WO2010000154A1 - 微波传输设备中信号处理的方法、装置及微波传输设备 - Google Patents

微波传输设备中信号处理的方法、装置及微波传输设备 Download PDF

Info

Publication number
WO2010000154A1
WO2010000154A1 PCT/CN2009/071528 CN2009071528W WO2010000154A1 WO 2010000154 A1 WO2010000154 A1 WO 2010000154A1 CN 2009071528 W CN2009071528 W CN 2009071528W WO 2010000154 A1 WO2010000154 A1 WO 2010000154A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
multiplexed
unit
service
modulated
Prior art date
Application number
PCT/CN2009/071528
Other languages
English (en)
French (fr)
Inventor
黄雄斌
王天祥
缑海鸥
李德军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09771924A priority Critical patent/EP2315374A4/en
Publication of WO2010000154A1 publication Critical patent/WO2010000154A1/zh
Priority to US12/979,174 priority patent/US8488970B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1143Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • H04B10/25759Details of the reception of RF signal or the optical conversion before the optical fibre

Definitions

  • the present invention relates to signal processing technologies, and in particular, to a signal processing method, a device, and a microwave transmission device in a microwave transmission device.
  • the existing microwave transmission equipment usually adopts a split system structure. As shown in Fig. 1, the microwave transmission equipment is divided into an indoor unit (Apartment Uni t , IDU ) and an outdoor unit ( Outdoor Uni t ( 0DU ) , between the IDU and the ODU . Interaction between service signals, communication signals, and power signals is performed through interconnected coaxial cables.
  • the processing of the signal by the microwave transmission device is divided into two signal processing directions: uplink and downlink.
  • the uplink direction refers to the signal processing direction from IDU to 0DU
  • the downlink direction refers to the signal processing direction from 0DU to IDU.
  • the processing of the service signal mainly includes the following steps in the uplink processing direction:
  • Step S1 the digital modulation and demodulation module in the IDU modulates the service signal to the intermediate frequency (for example, 350 MHz), obtains the uplink intermediate frequency signal, and sends the uplink intermediate frequency signal to the uplink analog intermediate frequency module;
  • Step S2 the uplink analog intermediate frequency module
  • the uplink intermediate frequency signal is filtered and appropriately amplified, and the processed uplink intermediate frequency signal is sent to the signal combining and splitting module;
  • Step S3 the signal combining and splitting module in the IDU multiplexes the processed uplink intermediate frequency signal with other signals (for example, communication signals), and sends the signal to the coaxial cable for transmission to the 0DU;
  • the signal combining and shunting module in step S4 and 0DU strips the uplink intermediate frequency signal and sends it to the intermediate frequency AGC module in the 0DU.
  • Step S6 The frequency conversion module converts the uplink intermediate frequency signal from the intermediate frequency to the radio frequency, and sends the radio frequency signal to the amplification module for amplification, and then transmits the antenna to the free space.
  • the processing of the service signal mainly includes the following steps in the downlink processing direction:
  • Step S7 The ODU receives the radio frequency signal from the free space by using the antenna, and the RF signal is amplified and sent to the frequency conversion module, and the frequency conversion module converts the frequency conversion signal to an intermediate frequency (for example, 140 MHz) to obtain a downlink intermediate frequency signal, and the downlink intermediate frequency is obtained.
  • the signal is sent to the intermediate frequency AGC module in the 0DU;
  • Step S8 The intermediate frequency AGC module compensates the attenuation of the radio frequency signal in the free space, and sends the downlink intermediate frequency signal with relatively constant power after compensation to the signal combining and splitting module in the 0DU;
  • Step S9 The signal combining and splitting module in the ODU multiplexes the downlink intermediate frequency signal with other signals (for example, a communication signal), and transmits the downlink intermediate frequency signal to the IDU through the coaxial cable;
  • Step S10 After receiving the multiplexed signal, the signal combining and splitting module in the IDU strips the downlink intermediate frequency signal and sends it to the intermediate frequency AGC module in the I DU.
  • step S11 the intermediate frequency AGC module in the I DU compensates the attenuation of the downlink intermediate frequency signal in the coaxial cable, and sends the downlink intermediate frequency signal with the relatively constant power after the compensation to the downlink analog intermediate frequency module, and then sends the digital modulation and demodulation.
  • the module performs demodulation to obtain a demodulated service signal.
  • the digital part of the communication circuit in the IDU sends the digital communication signal to the analog part of the communication circuit, and the analog part of the communication circuit converts the digital communication signal into an analog communication signal, and modulates the analog communication signal to a suitable frequency (for example, 5 5MHz) obtaining an uplink communication signal, and sending the uplink communication signal to the signal combining and splitting module in the IDU;
  • a suitable frequency for example, 5 5MHz
  • Step T2 The signal combining and splitting module in the IDU multiplexes the uplink communication signal with other signals (for example, service signals) and transmits them to the 0DU through the coaxial cable;
  • the signal combining and splitting module in step T3, 0DU strips the uplink communication signal from the multiplexed signal, and sends it to the analog part of the communication circuit in the 0DU;
  • the analog circuit of the communication circuit in the ODU demodulates the uplink communication signal, and sends the demodulated uplink communication signal to the digital portion of the communication circuit.
  • the processing method of the communication signal in the downlink processing direction is basically similar to the processing method in the uplink direction.
  • the main difference is that the downlink communication signal obtained by the analog portion of the communication circuit in the 0DU is different from the frequency of the above-mentioned uplink communication signal (for example, 10 MHz).
  • the prior art uses the signal combining and splitting module to multiplex the two signals together by frequency division multiplexing, and shares one cable for transmission.
  • the digital modulation and demodulation module is used to modulate or demodulate the service signal in the indoor unit, and the outdoor unit transmits or receives the antenna by using the antenna.
  • the service signal, the distance between the digital modem module and the antenna is too long, and the signal to noise ratio of the service signal is too small.
  • Embodiments of the present invention provide a method, an apparatus, and a microwave transmission apparatus for signal processing in a microwave transmission apparatus, which can significantly improve a signal to noise ratio of a service signal.
  • a method for signal processing in a microwave transmission device comprising:
  • a method for signal processing in a microwave transmission device comprising:
  • the multiplexed optical signal is transmitted to the outdoor unit.
  • a method for signal processing in a microwave transmission device comprising:
  • the multiplexed signal comprising at least one service signal to be modulated; Separating the service signal to be modulated from the multiplexed signal;
  • the modulated service signal is processed and sent to free space.
  • a method for signal processing in a microwave transmission device comprising:
  • Receiving a multiplexed optical signal from the indoor unit converting the multiplexed optical signal into a multiplexed electrical signal; the multiplexed signal comprising at least one service signal to be modulated;
  • the modulated service signal is processed and sent to free space.
  • a device for signal processing in a microwave transmission device comprising:
  • the multiplexing unit is configured to directly multiplex the at least one service signal and the non-service signal; and the sending unit is configured to send the multiplexed signal to the outdoor unit.
  • An indoor unit for use in a microwave transmission system comprising:
  • a device for signal processing in a microwave transmission device comprising:
  • a multiplexed signal receiving unit configured to receive a multiplexed signal from the indoor unit, where the multiplexed signal includes at least one service signal to be modulated;
  • a detaching unit configured to detach the service signal to be modulated from the multiplexed signal
  • a modulating unit configured to modulate the service signal to be modulated
  • the processing sending unit is configured to process the modulated service signal and send it to the free space.
  • An outdoor unit for use in a microwave transmission system, the outdoor unit comprising:
  • a multiplexing signal receiving unit configured to receive a multiplexed optical signal from the indoor unit, where the multiplexed signal includes at least one service signal to be modulated;
  • a conversion unit configured to convert the multiplexed optical signal received by the multiplexed signal receiving unit into a multiplexed electrical Signal
  • a stripping unit configured to strip out the multiplexed electrical signal converted from the conversion unit by the service signal to be modulated
  • a modulating unit configured to modulate a service signal to be modulated that is stripped from the stripping unit
  • a processing sending unit configured to process the modulated signal of the modulating unit and send the signal to the free space
  • a microwave transmission device includes: an indoor unit and an outdoor unit,
  • the indoor unit is configured to directly multiplex at least one service signal and a non-service signal, and send the multiplexed signal to the outdoor unit;
  • the outdoor unit is configured to receive a multiplexed signal from the indoor unit, where the multiplexed signal includes at least one service signal to be modulated; and the service signal to be modulated is stripped from the multiplexed signal Coming out; modulating the service signal to be modulated; processing the modulated service signal and transmitting it to free space.
  • a microwave transmission device includes: an indoor unit and an outdoor unit, wherein the indoor unit and the outdoor unit are connected by an optical fiber; wherein:
  • the indoor unit is configured to directly multiplex at least one service signal and a non-service signal, and convert the multiplexed electrical signal into a multiplexed optical signal; and send the multiplexed optical signal to the Outdoor unit
  • the outdoor unit is configured to receive a multiplexed optical signal from the indoor unit, and convert the multiplexed optical signal into a multiplexed electrical signal; the multiplexed signal includes at least one service signal to be modulated; Deviating the service signal to be modulated from the multiplexed signal; modulating the service signal to be modulated; processing the modulated service signal, and transmitting the signal to the free space.
  • the service signal is directly multiplexed by the indoor unit, and the multiplexed signal including the to-be-modulated service signal after multiplexing is sent to the outdoor unit, and the service signal is modulated by the outdoor unit.
  • the distance between the modem and the transmitting/receiving antenna is shortened, and a service signal with a higher signal-to-noise ratio can be obtained.
  • FIG. 1 is a structural diagram of a microwave transmission device provided by the prior art
  • FIG. 2 is a flowchart of a method for processing a signal in a microwave transmission device according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for signal processing in a microwave transmission device according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of a signal processing apparatus in a microwave transmission apparatus according to Embodiment 4 of the present invention
  • FIG. 6 is a schematic diagram of signal processing in a microwave transmission apparatus according to Embodiment 5 of the present invention
  • FIG. 7 is a schematic diagram of a device for signal processing in a microwave transmission device according to Embodiment 6 of the present invention
  • FIG. 8 is a schematic diagram of a device for signal processing in a microwave transmission device according to Embodiment 7 of the present invention
  • Schematic diagram of the provided microwave transmission equipment
  • FIG. 10 is a structural diagram of still another microwave transmission device according to an embodiment of the present invention.
  • a first embodiment of the present invention provides a method for signal processing in a microwave transmission device. As shown in FIG. 2, the method includes:
  • Step 21 directly multiplexing at least one service signal and a non-service signal
  • Step 22 Send the multiplexed signal to the outdoor unit.
  • the service signal is directly multiplexed by the indoor unit, and the multiplexed signal including the to-be-modulated service signal after multiplexing is sent to the outdoor unit, and the outdoor unit modulates the service signal.
  • the distance between the modem and the transmitting/receiving antenna is shortened, and a service signal with a higher signal-to-noise ratio can be obtained.
  • a method for signal processing in a microwave transmission device includes:
  • Step 21 directly multiplexing at least one service signal and a non-service signal
  • Step 22 Send the multiplexed signal to the outdoor unit.
  • the non-service signal mainly refers to a communication signal
  • the multiplexing refers mainly to multiplexing between a service signal and a communication signal, or multiplexing between different types of service signals. .
  • the second embodiment of the present invention further includes: Step 220, The multiplexed signal is converted to an optical signal.
  • step 22 specifically: transmitting the optical signal to the outdoor unit through the optical fiber.
  • the indoor unit in the second embodiment of the present invention first performs electro-optical conversion on the signal, and then uses the optical fiber to transmit. Since the attenuation of the signal in the optical fiber is much smaller than the attenuation in the cable, when the optical fiber transmission mode is adopted, the cable can be used in the cable. When the same signal-to-noise ratio is achieved during transmission, the distance between the IDU and the 0DU is increased, and when the 0DU processes the signal from the IDU, the 0DU does not need to compensate the attenuation of the signal in the cable. Reduce the cost of the system.
  • the communication signal provided by the second embodiment of the present invention may be a digital signal.
  • the indoor unit does not convert the digital communication signal into an analog signal, and does not need to perform modulation and the like on the analog signal, and transmits the communication signal by using a digital signal, thereby solving the reliability of the analog signal in the prior art. Poor performance, easy to cause communication problems, improve the reliability of communication signals.
  • the foregoing service signal and the communication signal are both baseband signals.
  • the second embodiment of the present invention optionally uses a time division multiplexing multiplexing manner for the baseband signal.
  • the above description describes the processing of the signal by the IDU in the upstream direction.
  • the following describes the processing of the signal by the I DU in the downlink direction.
  • Embodiment 2 of the present invention further includes after step 22:
  • Step 23 Receive a multiplexed signal from the outdoor unit, the signal including at least one demodulated traffic signal.
  • the indoor unit receives the multiplexed signal sent by the outdoor unit.
  • the method further includes:
  • Step 24 Convert the multiplexed optical signal from the outdoor unit into a multiplexed electrical signal.
  • the multiplexing manner of the signal is a time division multiplexing manner, and after step 24, the method further includes:
  • Step 25 Perform stripping of the multiplexed electrical signal according to a time division multiplexing manner.
  • the second embodiment of the present invention further includes a step 250 before the step 25, recovering the clock signal of the multiplexed signal from the outdoor unit, where the step 25 is specifically:
  • the multiplexed electrical signal is stripped in a time division multiplexed manner.
  • a clock data recovery (C lock Da ta Recover) circuit is used to recover the clock signal of the multiplexed signal from the outdoor unit.
  • the multiplexed electrical signal is sampled by the clock signal, and various signals in the multiplexed electrical signal are separated by time division multiplexing, for example, when the multiplexed electrical signal includes a service signal And a communication signal, the multiplexed demodulated service signal and the communication signal are sampled by using the clock signal, and then the demodulated service signal is time-multiplexed and communicated according to the clock signal.
  • the signal is peeled off.
  • a method for processing a signal in a microwave transmission device according to Embodiment 3 of the present invention, as shown in FIG. 4, includes:
  • Step 41 Receive a multiplexed signal from an indoor unit, where the multiplexed signal includes at least one service signal to be modulated;
  • Step 42 The service signal to be modulated is stripped from the multiplexed signal; Step 43: modulating the service signal to be modulated;
  • Step 44 Process the modulated service signal and send it to free space.
  • the service signal is directly multiplexed by the indoor unit, and the multiplexed signal including the service signal to be modulated after multiplexing is sent to the outdoor unit, and the service signal is modulated by the outdoor unit. , shortening the distance between the modem and the transmitting/receiving antenna, and ensuring the service signal with higher signal-to-noise ratio.
  • the method further includes: Step 411: Convert the multiplexed optical signal from the indoor unit into a multiplexed electrical signal.
  • the multiplexed signal from the indoor unit includes a communication signal, and the communication signal is a digital signal.
  • the outdoor unit does not need to perform analog-to-digital conversion, demodulation and the like on the received digital communication signal, and transmits the communication signal by using a digital signal, thereby solving the problem that the reliability of the analog signal is poor in the prior art, which easily causes communication failure.
  • the problem is to improve the reliability of the communication signal.
  • the method further includes: recovering the clock signal of the multiplexed signal from the indoor unit.
  • the step of separating the service signal to be modulated from the multiplexed signal is as follows:
  • the service signal to be modulated is stripped from the multiplexed signal by means of time division multiplexing using the clock signal.
  • a clock data recovery circuit is used to recover the clock signal of the multiplexed signal from the indoor unit.
  • Step 43 Modulate the service signal to be modulated.
  • the service signal to be modulated is modulated by an indoor unit.
  • Step 44 The modulated service signal is processed and sent to the free space, where the method includes: Step S1, filtering the modulated service signal;
  • Step S2 Perform frequency conversion on the result obtained by the filtering.
  • the outdoor unit can use the clock signal in the restored indoor unit as a reference clock, adjust the clock of the frequency synthesizer by using the reference clock, and then frequency-convert the result obtained by the frequency synthesizer with a more accurate clock.
  • the IDU and the 0DU in the microwave transmission device respectively use the reference crystal oscillator to provide the corresponding system clock, the IDU and the system clock in the 0DU are not synchronized, and because the 0DU is outside, the environmental conditions are bad, and the crystal oscillator is prone to temperature drift. , causing the accuracy to deteriorate.
  • the used frequency synthesizer synchronizes with the reference in the 0DU.
  • the crystal oscillator the accuracy of the reference crystal oscillator is inaccurate, which causes the frequency synthesizer in the 0DU of the two microwave transmission devices in the receiving end and the transmitting end of the one-hop microwave to be asynchronous, and even the frequency offset direction between the two frequency synthesizers is opposite, resulting in
  • the frequency of the signal to be demodulated in the microwave transmission device at the receiving end is greatly deviated, and the performance requirement of the digital modulation and demodulation module in the microwave transmission device at the receiving end is too high.
  • the clock recovery circuit is used to synchronize the system clock of the 0DU to the system clock of the I DU. Since the reference crystal in the IDU is indoors, the environmental conditions are good, and the crystal precision is maintained well, so that one hop microwave can be made.
  • the frequency synthesizer clock synchronization of 0DU ensures that the frequency offsets of the output clocks of the two 0DU frequency synthesizers are exactly the same, so that the frequency deviation of the signals to be demodulated in the receiving microwave transmission device is small, and the digital modulation and demodulation is reduced. Module requirements.
  • the multiplex signal from the indoor unit received by the outdoor unit is an optical signal, that is, when the optical fiber transmission mode is adopted between the IDU and the 0DU, since the signal attenuation in the optical fiber is small, in the above step 44, There is no need to compensate for the attenuation of the signal in the cable, which reduces system cost.
  • Embodiment 3 of the present invention further includes:
  • Step T1 demodulating the radio frequency signal from the free space.
  • the outdoor unit frequency converts the radio frequency signal from the free space. Prior to step T1, the outdoor unit frequency-converts the RF signal from free space.
  • the outdoor unit can use the foregoing clock signal to frequency-convert the radio frequency signal from the free space, thereby ensuring clock synchronization of the frequency synthesizer of the two 0DUs of one hop microwave, and reducing the digital modulation and demodulation Module requirements.
  • Embodiment 4 of the present invention provides a device for signal processing in a microwave transmission device. As shown in FIG. 5, the device includes:
  • the multiplexing unit 51 is configured to directly multiplex the at least one service signal and the non-service signal
  • the sending unit 52 is configured to send the multiplexed signal to the outdoor unit.
  • the service signal is directly multiplexed by the indoor unit, and the multiplexed signal including the service signal to be modulated after multiplexing is sent to the outdoor unit, and the service signal is modulated by the outdoor unit.
  • the signal can simultaneously extend the distance between the indoor unit and the outdoor unit. The distance between the modem and the transmitting/receiving antenna is shortened, and a service signal with a higher signal-to-noise ratio can be obtained.
  • the apparatus for signal processing in a microwave transmission device includes: a multiplexing unit 51, configured to directly multiplex at least one service signal and a non-service signal; The multiplexed signal is sent to the outdoor unit.
  • the apparatus for signal processing in the microwave transmission device provided by the fifth embodiment of the present invention further includes: a receiving unit 53, configured to receive a multiplexed signal from the outdoor unit, where the signal includes at least one demodulated service signal.
  • the multiplexing unit 51 can also be used to peel off the multiplexed signal from the outdoor unit.
  • the apparatus further includes: a converting unit 54 configured to convert the multiplexed signal into an optical signal for the directly multiplexed electrical signal; for multiplexing the signal from the outdoor unit For the optical signal, the conversion unit 54 is configured to convert the multiplexed optical signal from the outdoor unit into a multiplexed electrical signal.
  • a converting unit 54 configured to convert the multiplexed signal into an optical signal for the directly multiplexed electrical signal; for multiplexing the signal from the outdoor unit For the optical signal, the conversion unit 54 is configured to convert the multiplexed optical signal from the outdoor unit into a multiplexed electrical signal.
  • the above conversion unit 54 ensures the transmission of the optical signal between the IDU and the 0DU.
  • the optical signal is transmitted between the IDU and the 0DU by using the optical fiber by the converting unit 54. Since the attenuation of the signal in the optical fiber is much smaller than the attenuation in the cable, when the optical fiber transmission mode is adopted, the same can be achieved when using the optical fiber transmission mode. Under the condition of signal-to-noise ratio, the distance between the IDU and the 0DU is increased, and when the signal from the IDU is processed by the 0DU, the 0DU does not need to compensate the attenuation of the signal in the cable, which can reduce the cost of the system. .
  • the multiplexing mode is a time division multiplexing mode. To facilitate accurate multiplexing, the system clock precision in the 0DU is improved.
  • the device further includes:
  • the clock signal recovery unit 55 is configured to recover the clock signal of the multiplexed signal received by the receiving unit 53.
  • the communication signal when the non-service signal includes a communication signal, the communication signal is a digital signal, and the communication power provided by the device
  • the circuit module 56 when providing the communication signal, does not need to perform analog-to-digital conversion, demodulation and the like on the digital communication signal, and transmits the communication signal by using a digital signal, thereby solving the reliability of the analog signal in the prior art. Poor performance, easy to cause communication problems, improve the reliability of communication signals.
  • the device for signal processing in the above microwave transmission device can be implemented by an indoor unit in the microwave transmission system.
  • Embodiment 6 of the present invention provides a device for signal processing in a microwave transmission device. As shown in FIG. 7, the device includes:
  • the multiplexed signal receiving unit 71 is configured to receive a multiplexed signal from the indoor unit, where the multiplexed signal includes at least one service signal to be modulated;
  • a stripping unit 72 configured to separate the service signal to be modulated from the multiplexed signal
  • a modulating unit 73 configured to modulate the service signal to be modulated
  • the processing sending unit 74 is configured to process the modulated service signal and send it to the free space.
  • the service signal is directly multiplexed by the indoor unit, and the multiplexed signal including the service signal to be modulated after multiplexing is sent to the outdoor unit, and the service signal is modulated by the outdoor unit. , shortening the distance between the modem and the transmitting/receiving antenna, and ensuring the service signal with higher signal-to-noise ratio.
  • a demodulating unit 75 is provided for The free space service signal is demodulated for multiplexing with the non-service signal and transmitted to the indoor unit.
  • the device further includes a converting unit 76, for the multiplexed optical signal from the indoor unit, the converting unit 76 is configured to: The multiplexed optical signal is converted into a multiplexed electrical signal; the electrical signal multiplexed with the non-service signal from the free space, the converting unit 76 is configured to convert the multiplexed electrical signal into a multiplexed signal Light signal.
  • the stripping unit 72 described above can also be used to multiplex the above-mentioned service signals from the free space with the non-service signals.
  • the apparatus further includes a transmitting unit 77, configured to send the multiplexed signal after demodulation by the demodulation unit to the indoor unit, where the signal includes at least one demodulated service signal.
  • the device when the multiplexing mode used in the seventh embodiment of the present invention is a time division multiplexing mode, the device further includes:
  • the clock signal recovery unit 78 is configured to recover the clock signal of the multiplexed signal from the indoor unit.
  • the processing and transmitting unit 74 is configured to filter the modulated service signal and filter the frequency-converted signal from the free space; frequency-convert the result of the filtering and frequency-convert the radio frequency signal from the free space.
  • the above-mentioned processing and transmitting unit 74 does not need to compensate for the attenuation in the cable, thereby reducing the cost of the system. .
  • the device for signal processing in the microwave transmission device provided in Embodiment 7 of the present invention, when the non-service signal includes a communication signal, the communication signal is a digital signal, and the communication circuit module 79 provided by the device provides a communication signal.
  • the digital communication signal is not required to be subjected to analog-to-digital conversion, demodulation, and the like, and the communication signal is transmitted by using a digital signal, thereby solving the problem that the communication failure is easily caused by the poor reliability of the analog signal in the prior art. Improve the reliability of communication signals.
  • the device for signal processing in the above microwave transmission device can be implemented by an outdoor unit in the microwave transmission system.
  • the embodiment of the invention further provides a microwave transmission device, as shown in FIG. 9, comprising: an indoor unit 91 and an outdoor unit 92,
  • the indoor unit 91 is configured to directly multiplex at least one service signal and a non-service signal, and send the multiplexed signal to the outdoor unit 92;
  • the outdoor unit 92 is configured to receive a multiplexed signal from the indoor unit 91, where the multiplexed signal includes at least one service signal to be modulated; and the multiplexed signal is sent from the multiplexed signal Stripping out; modulating the service signal to be modulated; processing the modulated service signal and transmitting it to free space.
  • the indoor unit 91 and the outdoor unit 92 can be connected by using an optical fiber. Connected to realize the transmission of the optical signal; when the non-traffic signal includes the communication signal, the communication signal is a digital signal.
  • each functional module shown in the figure may refer to the signal processing device in the corresponding microwave transmission device, where Let me repeat.
  • the service signal is directly multiplexed by the indoor unit 91, and the multiplexed signal including the service signal to be modulated after multiplexing is sent to the outdoor unit 92, and the service signal is performed by the outdoor unit.
  • Modulation shortens the distance between the modem and the transmit/receive antenna, ensuring a high signal-to-noise ratio service signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Radio Relay Systems (AREA)

Description

微波传输设备中信号处理的方法、 装置及微波传输设备 本申请要求于 2008年 6月 30日提交中国专利局、 申请号为
200810129148.X ,发明名称为"微波传输设备中信号处理的方法、装置及微波传 输设备 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及信号处理技术, 尤其涉及一种微波传输设备中信号处理的方法、 装置及微波传输设备。
背景技术
现有的微波传输设备通常釆用分体式系统结构, 如图 1所示, 微波传输设备 分为室内单元 ( Indoor Uni t , IDU )和室外单元 ( Outdoor Uni t, 0DU ) , IDU 和 ODU之间通过互联的同轴电缆, 进行业务信号、 通讯信号和电源信号之间的交 互。
下面分别从微波传输设备对业务信号和通讯信号的处理方法两个方面, 对 图 1进行说明。 微波传输设备对信号的处理分为上行和下行两个信号处理方向, 上行方向指从 IDU到 0DU的信号处理方向, 下行方向指从 0DU到 IDU的信号处理方 向。
对业务信号的处理, 在上行处理方向上主要包括如下步骤:
步骤 Sl、 IDU中的数字调制解调模块将业务信号调制到中频频率 (例如, 350MHz ) , 获得上行中频信号, 将该上行中频信号发送给上行模拟中频模块; 步骤 S2、 上行模拟中频模块对该上行中频信号进行滤波和适当的放大, 将 处理后的上行中频信号发送给信号合分路模块;
步骤 S3、 IDU中的信号合分路模块将该处理过的上行中频信号与其它信号 (例如, 通讯信号) 复接后送给同轴电缆传输至 0DU;
步驟 S4、 0DU中的信号合分路模块接收到复接的信号后, 将该上行中频信号 剥离出来, 送给 0DU中的中频 AGC模块; 步骤 S5、 ODU中的中频 AGC模块对上行中频信号在同轴电缆中的衰减进行补 偿, 将补偿后具有相对恒定功率的上行中频信号送给 0DU中的变频模块;
步骤 S6、 变频模块将该上行中频信号从中频频率变频到射频频率, 将射频 信号送至放大模块放大后, 经天线发射到自由空间。
对业务信号的处理, 在下行处理方向上主要包括如下步骤:
步骤 S7、 ODU利用天线接收来自自由空间的射频信号, 将该射频信号放大后 送入变频模块, 变频模块将该变频信号变频至中频频率 (例如, 140MHz ) , 获 得下行中频信号, 将该下行中频信号送给 0DU中的中频 AGC模块;
步骤 S8、 中频 AGC模块对射频信号在自由空间中的衰减进行补偿, 将补偿后 具有相对恒定功率的下行中频信号送给 0DU中的信号合分路模块;
步骤 S9、 ODU中的信号合分路模块将该下行中频信号与其它信号 (例如, 通 讯信号) 复接后通过同轴电缆传输至 IDU;
步骤 S10、 IDU中的信号合分路模块接收到复接后的信号后, 将该下行中频 信号剥离出来, 送给 I DU中的中频 AGC模块;
步骤 S 11、 I DU中的中频 AGC模块对下行中频信号在同轴电缆中的衰减进行补 偿, 将补偿后具有相对恒定功率的下行中频信号送给下行模拟中频模块后, 送 入数字调制解调模块进行解调, 获取解调后的业务信号。
对通讯信号的处理, 在上行处理方向上主要包括如下步骤:
步骤 Tl、 IDU中的通讯电路数字部分将数字通讯信号送给通讯电路模拟部 分, 通讯电路模拟部分将数字通讯信号转换为模拟通讯信号, 将该模拟通讯信 号调制到一个合适的频率 (例如, 5. 5MHz )获得上行通讯信号, 将该上行通讯 信号送给 IDU中的信号合分路模块;
步骤 T2、 IDU中的信号合分路模块将上行通讯信号与其它信号 (例如, 业务 信号) 复接后通过同轴电缆传输至 0DU;
步驟 T3、 0DU中的信号合分路模块将上行通讯信号从复接后的信号中剥离出 来, 送入 0DU中的通讯电路模拟部分; 步骤 T4、 ODU中的通讯电路模拟部分对该上行通讯信号进行解调, 将解调后 的上行通讯信号送入通讯电路数字部分。
在下行处理方向上对通讯信号的处理方法与上行方向上的处理方法基本相 似, 主要区别在于 0DU中的通讯电路模拟部分获得的下行通讯信号与上述的上行 通讯信号频率不同 (例如, 10MHz ) 。
在上述的微波传输设备对业务信号和通讯信号的处理流程中, 现有技术利 用信号合分路模块采用频分复用的方式将两种信号复接在一起, 共用一根电缆 进行传输。
在实现本发明的过程中, 发明人发现现有技术中至少存在如下问题: 现有 技术在室内单元利用数字调制解调模块对业务信号进行调制或解调, 在室外单 元利用天线发送或接收该业务信号, 数字调制解调模块与天线的距离过长, 造 成业务信号信噪比过小。
发明内容
本发明的实施例提供了一种微波传输设备中信号处理的方法、 装置和微波 传输设备, 能够显著提高业务信号的信噪比。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种微波传输设备中信号处理的方法, 该方法包括:
将至少一种业务信号与非业务信号直接进行复接;
将复接的信号发送给室外单元。
一种微波传输设备中信号处理的方法, 该方法包括:
将至少一种业务信号与非业务信号直接进行复接, 将所述复接的电信号转 换为复接的光信号;
将所述复接的光信号发送给室外单元。
一种微波传输设备中信号处理的方法, 该方法包括:
接收来自室内单元的复接的信号, 所述复接的信号包括至少一种待调制的 业务信号; 将所述待调制的业务信号从所述复接的信号中剥离出来;
对所述待调制的业务信号进行调制;
将调制后的业务信号进行处理, 发送至自由空间。
一种微波传输设备中信号处理的方法, 该方法包括:
接收来自室内单元的复接的光信号, 将所述复接的光信号转换为复接的电 信号; 所述复接的信号包括至少一种待调制的业务信号;
将所述待调制的业务信号从所述复接的信号中剥离出来;
对所述待调制的业务信号进行调制;
将调制后的业务信号进行处理, 发送至自由空间。
一种微波传输设备中信号处理的装置, 该装置包括:
复接单元, 用于将至少一种业务信号与非业务信号直接进行复接; 发送单元, 用于将复接的信号发送给室外单元。
一种室内单元, 用于微波传输系统中, 该室内单元包括:
复接单元, 用于将至少一种业务信号与非业务信号直接进行复接; 转换单元, 用于将所述复接单元复接的电信号转换为复接的光信号, 发送单元, 用于将由所述转换单元得到复接的光信号发送给室外单元。 一种微波传输设备中信号处理的装置, 该装置包括:
复接信号接收单元, 用于接收来自室内单元的复接的信号, 所述复接的信 号包括至少一种待调制的业务信号;
剥离单元, 用于将所述待调制的业务信号从所述复接的信号中剥离出来; 调制单元, 用于对所述待调制的业务信号进行调制;
处理发送单元, 用于将调制后的业务信号进行处理, 发送至自由空间。 一种室外单元, 用于微波传输系统中, 该室外单元包括:
复接信号接收单元, 用于接收来自室内单元的复接的光信号, 所述复接的 信号包括至少一种待调制的业务信号;
转换单元, 用于将所述复接信号接收单元接收的复接光信号转换为复接电 信号;
剥离单元, 用于将所述待调制的业务信号从所述转换单元转换出的复接的 电信号中剥离出来;
调制单元, 用于对所述剥离单元剥离出的待调制的业务信号进行调制; 处理发送单元, 用于将所述调制单元调制后的业务信号进行处理, 发送至 自由空间。
一种微波传输设备, 包括: 室内单元和室外单元,
所述室内单元, 用于将至少一种业务信号与非业务信号直接进行复接, 将 复接的信号发送给室外单元;
所述室外单元, 用于接收来自室内单元的复接的信号, 所述复接的信号包 括至少一种待调制的业务信号; 将所述待调制的业务信号从所述复接的信号中 剥离出来; 对所述待调制的业务信号进行调制; 将调制后的业务信号进行处理, 发送至自由空间。
一种微波传输设备, 包括: 室内单元和室外单元, 所述室内单元和室外单 元之间通过光纤连接; 其中:
所述室内单元, 用于将至少一种业务信号与非业务信号直接进行复接, 将 所述复接的电信号转换为复接的光信号; 将所述复接的光信号发送给所述室外 单元;
所述室外单元, 用于接收来自室内单元的复接的光信号, 将所述复接的光 信号转换为复接的电信号; 所述复接的信号包括至少一种待调制的业务信号; 将所述待调制的业务信号从所述复接的信号中剥离出来; 对所述待调制的业务 信号进行调制; 将调制后的业务信号进行处理, 发送至自由空间。
本发明实施例提供的技术方案, 通过室内单元将业务信号直接进行复接, 将复接后包含待调制业务信号的复接信号, 发送给室外单元, 由室外单元对所 述业务信号进行调制, 缩短了调制解调器与发射 /接收天线之间的距离, 保证了 能够获得较高信噪比的业务信号。 附图说明
图 1为现有技术提供的微波传输设备的结构图;
图 2为本发明实施例一提供的微波传输设备中信号处理的方法流程图; 图 3为本发明实施例二提供的微波传输设备中信号处理的方法流程图; 图 4为本发明实施例三提供的微波传输设备中信号处理的方法流程图; 图 5为本发明实施例四提供的微波传输设备中信号处理的装置示意图; 图 6为本发明实施例五提供的微波传输设备中信号处理的装置示意图; 图 7为本发明实施例六提供的微波传输设备中信号处理的装置示意图; 图 8为本发明实施例七提供的微波传输设备中信号处理的装置示意图; 图 9为本发明实施例提供的微波传输设备示意图;
图 10为本发明实施例提供的又一种微波传输设备结构图。
具体实施方式
为了更清楚地说明本发明实施例的技术方案, 下面结合附图对本发明实施 例提供的微波传输设备中信号处理的方法、 装置和微波传输设备进行详细描述。
本发明实施例一提供了一种微波传输设备中信号处理的方法, 如图 2所示, 该方法包括:
步骤 21、 将至少一种业务信号与非业务信号直接进行复接;
步骤 22、 将复接的信号发送给室外单元。
本发明实施例提供的技术方案, 通过室内单元将业务信号直接进行复接, 将复接后包含待调制业务信号的复接信号, 发送给室外单元, 由室外单元对所 迷业务信号进行调制, 缩短了调制解调器与发射 /接收天线之间的距离, 保证了 能够获得较高信噪比的业务信号。
如图 3 所示, 本发明实施例二提供的一种微波传输设备中信号处理的方法 包括:
步驟 21、 将至少一种业务信号与非业务信号直接进行复接;
步骤 22、 将复接的信号发送给室外单元。 在本发明实施例二中, 所述的非业务信号主要指通讯信号, 所述的复接主 要是指业务信号和通讯信号之间的复接, 或是不同类型的业务信号之间的复接。
可选的, 为了进一步提高业务信号的信噪比, 并且达到增加 IDU和 0DU之 间拉远距离的目的, 如图 3所示, 本发明实施例二在步骤 22之前还包括: 步骤 220、 将所述复接的信号转换为光信号。
这时, 步骤 22具体为: 将所述光信号通过光纤发送给室外单元。
本发明实施例二中的室内单元先对信号进行电光转换, 然后采用光纤进行 传输, 由于信号在光纤中的衰减远小于其在电缆中的衰减, 采用光纤传输方式 时, 可以在与釆用电缆传输时达到同样信噪比的条件下, 增加 IDU和 0DU之间 拉远距离, 并且在后续当 0DU对来自 IDU的信号进行处理时, 0DU无需再专门对 信号在电缆中的衰减进行补偿, 能够减少系统的成本。
可选的, 若所述复接的信号中包括通讯信号, 本发明实施例二提供的所述 通讯信号可以为数字信号。 本发明实施例二室内单元不将数字通讯信号转换为 模拟信号, 也无需对该模拟信号进行调制等处理, 采用数字信号的方式传输所 述通讯信号, 解决了现有技术中因为模拟信号的可靠性差, 容易导致通信故障 的问题, 提高了通讯信号的可靠性。
上述业务信号与通讯信号都为基带信号, 本发明实施例二在获取所述复接 的信号时, 可选的, 对所述基带信号采用了时分复用的复接方式。
上述描述对 IDU在上行方向对信号的处理进行了说明, 下面对 I DU在下行 方向对信号的处理进行介绍。
本发明实施例二在步骤 22之后还包括:
步骤 23、 接收来自室外单元的复接的信号, 所述信号包括至少一种解调后 的业务信号。
室内单元接收室外单元发送的复接的信号, 当该来自室外单元的复接的信 号为光信号时, 还包括:
步骤 24、 将来自室外单元的复接的光信号转换为复接的电信号。 在本发明实施例二中, 所述信号的复接方式为时分复用方式, 在步骤 24之 后还包括:
步骤 25、 按照时分复用的方式, 对所述复接的电信号进行剥离。
可选的, 本发明实施例二在步驟 25之前还包括步骤 250、 恢复出所述来自 室外单元的复接信号的时钟信号, 这时步骤 25具体为:
利用所述时钟信号, 按照时分复用的方式, 对所述复接的电信号进行剥离。 本发明实施例二采用时钟数据恢复(C lock Da ta Recover ) 电路, 恢复出 所述来自室外单元的复接信号的时钟信号。
首先利用该时钟信号釆样上述复接的电信号, 再以时分复用的方式将复接 电信号中的各种信号剥离开, 例如, 当该复接的电信号中包括一种的业务信号 和一种通讯信号时, 利用上述时钟信号对该复接的解调后的业务信号和通讯信 号进行釆样, 然后根据该时钟信将解调后的业务信号以时分复用的方式, 与通 讯信号剥离开。
本发明实施例三提供的一种微波传输设备中信号处理的方法, 如图 4所示, 包括:
步骤 41、 接收来自室内单元的复接的信号, 所述复接的信号包括至少一种 待调制的业务信号;
步骤 42、 将所述待调制的业务信号从所述复接的信号中剥离出来; 步骤 43、 对所述待调制的业务信号进行调制;
步骤 44、 将调制后的业务信号进行处理, 发送至自由空间。
本发明实施例三提供的技术方案, 通过室内单元将业务信号直接进行复接, 将复接后包含待调制业务信号的复接信号, 发送给室外单元, 由室外单元对所 述业务信号进行调制, 缩短了调制解调器与发射 /接收天线之间的距离, 保证了 能够获得较高信噪比的业务信号。
可选的, 当室外单元接受的所述的来自室内单元的复接信号为光信号时, 在步骤 41之后还包括: 步骤 411、 将所述来自室内单元的复接的光信号转换为复接的电信号。
可选的, 在本发明实例三中, 所述的来自室内单元的复接信号包括通讯信 号, 所述通讯信号为数字信号。
室外单元无需再对接收的该数字通讯信号进行模数转换, 解调等处理, 采 用数字信号的方式传输所述通讯信号, 解决了现有技术中因为模拟信号的可靠 性差, 容易导致通信故障的问题, 提高了通讯信号的可靠性。
可选的, 当所述复接的方式为时分复用方式时, 还包括: 恢复出所述来自 室内单元的复接信号的时钟信号。
上述的将所述待调制的业务信号从所述复接的信号中剥离出来的步骤具体 为:
利用所述时钟信号按照时分复用的方式, 将所迷待调制的业务信号从所述 复接的信号中剥离出来。
本发明实施例三采用时钟数据恢复电路, 恢复出所述来自室内单元的复接 信号的时钟信号。
步骤 43、 对所述待调制的业务信号进行调制。
在本发明实施例三中, 由室内单元对所述待调制的业务信号进行调制。 步骤 44、 将调制后的业务信号进行处理, 发送至自由空间, 具体包括: 步骤 Sl、 对所述调制后的业务信号进行滤波;
步骤 S2、 对滤波得到的结果进行变频。
可选的, 室外单元可以用上述恢复的室内单元中的时钟信号作为参考时钟, 利用该参考时钟调整频率综合器的时钟, 然后用具有较准确时钟的频率综合器 对滤波得到的结果进行变频。
由于在现有技术中, 微波传输设备中 IDU与 0DU分别利用参考晶振来提供 相应的系统时钟, IDU与 0DU中的系统时钟不同步, 并且因为 0DU处于室外, 环 境条件恶劣, 晶振容易发生温漂, 导致精度恶化。
当 0DU对信号进行变频处理时, 所利用的频率综合器同步于 0DU中的参考 晶振, 该参考晶振的精度不准确, 会导致一跳微波的接收端和发送端中两个微 波传输设备中 0DU 中频率综合器异步, 甚至两个频率综合器之间的频偏方向相 反, 导致在接收端的微波传输设备中的待解调信号的频率发生较大的偏差, 对 接收端微波传输设备中的数字调制解调模块的性能要求过高。
本发明实施例利用时钟恢复电路, 使 0DU的系统时钟同步于 I DU的系统时 钟, 由于 IDU 中的参考晶振处于室内, 环境条件较好, 晶振精度保持的较好, 可以使一跳微波两个 0DU的频率综合器时钟同步, 保证了两个 0DU频率综合器 输出时钟的频偏是完全相同的, 从而使接收微波传输设备中的待解调信号频率 偏差很小, 降低了对数字调制解调模块的要求。
进一步的, 当室外单元接受的所述的来自室内单元的复接信号为光信号时 , 即 IDU与 0DU之间采用光纤传输的方式时, 由于光纤中信号衰减较小, 在上述 步骤 44中, 无需再对电缆中信号的衰减进行补偿, 减少了系统成本。
本发明实施例三提供的方法还包括:
步骤 Tl、 对来自自由空间的射频信号进行解调。
在本发明实施例中, 室外单元对来自自由空间的射频信号进行变频。 在步 骤 T1之前, 室外单元对来自自由空间的射频信号进行变频。
可选的, 在步骤 Π之前, 室外单元可利用上述时钟信号对来自自由空间的 射频信号进行变频, 从而保证了一跳微波两个 0DU 的频率综合器的时钟同步, 降低了对数字调制解调模块的要求。
本发明实施例四提供了一种微波传输设备中信号处理的装置, 如图 5所示, 该装置包括:
复接单元 51, 用于将至少一种业务信号与非业务信号直接进行复接; 发送单元 52 , 用于将复接的信号发送给室外单元。
本发明实施例四提供的技术方案, 通过室内单元将业务信号直接进行复接, 将复接后包含待调制业务信号的复接信号, 发送给室外单元, 由室外单元对所 述业务信号进行调制, 提高了信号的可靠性, 保证了能够获得较高信噪比的业 务信号, 同时能拉远室内单元和室外单元之间的距离。 缩短了调制解调器与发 射 /接收天线之间的距离, 保证了能够获得较高信噪比的业务信号。
如图 6所示, 本发明实施例五提供的微波传输设备中信号处理的装置包括: 复接单元 51 , 用于将至少一种业务信号与非业务信号直接进行复接; 发送单元 52, 用于将复接的信号发送给室外单元。
本发明实施例五提供的微波传输设备中信号处理的装置还包括: 接收单元 53 , 用于接收来自室外单元的复接的信号, 所述信号包括至少一种解调后的业 务信号。
相应的, 在下行方向上, 上述复接单元 51还可用于将上述来自室外单元的 复接信号进行剥离。
进一步的, 该装置还包括: 转换单元 54 , 对于上述直接进行复接后的电信 号, 该转换单元 54用于将所述复接的信号转换为光信号; 对于来自室外单元的 复接的信号为光信号, 该转换单元 54用于将来自室外单元的复接的光信号转换 为复接的电信号。
上述转换单元 54保证了光信号在 IDU和 0DU之间的传输。
通过该转换单元 54利用光纤将上述光信号在 IDU和 0DU之间传输, 由于信 号在光纤中的衰减远小于其在电缆中的衰减, 采用光纤传输方式时, 可以在与 采用电缆传输时达到同样信噪比的条件下, 增加 IDU和 0DU之间拉远距离, 并 且在后续当 0DU对来自 IDU的信号进行处理时, 0DU无需再专门对信号在电缆中 的衰减进行补偿, 能够减少系统的成本。
在本发明实施例五中, 采用的所述复接的方式为时分复用方式, 为了便于 准确进行复接, 提高 0DU中系统时钟精度, 所述装置还包括:
时钟信号恢复单元 55 ,用于恢复出所述接收单元 53接收的的复接信号的时 钟信号。
进一步的, 本发明实施例五提供的微波传输设备中信号处理的装置, 当上 述非业务信号包括通讯信号时, 该通讯信号为数字信号, 该装置提供的通讯电 路模块 56 , 在提供通讯信号时, 无需再对该数字通讯信号进行模数转换, 解调 等处理, 釆用数字信号的方式传输所述通讯信号, 解决了现有技术中因为模拟 信号的可靠性差, 容易导致通信故障的问题, 提高了通讯信号的可靠性。
上述微波传输设备中信号处理的装置可由微波传输系统中室内单元实现。 本发明实施例六提供了一种微波传输设备中信号处理的装置, 如图 7所示, 该装置包括:
复接信号接收单元 71 , 用于接收来自室内单元的复接的信号, 所述复接的 信号包括至少一种待调制的业务信号;
剥离单元 72,用于将所述待调制的业务信号从所述复接的信号中剥离出来; 调制单元 73, 用于对所述待调制的业务信号进行调制;
处理发送单元 74 , 用于将调制后的业务信号进行处理, 发送至自由空间。 本发明实施例六提供的技术方案, 通过室内单元将业务信号直接进行复接, 将复接后包含待调制业务信号的复接信号, 发送给室外单元, 由室外单元对所 述业务信号进行调制, 缩短了调制解调器与发射 /接收天线之间的距离, 保证了 能够获得较高信噪比的业务信号。
如图 8所示, 在本发明实施例七中, 除了包括上述复接信号接收单元 71、 剥离单元 72、 调制单元 73和处理发送单元 74之外, 还包括解调单元 75 , 用于 对来自自由空间的业务信号进行解调, 以用于与非业务信号复接后, 传输至室 内单元。
可选的, 为了保证在 IDU和 0DU之间能够利用光纤进行光信号的传输, 所 迷装置还包括转换单元 76, 对来自室内单元的复接光信号, 该转换单元 76 , 用于将所述复接的光信号转换为复接的电信号; 对来自自由空间的业务信号与 非业务信号复接后的电信号, 该转换单元 76 , 用于将所述复接的电信号转换为 复接的光信号。
在下行方向上, 上述的剥离单元 72还可以用于将上述来自自由空间的业务 信号与非业务信号进行复接。 上述装置还包括发送单元 77 , 用于将所述解调单元解调后经复接的信号发 送至室内单元, 所述信号包括至少一种解调后的业务信号。
与 IDU 中的复接方式相对应, 当本发明实施例七中采用的所述复接的方式 为时分复用方式时, 所述装置还包括:
时钟信号恢复单元 78, 用于恢复出所述来自室内单元的复接信号的时钟信 号。
所述的处理发送单元 74用于对所述调制后的业务信号进行滤波和对变频后 的来自自由空间的信号进行滤波; 对滤波得到的结果进行变频和对来自自由空 间的射频信号进行变频。
在本发明实施例七中, 由于采用了光纤传输的方式, 上述处理发送单元 74 无需再电缆中的衰减进行补偿, 减少了系统的成本。。
进一步的, 本发明实施例七提供的微波传输设备中信号处理的装置, 当上 述非业务信号包括通讯信号时, 该通讯信号为数字信号, 该装置提供的通讯电 路模块 79 , 在提供通讯信号时, 无需再对该数字通讯信号进行模数转换, 解调 等处理, 釆用数字信号的方式传输所述通讯信号, 解决了现有技术中因为模拟 信号的可靠性差, 容易导致通信故障的问题, 提高了通讯信号的可靠性。
上述微波传输设备中信号处理的装置可由微波传输系统中室外单元实现。 本发明实施例还提供了一种微波传输设备, 如图 9 所示, 包括: 室内单元 91和室外单元 92,
所述室内单元 91 , 用于将至少一种业务信号与非业务信号直接进行复接, 将复接的信号发送给室外单元 92 ;
所述室外单元 92, 用于接收来自室内单元 91的复接的信号, 所述复接的信 号包括至少一种待调制的业务信号; 将所述待调制的业务信号从所述复接的信 号中剥离出来; 对所述待调制的业务信号进行调制; 将调制后的业务信号进行 处理, 发送至自由空间。
在本发明实施例中, 上述室内单元 91和室外单元 92可以釆用光纤进行连 接, 实现光信号的传输; 上述的非业务信号包括通讯信号时, 该通讯信号为数 字信号。
本发明实施例提供的又一种微波传输设备的具体结构可参见图 1 0 , 其中图 中所示各功能模块的工作方式可参考上述的相应的微波传输设备中信号处理的 装置, 此处不再赘述。
本发明实施例提供的技术方案,通过室内单元 91将业务信号直接进行复接, 将复接后包含待调制业务信号的复接信号, 发送给室外单元 92 , 由室外单元对 所述业务信号进行调制, 缩短了调制解调器与发射 /接收天线之间的距离, 保证 了能够获得较高信噪比的业务信号。
本领域普通技术人员可以理解实现上述实施例中的全部或部分步骤, 可以 通过程序来指令相关硬件完成。 所述实施例对应的软件可以存储在一个计算机 可存储读取的介质中。
当然, 本发明的实施例还可有很多种, 在不背离本发明的实施例精神及其 实质的情况下, 本领域技术人员当可根据本发明的实施例做出各种相应的改变 和变形 , 但这些相应的改变和变形都应属于本发明的实施例所附的权利要求的 保护范围。

Claims

权利要求 书
1、 一种微波传输设备中信号处理的方法, 其特征在于, 该方法包括: 将至少一种业务信号与非业务信号直接进行复接, 将所述复接的电信号转 换为复接的光信号;
将所述复接的光信号发送给室外单元。
2、 根据权利要求 1所述的微波传输设备中信号处理的方法, 其特征在于, 还包括:
接收来自室外单元的复接光信号, 并将所述复接的光信号转换成复接的电 信号; 所述来自室外单元的复接光信号包括至少一种解调后的业务信号。
3、 根据权利要求 2所述的微波传输设备中信号处理的方法, 其特征在于, 所述方法还包括:
恢复出所述来自室外单元的复接光信号的时钟信号;
利用所述时钟信号, 按照时分复用的方式, 对所述复接的电信号进行剥离。
4、 一种微波传输设备中信号处理的方法, 其特征在于, 该方法包括: 接收来自室内单元的复接的光信号, 将所述复接的光信号转换为复接的电 信号; 所述复接的信号包括至少一种待调制的业务信号;
将所述待调制的业务信号从所述复接的信号中剥离出来;
对所述待调制的业务信号进行调制;
将调制后的业务信号进行处理, 发送至自由空间。
5、 根据权利要求 4所述的微波传输设备中信号处理的方法, 其特征在于, 该方法还包括:
对来自自由空间的业务信号进行解调后, 与非业务信号复接, 得到复接的 电信号;
将所述复接的电信号转换成复接的光信号发送至室内单元, 所述信号包括 至少一种解调后的业务信号。
6、 根据权利要求 4或 5所述的微波传输设备中信号处理的方法, 其特征在 于, 在所述的将所述待调制的业务信号从所述复接的信号中剥离出来的步骤包 括:
恢复出所述来自室内单元的复接光信号的时钟信号;
利用所述时钟信号, 按照时分复用的方式, 将所述待调制的业务信号从所 述复接的电信号中剥离出来。
7、 一种室内单元, 用于微波传输系统中, 其特征在于, 该室内单元包括: 复接单元 (51 ), 用于将至少一种业务信号与非业务信号直接进行复接; 转换单元 (54 ), 用于将所述复接单元(51 )复接的电信号转换为复接的光 信号,
发送单元 ( 52 ), 用于将由所述转换单元( 54 )得到复接的光信号发送给室 夕卜单元。
8、 根据权利要求 7所述的室内单元, 其特征在于, 还包括:
接收单元(53 ), 用于接收来自室外单元的复接的光信号, 所述信号包括至 少一种解调后的业务信号;
所述转换单元 ( 54 ), 还用于将所述接收单元( 53 )接收的复接的光信号转 换为复接的电信号。
9、 根据权利要求 7所述的室内单元, 其特征在于, 所述室内单元还包括: 时钟信号恢复单元(55 ), 用于恢复出所述接收单元(53 )接收的复接光信 号的时钟信号, 以用于复接信号的剥离。
10、 一种室外单元, 用于微波传输系统中, 其特征在于, 该室外单元包括: 复接信号接收单元( 71 ), 用于接收来自室内单元的复接的光信号, 所述复 接的信号包括至少一种待调制的业务信号;
转换单元( 76 ), 用于将所述复接信号接收单元 ( 71 )接收的复接光信号转 换为复接电信号;
剥离单元(72 ), 用于将所述待调制的业务信号从所述转换单元(76 )转换 出的复接的电信号中剥离出来; 调制单元(73 ), 用于对所述剥离单元(72 )剥离出的待调制的业务信号进 行调制;
处理发送单元(74 ), 用于将所述调制单元(73 )调制后的业务信号进行处 理, 发送至自由空间。
11、 根据权利要求 10所述室外单元, 其特征在于, 还包括:
解调单元(75 ), 用于对来自自由空间的业务信号进行解调后, 与非业务信 号复接, 得到复接的电信号;
所述转换单元 ( 76 ), 还用于将所述解调单元( 75 )输出的复接的电信号转 换为光信号;
发送单元( 77 ), 用于将所述转换单元( 76 )转换后的复接光信号发送至室 内单元, 所述信号包括至少一种解调后的业务信号。
12、 根据权利要求 10所述的室外单元, 其特征在于, 所述复接的方式为时 分复用方式, 所述装置还包括:
时钟信号恢复单元( 78 ), 用于恢复出所述复接信号接收单元( 71 )接收的 复接光信号的时钟信号, 以用于复接信号的剥离。
13、 一种微波传输设备, 其特征在于, 包括: 室内单元和室外单元, 所述 室内单元和室外单元之间通过光纤连接; 其中:
所述室内单元( 91 ),用于将至少一种业务信号与非业务信号直接进行复接, 将所述复接的电信号转换为复接的光信号; 将所述复接的光信号发送给所述室 夕卜单元;
所述室外单元(92 ), 用于接收来自室内单元 (91 ) 的复接的光信号, 将所 述复接的光信号转换为复接的电信号; 所述复接的信号包括至少一种待调制的 业务信号; 将所述待调制的业务信号从所述复接的信号中剥离出来; 对所述待 调制的业务信号进行调制; 将调制后的业务信号进行处理, 发送至自由空间。
PCT/CN2009/071528 2008-06-30 2009-04-28 微波传输设备中信号处理的方法、装置及微波传输设备 WO2010000154A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09771924A EP2315374A4 (en) 2008-06-30 2009-04-28 SIGNAL PROCESSING METHOD, DEVICE IN A MICROWAVE TRANSMISSION DEVICE AND MICROWAVE TRANSMISSION DEVICE
US12/979,174 US8488970B2 (en) 2008-06-30 2010-12-27 Microwave transmission apparatus, signal processing method and device in microwave transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810129148XA CN101465705B (zh) 2008-06-30 2008-06-30 微波传输设备中信号处理的方法、装置及微波传输设备
CN200810129148.X 2008-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/979,174 Continuation US8488970B2 (en) 2008-06-30 2010-12-27 Microwave transmission apparatus, signal processing method and device in microwave transmission apparatus

Publications (1)

Publication Number Publication Date
WO2010000154A1 true WO2010000154A1 (zh) 2010-01-07

Family

ID=40806085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071528 WO2010000154A1 (zh) 2008-06-30 2009-04-28 微波传输设备中信号处理的方法、装置及微波传输设备

Country Status (4)

Country Link
US (1) US8488970B2 (zh)
EP (1) EP2315374A4 (zh)
CN (1) CN101465705B (zh)
WO (1) WO2010000154A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465705B (zh) 2008-06-30 2010-10-20 华为技术有限公司 微波传输设备中信号处理的方法、装置及微波传输设备
CN102149224B (zh) * 2010-02-05 2014-04-30 华为技术有限公司 数据传输方法、装置及系统
US9337879B2 (en) 2011-04-25 2016-05-10 Aviat U.S., Inc. Systems and methods for multi-channel transceiver communications
EP2769493A4 (en) * 2011-10-17 2015-07-15 Aviat Networks Inc SYSTEMS AND METHOD FOR SIGNAL FREQUENCY DISTRIBUTION IN WIRELESS COMMUNICATION SYSTEMS
US9621330B2 (en) 2011-11-30 2017-04-11 Maxlinear Asia Singapore Private Limited Split microwave backhaul transceiver architecture with coaxial interconnect
US10425117B2 (en) 2011-11-30 2019-09-24 Maxlinear Asia Singapore PTE LTD Split microwave backhaul architecture with smart outdoor unit
US9380645B2 (en) 2011-11-30 2016-06-28 Broadcom Corporation Communication pathway supporting an advanced split microwave backhaul architecture
CN103067044B (zh) * 2012-12-21 2015-01-28 中国船舶重工集团公司第七一五研究所 一种单根同轴电缆双向数据传输增距提速的方法
CN105871450A (zh) * 2016-06-14 2016-08-17 深圳市华讯星通讯有限公司 Vsat系统小站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2520612Y (zh) * 2002-02-08 2002-11-13 西安蓝芽通信设备有限责任公司 无线扩频设备
CN1914840A (zh) * 2004-07-22 2007-02-14 日本电信电话株式会社 光信号传输用装置、系统及方法
CN101001111A (zh) * 2006-12-31 2007-07-18 华为技术有限公司 一种利用光纤传送数据信号的方法、装置和系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742640A (en) * 1995-03-07 1998-04-21 Diva Communications, Inc. Method and apparatus to improve PSTN access to wireless subscribers using a low bit rate system
US5694232A (en) * 1995-12-06 1997-12-02 Ericsson Raynet Full duplex optical modem for broadband access network
JP2001244826A (ja) * 2000-02-29 2001-09-07 New Japan Radio Co Ltd マイクロ波通信装置
US6801767B1 (en) * 2001-01-26 2004-10-05 Lgc Wireless, Inc. Method and system for distributing multiband wireless communications signals
US20030058890A1 (en) * 2001-09-18 2003-03-27 Ritchie, John A. MPEG program clock reference (PCR) delivery for support of accurate network clocks
KR100745749B1 (ko) * 2002-04-25 2007-08-02 삼성전자주식회사 광섬유-라디오 혼합 양방향 통신 장치 및 방법
US7519297B2 (en) * 2002-11-08 2009-04-14 Finisar Corporation Cable television system with separate radio frequency hub and ethernet hub
US7047028B2 (en) * 2002-11-15 2006-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station
US7761011B2 (en) * 2005-02-23 2010-07-20 Kg Technology Associates, Inc. Optical fiber communication link
US8098990B2 (en) * 2006-09-12 2012-01-17 Nec Laboratories America, Inc. System and method for providing wireless over a passive optical network (PON)
CN101083499A (zh) * 2007-07-10 2007-12-05 京信通信系统(中国)有限公司 一种数字微波网格通信系统及其实现方法
CN101465705B (zh) 2008-06-30 2010-10-20 华为技术有限公司 微波传输设备中信号处理的方法、装置及微波传输设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2520612Y (zh) * 2002-02-08 2002-11-13 西安蓝芽通信设备有限责任公司 无线扩频设备
CN1914840A (zh) * 2004-07-22 2007-02-14 日本电信电话株式会社 光信号传输用装置、系统及方法
CN101001111A (zh) * 2006-12-31 2007-07-18 华为技术有限公司 一种利用光纤传送数据信号的方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2315374A4 *

Also Published As

Publication number Publication date
US20110091215A1 (en) 2011-04-21
EP2315374A4 (en) 2012-01-18
CN101465705B (zh) 2010-10-20
CN101465705A (zh) 2009-06-24
EP2315374A1 (en) 2011-04-27
US8488970B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
WO2010000154A1 (zh) 微波传输设备中信号处理的方法、装置及微波传输设备
US8195224B2 (en) Multiple data services over a distributed antenna system
US20040196404A1 (en) Apparatus for wireless RF transmission of uncompressed HDTV signal
US20070053447A1 (en) Wireless RF Link for Uncompressed Transmission of HDTV Signals
WO2013071507A1 (zh) 一种基于docsis协议的接入方法、装置及系统
JP2007166278A (ja) 無線通信システムおよび無線通信方法
US20100135336A1 (en) Method, apparatus, and system for synchronizing time
US6501743B1 (en) Apparatus and method of network synchronization in asymmetric two-way satellite communication system
JPH09266466A (ja) デジタル伝送システム
US8472578B2 (en) Radio apparatus, radio apparatus controller, and synchronization establishing method
JP2003536291A (ja) 無線放送におけるofdmシンボルの同期化方法
JP5312190B2 (ja) 光受信装置及び光受信方法
WO2011095139A1 (zh) 数据传输方法、装置及系统
JP2005520447A (ja) Lanケーブルを利用してトラフィック信号、制御信号及びgps信号を同時に供給する屋内用cdma移動通信システム及びその制御方法
CN101018085A (zh) 一种提供数字多媒体广播信号的方法及系统
RU2008131934A (ru) Использование синхронизации и распределения во времени в объединенной спутниково-наземной сети связи с мультиплексированием с ортогональным частотным разделением
JP4939987B2 (ja) 地上デジタル放送装置と地上デジタル放送の再送信方法
BRPI0717164B1 (pt) aparelho de retransmissão de radiodifusão digital terrestre
KR102009985B1 (ko) 이더넷 기반의 통신 시스템
CN106972911B (zh) 一种基于时间分集的突发散射通信的调制解调装置
KR20060078808A (ko) 음영지역에서 rf 신호 교환 서비스를 제공하기 위한기지국 시스템
KR100525848B1 (ko) 아날로그 방송을 위한 연주소-송신소 링크(stl)를이용한 디지털 tv 송신기의 단일 주파수 네트워크 시스템
JPS5949031A (ja) 多方向多重通信方式の子局搬送波周波数制御方式
EP2357746A1 (en) Apparatus and method for transmitting service contents and emergency broadcasting apparatus
JP2014216849A (ja) 通信システム、受信装置、半導体装置及び通信システムのリセット方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009771924

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE