WO2010000165A1 - 差分正交相移键控系统、方法及设备 - Google Patents

差分正交相移键控系统、方法及设备 Download PDF

Info

Publication number
WO2010000165A1
WO2010000165A1 PCT/CN2009/072025 CN2009072025W WO2010000165A1 WO 2010000165 A1 WO2010000165 A1 WO 2010000165A1 CN 2009072025 W CN2009072025 W CN 2009072025W WO 2010000165 A1 WO2010000165 A1 WO 2010000165A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase shift
shift keying
differential
differential phase
Prior art date
Application number
PCT/CN2009/072025
Other languages
English (en)
French (fr)
Inventor
张新亮
余宇
魏伦
李利军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09771935A priority Critical patent/EP2326033A4/en
Priority to JP2011515072A priority patent/JP2011526445A/ja
Priority to CA2728750A priority patent/CA2728750A1/en
Publication of WO2010000165A1 publication Critical patent/WO2010000165A1/zh
Priority to US12/982,002 priority patent/US20110158654A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5055Laser transmitters using external modulation using a pre-coder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/676Optical arrangements in the receiver for all-optical demodulation of the input optical signal
    • H04B10/677Optical arrangements in the receiver for all-optical demodulation of the input optical signal for differentially modulated signal, e.g. DPSK signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a differential quadrature phase shift keying system, method, and device. Background technique
  • Differential Quadrature Phase Shift Keying (DQPSK) signals have high spectral utilization efficiency, and the dispersion tolerance can be maintained at the same symbol rate, and the system capacity can be increased to differential phase shift keying ( Differential Phase Shift Keying, DPSK) is twice the signal.
  • DPSK Differential Phase Shift Keying
  • the DQPSK signal can achieve constant envelope or approximately constant envelope transmission, it can effectively suppress the nonlinear effects of various types of optical fibers, such as Cross-Phase Modulation (XPM) and Self-Phase Modulation. SPM), etc., therefore DQPSK signals have a good application prospect in high-speed and large-capacity transmission systems.
  • XPM Cross-Phase Modulation
  • SPM Self-Phase Modulation
  • the multi-channel system based on the DQPSK modulation format differs from the conventional multi-channel system mainly in the transmitting end and the receiving end.
  • the following scheme can be used to generate the DQPSK signal at the transmitting end: Two parallel Mach-Zehnder Modulators (MZM), one MZM in series with a Phase Modulator (PM) or multi-stage electrical signal drive One MZM.
  • MZM Mach-Zehnder Modulators
  • PM Phase Modulator
  • the currently used solution is to use two parallel MZMs.
  • the receiving end of the multi-channel system based on the DQPSK modulation format is complex. Generally, two asymmetric MZM and two balanced probes are needed to demodulate the original signal, and the DQPSK signal is more sensitive to the interferometer than the DPSK signal. If you want to implement a multi-channel DQPSK system, the structure of the receiving end will be quite complicated and the cost will increase.
  • the receiver needs to use two asymmetric Mach Zed interferometers (AMZI, Asymmetric Mach-Zehnder Interferometer).
  • AMZI Asymmetric Mach Zed interferometer
  • Two uncorrelated data streams u and v are divided into an in-phase signal I and a quadrature signal Q after precoding by the electric domain, and the encoding rules are respectively formulas (1) and (2): I ⁇ u ⁇ ii ⁇ Q ⁇ + v ⁇ ii ⁇ Q ⁇ ) ( 1 ) ⁇ 10 + ( 2 )
  • the AC signal Q drives two MZMs respectively, and the MZM operates in a push-pull state, that is, the sum of the driving voltages of the two arms is a fixed bias voltage.
  • the working conditions of the MZM are set as follows: the bias point is the zero point of the transmission curve, the frequency of the driving signal is the same as the frequency of the output signal, and the peak value of the driving signal is 2 ⁇ , ⁇ is the output light intensity of the MZM single arm when operating from the maximum To minimize the required switching voltage.
  • NRZ-DPSK non-return-to-Zero Differential Phase Shift Keying
  • the signal carries four kinds of phase information: [- ' ⁇ ], but the phase information here does not indicate the u and V that are desired to be transmitted, and only the phase difference between adjacent symbols is the information transmitted by the DQPSK signal.
  • Demodulating the DQPSK signal requires two AMZIs.
  • the DQPSK signal is divided into two channels of equal power, and enters the AMZI of the upper and lower channels respectively.
  • the AMZI of the previous channel there is a 1-bit delay and phase difference between the two arms, and the next AMZI has a 1-bit delay between the two arms and a phase difference of -4. Since there is a 1-bit delay in the AMZI, the phase difference information between the adjacent two bits can be extracted.
  • Balance detection is performed on the two outputs of the AMZI of the previous channel, and the original data u can be obtained, and the two outputs of the next AMZI are balancedly detected, and the original data v can be obtained.
  • the single channel DQPSK signal generation and demodulation scheme constitutes a multi-channel DQPSK system, as shown in Figure 2.
  • the N-channel signal lights of different wavelengths are respectively outputted by different DQPSK signal generating modules to output multi-channel DQPSK signals, which are multiplexed together by a multiplexer, and then erbium-doped optical fiber amps (EDFA) Zoom in and transmit in the fiber link.
  • EDFA erbium-doped optical fiber amps
  • the corresponding demultiplexer demultiplexes into N signals, and then demodulates the original data stream through different DQPSK demodulation modules.
  • the channel center wavelength of the multiplexer and demultiplexer used in the system is aligned with the carrier of the original DQPSK signal. Wavelength.
  • Embodiments of the present invention provide a differential quadrature phase shift keying system, method, and device, which combine a multiplexer and a solution in a Dense Wavelength Division Multiplexed (DWDM) system by demodulating a DQPSK signal.
  • the multiplexer enables multi-channel transmission of DQPSK signals without the need for additional phase demodulation components at the receiving end of the system.
  • a differential quadrature phase shift keying system includes a transmitting end, where the sending end includes:
  • a precoder for precoding the input first original signal and the second original signal according to a predetermined encoding rule to generate an in-phase signal and a quadrature signal
  • a first modulator configured to modulate the in-phase signal to generate a first differential phase shift keying signal
  • a second modulator to modulate the quadrature signal to generate a second differential phase shift keying signal
  • the differential phase shift keying signal of the first differential phase shift keying signal and the second differential phase shift keying signal are phase shifted by ninety degrees, and then overlapped with another differential phase shifting keying signal.
  • a differential quadrature phase shift keying signal is obtained and sent to the receiving end.
  • receiving end comprising:
  • the splitter is configured to divide the differential phase shift keying signal from the transmitting end into two signals and output the same; and the demodulating unit is configured to respectively demodulate the two differential phase shift keying signals output by the splitter.
  • a transmitting end configured to pre-code the input N first original signal and the N second original signal according to a predetermined encoding rule to generate an N in-phase signal and an N orthogonal signal, and modulate the N channel
  • the phase signal generates N first differential phase shift keying signals, modulating the N orthogonal signals to generate N second signals, and the N first differential phase shift keying signals and the N second signals
  • the one-way differential phase shift keying signal in the phase shift is ninety degrees, and then interfering with another N differential phase shift keying signal to obtain N differential differential phase shift keying differential phase shift keying signals.
  • the N differential differential phase shift keying signal is multiplexed into one N-channel differential phase shift keying signal and sent to the receiving end;
  • a receiving end configured to demultiplex an N phase differential phase shift keying signal from the transmitting end into an N differential phase shift keying signal, and the N differential phase shift keying signal passes through a detuning filtering manner Performing demodulation to restore the N first original signal and the N second original signal; wherein N is an integer greater than one.
  • the transmitting end pre-codes the input first original signal and the second original signal to generate an in-phase signal and a quadrature signal; modulating the in-phase signal to generate a first differential phase shift keying signal, and modulating the orthogonal signal generating a second differential phase shift keying signal; phase shifting a differential phase shift keying signal of the first differential phase shift keying signal and the second differential phase shift keying signal by ninety degrees, and then The differential phase shift keying signal interferes to obtain a differential quadrature phase shift keying signal.
  • the transmitting end pre-codes the input N-channel first original signal and the N-channel second original signal to generate an N-channel in-phase signal and an N-channel orthogonal signal;
  • N is an integer greater than one .
  • two detuning filters are used to demodulate the DQPSK signal at the receiving end of the system, thereby avoiding the use of two asymmetric AMZI and two balanced detectors in the prior art DQPSK demodulation scheme.
  • the complex scheme of tuning avoids the precise control of the phase difference of the asymmetric AMZI two arms, and is easy to control and adjust the signal, which can greatly reduce the cost of the system.
  • 1 is a schematic diagram of DQPSK signal generation and demodulation in the prior art
  • FIG. 2 is a schematic diagram of a multi-channel DQPSK system in the prior art
  • FIG. 3 is a schematic diagram of a device at a transmitting end according to Embodiment 1 of the present invention
  • 4 is a schematic diagram of a receiving end device according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of another receiving end device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a transmitting end device according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of a receiving end device according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic diagram of a device at a transmitting end according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic diagram of a DQPSK signal generating module according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic diagram of a DQPSK signal decoding module according to Embodiment 8 of the present invention.
  • FIG. 11 is a schematic diagram of a spectrum of an AWG bias channel in Embodiment 9 of the present invention.
  • FIG. 12 is a structural diagram of a DWDM system based on a DQPSK modulation format according to Embodiment 10 of the present invention.
  • FIG. 13 is a structural diagram of a receiving end of a 40 Gb/s DQPSK system according to Embodiment 11 of the present invention
  • FIG. 14 is a structural diagram of a receiving end of a DQPSK system in which an interpolating multiplexer is added according to an embodiment of the present invention
  • FIG. 15 is a schematic diagram of a transmission system simulated in Embodiment 12 of the present invention.
  • 16a is a spectrum diagram of a four-way DQPSK signal after being multiplexed by an AWG according to an embodiment of the present invention
  • 16b is a spectrum diagram of one of the signals after demultiplexing the eight-channel AWG in the embodiment of the present invention.
  • 17a is a waveform diagram of signals demodulated in an embodiment of the present invention.
  • Figure 17b is a schematic view of the eye diagram in the embodiment of the present invention.
  • FIG. 18 is a structural diagram of a receiving end of a DQPSK system in which a demultiplexer is added according to an embodiment of the present invention
  • FIG. 19 is a structural diagram of a receiving end of a DQPSK system for demodulating a detuning filter according to an embodiment of the present invention. detailed description
  • the demultiplexer realizes demodulation and direct detection of the DQPSK signal, avoids the use of the two-way AMZI and the balanced detector, greatly complicates the complexity of the system, and can reduce the cost of the system and improve the reliability.
  • Embodiments of the present invention provide a differential quadrature phase shift keying system, including: a transmitting end, configured to precode an input first original signal and a second original signal to generate an in-phase signal and a quadrature signal, and modulate
  • the in-phase signal generates a first non-return-to-zero two-phase differential phase shift keying NRZ-DPSK signal
  • the modulated quadrature signal generates a second NRZ-DPSK signal, one of the first NRZ-DPSK signal and the second NRZ-DPSK signal
  • the NRZ-DPSK signal is phase shifted by ninety degrees, and then interferes with another NRZ-DPSK signal to obtain a differential quadrature phase shift keying DQPSK signal, which is sent to the receiving end; and a receiving end for passing the DQPSK signal from the transmitting end Demodulation filtering is performed in a demodulated manner, and then the first original signal and the second original signal are restored by photoelectric conversion.
  • the transmitting end includes: a precoder 310, a first Machsider modulator MZM 320, a second MZM 330, and an interferometer 340.
  • the precoder 310 is configured to receive the first original signal and the second original signal, and perform precoding according to a preset encoding rule to generate an in-phase signal and a quadrature signal.
  • the first MZM 320 is configured to be driven by using the in-phase signal.
  • Modulating to obtain a first NRZ-DPSK signal a second MZM 330 for driving with a quadrature signal, modulating to obtain a second NRZ-DPSK signal; and an interferometer 340 for using the first NRZ-DPSK signal and the second NRZ
  • An NRZ-DPSK signal in the -DPSK signal is phase shifted by ninety degrees, and then interferes with another NRZ-DPSK signal to obtain a DQPSK signal, which is sent to the receiving end.
  • the receiving end includes: a splitter 410, a first detuning filter 420, a second detuning filter 430, a first photoelectric converter 440, and a second photoelectric converter 450, this embodiment
  • the splitter 410 is configured to divide the DQPSK signal from the transmitting end into two DQPSK signals and output the same
  • the first detuning filter 420 is configured to perform a detuning filtering method on the DQPSK signal output by the splitter.
  • the second detuning filter 430 is configured to demodulate another DQPSK signal output by the splitter by means of detuning filtering, and output to the second photoelectric conversion Device a first photoelectric converter 440, configured to convert the signal demodulated by the first detuning filter 420 into an electrical signal, and output the restored first original signal; and the second photoelectric converter 450 is configured to The demodulated signal of the second detuning filter 430 is converted into an electrical signal, and the restored second original signal is output.
  • the receiving end may also be changed as shown in FIG. 5, including: a detuning filter 510, a splitter 520, a first photoelectric converter 530, and a second photoelectric a converter 540; wherein, the detuning filter 510 is configured to demodulate the DQPSK signal from the transmitting end by means of detuning filtering, and output to the splitter; and the splitter 520 is configured to extract the detuned filter
  • the adjusted signal is divided into two demodulated signals and output;
  • the first photoelectric converter 530 is configured to convert a demodulated signal outputted by the splitter into an electrical signal, and output the restored first original signal;
  • the photoelectric converter 540 is configured to convert another demodulated signal output by the splitter into an electrical signal, and output the restored second original signal.
  • a differential quadrature phase shift keying system including: a transmitting end, configured to precode the input N first original signal and the N second original signal to generate N in phase Signal and N orthogonal signals, modulating the N in-phase signals to generate N first non-return-to-zero two-phase differential phase shift keying NRZ-DPSK signals, modulating the N orthogonal signals to generate N second NRZ a DPSK signal, wherein the N-way first NRZ-DPSK signal and the N-way NRZ-DPSK signal of the N-way second NRZ-DPSK signal are phase-shifted by 90 degrees, and then the other N-way NRZ-DPSK The signal is interfered to obtain N differential differential phase shift keying DQPSK signals, and the N DQPSK signals are multiplexed into one N channel DQPSK signal and sent to the receiving end; the receiving end is configured to receive the signal from the transmitting end An N-channel DQPSK signal is demultiplexed into N-
  • the transmitting end includes: N DQPSK signal generating modules and an N-channel arrayed waveguide grating AWG; wherein, the DQPSK signal generating module comprises: a precoder, a first Mach Zeder modulator MZM, a second MZM, and an interferometer; a precoder for receiving the first original signal and the second original signal, and precoding according to a preset encoding rule, generating an in-phase signal and orthogonal a signal; a first MZM for driving with an in-phase signal, modulating to obtain a first NRZ-DPSK signal; a second MZM for driving with a quadrature signal, modulating to obtain a second NRZ-DPSK signal; And shifting an NRZ-DPSK signal of the first NRZ-DPSK signal and the second NRZ-DPSK signal by ninety degrees, and then interfering with another NRZ-DPSK signal to obtain a DQPSK signal; the N channel AWG is used for The N-
  • the receiving end comprises: an N-channel AWG, N splitters, 2N detuning filters, 2N photoelectric converters, and the N splitters in this embodiment can also be implemented by using an N-way splitter.
  • 2N detuning filters can also be implemented using two N detuning filters.
  • the N-channel AWG is configured to demultiplex an N-channel DQPSK signal from the transmitting end into an N-way DQPSK signal, and output each DQPSK signal to a corresponding splitter;
  • the splitter is configured to solve the solution from the N-channel AWG One DQPSK signal in the multiplexed N-channel DQPSK signal is divided into two DQPSK signals and outputted;
  • a detuning filter is used to demodulate a DQPSK signal from the output of the splitter by means of detuning filtering.
  • the photoelectric converter is configured to convert the signal demodulated from the detuning filter into an electrical signal, and output the restored N original first signal or N One of the original signals in the second original signal.
  • the receiving end may further include: a 2N channel AWG and 2N photoelectric converters; wherein, the 2N channel AWG is configured to decode an N channel DQPSK signal from the transmitting end. And demodulating to generate 2N demodulated signals according to the method of detuning filtering, and outputting each demodulated signal to a corresponding photoelectric converter; photoelectric converter for converting a demodulated signal from the 2N channel AWG output It is an electrical signal, and outputs one of the restored N original original signals or the N original original signals.
  • the receiving end may further include: a splitter, a first interleave multiplexer, a second interleave multiplexer, a first N channel AWG, and a second N channel AWG.
  • the splitter is configured to divide an N-channel DQPSK signal from the transmitting end into two N-channel DQPSK signals and output;
  • the first interpolating multiplexer is used for the slave branching
  • the N-channel DQPSK signal output by the device extracts the odd-channel signal, and demodulates and generates the N-channel demodulated signal according to the method of detuning filtering, and outputs the signal to the first AWG;
  • the device is configured to extract an even channel signal from an N channel DQPSK signal output from the splitter, and demodulate and generate N demodulated signals according to the method of detuning filtering, and output to the second AWG;
  • the first AWG which will come from the N-channel demodulated signals of one interleave multiplexer are demultiplexed, and each demodulated signal is outputted to a corresponding photoelectric converter;
  • the second AWG performs N-channel demodulated signals from the second interleave multiplexer Demultiplexing,
  • the third embodiment provides a transmitting end device, which is applied to a differential quadrature phase shift keying system.
  • the device includes: a first module 610, configured to input a first original signal and a second The original signal is precoded to generate an in-phase signal and a quadrature signal; a second module 620 is configured to modulate the in-phase signal to generate a first non-return-to-zero two-phase differential phase shift keying NRZ-DPSK signal, and to modulate the orthogonal signal generation a second NRZ-DPSK signal; a third module 630, configured to phase shift one NRZ-DPSK signal of the first NRZ-DPSK signal and the second NRZ-DPSK signal by ninety degrees, and then interfere with another NRZ-DPSK signal , obtain differential quadrature phase shift keying DQPSK signal and send.
  • the present embodiment provides a receiving end device, which is applied to a differential quadrature phase shift keying system.
  • the device as shown in FIG. 7, includes: a first module 710, configured to receive differential quadrature phase shift keying
  • the DQPSK signal is demodulated by means of detuning filtering; the obtaining of the DQPSK signal comprises: precoding the input first original signal and the second original signal at the transmitting end to generate an in-phase signal and a quadrature signal, and modulating the in-phase signal Generating a first non-return-to-zero two-phase differential phase shift keying NRZ-DPSK signal, modulating the quadrature signal to generate a second NRZ-DPSK signal, and NRZ-DPSK of the first NRZ-DPSK signal and the second NRZ-DPSK signal.
  • the signal phase shifts by ninety degrees, and then interferes with another NRZ-DPSK signal to obtain a differential quadrature phase shift keying DQPSK signal and transmit
  • the first module includes: a splitter, a first detuning filter, and a second detuning filter; wherein the splitter is configured to split the received DQPSK signal into two DQPSK signals and output the same; a first detuning filter for demodulating a DQPSK signal outputted by the splitter by means of detuning filtering, and outputting the demodulated signal to the second module; and a second detuning filter for The other DQPSK signal output by the splitter is demodulated by means of detuning filtering, and the demodulated signal is output to the second module.
  • the first module may further include: a detuning filter and a splitter; wherein, the detuning filter is configured to demodulate the received DQPSK signal by means of detuning filtering, and output the demodulated signal To the splitter; the splitter is configured to split the signal demodulated from the detuning filter into two demodulated signals and output to the second module.
  • a detuning filter is configured to demodulate the received DQPSK signal by means of detuning filtering, and output the demodulated signal To the splitter
  • the splitter is configured to split the signal demodulated from the detuning filter into two demodulated signals and output to the second module.
  • the present embodiment provides a transmitting end device, which is applied to a differential quadrature phase shift keying system.
  • the device as shown in FIG. 8, includes: a first module 810, configured to input an input N first original signal and N The second original signal of the path is pre-coded to generate an N-channel in-phase signal and an N-channel quadrature signal; a second module 820 is configured to modulate the N-channel in-phase signal to generate N-channel first non-return-to-zero two-phase differential phase shift key Controlling the NRZ-DPSK signal, modulating the N orthogonal signals to generate N second NRZ-DPSK signals; and the third module 830, for using one of the N first NRZ-DPSK signals and the N second NRZ-DPSK signals The N-channel NRZ-DPSK signal is phase-shifted by 90 degrees, and then interferes with another N-channel NRZ-DPSK signal to obtain N-channel differential quadrature phase-shift keying DQPSK signal.
  • the embodiment provides a receiving end device, which is applied to a differential quadrature phase shift keying system, and the device includes: a first module, configured to demultiplex a received differential quadrature phase shift keying DQPSK signal into N-channel DQPSK signal, then demodulate N-channel DQPSK signal by means of detuning filtering; obtaining N-channel DQPSK signal includes: N-channel first original signal and N-path second original signal input at the transmitting end Precoding, generating N-channel in-phase signals and N-channel quadrature signals, modulating N-channel in-phase signals to generate N-channel first non-return-to-zero two-phase differential phase-shift keying NRZ-DPSK signals, and modulating N-channel orthogonal signals to generate N-way second NRZ-DPSK signal, phase-shifting one N-way NRZ-DPSK signal of N-channel first NRZ-DPSK signal and N-way second NRZ-DPSK signal by 90 degrees, and then another N-way
  • the first module includes: an N-channel arrayed waveguide grating AWG, N splitters, and 2N detuning filters; wherein, the N-channel AWG is configured to demultiplex the received one-channel N-channel DQPSK signal into N The DQPSK signal is output to each of the DQPSK signals to the corresponding splitter; the splitter is configured to divide one DQPSK signal of the N-channel DQPSK signals demultiplexed from the N-channel AWG into two DQPSK signals and output the signals;
  • the detuning filter is configured to demodulate a DQPSK signal from the output of the splitter by means of detuning filtering, and output the demodulated signal to the second module.
  • the first module may further include: a 2N channel AWG, configured to demultiplex the received N channel DQPSK signal, and demodulate and generate 2N demodulation signals according to the method of detuning filtering, and output demodulation Signal to the second module.
  • a 2N channel AWG configured to demultiplex the received N channel DQPSK signal, and demodulate and generate 2N demodulation signals according to the method of detuning filtering, and output demodulation Signal to the second module.
  • the first module may further include: a splitter, a first interleave multiplexer, a second interleave multiplexer, a first AWG, and a second AWG; wherein, the splitter is configured to receive the all the way The N channel DQPSK signal is divided into two DQPSK signals and output; the first interleave multiplexer is configured to extract an odd channel signal from an N channel DQPSK signal output from the splitter, and demodulate and generate N according to the detuning filtering method.
  • the demodulation signal is output to the first AWG;
  • the second interleave multiplexer is configured to extract an even channel signal from an N channel DQPSK signal output from the splitter, and demodulate and generate an N path solution according to the method of detuning filtering Adjusting the signal, outputting to the second AWG; the first AWG, demultiplexing the N demodulated signals from the first interleave multiplexer, and outputting each demodulated signal to the second module; the second AWG, which will come from The N-channel demodulated signals of the second interleave multiplexer are demultiplexed, and each demodulated signal is output to the second module.
  • This embodiment provides a transmitting end device.
  • two uncorrelated 20 Gb/s random code streams u and V are used as original bit signals, and are divided into in-phase signals by precoding of the electric domain.
  • MZM is modulated separately from the quadrature signal Q.
  • Equations (3) and (4) are in line with the most compact and - or standard, and the logical relationships represented by the two formulas are the same.
  • the formulas (3) and (4) are as shown in Table 1.
  • This embodiment provides a receiving end device that demodulates a signal by using a detuning filter.
  • the center wavelength of the filter is not exactly aligned with the center wavelength of the carrier, but rather has a certain degree of detuning relative to the center wavelength of the carrier.
  • the DQPSK signal is demodulated using two detuning filters.
  • the u signal is output at the first detuning filter, and the V signal is output at the second detuning filter.
  • the V signal is output at the first detuning filter, and the u signal is output at the second detuning filter.
  • the bandwidth and detuning of the filter have certain requirements. Select the filter bandwidth and the amount of detuning, try to make the linear region of the filter pass the center wavelength of the carrier. If the filter bandwidth is wide, the amount of detuning is very large. At this time, the output signal amplitude is small, and if the filter The bandwidth is small, and the amount of detuning is also small. It is difficult to extract the phase change information at this time. Generally, the bandwidth and the amount of detuning of the filter are equal, and are between 0.6 and 1.5 times the signal rate.
  • the demultiplexing and demodulation processes are combined.
  • the AWG with channel spacing of 100 GHz is used for demultiplexing and demodulation.
  • the DQPSK signal carrier is used.
  • the center wavelength is not aligned with the center wavelength of the channel of the AWG, but is located in the middle of the two channels of the AWG.
  • the adjacent two channels of the AWG are used to demodulate and demultiplex one of the DQPSK signals.
  • a DWDM system based on a DQPSK modulation format is proposed, as shown in the figure.
  • the AWG is used as an implementation case for analysis.
  • the N-channel DQPSK signal is multiplexed into a signal through the N-channel AWG, and transmitted to the receiving end for demodulation via the optical fiber link.
  • Demodulation and DQPSK signal demodulation are simultaneously implemented at the receiving end using an N-channel AWG.
  • two adjacent channels are used to demodulate one signal in the multiplexed signal.
  • the operating wavelengths of the two channels are offset from the center wavelength of the multiplexed channel of the transmitting end. . This allows the U and V signals in the original data to be directly resolved on these two channels by appropriate offsetting of the original DQPSK signal.
  • a 40 Gb/s DQPSK system is taken as an example, as shown in FIG. If the channel spacing is 100 GHz, a demultiplexer with a channel spacing of 50 GHz is used at the receiving end, but the passband wavelength of the output channel drifts by 25 GHz as a whole with respect to the original standard channel wavelength, so that the adjacent two channel pairs of the demultiplexing end can be utilized. One channel in the original line is demultiplexed and decoded.
  • the scheme shown in FIG. 13 can be used for demodulation and demultiplexing. if the channel spacing is 50 GHz, the same demultiplexing and demodulation scheme cannot be used, and the channel crosstalk caused at this time will be large.
  • the demodulation of the receiving end with a channel spacing of 25 GHz cannot be correctly decoded and demultiplexed.
  • the crosstalk between the channels is very large.
  • the multiplexer (Interleaver) technology separates the odd and even channels in the original channel to obtain a multiplexed signal with an interval of 100 GHz, and then uses an AWG demultiplexer for decoding and demultiplexing.
  • the specific implementation scheme is as shown in FIG. 14.
  • the DQPSK signal of one N channel transmitted in the optical fiber link is divided into two N-channel DQPSK signals by a splitter, and input to the first interpolating multiplexer and the second inter-interleaving respectively.
  • Multiplexer the first interleave multiplexer extracts odd channel signals from an N-channel DQPSK signal, and demodulates and generates N demodulated signals according to the method of detuning filtering, and outputs to N-channel AWG1 demultiplexing, and outputs each channel Demodulating the signal to the corresponding photoelectric converter;
  • the second interpolating multiplexer extracts the even channel signal from the other N channel DQPSK signal, and demodulates and generates the N demodulated signal according to the method of detuning filtering, and outputs the signal to the N channel AWG2 Demultiplexing is performed to output each demodulated signal to the corresponding photoelectric converter.
  • the analog transmission system is shown in Fig. 15.
  • the carrier center frequencies of the four-way NRZ-DQPSK signals are 193.1, 193.3, 193.5, and 193.7 THz, respectively, and are multiplexed by an eight-channel AWG.
  • the center wavelength of this AWG is not offset, and the center of the passband is aligned with the center frequency of the carrier.
  • an eight-channel AWG is demultiplexed and demodulated.
  • the center frequencies of the eight channels are 193.05, 193.15, 193.25, 193.35, 193.45, 193.55, 193.65, and 193.75 THz, respectively.
  • Figure 16 shows the spectrum of the four-channel DQPSK signal after multiplexing by the AWG and one of the signals after demultiplexing through the eight-channel AWG.
  • the demodulated signal waveform and eye diagram are shown in Figure 17.
  • the AWG used for demultiplexing and demodulation is 50 GHz per center wavelength offset carrier.
  • Each DPQSK signal carrier falls in the middle of the adjacent two channels of the AWG.
  • the demodulation effect is not the best, and there will be a small amplitude signal appearing on the waveform and the eye diagram.
  • the AWG is mainly used as an example to implement a multi-channel DQPSK system, and other multiplexing and demultiplexers can be used to implement the same functions, such as a fiber grating, a thin film filter, or a device having a dispersion filtering characteristic (such as a body grating). , FP standard device).
  • the receiving end may also adopt a demultiplexer corresponding to the multiplexing end (the number of channels is equal, the center wavelength is aligned with the carrier wavelength of each channel), and the multi-channel DQPSK signal is first demultiplexed, and then each channel DQPSK The signal is then demodulated with two detuning filters to obtain the original data stream, as shown in Figure 18.
  • a demultiplexer corresponding to the multiplexing end (the number of channels is equal, the center wavelength is aligned with the carrier wavelength of each channel), and the multi-channel DQPSK signal is first demultiplexed, and then each channel DQPSK The signal is then demodulated with two detuning filters to obtain the original data stream, as shown in Figure 18.
  • the receiving end may also divide the multi-wavelength signal into multiple multi-wavelength signals by using the splitter, and then each multi-wavelength signal is demodulated by the detuning filter to obtain the original data stream, such as Figure 19 shows.
  • the embodiment of the invention provides a signal processing method, including:
  • the transmitting end pre-codes the input first original signal and the second original signal to generate an in-phase signal and a quadrature signal.
  • I is a precoded in-phase signal
  • Q is a precoded quadrature signal
  • I is a precoded in-phase signal
  • Q is a precoded quadrature signal
  • the modulated in-phase signal generates a first non-return-to-zero two-phase differential phase shift keying NRZ-DPSK signal, and the quadrature signal is modulated to generate a second NRZ-DPSK signal.
  • phase shifting one NRZ-DPSK signal of the first NRZ-DPSK signal and the second NRZ-DPSK signal by ninety degrees, and then interfering with another NRZ-DPSK signal to obtain a differential quadrature phase shift keying DQPSK signal .
  • the method further includes: the transmitting end sends the DQPSK signal; the receiving end demodulates the received DQPSK signal by means of detuning filtering; and the demodulated signal is photoelectrically converted to restore the first original signal and the N way second original signal.
  • the embodiment of the invention further provides a signal processing method, including:
  • the transmitting end pre-codes the input N-channel first original signal and the N-path second original signal to generate an N-channel in-phase signal and an N-channel orthogonal signal;
  • NRZ-DPSK signal modulating N orthogonal signals to generate N second NRZ-DPSK signals
  • the method further includes: transmitting, by the transmitting end, an N channel DQPSK signal; the receiving end demultiplexes the received one channel N channel DQPSK signal into N channel DQPSK signals, and the N channel DQPSK signal is demodulated by means of detuning filtering, and then undergoes photoelectric conversion
  • the N first original signal and the N second original signal are restored.
  • the coding does not affect the feasibility of the scheme.
  • the demodulated data stream is different from the original data stream, but there is a certain corresponding change relationship. After the data stream is demodulated, the circuit is restored or restored by software. The data is fine.
  • two detuning filters are used to demodulate the DQPSK signal, thereby avoiding the complicated scheme of demodulating two asymmetric AMZIs and two balanced detectors in the conventional DQPSK demodulation scheme, avoiding Accurate control of the asymmetric AMZI two-arm phase difference, easy signal control and adjustment, can greatly reduce the cost of the system.
  • the demultiplexing and demodulation processes of the multi-channel DQPSK system are combined, and the DQPSK signals of one channel are directly demultiplexed and demodulated by the adjacent two channels of the demultiplexer, and demultiplexed.
  • the center wavelengths of the adjacent two channels of the device are appropriately offset with respect to the center wavelength of the carrier.
  • the detuning filter after the demultiplexer is omitted, further reducing the cost and improving the practicability of the solution.
  • the detuning amount of the filter in the embodiment of the present invention has a certain working range, and therefore can be applied to a system of multi-rate hybrid transmission within a certain range, for example, a mixed DQPSK system of 40G and 50G.
  • a mixed DQPSK system of 40G and 50G.
  • the rates vary greatly, it is difficult to implement demultiplexing and demodulation with a channel spacing equalizer demultiplexer.
  • the present invention can be implemented by hardware, or can be implemented by means of software plus necessary general hardware platform, and the technical solution of the present invention. It can be embodied in the form of a software product that can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for making a computer device (may It is a personal computer, a server, or a network device, etc.) that performs the methods described in various embodiments of the present invention.
  • a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a computer device may It is a personal computer, a server, or a network device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

差分正交相移键控系统、 方法及设备
本申请要求于 2008年 06月 30日提交中国专利局、 申请号为 200810128212.2、 发明名称为"一种差分正交相移键控系统、 方法及设备"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种差分正交相移键控系统、 方 法及设备。 背景技术
差分正交相移键控( Differential Quadrature Phase Shift Keying, DQPSK ) 信号具有高频谱利用效率, 在相同符号速率条件下, 可以维持色散容限不 变, 而系统容量可以提高到差分相移键控( Differential Phase Shift Keying, DPSK )信号的两倍。 同时, 由于 DQPSK信号可以实现恒定包络或近似恒定 包络传输, 能有效抑制各类光纤的非线性效应, 如交叉相位调制 ( Cross-Phase Modulation, XPM ) 、 自相位调制 ( Self-Phase Modulation, SPM )等, 因此 DQPSK信号在高速大容量传输系统中具有良好的应用前景。
基于 DQPSK调制格式的多通道系统与普通的多通道系统差别主要在于 发射端和接收端。 发射端产生 DQPSK信号可以采用以下方案: 采用两个并 联的马赫泽德调制器( Mach-Zehnder Modulator, MZM ) 、 采用一个 MZM 串联一个相位调制器(Phase Modulator, PM )或者采用多级电信号驱动一 个 MZM。 目前使用较多的方案是采用两个并联的 MZM。 基于 DQPSK调制 格式的多通道系统的接收端较为复杂, 一般需要两个非对称的 MZM和两路 平衡探测才能解调出原始信号, 而且 DQPSK信号对干涉仪的失调比 DPSK 信号更为敏感。 如果要实现多通道的 DQPSK系统, 接收端的结构就会相当 复杂, 成本也会提高。
以单通道的 DQPSK系统为例, 如图 1所示, 发射端采用两个并联的
MZM ,接收端需要使用两个非对称的马赫泽德干涉仪( AMZI , Asymmetric Mach-Zehnder Interferometer ) 。 两路不相干的数据信息流 u和 v, 经过电域 的预编码后分为同相信号 I与正交信号 Q ,编码规则分别为公式( 1 )和( 2 ): I^ u^ ii^ Q^ + v^ ii^ Q^) ( 1 ) ^㊉ + ( 2 ) 再用基于非归零 ( Non-Return-to-Zero, NRZ )格式的同相信号 I和正交 信号 Q分别驱动两个 MZM, MZM工作在推挽状态, 也就是使两臂的驱动电 压之和为一个固定的偏置电压。 设定 MZM的工作条件为: 偏置点为传输曲 线零值点、驱动信号的频率和输出信号的频率相同、驱动信号的峰值为 2 ^ , ^为 MZM单臂工作时输出光强从最大变为最小所需要的开关电压。 这样从 两个 MZM的输出端得到两路非归零二相差分移相键控 ( Non-Return-to-Zero Differential Phase Shift Keying, NRZ-DPSK )信号。 此时两路 NRZ-DPSK信 号的相位均为 0或 τ , 为获得 4级相位调制, 需将其中一路 NRZ-DPSK信号整 体附加相移 。 上下两路 NRZ-DPSK信号干涉就得到 DQPSK信号, DQPSK
2 ji "ΐπ ζπ ππ
信号携带了四种相位信息: [- ' ―] , 但这里的相位信息并不 表示所希望传输的 u和 V , 只有相邻码元之间的相位差才是 DQPSK信号所传 输的信息。
解调 DQPSK信号需要用到两个 AMZI。 DQPSK信号分为功率相等的两 路, 分别进入上、 下两路的 AMZI。 上一路的 AMZI中两臂之间有 1比特的延 时和 的相位差, 下一路的 AMZI中两臂之间有 1比特的延时和- 的相位 4 4 差。 由于 AMZI中有 1比特的延时, 因此相邻的两个比特之间的相位差信息 可以被提取出来。 对上一路的 AMZI的两个输出端做平衡探测, 可以得到原 始数据 u,对下一路的 AMZI的两个输出端做平衡探测,可以得到原始数据 v。
基于单通道的 DQPSK信号产生和解调方案组成多通道的 DQPSK系统, 具体如图 2所示。 在发送端, 不同波长的 N路信号光分别经不同的 DQPSK信 号产生模块输出多路 DQPSK信号, 经复用器复用到一起, 再经掺铒光纤放 大器( Erbium-doped Optical Fiber Amplifier, EDFA )放大, 并在光纤链路 中进行传输。 在接收端, 经前置 EDFA放大后, 经对应的解复用器解复用成 N路信号, 再分别经不同的 DQPSK解调模块解调出原始的数据流。 此时系 统中采用的复用器和解复用器的通道中心波长对准原始 DQPSK信号的载波 波长。
现有技术中, 系统接收端的每一路信号的解调都要采用两个 AMZI和两 路平衡探测器实现, 系统结构比较复杂; AMZI相移量的控制需要很精确, 确定的 AMZI只能适用于确定的工作速率, 不利于信号的控制和调节; 经过 解复用器和多次分路合路之后, 信号功率损失较大。 发明内容
本发明实施例提供了一种差分正交相移键控系统、 方法及设备, 通过 对 DQPSK信号的解调, 结合密集波分复用 (Dense Wavelength Division Multiplexed, DWDM ) 系统中的复用器和解复用器, 使得在系统接收端无 需另加相位解调部件, 可以实现 DQPSK信号的多通道传输。
本发明实施例提供的一种差分正交相移键控系统, 包括发送端, 该发 送端包括:
预编码器, 用于按照预定编码规则对输入的第一原始信号和第二原始 信号进行预编码, 生成同相信号和正交信号;
第一调制器, 用于调制所述同相信号产生第一差分移相键控信号; 第二调制器, 用于调制所述正交信号产生第二差分移相键控信号; 干涉器, 将所述第一差分移相键控信号和所述第二差分移相键控信号 中的一差分移相键控信号相移九十度, 再与另一差分移相键控信号进行干 涉叠加, 获得差分正交相移键控信号, 并发送给接收端。
还包括接收端, 该接收端包括:
分路器, 用于将来自发送端的差分移相键控信号分为两路信号并输出; 解调单元, 用于分别对分路器输出的两路差分移相键控信号进行解调。
本发明实施例提供的一种差分正交相移键控系统, 包括:
发送端, 用于按照预定的编码规则将输入的 N路第一原始信号和 N路 的第二原始信号进行预编码, 生成 N路同相信号和 N路正交信号, 调制所 述 N路同相信号产生 N路第一差分移相键控信号,调制所述 N路正交信号 产生 N路第二信号,将所述 N路第一差分移相键控信号和所述 N路第二信 号中的一 N路差分移相键控信号相移九十度, 再与另一 N路差分移相键控 信号进行干涉叠加, 获得 N路差分正交相移键控差分移相键控信号, 将所 述 N路差分移相键控信号复用为一路 N通道的差分移相键控信号, 并发送 到接收端;
接收端, 用于将来自所述发送端的一路 N通道的差分移相键控信号解 复用为 N路差分移相键控信号, 所述 N路差分移相键控信号通过失谐滤波 的方式进行解调,还原出所述 N路第一原始信号和所述 N路第二原始信号; 其中, N为大于 1的整数。
本发明实施例提供的的一种信号处理方法, 包括:
发送端对输入的第一原始信号和第二原始信号进行预编码, 生成同相信号 和正交信号; 调制所述同相信号产生第一差分移相键控信号, 调制所述正 交信号产生第二差分移相键控信号; 将所述第一差分移相键控信号和所述 第二差分移相键控信号中的一差分移相键控信号相移九十度, 再与另一差 分移相键控信号进行干涉, 获得差分正交相移键控信号。
本发明实施例提供的另一种信号处理方法, 包括:
发送端将输入的 N路第一原始信号和 N路的第二原始信号进行预编 码, 生成 N路同相信号和 N路正交信号;
调制所述 N路同相信号产生 N路第一非归零二相差分移相键控信号, 调制所述 N路正交信号产生 N路第二差分移相键控信号;
将所述 N路第一差分移相键控信号和所述 N路第二差分移相键控信号 中的一 N路 NRZ-DPSK信号相移九十度, 再与另一 N路差分移相键控信号进 行干涉, 获得 N路差分正交相移键控信号, 将所述 N路差分移相键控信号复 用为一路 N通道差分移相键控信号; 其中, N为大于 1的整数。
本发明实施例中, 在系统接收端采用两个失谐滤波器对 DQPSK信号进 行解调,避免了现有技术的 DQPSK解调方案中采用两个非对称的 AMZI和两 路平衡探测器进行解调的复杂方案, 避免对非对称的 AMZI两臂相位差的精 确控制, 易于信号的控制和调整, 可以很大程度地降低系统的成本。 附图说明
图 1为现有技术中 DQPSK信号产生和解调示意图;
图 2为现有技术中多通道 DQPSK系统示意图;
图 3为本发明实施例一中一种发送端设备示意图; 图 4为本发明实施例一中一种接收端设备示意图;
图 5为本发明实施例一中另一种接收端设备示意图;
图 6为本发明实施例三中一种发送端设备示意图;
图 7为本发明实施例四中一种接收端设备示意图;
图 8为本发明实施例五中一种发送端设备示意图;
图 9为本发明实施例七中 DQPSK信号产生模块示意图;
图 10为本发明实施例八中 DQPSK信号解码模块示意图;
图 11为本发明实施例九中 AWG偏置通道的光谱示意图;
图 12为本发明实施例十中基于 DQPSK调制格式的 DWDM系统结构 图;
图 13为本发明实施例十一中 40Gb/s的 DQPSK系统的接收端结构图; 图 14为本发明实施例中增加间插复用器的 DQPSK系统的接收端结 构图;
图 15为本发明实施例十二中模拟的传输系统示意图;
图 16a为本发明实施例中四路 DQPSK信号经 AWG复用之后的光谱 图;
图 16b为本发明实施例中八通道 AWG解复用之后其中的一路信号的 光谱图;
图 17a为本发明实施例中解调出来的信号波形图;
图 17b为本发明实施例中与眼图示意图;
图 18为本发明实施例中增加解复用器的 DQPSK系统的接收端结构 图;
图 19为本发明实施例中增加失谐滤波器进行解调的 DQPSK系统的接 收端结构图。 具体实施方式
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描 述:
本发明实施例中, 针对多通道 DQPSK系统的应用, 通过对 DQPSK信 号产生模块中编码规则的修改, 使得在接收端直接利用适当中心波长偏移 的解复用器实现对 DQPSK信号的解调和直接探测,避免了两路 AMZI和平 衡探测器的使用, 极大筒化了系统的复杂程度, 可以降低系统的成本, 提 高可靠性。
实施例一
本发明实施例提供了一种差分正交相移键控系统, 包括: 发送端, 用 于对输入的第一原始信号和第二原始信号进行预编码, 生成同相信号和正 交信号,调制同相信号产生第一非归零二相差分移相键控 NRZ-DPSK信号, 调制正交信号产生第二 NRZ-DPSK信号, 将第一 NRZ-DPSK信号和第二 NRZ-DPSK信号中的一 NRZ-DPSK信号相移九十度,再与另一 NRZ-DPSK 信号进行干涉, 获得差分正交相移键控 DQPSK信号, 并发送到接收端; 接 收端, 用于将来自发送端的 DQPSK信号通过失谐滤波的方式进行解调,再 经过光电转换还原出第一原始信号和第二原始信号。
如图 3所示, 其中, 发送端包括: 预编码器 310、 第一马赫泽德调制器 MZM 320、 第二 MZM330 和干涉器 340, 本实施例中虽然以两个调制器为 例进行说明, 但实际中调制器数量会根据需求变化。 预编码器 310, 用于接 收第一原始信号和第二原始信号, 并根据预设编码规则进行预编码, 生成 同相信号和正交信号; 第一 MZM 320, 用于使用同相信号进行驱动, 调制 获得第一 NRZ-DPSK信号; 第二 MZM 330, 用于使用正交信号进行驱动, 调制获得第二 NRZ-DPSK信号; 干涉器 340, 用于将第一 NRZ-DPSK信号 和第二 NRZ-DPSK信号中的一 NRZ-DPSK信号相移九十度, 再与另一 NRZ-DPSK信号进行干涉, 获得 DQPSK信号, 并发送到接收端。
其中, 接收端如图 4所示, 包括: 分路器 410、 第一失谐滤波器 420、 第二失谐滤波器 430、 第一光电转换器 440和第二光电转换器 450, 本实施 例中虽然以两个失谐滤波器和光电转换器为例进行说明, 但实际中失谐滤 波器和光电转换器数量会根据需求变化。 其中, 分路器 410, 用于将来自发 送端的 DQPSK信号分为两路 DQPSK信号并输出; 第一失谐滤波器 420, 用于将分路器输出的一路 DQPSK信号通过失谐滤波的方式进行解调,并输 出至第一光电转换器 440; 第二失谐滤波器 430, 用于将分路器输出的另一 路 DQPSK信号通过失谐滤波的方式进行解调, 并输出至第二光电转换器 450; 第一光电转换器 440, 用于将第一失谐滤波器 420解调后的信号转换 为电信号, 并输出还原后的第一原始信号; 第二光电转换器 450, 用于将第 二失谐滤波器 430解调后的信号转换为电信号, 并输出还原后的第二原始 信号。
当然, 本发明实施例一中, 发送端不改变时, 接收端也可以改变为如 图 5所示, 包括: 失谐滤波器 510、 分路器 520、 第一光电转换器 530和第 二光电转换器 540; 其中, 失谐滤波器 510, 用于将来自发送端的 DQPSK 信号通过失谐滤波的方式进行解调, 并输出至分路器; 分路器 520, 用于将 来自失谐滤波器解调后的信号分为两路解调信号并输出; 第一光电转换器 530, 用于将分路器输出的一路解调信号转换为电信号, 并输出还原后的第 一原始信号; 第二光电转换器 540, 用于将分路器输出的另一路解调信号转 换为电信号, 并输出还原后的第二原始信号。
实施例二
本实施例中提供了一种差分正交相移键控系统, 包括: 发送端, 用于 将输入的 N路第一原始信号和 N路的第二原始信号进行预编码,生成 N路 同相信号和 N路正交信号,调制所述 N路同相信号产生 N路第一非归零二 相差分移相键控 NRZ-DPSK信号, 调制所述 N路正交信号产生 N路第二 NRZ-DPSK信号, 将所述 N路第一 NRZ-DPSK信号和所述 N 路第二 NRZ-DPSK信号中的一 N路 NRZ-DPSK信号相移九十度, 再与另一 N路 NRZ-DPSK信号进行干涉, 获得 N路差分正交相移键控 DQPSK信号, 将 所述 N路 DQPSK信号复用为一路 N通道 DQPSK信号, 并发送到接收端; 接收端, 用于将来自所述发送端的一路 N通道 DQPSK信号解复用为 N路 DQPSK信号, 所述 N路 DQPSK信号通过失谐滤波的方式进行解调, 再经 过光电转换还原出所述 N路第一原始信号和所述 N路第二原始信号;其中, N为大于 1的整数。
其中, 发送端包括: N个 DQPSK信号产生模块和一个 N通道阵列波 导光栅 AWG; 其中, DQPSK信号产生模块, 包括: 预编码器、 第一马赫 泽德调制器 MZM、 第二 MZM和干涉器; 预编码器, 用于接收第一原始信 号和第二原始信号, 并据预设编码规则进行预编码, 生成同相信号和正交 信号; 第一 MZM, 用于使用同相信号进行驱动, 调制获得第一 NRZ-DPSK 信号; 第二 MZM, 用于使用正交信号进行驱动, 调制获得第二 NRZ-DPSK 信号; 干涉器, 用于将第一 NRZ-DPSK信号和第二 NRZ-DPSK信号中的一 NRZ-DPSK信号相移九十度, 再与另一 NRZ-DPSK信号进行干涉, 获得 DQPSK信号; N通道 AWG, 用于将 N个 DQPSK信号产生模块产生的 N 路 DQPSK信号复用为一路 N通道 DQPSK信号, 并发送到接收端。
其中, 接收端包括: 一个 N通道 AWG、 N个分路器、 2N个失谐滤波 器 2N个光电转换器, 该实施例中的 N个分路器也可以使用一个 N路的分 路器实现, 2N个失谐滤波器也可以使用 2个 N的失谐滤波器实现。 其中, N通道 AWG,用于将来自发送端的一路 N通道 DQPSK信号解复用为 N路 DQPSK信号, 输出每一路 DQPSK信号至对应的分路器; 分路器, 用于将 来自 N通道 AWG解复用后的 N路 DQPSK信号中的一路 DQPSK信号分为 两路 DQPSK信号并输出; 失谐滤波器, 用于将来自于分路器输出的一路 DQPSK信号通过失谐滤波的方式进行解调, 并输出解调后的信号至对应的 光电转换器; 光电转换器, 用于将来自于失谐滤波器解调后的信号转换为 电信号, 并输出还原后的 N路第一原始信号或 N路第二原始信号中的一路 原始信号。
当然, 本发明实施例中发送端不改变时, 接收端也可以包括: 一个 2N 通道 AWG和 2N个光电转换器; 其中, 2N通道 AWG, 用于将来自发送端 的一路 N通道 DQPSK信号进行解复用, 并根据失谐滤波的方式解调产生 2N路解调信号, 输出每一路解调信号至对应的光电转换器; 光电转换器, 用于将来自于 2N通道 AWG输出的一路解调信号转换为电信号, 并输出还 原后的 N路第一原始信号或 N路第二原始信号中的一路原始信号。
当然, 本发明实施例中发送端不改变时, 接收端也可以包括: 分路器、 第一间插复用器、 第二间插复用器、 第一 N通道 AWG、 第二 N通道 AWG 和 2N个光电转换器; 其中, 分路器, 用于将来自发送端的一路 N通道的 DQPSK信号分为两路 N通道的 DQPSK信号并输出; 第一间插复用器, 用 于从来自分路器输出的一路 N通道 DQPSK信号提取奇数通道信号, 并根 据失谐滤波的方式解调产生 N路解调信号, 输出到第一 AWG; 第二间插复 用器, 用于从来自分路器输出的一路 N通道 DQPSK信号提取偶数通道信 号, 并根据失谐滤波的方式解调产生 N路解调信号, 输出到第二 AWG; 第 一 AWG, 将来自第一间插复用器的 N路解调信号进行解复用, 输出每一路 解调信号至对应的光电转换器; 第二 AWG, 将来自第二间插复用器的 N路 解调信号进行解复用, 输出每一路解调信号至对应的光电转换器; 光电转 换器,用于将来自于第一 AWG或第二 AWG输出的解调信号转换为电信号, 并输出还原后的 N路第一原始信号或 N路第二原始信号中的一路原始信 号。
实施例三
本实施例三提供了一种发送端设备, 应用于差分正交相移键控系统, 如图 6所示, 该设备包括: 第一模块 610, 用于对输入的第一原始信号和第 二原始信号进行预编码, 生成同相信号和正交信号; 第二模块 620, 用于调 制同相信号产生第一非归零二相差分移相键控 NRZ-DPSK信号, 调制正交 信号产生第二 NRZ-DPSK信号; 第三模块 630, 用于将第一 NRZ-DPSK信 号和第二 NRZ-DPSK信号中的一 NRZ-DPSK信号相移九十度, 再与另一 NRZ-DPSK信号进行干涉, 获得差分正交相移键控 DQPSK信号并发送。
实施例四
本实施例提供了一种接收端设备, 应用于差分正交相移键控系统, 该 设备如图 7所示, 包括: 第一模块 710, 用于将接收到的差分正交相移键控 DQPSK信号通过失谐滤波的方式进行解调; DQPSK信号的获得包括: 在 发送端对输入的第一原始信号和第二原始信号进行预编码, 生成同相信号 和正交信号, 调制同相信号产生第一非归零二相差分移相键控 NRZ-DPSK 信号,调制正交信号产生第二 NRZ-DPSK信号, 将第一 NRZ-DPSK信号和 第二 NRZ-DPSK 信号中的一 NRZ-DPSK 信号相移九十度, 再与另一 NRZ-DPSK信号进行干涉,获得差分正交相移键控 DQPSK信号并发送; 第 二模块 720,用于将解调后的信号经过光电转换还原出第一原始信号和第二 原始信号。
其中, 第一模块包括: 分路器、 第一失谐滤波器和第二失谐滤波器; 其中,分路器,用于将接收到的 DQPSK信号分为两路 DQPSK信号并输出; 第一失谐滤波器,用于将分路器输出的一路 DQPSK信号通过失谐滤波的方 式进行解调, 并输出解调后的信号至第二模块; 第二失谐滤波器, 用于将 分路器输出的另一路 DQPSK信号通过失谐滤波的方式进行解调,并输出解 调后的信号至第二模块。
其中, 第一模块也可以包括: 失谐滤波器和分路器; 其中, 失谐滤波 器, 用于将接收到的 DQPSK信号通过失谐滤波的方式进行解调, 并输出解 调后的信号至分路器; 分路器, 用于将来自失谐滤波器解调后的信号分为 两路解调信号, 并输出至第二模块。
实施例五
本实施例提供了一种发送端设备, 应用于差分正交相移键控系统, 该 设备如图 8所示, 包括: 第一模块 810, 用于将输入的 N路第一原始信号 和 N路的第二原始信号进行预编码, 生成 N路同相信号和 N路正交信号; 第二模块 820, 用于调制 N路同相信号产生 N路第一非归零二相差分移相 键控 NRZ-DPSK信号,调制 N路正交信号产生 N路第二 NRZ-DPSK信号; 第三模块 830, 用于将 N路第一 NRZ-DPSK信号和 N路第二 NRZ-DPSK 信号中的一 N路 NRZ-DPSK信号相移九十度, 再与另一 N路 NRZ-DPSK 信号进行干涉, 获得 N路差分正交相移键控 DQPSK信号; 第四模块 840, 用于将 N路 DQPSK信号复用为一路 N通道 DQPSK信号并发送。
实施例六
本实施例提供了一种接收端设备, 应用于差分正交相移键控系统, 该 设备包括: 第一模块, 用于将接收到的一路差分正交相移键控 DQPSK信号 解复用为 N路 DQPSK信号, 再将 N路 DQPSK信号通过失谐滤波的方式 进行解调; 一路 N通道 DQPSK信号的获得包括: 在发送端对输入的 N路 第一原始信号和 N路的第二原始信号进行预编码, 生成 N路同相信号和 N 路正交信号, 调制 N路同相信号产生 N路第一非归零二相差分移相键控 NRZ-DPSK信号,调制 N路正交信号产生 N路第二 NRZ-DPSK信号,将 N 路第一 NRZ-DPSK信号和 N路第二 NRZ-DPSK信号中的一 N路 NRZ-DPSK 信号相移九十度,再与另一 N路 NRZ-DPSK信号进行干涉, 获得 N路差分 正交相移键控 DQPSK信号,将 N路 DQPSK信号复用为一路 N通道 DQPSK 信号, 并发送; 其中, N为大于 1 的整数; 第二模块, 用于将解调后的信 号经过光电转换还原出 N路第一原始信号和 N路第二原始信号。
其中, 第一模块包括: 一个 N通道阵列波导光栅 AWG、 N个分路器、 2N个失谐滤波器;其中, N通道 AWG,用于将接收到的一路 N通道 DQPSK 信号解复用为 N路 DQPSK信号,输出每一路 DQPSK信号至对应的分路器; 分路器, 用于将来自 N通道 AWG解复用后的 N路 DQPSK信号中的一路 DQPSK信号分为两路 DQPSK信号并输出; 失谐滤波器, 用于将来自于分 路器输出的一路 DQPSK信号通过失谐滤波的方式进行解调,并输出解调后 的信号至第二模块。
其中, 第一模块也可以包括: 一个 2N通道 AWG, 用于将接收到的一 路 N通道 DQPSK信号进行解复用,并根据失谐滤波的方式解调产生 2N路 解调信号, 输出解调后的信号至第二模块。
其中, 第一模块也可以包括: 分路器、 第一间插复用器、 第二间插复 用器、 第一 AWG和第二 AWG; 其中, 分路器, 用于将接收到的一路 N通 道 DQPSK信号分为两路 DQPSK信号并输出; 第一间插复用器, 用于从来 自分路器输出的一路 N通道 DQPSK信号提取奇数通道信号, 并根据失谐 滤波的方式解调产生 N路解调信号, 输出到第一 AWG; 第二间插复用器, 用于从来自分路器输出的一路 N通道 DQPSK信号提取偶数通道信号, 并 根据失谐滤波的方式解调产生 N路解调信号, 输出到第二 AWG; 第一 AWG, 将来自第一间插复用器的 N路解调信号进行解复用, 输出每一路解 调信号至第二模块; 第二 AWG, 将来自第二间插复用器的 N路解调信号进 行解复用, 输出每一路解调信号至第二模块。
实施例七
本实施例提供了一种发送端设备, 如图 9所示, 两路不相干的 20Gb/s 的随机码流 u和 V作为原始比特信号, 经过电域的预编码后分为同相信号 I 与正交信号 Q, 分别调制 MZM。 但为了实现筒单的解码功能, 对编码规则 做了适当的改变。 编码公式如(3 )或 (4 ): =v -i Qk-i + uIk_lQk_l + u ( 4 )
Qk =u -i Qk-i +v -i Qk-i + u -v Qk-i + v -iQk-i
公式(3)和(4)都符合最筒与-或式的标准, 这两个公式所表示的逻 辑关系是相同的。 公式(3)和(4)编码规则如表 1所示。
表 1 DQPSK调制的编码规则 1
Figure imgf000014_0001
同时, 也可以变换编码规则, 如表 2所示。
表 2 DQPSK调制的编码规则 2
Figure imgf000014_0002
此时对应的编码公式如(5)和(6)所示: =uvIk_l+uvQk_l + uvIk_l + uvQk_l ( ^ )
Qk =uvQk_l +uv Ik_x + u vlk_x + uv Qk_x
^ =u -i Qk-i + vIk Qk + Ik_, Qk_, + v lk_ k-i ( 6 )
Qk =v -v Qk-i + u -i Qk-i + u -iQk-i + v -i Qk-i
实施例八
本实施例提供了一种接收端设备, 采用失谐滤波器对信号进行解调。 滤波器的中心波长不是正好对准载波的中心波长, 而是相对于载波中心波 长有一定的失谐。 如图 10所示, 采用两个失谐滤波器对 DQPSK信号进行 解调。 对应编码规则 (3 )和(4 ), 在第一失谐滤波器输出的是 u信号, 而 在第二失谐滤波器输出的是 V信号。 对应编码规则 (5 )和(6 ), 在第一失 谐滤波器输出的是 V信号, 而在第二失谐滤波器输出的是 u信号。
能够实现滤波功能的器件很多, 如光纤光栅、 薄膜滤波片、 阵列波导 光栅等, 这些器件都可以用来实现 DQPSK信号的解调。 为了得到好的输出 信号质量, 滤波器的带宽和失谐量都有一定的要求。 选择滤波器带宽和失 谐量, 尽量使滤波器的线性区通过载波的中心波长, 如果滤波器带宽很宽, 失谐量就要求很大, 此时输出的信号幅度较小, 而如果滤波器带宽很小, 也要求失谐量很小, 此时较难提取出相位变化信息。 一般取滤波器的带宽 和失谐量相等, 并为信号速率的 0.6-1.5倍之间。
实施例九
本实施例中将解复用和解调过程相结合起来, 如图 11所示, 通道之间 间隔为 200GHz时, 采用通道间隔为 100GHz的 AWG进行解复用和解调, 此时 DQPSK信号载波中心波长不是对准 AWG的通道中心波长, 而是位于 AWG两通道的中间。这样, AWG的相邻两个通道就用来对 DQPSK信号中 的一个通道进行解调和解复用。
实施例十
本发明实施例十中, 提出了基于 DQPSK调制格式的 DWDM系统, 如图
12所示, 以 AWG为实施案例进行分析。 N路 DQPSK信号经 N通道 AWG复用 成一路信号, 经光纤链路传输到接收端进行解调。 在接收端利用一个 N通道 AWG同时实现解复用和 DQPSK信号的解调功能。在 N通道的 AWG中, 相邻 的两个通道用来实现对复用信号中一路信号的解调, 这两个通道的工作波 长相对于发射端复用通道的中心波长分别有一定的偏移。 这样通过对原始 DQPSK信号的适当偏移,可以在这两个通道直接解出原始数据中的 U和 V信 号。
实施例十一
本发明实施例十一中, 以 40Gb/s的 DQPSK系统为例, 如图 13所示, 若通道间隔为 100GHz, 在接收端采用通道间隔为 50GHz的解复用器, 但 输出通道通带波长相对于原来标准通道波长整体漂移 25GHz, 这样就可以 利用解复用端的相邻两个通道对原线路中的一个通道进行解复用和解码。
由于本发明实施例中对通道的中心波长偏移量有较大的容忍度, 对于 40Gb/s的 DQPSK信号, 如果通道间隔大于 100GHz, 都可以采用图 13所 示的方案进行解调和解复用。 但是如果通道间隔为 50GHz时, 则不能采用 相同的解复用和解调方案, 此时引起的通道串扰会很大。
以 40Gb/s的 DQPSK系统为例, 若线路通道间隔为 50GHz, 接收端采 用通道间隔为 25GHz的解复用无法得到正确的解码和解复用, 通道之间串 扰很大, 此时需要采用间插复用器 (Interleaver )技术, 先将原始通道中的 奇数和偶数通道分开, 得到间隔为 100GHz的复用信号, 再采用 AWG解复 用器进行解码和解复用器。 具体实现方案如图 14所示, 在光纤链路中传输 的一路 N通道的 DQPSK信号经分路器分成两路 N通道的 DQPSK信号, 分别输入到第一间插复用器和第二间插复用器; 第一间插复用器从一路 N 通道 DQPSK信号提取奇数通道信号, 并根据失谐滤波的方式解调产生 N 路解调信号, 输出到 N通道 AWG1解复用, 输出每一路解调信号至对应的 光电转换器; 第二间插复用器从另一路 N通道 DQPSK信号提取偶数通道 信号,并根据失谐滤波的方式解调产生 N路解调信号,输出到 N通道 AWG2 进行解复用, 输出每一路解调信号至对应的光电转换器。
实施例十二
本实施例中, 模拟的传输系统如图 15所示, 四路 NRZ-DQPSK信号的 载波中心频率分别为 193.1、 193.3、 193.5和 193.7 THz, 通过一个八通道 AWG复用。 此 AWG中心波长不偏移, 通带的中心对准载波的中心频率。 在接收端, 用一个八通道 AWG解复用并解调, 八通道的中心频率分别为 193.05、 193.15、 193.25、 193.35、 193.45、 193.55、 193.65和 193.75 THz。 如图 16所示为四路 DQPSK信号经 AWG复用之后的光谱和经过八通道 AWG解复用之后其中的一路信号的光谱图。 解调出来的信号波形与眼图如 图 17所示。 但考虑到 AWG的通道间隔要符合国际电信联盟 -电信标准部 ( International Telecommunication Union - Telecommunication Standardization Sector, ITU-T)标准以及解调对光语要求对称性, 解复用和解调所用 AWG 每路中心波长偏移载波为 50GHz,每路 DPQSK信号载波落在 AWG相邻两 通道正中间。 但此时, 解调效果不是最好, 表现在波形和眼图上会有幅度 较小的信号出现。
本发明实施例中主要以 AWG为例实现多通道 DQPSK系统,也可以利用 其他复用和解复用器实现相同功能, 如光纤光栅、 薄膜滤波器、 或具有色 散滤波特性的器件等(如体光栅、 FP标准器件) 。
本发明实施例中接收端也可以采用与复用端相对应的解复用器 (通道 数相等,中心波长对准各通道载波波长)先将多通道的 DQPSK信号解复用, 然后每一路 DQPSK信号再用两个失谐滤波器进行解调, 得到原始的数据 流, 如图 18所示。
本发明实施例中接收端也可以利用分路器先将一路多波长信号分成多 路多波长信号, 然后每一路多波长信号再用失谐滤波器进行解调, 得出原 始的数据流, 如图 19所示。
本发明实施例提供了一种信号处理方法, 包括:
1, 发送端对输入的第一原始信号和第二原始信号进行预编码, 生成同 相信号和正交信号。
预编码所依据的编码规则为: = uv -i + u vQk-i +uvQk_l + uv Ik_, ^
Qk =uvQk_l + uvIk_l + uvIk_l +uvQk_l =v -i Qk-i +uIk_lQk_l + u Ik—、Qk—、 +vlk_, Qk_,
Qk =u -i Qk-i +v -i Qk-i + u -i Qk-i + v -iQk-i
其中, U为第一原始信号, V为第二原始信号;
I为预编码后的同相信号, Q为预编码后的正交信号。
预编码所依据的编码规则为: = vIk_l+uvQk_l + uvIk_l + uvQk_l ^
Qk =uvQk_l +uv Ik_x + u vlk_x + uv Qk_x =u -i Qk-i + v Ik_l Qk_l + u Ik_, Qk_, + v k-i
Qk = v -i Qk-i + u -i Qk-i + u -iQk-i + v -i Qk-i
其中, u为第一原始信号, v为第二原始信号;
I为预编码后的同相信号, Q为预编码后的正交信号。
2, 调制同相信号产生第一非归零二相差分移相键控 NRZ-DPSK信号, 调制正交信号产生第二 NRZ-DPSK信号。
3 , 将第一 NRZ-DPSK信号和第二 NRZ-DPSK信号中的一 NRZ-DPSK 信号相移九十度, 再与另一 NRZ-DPSK信号进行干涉, 获得差分正交相移 键控 DQPSK信号。
还包括: 发送端发送 DQPSK信号; 接收端将接收到的 DQPSK信号通 过失谐滤波的方式进行解调; 将解调后的信号经过光电转换还原出第一原 始信号和 N路第二原始信号。
本发明实施例还提供了一种信号处理方法, 包括:
1 , 发送端将输入的 N路第一原始信号和 N路的第二原始信号进行预 编码, 生成 N路同相信号和 N路正交信号;
2 , 调制 N 路同相信号产生 N 路第一非归零二相差分移相键控
NRZ-DPSK信号, 调制 N路正交信号产生 N路第二 NRZ-DPSK信号;
3 ,将 N路第一 NRZ-DPSK信号和 N路第二 NRZ-DPSK信号中的一 N 路 NRZ-DPSK信号相移九十度, 再与另一 N路 NRZ-DPSK信号进行干涉, 获得 N路差分正交相移键控 DQPSK信号, 将 N路 DQPSK信号复用为一 路 N通道 DQPSK信号; 其中, N为大于 1的整数。
还包括: 发送端发送一路 N通道 DQPSK信号; 接收端将接收到的一 路 N通道 DQPSK信号解复用为 N路 DQPSK信号, N路 DQPSK信号通过 失谐滤波的方式进行解调, 再经过光电转换还原出 N路第一原始信号和 N 路第二原始信号。 的编码并不影响本方案的可行性, 此时解调出来的数据流与原始的数据流 存在不同, 但存在一定的对应变化关系, 解调出数据流后用电路或者用软 件计算恢复出原始数据即可。 本发明实施例中, 采用两个失谐滤波器对 DQPSK信号进行解调, 避免 了传统的 DQPSK解调方案中采用两个非对称的 AMZI和两路平衡探测器进 行解调的复杂方案, 避免对非对称的 AMZI两臂相位差的精确控制, 易于信 号的控制和调整, 可以很大程度地降低系统的成本。
另外, 本发明实施例中将多通道 DQPSK系统的解复用和解调过程相结 合, 直接利用解复用器的相邻两个通道对一路 DQPSK信号进行解复用和解 调, 解复用器的相邻两个通道的中心波长相对于载波的中心波长都有适当 的偏移。 省去解复用器之后的失谐滤波器, 进一步降低成本, 提高方案的 实用性。
另外, 本发明实施例中滤波器的失谐量有一定的工作范围, 因此可以 适用于一定范围内多速率混合传输的系统,例如 40G和 50G的混合 DQPSK系 统。 当然如果速率相差很大, 很难用通道间隔均衡的解复用器来实现解复 用和解调。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到 本发明可以通过硬件实现, 也可以可借助软件加必要的通用硬件平台的 方式来实现基于这样的理解, 本发明的技术方案可以以软件产品的形式 体现出来, 该软件产品可以存储在一个非易失性存储介质 (可以是 CD-ROM , U盘, 移动硬盘等) 中, 包括若干指令用以使得一台计算机 设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个 实施例所述的方法。
以上所述仅是本发明的具体实施方式, 应当指出, 对于本技术领域 的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干 改进和润饰, 这些改进和润饰也应视本发明的保护范围。

Claims

权 利 要 求
1、 一种差分正交相移键控系统, 其特征在于, 该系统包括发送端: 预编码器, 用于按照预定编码规则对输入的第一原始信号和第二原始 信号进行预编码, 生成同相信号和正交信号;
第一调制器, 用于调制所述同相信号产生第一差分移相键控信号; 第二调制器, 用于调制所述正交信号产生第二差分移相键控信号; 干涉器, 将所述第一差分移相键控信号和所述第二差分移相键控信号 中的一差分移相键控信号相移九十度, 再与另一差分移相键控信号进行干 涉叠加, 获得差分正交相移键控信号, 并发送给接收端。
2、 如权利要求 1所述的系统, 其特征在于, 还包括接收端,
该接收端包括:
分路器, 用于将来自发送端的差分移相键控信号分为两路信号并输出; 解调单元, 用于分别对分路器输出的两路差分移相键控信号进行解调。
3、 如权利要求 1所述的系统, 其特征在于, 所述调制器为马赫泽德调 制器 MZM,
所述第一 MZM, 用于使用所述同相信号进行驱动, 调制获得所述第一 差分移相键控信号;
所述第二 MZM, 用于使用所述正交信号进行驱动, 调制获得所述第二 差分移相键控信号;
所述干涉器, 用于将所述第一差分移相键控信号和所述第二差分移相 键控信号中的一差分移相键控信号相移九十度, 再与另一差分移相键控信 号进行干涉, 获得差分移相键控信号, 并发送到接收端。
4、 如权利要求 2所述的系统, 其特征在于, 所述解调单元包括第一失 谐滤波器、 第二失谐滤波器;
所述第一失谐滤波器, 用于将所述分路器输出的一路差分移相键控信 号通过失谐滤波的方式进行解调, 并输出;
所述第二失谐滤波器, 用于将所述分路器输出的另一路差分移相键控 信号通过失谐滤波的方式进行解调, 并输出。
5、 如权利要求 1所述的系统, 其特征在于, 所述接收端包括: 失谐滤 波器、 分路器; 其中,
所述失谐滤波器, 用于将来自所述发送端的差分移相键控信号通过失 谐滤波的方式进行解调, 并输出至所述分路器;
所述分路器, 用于将来自所述失谐滤波器解调后的信号分为两路解调 信号并输出。
6、 如权利要求 1至 5中任一项所述的系统, 其特征在于, 所述预定的 编码规则为: = uv -i + u vQk-i +uvQk_l + uv Ik_, ^
Qk =uvQk_l + uvIk_l + uvIk_l +uvQk_l =v -i Qk-i +uIk_lQk_l + u lk_ k-i +vIk Qk—i
Qk =u -i Qk-i +v -i Qk-i + u -i Qk-i + v -iQk-i
其中, u为第一原始信号, v为第二原始信号;
I为预编码后的同相信号, Q为预编码后的正交信号。
7、 一种差分正交相移键控系统, 其特征在于, 该系统包括:
发送端, 用于按照预定的编码规则将输入的 N路第一原始信号和 N路 的第二原始信号进行预编码, 生成 N路同相信号和 N路正交信号, 调制所 述 N路同相信号产生 N路第一差分移相键控信号,调制所述 N路正交信号 产生 N路第二信号,将所述 N路第一差分移相键控信号和所述 N路第二信 号中的一 N路差分移相键控信号相移九十度, 再与另一 N路差分移相键控 信号进行干涉叠加, 获得 N路差分正交相移键控差分移相键控信号, 将所 述 N路差分移相键控信号复用为一路 N通道的差分移相键控信号, 并发送 到接收端;
接收端, 用于将来自所述发送端的一路 N通道的差分移相键控信号解 复用为 N路差分移相键控信号, 所述 N路差分移相键控信号通过失谐滤波 的方式进行解调,还原出所述 N路第一原始信号和所述 N路第二原始信号; 其中, N为大于 1的整数。
8、 一种信号处理方法, 其特征在于, 该方法包括:
发送端对输入的第一原始信号和第二原始信号进行预编码, 生成同相 信号和正交信号; 调制所述同相信号产生第一差分移相键控信号, 调制所 述正交信号产生第二差分移相键控信号; 将所述第一差分移相键控信号和 所述第二差分移相键控信号中的一差分移相键控信号相移九十度, 再与另 一差分移相键控信号进行干涉, 获得差分正交相移键控信号。
9、 如权利要求 8所述的方法, 其特征在于, 所述预编码所依据的编码 规则为: = uv -i + u vQk-i +uvQk_l + uv Ik_, ^
Qk =uvQk_l + uvIk_l + uvIk_l +uvQk_l =v -i Qk-i +uIk_lQk_l + u lk_ k-i +vIk Qk—i
Qk =u -i Qk-i +v -i Qk-i + u -i Qk-i + v -iQk-i
其中, U为第一原始信号, V为第二原始信号;
I为预编码后的同相信号, Q为预编码后的正交信号。
10、 如权利要求 8 所述的方法, 其特征在于, 所述预编码所依据的编 码规则为: = vIk_l+uvQk_l + uvIk_l + uvQk_l ^
Qk =uvQk_l +uv Ik_x + u vlk_x + uv Qk_x =u -i Qk-i + vIk Qk + Ik_, Qk_, + v lk_ k-i
Qk =v -i Qk-i + u -i Qk-i + u -iQk-i + v -i Qk-i
其中, u为第一原始信号, v为第二原始信号;
I为预编码后的同相信号, Q为预编码后的正交信号。
11、 如权利要求 8 所述的方法, 其特征在于, 还包括: 发送端发送所 述差分移相键控信号;
接收端将接收到的所述差分移相键控信号通过失谐滤波的方式进行解 调; 将解调后的信号经过光电转换还原出所述第一原始信号和所述 N路第 二原始信号。
12、 一种信号处理方法, 其特征在于, 该方法包括: 发送端将输入的 N路第一原始信号和 N路的第二原始信号进行预编 码, 生成 N路同相信号和 N路正交信号;
调制所述 N路同相信号产生 N路第一非归零二相差分移相键控信号, 调制所述 N路正交信号产生 N路第二差分移相键控信号;
将所述 N路第一差分移相键控信号和所述 N路第二差分移相键控信号 中的一 N路 NRZ-DPSK信号相移九十度,再与另一 N路差分移相键控信号 进行干涉, 获得 N路差分正交相移键控信号, 将所述 N路差分移相键控信 号复用为一路 N通道差分移相键控信号; 其中, N为大于 1的整数。
13、 如权利要求 12所述的方法, 其特征在于, 还包括: 发送端发送所 述一路 N通道差分移相键控信号;
接收端将接收到的一路 N通道差分移相键控信号解复用为 N路差分移 相键控信号, 所述 N路差分移相键控信号通过失谐滤波的方式进行解调, 再经过光电转换还原出所述 N路第一原始信号和所述 N路第二原始信号。
PCT/CN2009/072025 2008-06-30 2009-05-27 差分正交相移键控系统、方法及设备 WO2010000165A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09771935A EP2326033A4 (en) 2008-06-30 2009-05-27 SYSTEM, METHOD AND DEVICE FOR FOUR-STAGE PHASE SHIFT MODULATION WITH DIFFERENTIAL DETECTION
JP2011515072A JP2011526445A (ja) 2008-06-30 2009-05-27 差動4相位相変調システム、方法、及び装置
CA2728750A CA2728750A1 (en) 2008-06-30 2009-05-27 Differential quadrature phase shift keying system, method, and device
US12/982,002 US20110158654A1 (en) 2008-06-30 2010-12-30 Differential quadrature phase shift keying system, method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810128212.2A CN101621336B (zh) 2008-06-30 2008-06-30 一种差分正交相移键控系统、方法及设备
CN200810128212.2 2008-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/982,002 Continuation US20110158654A1 (en) 2008-06-30 2010-12-30 Differential quadrature phase shift keying system, method, and device

Publications (1)

Publication Number Publication Date
WO2010000165A1 true WO2010000165A1 (zh) 2010-01-07

Family

ID=41465485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072025 WO2010000165A1 (zh) 2008-06-30 2009-05-27 差分正交相移键控系统、方法及设备

Country Status (6)

Country Link
US (1) US20110158654A1 (zh)
EP (1) EP2326033A4 (zh)
JP (1) JP2011526445A (zh)
CN (1) CN101621336B (zh)
CA (1) CA2728750A1 (zh)
WO (1) WO2010000165A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459638B (zh) * 2007-12-14 2012-03-21 华为技术有限公司 差分正交相移键控dqpsk信号的接收装置及方法
CN101958864B (zh) * 2010-09-21 2013-01-02 武汉光迅科技股份有限公司 多速率差分正交相移键控解调器及控制方法
US8873953B2 (en) * 2011-06-17 2014-10-28 Nec Laboratories America, Inc. Multiple-symbol polarization switching for differential-detection modulation formats
CN102325122B (zh) * 2011-10-20 2013-09-25 电子科技大学 一种基于ofdm-rof的双向无源光网络系统
IN2014DN03502A (zh) * 2011-12-22 2015-05-15 Ericsson Telefon Ab L M
CN103179068A (zh) * 2013-04-10 2013-06-26 清华大学 星载高阶调制装置
US9246598B2 (en) * 2014-02-06 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Efficient pulse amplitude modulation integrated circuit architecture and partition
US9331188B2 (en) 2014-09-11 2016-05-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Short-circuit protection circuits, system, and method
US10073319B2 (en) * 2015-05-04 2018-09-11 Zte Corporation QAM vector signal generation by external modulator
CN105515654B (zh) * 2015-11-30 2018-06-26 武汉光迅科技股份有限公司 一种并联mzi结构开关电压和消光比的测量方法
CN106301554B (zh) * 2016-08-31 2019-01-22 武汉光迅科技股份有限公司 一种并联mzi电光调制器工作点电压的调试方法及调试装置
AT521851A1 (de) * 2018-11-13 2020-05-15 Ait Austrian Inst Tech Gmbh Verfahren zur Übertragung von Daten und/oder Informationen
JP7243364B2 (ja) * 2019-03-26 2023-03-22 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
CN113364526B (zh) * 2021-05-21 2022-07-26 电子科技大学 一种微波多相位差分相移键控信号的光学解调系统
CN117240369B (zh) * 2023-11-16 2024-02-13 鹏城实验室 光信号频谱合成方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585503A (zh) * 2003-08-19 2005-02-23 中兴通讯股份有限公司 一种Pi/4DQPSK解调器及其解调方法
CN2689607Y (zh) * 2004-04-12 2005-03-30 南京师范大学 连续相位四分之派差分编码正交相移键控调制、解调装置
CN1798121A (zh) * 2004-12-22 2006-07-05 阿尔卡特公司 差分相移键控解调器和解调方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370473B (en) * 2000-12-21 2004-04-07 Marconi Caswell Ltd Improvements in or relating to optical communication
GB2383705B (en) * 2001-11-30 2005-03-30 Marconi Optical Components Ltd Optical coding system
KR100703410B1 (ko) * 2005-01-19 2007-04-03 삼성전자주식회사 오프셋 직교위상편이 변조 방법과 이를 이용한 광송신기
JP4597820B2 (ja) * 2005-09-05 2010-12-15 三菱電機株式会社 パラレルプリコーダ回路
JP4767676B2 (ja) * 2005-12-12 2011-09-07 三菱電機株式会社 光受信装置
CN101459638B (zh) * 2007-12-14 2012-03-21 华为技术有限公司 差分正交相移键控dqpsk信号的接收装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585503A (zh) * 2003-08-19 2005-02-23 中兴通讯股份有限公司 一种Pi/4DQPSK解调器及其解调方法
CN2689607Y (zh) * 2004-04-12 2005-03-30 南京师范大学 连续相位四分之派差分编码正交相移键控调制、解调装置
CN1798121A (zh) * 2004-12-22 2006-07-05 阿尔卡特公司 差分相移键控解调器和解调方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2326033A4 *

Also Published As

Publication number Publication date
JP2011526445A (ja) 2011-10-06
EP2326033A1 (en) 2011-05-25
CN101621336A (zh) 2010-01-06
CN101621336B (zh) 2012-12-12
CA2728750A1 (en) 2010-01-07
US20110158654A1 (en) 2011-06-30
EP2326033A4 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2010000165A1 (zh) 差分正交相移键控系统、方法及设备
US12068841B2 (en) Optical module
EP2420011B1 (en) Method of and system for detecting skew between parallel signals
US11652553B2 (en) Optical signal transmission system and optical signal transmission method
US8903238B2 (en) Ultra dense WDM with agile and flexible DSP add-drop
US7983570B2 (en) Direct detection differential polarization-phase-shift keying for high spectral efficiency optical communication
US20100021166A1 (en) Spectrally Efficient Parallel Optical WDM Channels for Long-Haul MAN and WAN Optical Networks
US20120281990A1 (en) Optical receiver configurable to accommodate a variety of modulation formats
WO2012048021A2 (en) Wavelength division multiplexed optical communication system having variable channel spacings and different modulation formats
EP3497825B1 (en) Encoding for optical transmission
JP4730560B2 (ja) 光伝送システム、光伝送方法及び光送信装置
JP2014519251A (ja) ゼロ復帰フォーマットに時間シフトを使用する偏光多重化シグナリング
Mahdiraji et al. Advanced modulation formats and multiplexing techniques for optical telecommunication systems
CN102318240B (zh) 一种高速光传输系统、设备及数据处理方法
KR20130093705A (ko) 멀티캐리어 기반의 광송신 장치 및 광수신 장치
Winzer et al. Evolution of digital optical modulation formats
Chang et al. A new 16-ary modulation for super-Nyquist-WDM systems: Dual-polarized quadrature duoquaternary (DP-QDQ) modulation
Zhang et al. D-mPSK-PolSK toward cost-effective application of polarization
Toliver et al. Optical code division multiplexing for confidentiality at the photonic layer in metro networks and beyond
Winzer Evolution of Digital
Toliver et al. Coherent spectral phased coded OCDM systems: Progress in spectral efficiency and long-distance transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2728750

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009771935

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011515072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE