TWI449150B - Esd protection device structure - Google Patents

Esd protection device structure Download PDF

Info

Publication number
TWI449150B
TWI449150B TW098127701A TW98127701A TWI449150B TW I449150 B TWI449150 B TW I449150B TW 098127701 A TW098127701 A TW 098127701A TW 98127701 A TW98127701 A TW 98127701A TW I449150 B TWI449150 B TW I449150B
Authority
TW
Taiwan
Prior art keywords
doped region
region
protection device
electrostatic discharge
device structure
Prior art date
Application number
TW098127701A
Other languages
Chinese (zh)
Other versions
TW201108383A (en
Inventor
Tai Hsiang Lai
Kuei Chih Fan
Tien Hao Tang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW098127701A priority Critical patent/TWI449150B/en
Publication of TW201108383A publication Critical patent/TW201108383A/en
Application granted granted Critical
Publication of TWI449150B publication Critical patent/TWI449150B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

靜電放電保護元件結構Electrostatic discharge protection component structure

本發明係關於一種靜電放電保護元件結構,尤指一種閘極接地之金氧半導體電晶體之靜電放電保護元件結構。The present invention relates to an electrostatic discharge protection element structure, and more particularly to an electrostatic discharge protection element structure of a gate-grounded MOS transistor.

靜電放電(Electrostatic Discharge,ESD)現象係半導體製程中一種常見的現象,其所帶來的過量電荷會在極短的時間內經由積體電路的輸出入(I/O)接腳(pin)傳入積體電路中,而破壞積體電路的內部電路(internal circuit)。為了解決此一問題,業界通常會在內部電路與I/O接腳之間設置一ESD保護裝置,其必須在靜電放電的脈衝(pulse)未到達內部電路之前先行啟動,以迅速地消除過高的電壓,進而減少靜電放電現象所導致的破壞。Electrostatic discharge (ESD) phenomenon is a common phenomenon in semiconductor manufacturing process, and the excess charge caused by it will be transmitted through the input/output (I/O) pin of the integrated circuit in a very short time. In the integrated circuit, the internal circuit of the integrated circuit is destroyed. In order to solve this problem, the industry usually sets an ESD protection device between the internal circuit and the I/O pin, which must be started before the electrostatic discharge pulse reaches the internal circuit to quickly eliminate the excessively high The voltage, which in turn reduces the damage caused by the electrostatic discharge phenomenon.

近年來,為了避免靜電放電現象所導致之內部電路損壞,習知ESD保護裝置係利用一PMOS電晶體與一NMOS電晶體來保護內部電路。一般而言,ESD保護裝置的放電路徑包括四種模式即PS(positive to VSS)模式、NS(negative to VSS)模式、PD(positive to VDD)模式以及ND(negative to VDD)模式,其中PD、NS模式係利用PMOS電晶體與NMOS電晶體中之寄生二極體來達到ESD保護功能,而ND與PS模式則是利用PMOS電晶體與NMOS電晶體中之寄生雙載子接面電晶體(parasitic bipolar transistor)來保護內部電路。然而,由於寄生雙載子電晶體的開啟電壓較高,所以當積體電路的積集度提高與製程等級縮小時,閘極下方的閘極介電層之厚度變小,會導致其崩潰電壓(breakdown voltage)亦隨之而下降,使得閘極介電層無法承受高壓而毀損,大幅降低習知ESD保護裝置的保護功能。In recent years, in order to avoid internal circuit damage caused by electrostatic discharge phenomena, conventional ESD protection devices utilize a PMOS transistor and an NMOS transistor to protect internal circuits. In general, the discharge path of the ESD protection device includes four modes, namely, a PS (positive to VSS) mode, an NS (negative to VSS) mode, a PD (positive to VDD) mode, and an ND (negative to VDD) mode, wherein the PD, The NS mode utilizes a parasitic diode in a PMOS transistor and an NMOS transistor to achieve ESD protection, while the ND and PS modes utilize a parasitic bipolar junction transistor in a PMOS transistor and an NMOS transistor (parasitic Bipolar transistor) to protect the internal circuit. However, since the turn-on voltage of the parasitic bipolar transistor is high, when the integration degree of the integrated circuit is increased and the process level is reduced, the thickness of the gate dielectric layer under the gate becomes small, which causes the breakdown voltage thereof. The (breakdown voltage) also decreases, so that the gate dielectric layer cannot withstand high voltage and damage, greatly reducing the protection function of the conventional ESD protection device.

因此,如何在製程等級不斷縮小之空間限制下,提供積體電路有效的ESD保護裝置,仍為業界之一重要議題。Therefore, how to provide an effective ESD protection device for integrated circuits under the space limitation of the process level is still an important issue in the industry.

本發明之目的之一在於提供一種靜電放電(ESD)保護元件結構,以提高ESD保護元件結構於人體放電模式與於機器放電模式下所能承受之脈衝電壓。One of the objects of the present invention is to provide an electrostatic discharge (ESD) protection element structure to improve the pulse voltage that the ESD protection element structure can withstand in the human body discharge mode and in the machine discharge mode.

為達上述之目的,本發明係提供一種ESD保護元件結構,設置於一半導體基底上,且上述靜電放電保護元件結構包含有一具有一第一導電型式之井區,設置於半導體基底之中、一具有一第二導電型式之第一摻雜區,設置於井區之中、一具有第一導電型式之第二摻雜區,以及一具有第二導電型式之第三摻雜區,設置於井區之中。第一摻雜區係包覆第二摻雜區,使第一摻雜區與第二摻雜區構成一垂直型雙載子接面電晶體(vertical BJT),並且第一摻雜區、井區以及第三摻雜區構成一水平型雙載子接面電晶體(lateral BJT)。In order to achieve the above object, the present invention provides an ESD protection device structure disposed on a semiconductor substrate, and the electrostatic discharge protection device structure includes a well region having a first conductivity type disposed in the semiconductor substrate. a first doped region having a second conductivity type disposed in the well region, a second doped region having a first conductivity type, and a third doped region having a second conductivity pattern disposed in the well In the area. The first doped region encapsulates the second doped region such that the first doped region and the second doped region constitute a vertical bipolar junction transistor (vertical BJT), and the first doped region, the well The region and the third doped region constitute a horizontal type bipolar junction transistor (lateral BJT).

本發明於ESD保護元件結構之第一重摻雜區與第一漂移區中形成具有不同導電型式之第二摻雜區,以提升ESD保護元件結構之二次崩潰電流且降低觸發電壓,進而提升ESD保護元件結構所能承受之脈衝電壓。The invention forms a second doped region with different conductivity patterns in the first heavily doped region and the first drift region of the ESD protection device structure to improve the secondary breakdown current of the ESD protection component structure and reduce the trigger voltage, thereby improving The pulse voltage that the ESD protection component structure can withstand.

請參考第1圖,第1圖為本發明第一實施例之靜電放電(ESD)保護元件結構之剖面示意圖。如第1圖所示,ESD保護元件結構10係設置於一半導體基底12上,且ESD保護元件結構10包含有一井區14、一汲極區域16、一源極區域18、一閘極介電層20、一閘極電極22以及一摻雜區24。井區14係具有一第一導電型式,如N型或P型,且設置於半導體基底12中。汲極區域16與源極區域18係分別設置於井區14中,且汲極區域16係具有一第二導電型式,而源極區域18亦係具有第二導電型式。Please refer to FIG. 1. FIG. 1 is a cross-sectional view showing the structure of an electrostatic discharge (ESD) protection element according to a first embodiment of the present invention. As shown in FIG. 1, the ESD protection device structure 10 is disposed on a semiconductor substrate 12, and the ESD protection device structure 10 includes a well region 14, a drain region 16, a source region 18, and a gate dielectric. Layer 20, a gate electrode 22, and a doped region 24. The well region 14 has a first conductivity type, such as an N-type or a P-type, and is disposed in the semiconductor substrate 12. The drain region 16 and the source region 18 are respectively disposed in the well region 14, and the drain region 16 has a second conductivity type, and the source region 18 also has a second conductivity pattern.

本第一實施例係以第一導電型式為P型,且第二導電型式為N型為例,反之,當第一導電型式為N型時,第二導電型式則可為P型。閘極介電層20係設置於汲極區域16與源極區域18間之半導體基底12之表面上,且閘極電極22係設置於閘極介電層20上,使汲極區域16、源極區域18、井區14、閘極介電層20以及閘極電極22構成一N型金氧半導體電晶體(MOS transistor)。摻雜區24係設置於井區14中,且電性連接至一接地端26,用於將井區14電性連接至接地端26,以作為金氧半導體電晶體之基極(body electrode)46。In the first embodiment, the first conductivity type is P type, and the second conductivity type is N type. Conversely, when the first conductivity type is N type, the second conductivity type may be P type. The gate dielectric layer 20 is disposed on the surface of the semiconductor substrate 12 between the drain region 16 and the source region 18, and the gate electrode 22 is disposed on the gate dielectric layer 20 to enable the drain region 16 and the source. The pole region 18, the well region 14, the gate dielectric layer 20, and the gate electrode 22 constitute an N-type MOS transistor. The doped region 24 is disposed in the well region 14 and electrically connected to a ground terminal 26 for electrically connecting the well region 14 to the ground terminal 26 as a body electrode of the MOS transistor. 46.

此外,汲極區域16係可包含一N型之第一重摻雜區28與一N型之第一漂移區30,且第一重摻雜區28係設置於第一漂移區30之上方,而第一重摻雜區28係電性連接至一欲保護之內部電路31與一輸出入(I/O)導電墊32之間。源極區域18亦可包含一N型之第二重摻雜區34以及一N型之第二漂移區36,且第二重摻雜區34係設置於第二漂移區36之上方並電性連接至接地端26。由此可知,本實施例之ESD保護元件結構10係為一閘極接地之N型金氧半導體電晶體。另外,ESD保護元件結構10另可包含一第一隔離結構38、一第二隔離結構40以及一第三隔離結構42。第一隔離結構38係圍繞第一重摻雜區28。第二隔離結構40係設置於源極區域18中。第三隔離結構42係包圍摻雜區24,用以將摻雜區24與金氧半導體電晶體隔離開。In addition, the drain region 16 may include an N-type first heavily doped region 28 and an N-type first drift region 30, and the first heavily doped region 28 is disposed above the first drift region 30. The first heavily doped region 28 is electrically connected between an internal circuit 31 to be protected and an input/output (I/O) conductive pad 32. The source region 18 may also include an N-type second heavily doped region 34 and an N-type second drift region 36, and the second heavily doped region 34 is disposed above the second drift region 36 and electrically Connected to ground terminal 26. It can be seen that the ESD protection device structure 10 of the present embodiment is a gate-grounded N-type MOS transistor. In addition, the ESD protection component structure 10 may further include a first isolation structure 38, a second isolation structure 40, and a third isolation structure 42. The first isolation structure 38 surrounds the first heavily doped region 28. The second isolation structure 40 is disposed in the source region 18. The third isolation structure 42 surrounds the doped region 24 to isolate the doped region 24 from the MOS transistor.

以下將進一步說明本實施例之ESD保護元件結構於傳輸線脈衝(Transmission Line Pulse,TLP)測試中之脈衝電壓與脈衝電流之關係,以模擬於靜電放電過程中ESD保護元件結構所能承受之範圍,進而說明ESD保護元件結構之ESD保護能力。請參考第2圖至第4圖,第2圖為本發明第一實施例之ESD保護元件結構於TLP測試時之電路示意圖,第3圖為本發明第一實施例之ESD保護元件結構於TLP測試中之脈衝電壓與脈衝電流關係圖以及閘極電極漏電流與脈衝電流關係圖,第4圖為本發明第一實施例之ESD保護元件結構之操作電壓與操作電流關係圖。如第2圖所示,測試時,ESD保護元件結構10之汲極區域16係電性連接至TLP產生器44之一端,且ESD保護元件結構10之源極區域18、閘極電極22以及基極46係電性連接接地端,並將TLP產生器44之另一端電性連接至接地端。如第3圖所示,二次崩潰電流(secondary breakdown current)It2係為ESD保護元件結構10於閘極電極22之漏電流為10-6 A時之脈衝電流值。本實施例之ESD保護元件結構10之二次崩潰電流It2約略為1.5A,藉此可得到ESD保護元件結構10於人體放電模式(Human-Body Model,HBM)下所能承受之脈衝電壓為1kV,而ESD保護元件結構10於機器放電模式(Machine Model,MM)下所能承受之脈衝電壓為275V。此外,從第3圖中亦可得到ESD保護元件結構10之觸發電壓(trigger voltage)Vt1約略為50V,即表示當ESD脈衝電壓超過50V時,ESD保護元件結構10才開啟,並開始進行ESD保護。另外,如第4圖所示,ESD保護元件結構10之保持電壓(holding voltage)約略為25V,因此可得到ESD保護元件結構10之功率消耗(功率=ESD電流×保持電壓)。The relationship between the pulse voltage and the pulse current in the transmission line pulse (TLP) test of the ESD protection component structure of the present embodiment will be further described below to simulate the range that the ESD protection component structure can withstand during the electrostatic discharge process. Furthermore, the ESD protection capability of the ESD protection component structure will be explained. Please refer to FIG. 2 to FIG. 4 . FIG. 2 is a schematic diagram of the circuit of the ESD protection component structure according to the first embodiment of the present invention during TLP testing, and FIG. 3 is a schematic diagram of the ESD protection component structure of the first embodiment of the present invention. The relationship between the pulse voltage and the pulse current in the test and the relationship between the leakage current and the pulse current of the gate electrode, and FIG. 4 is a diagram showing the relationship between the operating voltage and the operating current of the structure of the ESD protection element according to the first embodiment of the present invention. As shown in FIG. 2, during testing, the drain region 16 of the ESD protection device structure 10 is electrically connected to one end of the TLP generator 44, and the source region 18, the gate electrode 22, and the base of the ESD protection device structure 10. The pole 46 is electrically connected to the ground, and the other end of the TLP generator 44 is electrically connected to the ground. As shown in Fig. 3, the secondary breakdown current It2 is a pulse current value when the leakage current of the ESD protection element structure 10 at the gate electrode 22 is 10 -6 A. The secondary breakdown current It2 of the ESD protection element structure 10 of the present embodiment is approximately 1.5 A, whereby the pulse voltage of the ESD protection element structure 10 under the Human-Body Model (HBM) can be withstand 1 kV. The ESD protection component structure 10 can withstand a pulse voltage of 275V in the Machine Model (MM). In addition, the trigger voltage Vt1 of the ESD protection component structure 10 can also be approximately 50V from FIG. 3, which means that when the ESD pulse voltage exceeds 50V, the ESD protection component structure 10 is turned on and ESD protection is started. . Further, as shown in Fig. 4, the holding voltage of the ESD protection element structure 10 is approximately 25 V, so that the power consumption (power = ESD current × holding voltage) of the ESD protection element structure 10 can be obtained.

然而,業界於人體放電模式下之ESD保護規格為2kV,因此若要符合業界之ESD保護規格,則上述實施例仍有待提升ESD保護能力。為了提升ESD保護能力,本發明係於汲極區域中植入一具有第二導電型式之摻雜區,使汲極區域形成一垂直型雙載子接面電晶體(vertical BJT),進而可提升ESD保護能力。However, the industry's ESD protection specification in human discharge mode is 2kV, so to comply with the industry's ESD protection specifications, the above embodiments still need to improve ESD protection. In order to improve the ESD protection capability, the present invention implants a doped region having a second conductivity type in the drain region, so that the drain region forms a vertical bipolar junction transistor (vertical BJT), thereby improving ESD protection capabilities.

請參考第5圖,第5圖為本發明第二實施例之ESD保護元件結構之剖面示意圖。如第5圖所示,ESD保護元件結構100係設置於一半導體基底102上,且ESD保護元件結構100包含有一具有一第一導電型式之井區104、一具有一第二導電型式用來當作汲極之第一摻雜區106、一具有第一導電形式之第二摻雜區108以及一具有第二導電型式用來當作源極之第三摻雜區110。同樣地,若第一導電型式為P型時,第二導電型式為N型,反之,當第一導電型式為N型時,第二導電型式則可為P型。Please refer to FIG. 5. FIG. 5 is a cross-sectional view showing the structure of an ESD protection element according to a second embodiment of the present invention. As shown in FIG. 5, the ESD protection device structure 100 is disposed on a semiconductor substrate 102, and the ESD protection device structure 100 includes a well region 104 having a first conductivity type and a second conductivity pattern for A first doped region 106 as a drain, a second doped region 108 having a first conductive form, and a third doped region 110 having a second conductivity type for use as a source. Similarly, if the first conductivity type is a P type, the second conductivity type is an N type, and conversely, when the first conductivity type is an N type, the second conductivity type may be a P type.

現以第一導電型式為P型為例,井區104為高電壓P型井區(high voltage P-well,HVPW),設置於半導體基底102之中。N型之第一摻雜區106係設置於井區104之中,且電 性連接至一欲保護之內部電路111與一I/O導電墊112。第一摻雜區106包含有一N型第一重摻雜區114以及一N型第一漂移區116,且第一重摻雜區114係設置於第一漂移區116之上方。值得注意的是,第一摻雜區106係包覆P型之第二摻雜區108,使第一摻雜區106的一部分設置於第二摻雜區108上,且第一摻雜區106的另一部分設置於第二摻雜區108的下方。於本實施例中,第二摻雜區108係設置於第一重摻雜區114與第一漂移區116之間,並將第一重摻雜區114與第一漂移區116區完全隔開,使第一摻雜區106與第二摻雜區108構成一npn型雙載子接面電晶體,而且為一垂直型雙載子接面電晶體118。於本實施例中,第一重摻雜區114係電性連接至I/O導電墊112,藉以導入或導出ESD電流。N型之第三摻雜區110係設置於第一摻雜區106之一側之井區104中,且井區104設置於第一摻雜區106與第三摻雜區110之間,使第一摻雜區106、井區104以及第三摻雜區110構成另一npn型雙載子接面電晶體,而且為一水平型雙載子接面電晶體(lateral BJT)120。第三摻雜區110包含有一N型之第二重摻雜區122以及一N型之第二漂移區124,其中第二重摻雜區122係設置於第二漂移區124之上方且電性連接至一接地端126。於本實施例中,第二摻雜區110係具有P型摻雜,可利用一P型ESD佈植製程來形成,例如:硼離子佈植製程,並藉由調整佈植之能量可控制第二摻雜區110於半導體基底102中之深度。Taking the first conductivity type as the P type as an example, the well region 104 is a high voltage P-well (HVPW) disposed in the semiconductor substrate 102. The N-type first doped region 106 is disposed in the well region 104 and is electrically It is connected to an internal circuit 111 to be protected and an I/O conductive pad 112. The first doped region 106 includes an N-type first heavily doped region 114 and an N-type first drift region 116, and the first heavily doped region 114 is disposed above the first drift region 116. It is noted that the first doped region 106 is covered with the P-type second doped region 108, a portion of the first doped region 106 is disposed on the second doped region 108, and the first doped region 106 is Another portion of the portion is disposed below the second doped region 108. In this embodiment, the second doped region 108 is disposed between the first heavily doped region 114 and the first drift region 116, and completely separates the first heavily doped region 114 from the first drift region 116 region. The first doped region 106 and the second doped region 108 form an npn-type bipolar junction transistor, and is a vertical bipolar junction transistor 118. In the present embodiment, the first heavily doped region 114 is electrically connected to the I/O conductive pad 112, thereby introducing or deriving an ESD current. The N-type third doping region 110 is disposed in the well region 104 on one side of the first doping region 106, and the well region 104 is disposed between the first doping region 106 and the third doping region 110, so that The first doped region 106, the well region 104, and the third doped region 110 constitute another npn-type bipolar junction transistor, and is a horizontal type bipolar junction transistor (lateral BJT) 120. The third doped region 110 includes an N-type second heavily doped region 122 and an N-type second drift region 124, wherein the second heavily doped region 122 is disposed above the second drift region 124 and is electrically Connected to a ground terminal 126. In this embodiment, the second doping region 110 has a P-type doping, and can be formed by a P-type ESD implantation process, for example, a boron ion implantation process, and can be controlled by adjusting the energy of the implant. The depth of the doped region 110 in the semiconductor substrate 102.

此外,本實施例之ESD保護元件結構100另包含一P型之第四摻雜區128,且設置於井區104之中,並電性連接至接地端126,用於電性連接接地端126與井區104,使得由第一摻雜區106、井區104以及第三摻雜區110構成之水平型雙載子接面電晶體120之基極(base)可經由井區104與第四摻雜區128電性連接至接地端126,其中位於水平型雙載子接面電晶體120與第四摻雜區128間之井區104係構成一電阻RHVPW 。當橫跨電阻RHVPW 兩端之電壓大於水平型雙載子接面電晶體120之截止電壓(cut-in voltage)時,水平型雙載子接面電晶體120會開啟。本實施例之第四摻雜區128可包含一第三重摻雜區130以及一第三漂移區132,其中第三重摻雜區130係設置於第三漂移區132之上方且電性連接至接地端126。但本發明並不限於第四摻雜區128需包含重摻雜區與漂移區或限於第四摻雜區128為一P型摻雜區,第四摻雜區128亦可僅為一與井區104相同導電形式之摻雜區。In addition, the ESD protection device structure 100 of the present embodiment further includes a P-type fourth doping region 128, and is disposed in the well region 104 and electrically connected to the ground terminal 126 for electrically connecting the ground terminal 126. And the well region 104, such that the base of the horizontal type bipolar junction transistor 120 formed by the first doping region 106, the well region 104, and the third doping region 110 can pass through the well region 104 and the fourth The doped region 128 is electrically connected to the ground terminal 126, wherein the well region 104 between the horizontal bipolar junction transistor 120 and the fourth doped region 128 constitutes a resistor R HVPW . When the voltage across the resistor R HVPW is greater than the cut-in voltage of the horizontal bipolar junction transistor 120, the horizontal bipolar junction transistor 120 is turned on. The fourth doped region 128 of the present embodiment may include a third heavily doped region 130 and a third drift region 132. The third heavily doped region 130 is disposed above the third drift region 132 and electrically connected. To ground 126. However, the present invention is not limited to the fourth doped region 128 to include a heavily doped region and a drift region or the fourth doped region 128 is a P-type doped region, and the fourth doped region 128 may also be only a well. The regions 104 are doped regions of the same conductive form.

於本實施例中,ESD保護元件結構100另包含一閘極介電層134以及一閘極電極136,閘極介電層134係設置於半導體基底102之表面上,且位於N型第一摻雜區106與N型第三摻雜區110之間。本實施例之閘極介電層134係部分覆蓋第一摻雜區106與第三摻雜區110,但本發明並不限於此。閘極電極136係設置於閘極介電層134之上,使得閘極 介電層134、閘極電極136、N型第一摻雜區106、N型第三摻雜區110以及P型井區104構成一N型金氧半導體電晶體。其中,第一摻雜區106係用來作為金氧半導體電晶體之汲極,且第三摻雜區110係用來作為金氧半導體電晶體之源極,而井區104鄰近閘極介電層134之區域則作為金氧半導體電晶體之通道區。此外,閘極電極136係電性連接至接地端126,可讓N型金氧半導體電晶體於無ESD產生時處於關閉狀態。In the present embodiment, the ESD protection device structure 100 further includes a gate dielectric layer 134 and a gate electrode 136. The gate dielectric layer 134 is disposed on the surface of the semiconductor substrate 102 and is located in the N-type first doping. The impurity region 106 is between the N-type third doping region 110. The gate dielectric layer 134 of the present embodiment partially covers the first doping region 106 and the third doping region 110, but the invention is not limited thereto. The gate electrode 136 is disposed on the gate dielectric layer 134 to make the gate The dielectric layer 134, the gate electrode 136, the N-type first doped region 106, the N-type third doped region 110, and the P-type well region 104 constitute an N-type MOS transistor. Wherein, the first doping region 106 is used as a drain of the MOS transistor, and the third doping region 110 is used as a source of the MOS transistor, and the well region 104 is adjacent to the gate dielectric. The region of layer 134 acts as a channel region for the MOS transistor. In addition, the gate electrode 136 is electrically connected to the ground terminal 126 to allow the N-type MOS transistor to be turned off when no ESD is generated.

另外,ESD保護元件結構100另包含一第一隔離結構138、一第二隔離結構140以及一第三隔離結構142。第一隔離結構138係圍繞第一重摻雜區114,用於將第一重摻雜區114之側壁與第一漂移區116隔離開,使得由第一重摻雜區114進入之ESD電流,會先通過具有第二導電型式之第二摻雜區108,再依序經由水平型雙載子接面電晶體120之第一漂移區116、井區104以及第三摻雜區110之路徑導引至接地端126。並且,於具有高脈衝電壓之ESD進入第一重摻雜區114時,第一隔離結構138可有效保護閘極介電層134以避免ESD損壞,進而提升ESD保護元件結構100於I/O導電墊112端所能承受之ESD脈衝電壓。第二隔離結構140係設置於第三摻雜區110中,且位於第二重摻雜區122與接地端126之接點與於閘極電極136下方之第二漂移區124之間,可用於避免從接地端126進入具有高電壓之ESD損害 閘極介電層134。第三隔離結構142係包圍P型第四摻雜區128,用以將第四摻雜區128與N型金氧半導體電晶體隔離開。In addition, the ESD protection component structure 100 further includes a first isolation structure 138, a second isolation structure 140, and a third isolation structure 142. The first isolation structure 138 surrounds the first heavily doped region 114 for isolating the sidewall of the first heavily doped region 114 from the first drift region 116 such that the ESD current entering by the first heavily doped region 114, The first doped region 108 having the second conductivity type is first passed through the path of the first drift region 116, the well region 104, and the third doping region 110 of the horizontal bipolar junction transistor 120. Lead to ground 126. Moreover, when the ESD having the high pulse voltage enters the first heavily doped region 114, the first isolation structure 138 can effectively protect the gate dielectric layer 134 to avoid ESD damage, thereby improving the ESD protection device structure 100 in I/O conduction. The ESD pulse voltage that the pad 112 can withstand. The second isolation structure 140 is disposed in the third doping region 110 and is located between the junction of the second heavily doped region 122 and the ground terminal 126 and the second drift region 124 below the gate electrode 136. Avoid entering ESD damage from ground 126 with high voltage Gate dielectric layer 134. The third isolation structure 142 surrounds the P-type fourth doping region 128 for isolating the fourth doping region 128 from the N-type MOS transistor.

為了清楚比較本實施例與上述第一實施例之ESD保護能力的差異,以下將進一步說明本實施例之ESD保護元件結構於TLP測試中之脈衝電壓與脈衝電流之關係,並且與上述第一實施例之結果做比較。請參考第6圖至第7圖,第6圖為本發明第二實施例之ESD保護元件結構於TLP測試時之電路示意圖,第7圖為本發明第二實施例之ESD保護元件結構於TLP測試中之脈衝電壓與脈衝電流關係圖以及閘極電極漏電流與脈衝電流關係圖。如第6圖所示,本實施例之ESD保護元件結構100之第一重摻雜區114係電性連接至TLP產生器144之一端,且ESD保護元件結構100之第二重摻雜區122、閘極電極136以及第三重摻雜區130係電性連接接地端126,而TLP產生器144之另一端亦電性連接至接地端126。如第7圖所示,相較於第一實施例之二次崩潰電流It2為1.5A,本第二實施例之ESD保護元件結構100之二次崩潰電流It2(即閘極電極漏電流超過10-6 A時之脈衝電流值)約略為4.2A,因此可承受較大之ESD脈衝電流。並且,從二次崩潰電流It2可得到ESD保護元件結構於人體放電模式下所能承受之脈衝電壓為7kV,較第一實施例之1kV高,並且符合業界ESD保護規格之2kV。於機器放電模式 下,本第二實施例之ESD保護元件結構所能承受之脈衝電壓係為575V,亦較第一實施例之275V高。此外,相較於第一實施例之觸發電壓Vt1為50V,本第二實施例之E SD 保護元件結構之觸發電壓Vt1約略為40V,可有效降低ESD保護元件結構於ESD發生時被觸發之電壓,進而增加內部電路可承受ESD產生之脈衝電壓的範圍。In order to clearly compare the difference between the ESD protection capability of the first embodiment and the first embodiment, the following describes the relationship between the pulse voltage and the pulse current of the ESD protection component structure of the embodiment in the TLP test, and the first implementation described above. The results of the examples are compared. Please refer to FIG. 6 to FIG. 7 . FIG. 6 is a schematic diagram of the circuit of the ESD protection component structure according to the second embodiment of the present invention during TLP testing, and FIG. 7 is a diagram showing the structure of the ESD protection component of the second embodiment of the present invention. The relationship between the pulse voltage and the pulse current in the test and the relationship between the leakage current of the gate electrode and the pulse current. As shown in FIG. 6, the first heavily doped region 114 of the ESD protection device structure 100 of the present embodiment is electrically connected to one end of the TLP generator 144, and the second heavily doped region 122 of the ESD protection device structure 100. The gate electrode 136 and the third heavily doped region 130 are electrically connected to the ground terminal 126, and the other end of the TLP generator 144 is also electrically connected to the ground terminal 126. As shown in FIG. 7, the secondary breakdown current It2 of the ESD protection element structure 100 of the second embodiment is 1.52 compared to the second embodiment, and the gate electrode leakage current exceeds 10 The pulse current value at -6 A is approximately 4.2 A, so it can withstand a large ESD pulse current. Further, from the secondary breakdown current It2, the ESD protection element structure can withstand a pulse voltage of 7 kV in the human body discharge mode, which is higher than the 1 kV of the first embodiment, and conforms to the industry's ESD protection specification of 2 kV. In the machine discharge mode, the ESD protection element structure of the second embodiment can withstand a pulse voltage of 575 V, which is also higher than the 275 V of the first embodiment. In addition, compared with the trigger voltage Vt1 of the first embodiment, the trigger voltage Vt1 of the E S D protection device structure of the second embodiment is approximately 40V, which can effectively reduce the ESD protection component structure being triggered when the ESD occurs. The voltage, which in turn increases the range of pulse voltages that the internal circuitry can withstand ESD.

另外,請參考第8圖,第8圖為本發明第二實施例之ESD保護元件結構之操作電壓與操作電流關係圖。如第8圖所示,相較於第一實施例之保持電壓為25V,本實施例之ESD 保護元件結構之保持電壓僅約略為5V,不僅可有效降低ESD保護元件結構之功率消耗,亦降低ESD保護元件結構之阻抗。由此可知,本實施例之ESD保護元件結構於具有N型之第一摻雜區中植入具有P型之第二摻雜區能產生一低阻抗路徑,將ESD電流從I/O導電墊依序經由第一重摻雜區、第二摻雜區、第一漂移區、井區以及第三摻雜區導引至接地端,亦即當ESD電壓大於N型之第一重摻雜區與P型第二摻雜區間之崩潰電壓且橫跨電阻RHVPW 兩端之電壓大於水平型npn雙載子接面電晶體之截止電壓,ESD電流可藉由垂直型npn雙載子接面電晶體以及水平型npn雙載子接面電晶體之導通所產生之低阻抗路徑有效地被導引至接地端,以有效保護內部電路。In addition, please refer to FIG. 8. FIG. 8 is a diagram showing the relationship between the operating voltage and the operating current of the structure of the ESD protection element according to the second embodiment of the present invention. As shown in FIG. 8 , the holding voltage of the structure of the ES D protection device of the present embodiment is only about 5 V compared with the holding voltage of the first embodiment, which not only effectively reduces the power consumption of the ESD protection component structure, but also reduces the power consumption of the ESD protection component structure. Reduce the impedance of the ESD protection component structure. It can be seen that the ESD protection device structure of the embodiment implants a second doped region having a P-type in a first doped region having an N-type to generate a low-impedance path, and the ESD current is from the I/O conductive pad. Directly leading to the ground via the first heavily doped region, the second doped region, the first drift region, the well region, and the third doped region, that is, when the ESD voltage is greater than the first heavily doped region of the N-type The breakdown voltage with the P-type second doping interval and the voltage across the resistor R HVPW is greater than the cut-off voltage of the horizontal npn bipolar junction transistor, and the ESD current can be electrically connected by the vertical npn bipolar junction The low impedance path produced by the turn-on of the crystal and the horizontal npn bipolar junction transistor is effectively directed to ground to effectively protect the internal circuitry.

此外,本發明之第二摻雜區並不限於將第一重摻雜區與第一漂移區區隔開,亦即第一重摻雜區可與第一漂移區相接觸。為了清楚比較其他實施例與第二實施例之差異,下述實施例與第二實施例相同之結構將使用相同之標號,且相同結構之部分將不再贅述。請參考第9圖與第10圖,第9圖為本發明第三實施例之ESD保護元件結構之剖面示意圖,第10圖為本發明ESD保護元件結構於不同之第一重摻雜區與第一漂移區之接觸寬度下經由TLP測試所量測到之實驗結果與其相對應所能承受之ESD脈衝電壓的列表。如第9圖所示,相較於第二實施例,本實施例之ESD保護元件結構150之P型的第二摻雜區108並未完全將N型的第一重摻雜區114與第一漂移區116隔離開,使第一重摻雜區114與第一漂移區116具有部分接觸。於本實施例中,第二摻雜區108係位於第一重摻雜區114之正下方,且第一重摻雜區114與第一漂移區116係具有一接觸寬度Px,但本發明並不限於此,第二摻雜區108亦可向左或向右偏移。如第10圖所示,隨著接觸寬度Px越來越大,二次崩潰電流It2係越來越低,並且觸發電壓Vt1則越來越高。由此可知,未摻雜有第二摻雜區之ESD保護元件結構所能承受之脈衝電壓係為最低,並且隨著接觸寬度Px縮小,ESD保護元件結構所能承受之脈衝電壓漸漸增加。當第二摻雜區將第一重摻雜區與第一漂移區完全隔離開時,ESD保護元件結構所能承受之脈衝電壓為最大。Furthermore, the second doped region of the present invention is not limited to separating the first heavily doped region from the first drift region, that is, the first heavily doped region may be in contact with the first drift region. For the sake of clarity, the differences between the other embodiments and the second embodiment will be omitted, and the same reference numerals will be used for the same structures as those of the second embodiment, and the same components will not be described again. Please refer to FIG. 9 and FIG. 10 , FIG. 9 is a schematic cross-sectional view showing the structure of an ESD protection element according to a third embodiment of the present invention, and FIG. 10 is a diagram showing the structure of the ESD protection element of the present invention in different first heavily doped regions and The experimental results measured by the TLP test at the contact width of a drift region correspond to a list of ESD pulse voltages that can be withstood. As shown in FIG. 9, the second doped region 108 of the P-type of the ESD protection device structure 150 of the present embodiment does not completely replace the first heavily doped region 114 of the N-type with the second embodiment. A drift region 116 is isolated such that the first heavily doped region 114 is in partial contact with the first drift region 116. In this embodiment, the second doped region 108 is located directly below the first heavily doped region 114, and the first heavily doped region 114 and the first drift region 116 have a contact width Px, but the present invention Without being limited thereto, the second doping region 108 may also be shifted to the left or right. As shown in Fig. 10, as the contact width Px becomes larger, the secondary breakdown current It2 becomes lower and lower, and the trigger voltage Vt1 becomes higher and higher. It can be seen that the pulse voltage that the ESD protection element structure not doped with the second doping region can withstand is the lowest, and as the contact width Px is reduced, the pulse voltage that the ESD protection element structure can withstand gradually increases. When the second doped region completely isolates the first heavily doped region from the first drift region, the pulse voltage that the ESD protection device structure can withstand is maximized.

本發明之ESD保護元件結構亦可具有其他變化之結構,請參考11圖至第15圖,第11圖至第15圖分別為本發明第四實施例至第八實施例之ESD保護元件結構之剖面示意圖。如第11圖所示,相較於第二實施例,第四實施例之ESD保護元件結構160之第二摻雜區108係設置於第一重摻雜區114中,且第一重摻雜區114包覆第二摻雜區108。如第12圖所示,第五實施例之ESD保護元件結構170之第二摻雜區108係設置於第一漂移區116中,且第一漂移區116包覆第二摻雜區108。亦即第二摻雜區108的位置與大小可依不同製程或產品需求而有所調整,而分別構成第二、三、四、五等之實施例。此外,如第13圖所示,相較於第二實施例,第六實施例之ESD保護元件結構180則是另包含一第五摻雜區182,具有第一導電型式,且第二導電型式之第三摻雜區110係包覆第五摻雜區182,使第三摻雜區110與第五摻雜區182構成另一個垂直型雙載子接面電晶體184,例如npn型雙載子接面電晶體。於第六實施例中,第五摻雜區182係設置於第二重摻雜區122以及第二漂移區124之間,但本發明並不限於此,第五摻雜區182亦可包覆於第二重摻雜區122之中或包覆於第二漂移區124之中,如同第二摻雜區108之於第一重摻雜區114與第一漂移區116的相對位置而可分別構成多組實施例。The structure of the ESD protection component of the present invention may also have other variations. Please refer to FIG. 11 to FIG. 15 , which are the structures of the ESD protection components of the fourth embodiment to the eighth embodiment of the present invention, respectively. Schematic diagram of the section. As shown in FIG. 11, the second doping region 108 of the ESD protection device structure 160 of the fourth embodiment is disposed in the first heavily doped region 114 and is first heavily doped as compared to the second embodiment. The region 114 encapsulates the second doped region 108. As shown in FIG. 12, the second doping region 108 of the ESD protection device structure 170 of the fifth embodiment is disposed in the first drift region 116, and the first drift region 116 covers the second doping region 108. That is, the position and size of the second doping region 108 can be adjusted according to different processes or product requirements, and constitute embodiments of the second, third, fourth, fifth, etc., respectively. In addition, as shown in FIG. 13, the ESD protection element structure 180 of the sixth embodiment further includes a fifth doping region 182 having a first conductivity type and a second conductivity type, as compared with the second embodiment. The third doped region 110 covers the fifth doped region 182, so that the third doped region 110 and the fifth doped region 182 form another vertical bipolar junction transistor 184, such as an npn type dual load. Sub-junction transistor. In the sixth embodiment, the fifth doping region 182 is disposed between the second heavily doped region 122 and the second drift region 124. However, the present invention is not limited thereto, and the fifth doping region 182 may also be coated. In the second heavily doped region 122 or in the second drift region 124, as the second doped region 108 is in the relative position of the first heavily doped region 114 and the first drift region 116, respectively A plurality of sets of embodiments are constructed.

如第14圖所示,相較於第二實施例,第七實施例之ESD保護元件結構190未包含第一隔離結構、第二隔離結構以及第三隔離結構,以使用於低電壓之操作環境。但本發明不限於此,亦可僅未包含第三隔離結構、僅未包含第一隔離結構以及第二隔離結構或僅未包含第一隔離結構。此外,如第15圖所示,相較於第二實施例,第八實施例之ESD保護元件結構200未包含閘極電極與閘極介電層。於第八實施例中,ESD保護元件結構200仍可利用第一重摻雜區114、第二摻雜區108、第一漂移區116、井區104以及第三摻雜區110所構成之低阻抗路徑將ESD電流從I/O導電墊112導引至接地端126,亦即當ESD電壓大於N型之第一重摻雜區114與P型之第二摻雜區108間之崩潰電壓且橫跨電阻RHVPW 兩端之電壓大於水平型雙載子接面電晶體120之截止電壓,ESD電流可藉由垂直型npn雙載子接面電晶體118以及水平型npn雙載子接面電晶體120之導通所產生之低阻抗路徑有效地被導引至接地端126。此外,本發明之ESD保護元件結構亦可同時未包含至少一隔離結構或未包含第一隔離結構、第二隔離結構以及第三隔離結構。As shown in FIG. 14, the ESD protection element structure 190 of the seventh embodiment does not include the first isolation structure, the second isolation structure, and the third isolation structure for use in a low voltage operating environment as compared with the second embodiment. . However, the present invention is not limited thereto, and may not include only the third isolation structure, only the first isolation structure and the second isolation structure, or only the first isolation structure. Further, as shown in Fig. 15, the ESD protection element structure 200 of the eighth embodiment does not include a gate electrode and a gate dielectric layer as compared with the second embodiment. In the eighth embodiment, the ESD protection device structure 200 can still utilize the first heavily doped region 114, the second doped region 108, the first drift region 116, the well region 104, and the third doped region 110. The impedance path directs the ESD current from the I/O conductive pad 112 to the ground terminal 126, that is, when the ESD voltage is greater than the breakdown voltage between the N-type first heavily doped region 114 and the P-type second doped region 108 and The voltage across the resistor R HVPW is greater than the cutoff voltage of the horizontal bipolar junction transistor 120. The ESD current can be passed through the vertical npn bipolar junction transistor 118 and the horizontal npn bipolar junction junction. The low impedance path created by the conduction of crystal 120 is effectively directed to ground 126. In addition, the ESD protection element structure of the present invention may also include at least one isolation structure or no first isolation structure, second isolation structure, and third isolation structure.

綜上所述,本發明利用ESD佈植製程於ESD保護元件結構之第一重摻雜區與第一漂移區中形成具有不同導電型式之第二摻雜區,以產生一低阻抗路徑,從I/O導電墊經由第一重摻雜區、第二摻雜區、第一漂移區、井區以及第三摻雜 區至接地端,並提升ESD保護元件結構之二次崩潰電流且降低觸發電壓,進而提升ESD保護元件結構所能承受之脈衝電壓。In summary, the present invention utilizes an ESD implantation process to form a second doped region having a different conductivity pattern in the first heavily doped region of the ESD protection device structure and the first drift region to generate a low impedance path. The I/O conductive pad is via the first heavily doped region, the second doped region, the first drift region, the well region, and the third doping From the zone to the ground, and increase the secondary breakdown current of the ESD protection component structure and reduce the trigger voltage, thereby increasing the pulse voltage that the ESD protection component structure can withstand.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧ESD保護元件結構10‧‧‧ESD protection component structure

12‧‧‧半導體基底12‧‧‧Semiconductor substrate

14‧‧‧井區14‧‧‧ Well Area

16‧‧‧汲極區域16‧‧‧Bungee area

18‧‧‧源極區域18‧‧‧ source area

20‧‧‧閘極介電層20‧‧‧ gate dielectric layer

22‧‧‧閘極電極22‧‧‧gate electrode

24‧‧‧摻雜區24‧‧‧Doped area

26‧‧‧接地端26‧‧‧ Grounding

28‧‧‧第一重摻雜區28‧‧‧First heavily doped area

30‧‧‧第一漂移區30‧‧‧First drift zone

31‧‧‧內部電路31‧‧‧Internal circuits

32‧‧‧I/O導電墊32‧‧‧I/O conductive pads

34‧‧‧第二重摻雜區34‧‧‧Second heavily doped area

36‧‧‧第二漂移區36‧‧‧Second drift zone

38‧‧‧第一隔離結構38‧‧‧First isolation structure

40‧‧‧第二隔離結構40‧‧‧Second isolation structure

42‧‧‧第三隔離結構42‧‧‧ Third isolation structure

44‧‧‧TPL產生器44‧‧‧TPL generator

46‧‧‧基極46‧‧‧base

100‧‧‧ESD保護元件結構100‧‧‧ESD protection component structure

102‧‧‧半導體基底102‧‧‧Semiconductor substrate

104‧‧‧井區104‧‧‧ Well Area

106‧‧‧第一摻雜區106‧‧‧First doped area

108‧‧‧第二摻雜區108‧‧‧Second doped area

110‧‧‧第三摻雜區110‧‧‧ third doping zone

111‧‧‧內部電路111‧‧‧Internal circuits

112‧‧‧I/O導電墊112‧‧‧I/O conductive pads

114‧‧‧第一重摻雜區114‧‧‧First heavily doped area

116‧‧‧第一漂移區116‧‧‧First drift zone

118‧‧‧垂直型雙載子接面電晶體118‧‧‧Vertical type double carrier junction transistor

120‧‧‧水平型雙載子接面電晶體120‧‧‧Horizontal type double carrier junction transistor

122‧‧‧第二重摻雜區122‧‧‧Second heavily doped area

124‧‧‧第二漂移區124‧‧‧Second drift zone

126‧‧‧接地端126‧‧‧ Grounding

128‧‧‧第四摻雜區128‧‧‧fourth doping zone

130‧‧‧第三重摻雜區130‧‧‧ Third heavily doped area

132‧‧‧第三漂移區132‧‧‧ Third drift zone

134‧‧‧閘極介電層134‧‧‧ gate dielectric layer

136‧‧‧閘極電極136‧‧‧gate electrode

138‧‧‧第一隔離結構138‧‧‧First isolation structure

140‧‧‧第二隔離結構140‧‧‧Second isolation structure

142‧‧‧第三隔離結構142‧‧‧ Third isolation structure

144‧‧‧TPL產生器144‧‧‧TPL generator

150‧‧‧ESD保護元件結構150‧‧‧ESD protection component structure

160‧‧‧ESD保護元件結構160‧‧‧ESD protection component structure

170‧‧‧ESD保護元件結構170‧‧‧ESD protection component structure

180‧‧‧ESD保護元件結構180‧‧‧ESD protection component structure

182‧‧‧第五摻雜區182‧‧‧ fifth doping area

184‧‧‧垂直型雙載子接面電晶體184‧‧‧Vertical type double carrier junction transistor

190‧‧‧ESD保護元件結構190‧‧‧ESD protection component structure

200‧‧‧ESD保護元件結構200‧‧‧ESD protection component structure

It2‧‧‧二次崩潰電流It2‧‧‧Second Crash Current

Vt1‧‧‧觸發電壓Vt1‧‧‧ trigger voltage

Px‧‧‧接觸寬度Px‧‧‧ contact width

第1圖為本發明第一實施例之靜電放電保護元件結構之剖面示意圖。Fig. 1 is a schematic cross-sectional view showing the structure of an electrostatic discharge protection element according to a first embodiment of the present invention.

第2圖為本發明第一實施例之ESD保護元件結構於TLP測試時之電路示意圖。FIG. 2 is a schematic circuit diagram of the structure of the ESD protection component of the first embodiment of the present invention during TLP testing.

第3圖為本發明第一實施例之ESD保護元件結構於TLP測試中之脈衝電壓與脈衝電流關係圖以及閘極電極漏電流與脈衝電流關係圖。FIG. 3 is a diagram showing a relationship between a pulse voltage and a pulse current of a structure of an ESD protection element according to a first embodiment of the present invention in a TLP test, and a relationship between a gate electrode leakage current and a pulse current.

第4圖為本發明第一實施例之ESD保護元件結構之操作電壓與操作電流關係圖。Fig. 4 is a view showing the relationship between the operating voltage and the operating current of the structure of the ESD protection element of the first embodiment of the present invention.

第5圖為本發明第二實施例之ESD保護元件結構之剖面示意圖。Fig. 5 is a cross-sectional view showing the structure of an ESD protection element according to a second embodiment of the present invention.

第6圖為本發明第二實施例之ESD保護元件結構於TLP測試時之電路示意圖。Figure 6 is a circuit diagram showing the structure of the ESD protection component of the second embodiment of the present invention during TLP testing.

第7圖為本發明第二實施例之ESD保護元件結構於TLP測試中之脈衝電壓與脈衝電流關係圖以及閘極電極漏電流 與脈衝電流關係圖。Figure 7 is a diagram showing the relationship between the pulse voltage and the pulse current and the leakage current of the gate electrode in the TLP test of the ESD protection element structure according to the second embodiment of the present invention. Diagram with pulse current.

第8圖為本發明第二實施例之ESD保護元件結構之操作電壓與操作電流關係圖。Figure 8 is a diagram showing the relationship between the operating voltage and the operating current of the structure of the ESD protection element of the second embodiment of the present invention.

第9圖為本發明第三實施例之ESD保護元件結構之剖面示意圖。Figure 9 is a cross-sectional view showing the structure of an ESD protection element according to a third embodiment of the present invention.

第10圖為本發明ESD保護元件結構於不同之第一重摻雜區與第一漂移區之接觸寬度下經由TLP測試所量測到之觸發電壓Vt1與二次崩潰電流It2以及相對應之所能承受之ESD脈衝電壓。Figure 10 is a diagram showing the trigger voltage Vt1 and the secondary breakdown current It2 measured by the TLP test under the contact width of the first heavily doped region and the first drift region of the ESD protection device of the present invention, and the corresponding Able to withstand ESD pulse voltage.

第11圖至第15圖為本發明第四實施例至第八實施例之ESD保護元件結構之剖面示意圖。11 to 15 are schematic cross-sectional views showing the structure of an ESD protection element according to fourth to eighth embodiments of the present invention.

100...ESD保護元件結構100. . . ESD protection component structure

102...半導體基底102. . . Semiconductor substrate

104...井區104. . . Well area

106...第一摻雜區106. . . First doped region

108...第二摻雜區108. . . Second doped region

110...第三摻雜區110. . . Third doped region

111...內部電路111. . . Internal circuit

112...I/O導電墊112. . . I/O conductive pad

114...第一重摻雜區114. . . First heavily doped region

116...第一漂移區116. . . First drift zone

118...垂直型雙載子接面電晶體118. . . Vertical type double carrier junction transistor

120...水平型雙載子接面電晶體120. . . Horizontal type double carrier junction transistor

122...第二重摻雜區122. . . Second heavily doped region

124...第二漂移區124. . . Second drift zone

126...接地端126. . . Ground terminal

128...第四摻雜區128. . . Fourth doped region

130...第三重摻雜區130. . . Third heavily doped region

132...第三漂移區132. . . Third drift zone

134...閘極介電層134. . . Gate dielectric layer

136...閘極電極136. . . Gate electrode

138...第一隔離結構138. . . First isolation structure

140...第二隔離結構140. . . Second isolation structure

142...第三隔離結構142. . . Third isolation structure

Claims (19)

一種靜電放電(electrostatic discharge,ESD)保護元件結構,該靜電放電保護元件結構係設置於一半導體基底上,且該靜電放電保護元件結構包含有:一井區,其具有一第一導電型式,且設置於該半導體基底之中;一第一摻雜區,其具有一第二導電型式,設置於該井區之中;一第二摻雜區,其具有該第一導電型式,且該第一摻雜區係包覆該第二摻雜區,使該第一摻雜區與該第二摻雜區構成一第一垂直型雙載子接面電晶體(vertical BJT),其中該第一摻雜區之一部分設置於該第二摻雜區上,且該第一摻雜區的另一部分設置於該第二摻雜區的下方;以及一第三摻雜區,其具有該第二導電型式,設置於該井區之中,使該第一摻雜區、該井區以及該第三摻雜區構成一水平型雙載子接面電晶體(lateral BJT),其中該井區設置於該第一摻雜區與該第三摻雜區之間。 An electrostatic discharge (ESD) protection device structure, the electrostatic discharge protection device structure is disposed on a semiconductor substrate, and the electrostatic discharge protection device structure comprises: a well region having a first conductivity type, and Provided in the semiconductor substrate; a first doped region having a second conductivity pattern disposed in the well region; a second doped region having the first conductivity pattern, and the first The doped region encapsulates the second doped region such that the first doped region and the second doped region form a first vertical bipolar junction transistor (vertical BJT), wherein the first doping One portion of the impurity region is disposed on the second doped region, and another portion of the first doped region is disposed under the second doped region; and a third doped region having the second conductive pattern Provided in the well region, the first doped region, the well region and the third doped region constitute a horizontal type bipolar junction transistor (lateral BJT), wherein the well region is disposed at the Between the first doped region and the third doped region. 如申請專利範圍第1項所述之靜電放電保護元件結構,其中該第一摻雜區包含一第一重摻雜區以及一第一漂移區,且該第一重摻雜區係設置於該第一漂移區之上方。 The structure of the electrostatic discharge protection device of claim 1, wherein the first doped region comprises a first heavily doped region and a first drift region, and the first heavily doped region is disposed on the Above the first drift zone. 如申請專利範圍第2項所述之靜電放電保護元件結構,其中該第二摻雜區係設置於該第一重摻雜區與該第一漂移區之間。 The electrostatic discharge protection device structure of claim 2, wherein the second doped region is disposed between the first heavily doped region and the first drift region. 如申請專利範圍第3項所述之靜電放電保護元件結構,其中該第二摻雜區係將該第一重摻雜區與該第一漂移區區隔開。 The electrostatic discharge protection device structure of claim 3, wherein the second doped region separates the first heavily doped region from the first drift region. 如申請專利範圍第3項所述之靜電放電保護元件結構,其中該第一重摻雜區係與該第一漂移區相接觸。 The electrostatic discharge protection device structure of claim 3, wherein the first heavily doped region is in contact with the first drift region. 如申請專利範圍第2項所述之靜電放電保護元件結構,其中該第一重摻雜區係包覆該第二摻雜區。 The electrostatic discharge protection device structure of claim 2, wherein the first heavily doped region covers the second doped region. 如申請專利範圍第2項所述之靜電放電保護元件結構,其中該第一漂移區係包覆該第二摻雜區。 The electrostatic discharge protection device structure of claim 2, wherein the first drift region covers the second doped region. 如申請專利範圍第2項所述之靜電放電保護元件結構,另包含一第一隔離結構,圍繞該第一重摻雜區。 The electrostatic discharge protection device structure of claim 2, further comprising a first isolation structure surrounding the first heavily doped region. 如申請專利範圍第8項所述之靜電放電保護元件結構,另包含一第二隔離結構,設置於該第三摻雜區之中。 The electrostatic discharge protection device structure of claim 8 further comprising a second isolation structure disposed in the third doped region. 如申請專利範圍第2項所述之靜電放電保護元件結構,其中該第一重摻雜區係電性連接至一導電墊。 The electrostatic discharge protection device structure of claim 2, wherein the first heavily doped region is electrically connected to a conductive pad. 如申請專利範圍第1項所述之靜電放電保護元件結構,另包含一閘極介電層以及一閘極電極,該閘極介電層係設置於該第一摻雜區與該第三摻雜區間之該半導體基底之表面上且部分覆蓋該第一摻雜區與該第三摻雜區,並且該閘極電極係設置於該閘極介電層之上。 The electrostatic discharge protection device structure of claim 1, further comprising a gate dielectric layer and a gate electrode, wherein the gate dielectric layer is disposed in the first doped region and the third doped region And superposing the first doped region and the third doped region on the surface of the semiconductor substrate, and the gate electrode is disposed on the gate dielectric layer. 如申請專利範圍第11項所述之靜電放電保護元件結構,其中該閘極電極係電性連接至一接地端。 The electrostatic discharge protection device structure of claim 11, wherein the gate electrode is electrically connected to a ground. 如申請專利範圍第1項所述之靜電放電保護元件結構,另包含一第四摻雜區,其具有該第一導電型式,設置於該井區之中。 The electrostatic discharge protection device structure of claim 1, further comprising a fourth doped region having the first conductivity pattern disposed in the well region. 如申請專利範圍第13項所述之靜電放電保護元件結構,其中該第四摻雜區係電性連接至該接地端與該井區。 The electrostatic discharge protection device structure of claim 13, wherein the fourth doped region is electrically connected to the ground terminal and the well region. 如申請專利範圍第13項所述之靜電放電保護元件結構,另包含一第三隔離結構,包圍該第四摻雜區,用以將該第四摻雜區隔離開。 The electrostatic discharge protection device structure of claim 13 further comprising a third isolation structure surrounding the fourth doped region for isolating the fourth doped region. 如申請專利範圍第1項所述之靜電放電保護元件結構,其中該第三摻雜區包含一第二重摻雜區以及一第二漂移區,且該第二重摻雜區係設置於該第二漂移區之上方。 The electrostatic discharge protection device structure of claim 1, wherein the third doped region comprises a second heavily doped region and a second drift region, and the second heavily doped region is disposed on the Above the second drift zone. 如申請專利範圍第1項所述之靜電放電保護元件結構,另包含一第五摻雜區,其具有該第二導電型式,且該第三摻雜區包覆該第五摻雜區,使該第三摻雜區與該第五摻雜區構成一第二垂直型雙載子接面電晶體。 The electrostatic discharge protection device structure of claim 1, further comprising a fifth doped region having the second conductive pattern, and the third doped region covers the fifth doped region The third doped region and the fifth doped region form a second vertical type bipolar junction transistor. 如申請專利範圍第1項所述之靜電放電保護元件結構,其中該第三摻雜區係電性連接至該接地端。 The electrostatic discharge protection device structure of claim 1, wherein the third doped region is electrically connected to the ground. 如申請專利範圍第1項所述之靜電放電保護元件結構,其中該第一導電型式為P型,且該第二導電型式為N型。The electrostatic discharge protection device structure of claim 1, wherein the first conductivity type is a P type, and the second conductivity type is an N type.
TW098127701A 2009-08-18 2009-08-18 Esd protection device structure TWI449150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098127701A TWI449150B (en) 2009-08-18 2009-08-18 Esd protection device structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098127701A TWI449150B (en) 2009-08-18 2009-08-18 Esd protection device structure

Publications (2)

Publication Number Publication Date
TW201108383A TW201108383A (en) 2011-03-01
TWI449150B true TWI449150B (en) 2014-08-11

Family

ID=44835599

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127701A TWI449150B (en) 2009-08-18 2009-08-18 Esd protection device structure

Country Status (1)

Country Link
TW (1) TWI449150B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453887B (en) * 2011-08-26 2014-09-21 Macronix Int Co Ltd Semiconductor structure and manufacturing method for the same and esd circuit
US8648386B2 (en) 2011-08-31 2014-02-11 Macronix International Co., Ltd. Semiconductor structure and manufacturing method for the same and ESD circuit
US8853783B2 (en) * 2012-01-19 2014-10-07 Globalfoundries Singapore Pte. Ltd. ESD protection circuit
TWI506784B (en) * 2012-02-09 2015-11-01 United Microelectronics Corp Semiconductor device
TWI710096B (en) * 2019-09-04 2020-11-11 智原科技股份有限公司 Electrostatic discharge protection apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050412A1 (en) * 2000-03-31 2001-12-13 Davide Patti Monolithically integrated electronic device and fabrication process therefor
US20090127659A1 (en) * 2007-11-15 2009-05-21 Zia Alan Shafi Bipolar junction transistor with a low collector resistance and method of forming the bipolar junction transistor in a CMOS process flow

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050412A1 (en) * 2000-03-31 2001-12-13 Davide Patti Monolithically integrated electronic device and fabrication process therefor
US20090127659A1 (en) * 2007-11-15 2009-05-21 Zia Alan Shafi Bipolar junction transistor with a low collector resistance and method of forming the bipolar junction transistor in a CMOS process flow

Also Published As

Publication number Publication date
TW201108383A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
US7615826B2 (en) Electrostatic discharge protection semiconductor structure
US7906810B2 (en) LDMOS device for ESD protection circuit
US7986011B2 (en) Electrostatic discharge protection device
KR101975608B1 (en) Electrostatic discharge high voltage type transistor and electrostatic dscharge protection circuit thereof
TWI580001B (en) Electrstatic discharge protection circuit, structure and method of making the same
JP2010016177A (en) Electrostatic discharge protection element
US8415745B2 (en) ESD protection device
US9117673B2 (en) Electrostatic discharge protection circuit including a plurality of doped regions and a gate connected to a capacitor and a resistor
US9673189B2 (en) ESD unit
CN109712971B (en) Semiconductor electrostatic discharge protection element
TWI449150B (en) Esd protection device structure
TW201633492A (en) Electrostatic discharge protection semiconductor device
US8299532B2 (en) ESD protection device structure
US11469222B2 (en) ESD-protection device and MOS-transistor having at least one integrated ESD-protection device
KR20200134824A (en) Semiconductor Device for Electrostatic Discharge Protection
US10163888B2 (en) Self-biased bidirectional ESD protection circuit
US9418981B2 (en) High-voltage electrostatic discharge device incorporating a metal-on-semiconductor and bipolar junction structure
CN111725206B (en) PMOS triggered SCR device, manufacturing method of SCR device and SCR electrostatic protection circuit
CN114492285A (en) Layout design method for improving ESD protection capability of interdigital structure device
US7053452B2 (en) Metal oxide semiconductor device for electrostatic discharge protection circuit
US10121777B2 (en) Silicon controlled rectifier
JP2023141491A (en) ESD protection circuit and semiconductor device
JP2023141490A (en) ESD protection circuit and semiconductor device
TWI472013B (en) Electrostatic discharge protection device
KR101369194B1 (en) Esd protection circuit for semiconductor integrated circuit