point R resistor

Claims (13)

  1.  半導体装置であって、
     上記半導体装置の外部から電圧を供給される、電圧供給端子に一端が接続され、上記半導体装置の内部回路に他端が接続される抵抗体と、
     上記電圧供給端子と、電気的に接地される接地端子との間に接続される第1回路保護手段とを備える半導体装置において、
     上記第1回路保護手段の一端及び抵抗体の一端は、上記電圧供給端子に接続され、
     上記第1回路保護手段の他端は、上記接地端子に接続され、
     上記第1回路保護手段は、ダイオード、PMOSトランジスター、NMOSトランジスター、バイポーラトランジスター及びサイリスター構造を有するもののいずれか1つであることを特徴とする半導体装置。
    A semiconductor device,
    A resistor to which a voltage is supplied from the outside of the semiconductor device, one end connected to a voltage supply terminal, and the other end connected to an internal circuit of the semiconductor device;
    In a semiconductor device comprising the first circuit protection means connected between the voltage supply terminal and a ground terminal that is electrically grounded,
    One end of the first circuit protection means and one end of the resistor are connected to the voltage supply terminal,
    The other end of the first circuit protection means is connected to the ground terminal,
    The semiconductor device according to claim 1, wherein the first circuit protection means is any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
  2.  第2回路保護手段をさらに備え、
     上記第2回路保護手段の一端は、上記抵抗体の上記他端に接続され、上記回路保護手段の他端は、上記接地端子に接続され、
     上記第2回路保護手段は、ダイオード、PMOSトランジスター、NMOSトランジスター、バイポーラトランジスター及びサイリスター構造を有するもののいずれか1つであることを特徴とする、請求項1に記載の半導体装置。
    A second circuit protection means;
    One end of the second circuit protection means is connected to the other end of the resistor, the other end of the circuit protection means is connected to the ground terminal,
    2. The semiconductor device according to claim 1, wherein the second circuit protection means is any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
  3.  上記内部回路の、入力端子または出力端子に一端が接続され、
     上記第1回路保護手段の一端に他端が接続される第3回路保護手段をさらに備えることを特徴とする、請求項1に記載の半導体装置。
    One end of the internal circuit is connected to the input terminal or output terminal,
    The semiconductor device according to claim 1, further comprising third circuit protection means having the other end connected to one end of the first circuit protection means.
  4.  上記第3回路保護手段は、ダイオード、PMOSトランジスター、NMOSトランジスター、バイポーラトランジスター及びサイリスター構造を有するもののいずれか1つであることを特徴とする、請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the third circuit protection means is any one of a diode, a PMOS transistor, an NMOS transistor, a bipolar transistor, and a thyristor structure.
  5.  前記電圧供給端子と、前記接地端子とは、上記半導体装置を形成する、半導体基板の同じ面に形成されることを特徴とする、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the voltage supply terminal and the ground terminal are formed on the same surface of the semiconductor substrate forming the semiconductor device.
  6.  前記電圧供給端子と、前記接地端子とは、上記半導体装置を形成する、半導体基板の同じ面に形成されることを特徴とする、請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the voltage supply terminal and the ground terminal are formed on the same surface of the semiconductor substrate forming the semiconductor device.
  7.  前記電圧供給端子と、前記接地端子とは、上記半導体装置を形成する、半導体基板の同じ面に形成されることを特徴とする、請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the voltage supply terminal and the ground terminal are formed on the same surface of the semiconductor substrate forming the semiconductor device.
  8.  前記電圧供給端子と、前記接地端子とは、上記半導体装置を形成する、半導体基板の同じ面に形成されることを特徴とする、請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the voltage supply terminal and the ground terminal are formed on the same surface of the semiconductor substrate forming the semiconductor device.
  9.  上記抵抗体は、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜であることを特徴とする、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the resistor is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated.
  10.  上記抵抗体は、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜であることを特徴とする、請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the resistor is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated.
  11.  上記抵抗体は、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜であることを特徴とする、請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the resistor is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated.
  12.  上記抵抗体は、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜であることを特徴とする、請求項4に記載の半導体装置。 5. The semiconductor device according to claim 4, wherein the resistor is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated.
  13.  上記抵抗体は、多結晶シリコン膜、または多結晶シリコン膜と高融点金属膜とを積層した膜であることを特徴とする、請求項5に記載の半導体装置。 6. The semiconductor device according to claim 5, wherein the resistor is a polycrystalline silicon film or a film in which a polycrystalline silicon film and a refractory metal film are laminated.
PCT/JP2009/062114 2008-07-04 2009-07-02 Semiconductor device WO2010001958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-176208 2008-07-04
JP2008176208A JP2010016263A (en) 2008-07-04 2008-07-04 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2010001958A1 true WO2010001958A1 (en) 2010-01-07

Family

ID=41466049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062114 WO2010001958A1 (en) 2008-07-04 2009-07-02 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2010016263A (en)
WO (1) WO2010001958A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150120839A (en) * 2014-08-25 2015-10-28 주식회사 지앤브이 Sealed housing and Embedment heating equipment using this material and its facilities and Manufacturing method thereof
CN108847176A (en) * 2018-07-13 2018-11-20 京东方科技集团股份有限公司 A kind of array substrate, display panel and display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402917B2 (en) * 2010-12-20 2014-01-29 株式会社デンソー ESD protection circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332207A (en) * 1999-05-25 2000-11-30 Hitachi Ltd Overvoltage protective circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332207A (en) * 1999-05-25 2000-11-30 Hitachi Ltd Overvoltage protective circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150120839A (en) * 2014-08-25 2015-10-28 주식회사 지앤브이 Sealed housing and Embedment heating equipment using this material and its facilities and Manufacturing method thereof
KR101582596B1 (en) 2014-08-25 2016-01-05 주식회사 지앤브이 Sealed housing and Embedment heating equipment using this material and its facilities and Manufacturing method thereof
CN108847176A (en) * 2018-07-13 2018-11-20 京东方科技集团股份有限公司 A kind of array substrate, display panel and display device

Also Published As

Publication number Publication date
JP2010016263A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
US7368761B1 (en) Electrostatic discharge protection device and fabrication method thereof
US6977425B2 (en) Semiconductor device having a lateral MOSFET and combined IC using the same
US5991134A (en) Switchable ESD protective shunting circuit for semiconductor devices
KR101923763B1 (en) Electrostatic Discharge Protection Circuit and Device for Level Shift Circuit
KR20060050160A (en) Semiconductor integrated circuit device
CN103579224B (en) ESD protects
KR20090020528A (en) Semiconductor device
US9117673B2 (en) Electrostatic discharge protection circuit including a plurality of doped regions and a gate connected to a capacitor and a resistor
JP2005064374A (en) Semiconductor integrated circuit device
US20130057993A1 (en) Semiconductor integrated circuit and protection circuit
US8093683B2 (en) Semiconductor device
US8736022B2 (en) Semiconductor device with a diode-type ESD protection circuit
WO2010001958A1 (en) Semiconductor device
TW473983B (en) Semiconductor integrated circuit device
US10211201B2 (en) Device for protection against electrostatic discharges with a distributed trigger circuit
TWI449150B (en) Esd protection device structure
US6784496B1 (en) Circuit and method for an integrated charged device model clamp
CN102544068B (en) Bidirectional controllable silicon device based on assistant triggering of PNP-type triodes
US6894881B1 (en) ESD protection methods and devices using additional terminal in the diode structures
CN112397502A (en) Electrostatic discharge protection circuit and structure thereof
US7843673B2 (en) Antenna diodes with electrical overstress (EOS) protection
US6943412B1 (en) Semiconductor integrated circuit
CN103378085A (en) Protection method and protection circuit of integrated circuit, and integrated circuit
US7405913B2 (en) Semiconductor device having transistor with high electro-static discharge capability and high noise capability
KR20060100274A (en) Semiconductor device and designing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773536

Country of ref document: EP

Kind code of ref document: A1