WO2009157354A1 - Photosensitive conductive paste - Google Patents

Photosensitive conductive paste Download PDF

Info

Publication number
WO2009157354A1
WO2009157354A1 PCT/JP2009/061013 JP2009061013W WO2009157354A1 WO 2009157354 A1 WO2009157354 A1 WO 2009157354A1 JP 2009061013 W JP2009061013 W JP 2009061013W WO 2009157354 A1 WO2009157354 A1 WO 2009157354A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
photosensitive
mass
paste
glass
Prior art date
Application number
PCT/JP2009/061013
Other languages
French (fr)
Japanese (ja)
Inventor
耕治 富永
潤 濱田
早川 直也
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2009157354A1 publication Critical patent/WO2009157354A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/225Material of electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste

Definitions

  • the present invention relates to a photosensitive conductive paste used for high-definition pattern formation in plasma display panels, plasma addressed liquid crystal display panels, and other electric / electronic circuits.
  • a plasma display panel is capable of displaying at a higher speed than a liquid crystal panel, and is easy to increase in size, and thus has penetrated into fields such as OA equipment and information display devices.
  • progress in the field of high-definition television is highly expected.
  • the PDP generates a plasma discharge between an anode and a cathode electrode opposed to each other in a discharge space provided between a front glass substrate and a rear glass substrate, and emits light from a gas sealed in the discharge space.
  • the anode and cathode electrodes on the glass substrate have a plurality of linear electrodes arranged in parallel, and the electrodes are opposed to each other through a small gap, and the linear electrodes intersect each other. Overlapped to face the direction.
  • a surface discharge type PDP having a three-electrode structure suitable for color display using a phosphor includes a plurality of electrode pairs each composed of a pair of display electrodes adjacent in parallel to each other, and a plurality of address electrodes orthogonal to each electrode pair. And have.
  • the above-mentioned address electrodes are usually formed by printing a conductive paste such as a silver paste on a glass substrate using a printing mask having a mask pattern corresponding to the address electrodes by a screen printing method and then baking.
  • a screen printing method even if optimization of mask pattern accuracy, squeeze hardness, printing speed, dispersibility, etc. is attempted, the width of the electrode pattern cannot be reduced to 100 ⁇ m or less, and there is a limit to fine patterning. It was.
  • the accuracy of the printing mask depends on the accuracy of the mask plate making. Therefore, when the printing mask becomes large, the dimensional error of the mask pattern increases. For this reason, in the case of a PDP having a large area of 30 inches or more, it is increasingly technically difficult to produce a high-definition PDP.
  • PDP has a transmission type and a reflection type.
  • the reflection type an address electrode and a partition wall (rib) of an insulating layer are provided on the light emitting layer side of the back glass, and a phosphor is formed after that.
  • the address electrodes are printed with a conductive paste and dried, the insulating glass paste is printed depending on the height and width of the insulating glass paste, depending on the height and width of the barrier ribs. To do. Thereafter, the conductive paste and the insulating paste are baked together to form address electrodes and barrier ribs.
  • Patent Document 4 In consideration of the environment and the like, it is desired that development is possible with water or an alkaline aqueous solution, and a product in which a carboxyl group or a modified cellulose resin is introduced into an organic component has been proposed (see Patent Document 4).
  • JP-A-1-206538, JP-A-1-296534, and JP-A-63-205255 are intended to improve the drawbacks of screen printing, but fine pattern formation is possible.
  • the photosensitive paste described in JP-A-2-25847 has a defect that the glass in the paste reacts with organic components, the viscosity of the paste increases with time, and pattern formation is poor.
  • the object of the present invention is to provide a high-definition pattern conductive circuit and to provide a low-resistance electrode pattern with high adhesive strength and low resistance, which suppresses thickening of the paste.
  • the object is to provide a suitable photosensitive conductive paste.
  • a glass frit containing 60 to 80% by mass (but not including 80% by mass) of Bi 2 O 3 and having a softening point in the range of 400 to 500 ° C. is formed of conductive powder and photosensitive organic
  • a photosensitive conductive paste (first paste) characterized by being contained in an amount of 5 to 50% by mass in the photosensitive conductive paste containing the components.
  • the first paste has a glass frit of mass%, Bi 2 O 3 65-80% (excluding 80%), SiO 2 0-15%, B 2 O 3 4-20% and ZnO. It may be a photosensitive conductive paste (second paste) characterized by containing 1 to 20%.
  • the second paste may be a photosensitive conductive paste (third paste) characterized in that the glass frit contains 5 to 20% by mass of ZnO.
  • any one of the first to third pastes is a photosensitive conductive paste characterized in that the glass frit has an average particle size of 0.5 to 1.5 ⁇ m, a 90% particle size of 1 to 3 ⁇ m, and a top size of 7 ⁇ m or less. (4th paste) may be sufficient.
  • any one of the first to fourth pastes is characterized in that the glass frit has a thermal expansion coefficient at 30 ° C. to 300 ° C. of 75 ⁇ 10 ⁇ 7 / ° C. to 120 ⁇ 10 ⁇ 7 / ° C.
  • a conductive paste (fifth paste) may be used.
  • a field emission display panel characterized by using any one of first to fifth pastes.
  • a plasma display panel characterized by using any one of the first to fifth pastes.
  • an electronic material substrate characterized in that any one of first to fifth pastes is used.
  • a photolithographic method can provide a high-definition pattern resolution, can form an electrode pattern having a low resistance, and can suppress a thickening of a paste due to a reaction between a glass frit and an organic component. Conductive paste can be obtained.
  • the present invention imparts photosensitivity to a conductive paste, and by using a photolithographic technique for this, a fine and low resistance electrode can be efficiently formed.
  • the conductive powder used may be any conductive powder, but preferably contains at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al and Pt.
  • a low-resistance conductive powder that can be baked at a temperature of 600 ° C. or lower is used.
  • the glass frit can firmly bake the conductive powder on the glass substrate, and has the effect of a sintering aid for sintering the conductive powder and the effect of reducing the conductor resistance.
  • the composition of the glass frit in order to lower the baking temperature, it is important to adjust the softening point low, and to control the thermal expansion coefficient from the viewpoint of adhesion strength with the substrate. In order to make a paste like this, it is also important not to react with a photosensitive component or an organic component serving as a solvent.
  • a photosensitive component an acrylic resin having a carboxyl group, which allows photolithography but easily adjusts the characteristics by changing the composition of components, is used.
  • the acrylic resin having a carboxyl group also plays a role of improving the dispersibility of the inorganic component in the paste and having appropriate viscosity and elasticity. However, since the carboxyl group chelates with the metal component of the glass raw material and increases the viscosity, it is necessary to avoid such glass raw material. Alkali components are easily chelated.
  • glass frit containing 65 to 80% Bi 2 O 3 (not including 80%), 0 to 15% SiO 2 , 4 to 20% B 2 O 3 and 5 to 20% ZnO It is preferably contained at 50% by mass. Within this range, a glass frit capable of firmly baking the conductor film on the glass substrate at 600 ° C. or lower can be obtained.
  • SiO 2 is a glass forming component, and can coexist with B 2 O 3 , which is another glass forming component, to form a stable glass. 15% (mass%, the same applies below) ) Can be contained. If it exceeds 15%, the softening point rises and it becomes difficult to bake on a glass substrate at 600 ° C. or lower.
  • B 2 O 3 is a glass-forming component similar to SiO 2 , which facilitates glass melting and is baked so as not to impair the electrical, mechanical and thermal properties such as the electrical insulation, strength and thermal expansion coefficient of the conductive paste. It mix
  • Bi 2 O 3 lowers the softening point of the glass, imparts moderate fluidity, and adjusts the thermal expansion coefficient to an appropriate range, and is contained in the glass at 60 to 80% (but not including 80%). If it is less than 60%, the above action of the glass cannot be exhibited. On the other hand, if it exceeds 80%, the glass becomes unstable and devitrification tends to occur. More preferably, it is in the range of 68 to 79%.
  • ZnO lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range, and is contained in the glass in an amount of 1 to 20%. If it is less than 1%, the fluidity of the glass becomes insufficient, the sinterability is impaired, and the adhesion strength decreases. On the other hand, if it exceeds 20%, the glass becomes unstable and devitrification tends to occur. A more preferred range is 5 to 20%, and a further more preferred range is 5 to 12%.
  • RO MgO, CaO, SrO, BaO
  • Al 2 O 3 Al 2 O 3 or the like may be added for the purpose of improving chemical durability.
  • the particle size of the glass frit is preferably as fine particles as it melts at a low temperature.
  • the 50% diameter is preferably in the range of 0.5 to 1.5 ⁇ m, the 90% diameter is in the range of 1 to 3 ⁇ m, and the top size is 7 ⁇ m or less, and is preferable because it melts at a low temperature and adheres firmly to the glass substrate.
  • the glass frit content in the photosensitive conductive paste is preferably 5 to 50% by mass. Since the glass frit is electrically insulating, if the content exceeds 50% by mass, the resistance of the electrode increases, which is not preferable. If it is 5% by mass or less, it is difficult to obtain a strong adhesive strength between the electrode film and the glass substrate.
  • a part of the glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point).
  • the remaining glass was flaked with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder having an average particle size of 0.5 to 1.5 ⁇ m and a maximum particle size of less than 7 ⁇ m.
  • the thermal expansion coefficient was determined from the amount of elongation at 30 to 300 ° C. when the temperature was increased at 5 ° C./min using a thermal dilatometer.
  • Comparative Examples 1 to 5 in Table 2 outside the composition range of the present invention did not provide preferable physical property values and adhesive strength, and further, an increase in paste viscosity due to reaction with the photosensitive component was observed. It cannot be applied as a photosensitive paste used in the above.

Abstract

Disclosed is a photosensitive conductive paste wherein glass frit that contains 60-80 mass% (but 80 mass% is not included) of Bi2O3 and has a softening point in the range of 400-500°C is contained in an amount of 5-50 mass% of a photosensitive conductive paste containing a conductive powder and a photosensitive organic component. By using the photosensitive conductive paste, high-definition pattern resolution can be obtained by the method of photolithography, and an electrode pattern with low resistance can be formed. Additionally, thickening of the paste as a result of the reaction between the glass frit and the organic component can be restrained.

Description

感光性導電ペーストPhotosensitive conductive paste
 本発明は、プラズマディスプレイパネル、プラズマアドレス液晶表示パネルやその他の電気・電子回路における高精細パターン形成に用いられる感光性導電ペーストに関する。 The present invention relates to a photosensitive conductive paste used for high-definition pattern formation in plasma display panels, plasma addressed liquid crystal display panels, and other electric / electronic circuits.
発明の背景Background of the Invention
 近年、回路材料やディスプレイにおいて、小型化や高密度化、高精細化、高信頼性の要求が高まっており、それに伴って、パターン加工技術も技術向上が望まれている。特に、導体回路パターンの微細化は小型化、高密度化には不可欠な要求として各種の方法が提案されている。 In recent years, demands for miniaturization, high density, high definition, and high reliability are increasing in circuit materials and displays, and accordingly, improvement in pattern processing technology is also desired. In particular, various methods have been proposed as miniaturization of conductor circuit patterns as an indispensable requirement for miniaturization and high density.
 例えば、プラズマディスプレイパネル(PDP)は、液晶パネルに比べて高速の表示が可能であり、かつ大型化が容易であることから、OA機器および情報表示装置などの分野に浸透している。また、高品位テレビジョンの分野などでの進展が非常に期待されている。 For example, a plasma display panel (PDP) is capable of displaying at a higher speed than a liquid crystal panel, and is easy to increase in size, and thus has penetrated into fields such as OA equipment and information display devices. In addition, progress in the field of high-definition television is highly expected.
 このような用途の拡大にともなって、PDPでは、微細で多数の表示セルを有するカラーPDPが注目されている。PDPは、前面ガラス基板と背面ガラス基板との間に備えられた放電空間内で対抗するアノードおよびカソード電極間にプラズマ放電を生じさせ、上記放電空間内に封入されているガスから発光させることにより表示を行うものである。この場合、ガラス基板上のアノードおよびカソード電極は、複数本の線状電極が平行に配置されており、互いの電極が僅小な間隙を介して対抗し、かつ互いの線状電極が交差する方向を向くように重ね合わせて構成される。PDPの中で、蛍光体によるカラー表示に適した3電極構造の面放電型PDPは、互いに平行に隣接した一対の表示電極からなる複数の電極対と、各電極対と直交する複数のアドレス電極とを有する。 With such expansion of applications, a color PDP having fine and many display cells has been attracting attention as a PDP. The PDP generates a plasma discharge between an anode and a cathode electrode opposed to each other in a discharge space provided between a front glass substrate and a rear glass substrate, and emits light from a gas sealed in the discharge space. Display. In this case, the anode and cathode electrodes on the glass substrate have a plurality of linear electrodes arranged in parallel, and the electrodes are opposed to each other through a small gap, and the linear electrodes intersect each other. Overlapped to face the direction. Among the PDPs, a surface discharge type PDP having a three-electrode structure suitable for color display using a phosphor includes a plurality of electrode pairs each composed of a pair of display electrodes adjacent in parallel to each other, and a plurality of address electrodes orthogonal to each electrode pair. And have.
 上記のアドレス電極は、通常スクリーン印刷法でアドレス電極に対応するマスクパターンを有した印刷マスクを用いて、ガラス基板上に銀ペーストなどの導電ペーストを印刷した後焼成して形成される。しかしながら、スクリーン印刷法ではマスクパターン精度、スクイーズ硬さ、印刷速度、分散性などの最適化を図っても電極パターンの幅を100μm以下に細くすることができず、ファインパターン化には限界があった。また、スクリーン印刷による方法では、印刷マスクの精度は、マスク製版の精度に依存するので印刷マスクが大きくなるとマスクパターンの寸法誤差が大きくなってしまう。このため30インチ以上の大面積のPDPの場合に、高精細のPDP作製がますます技術的に困難となっている。 The above-mentioned address electrodes are usually formed by printing a conductive paste such as a silver paste on a glass substrate using a printing mask having a mask pattern corresponding to the address electrodes by a screen printing method and then baking. However, in the screen printing method, even if optimization of mask pattern accuracy, squeeze hardness, printing speed, dispersibility, etc. is attempted, the width of the electrode pattern cannot be reduced to 100 μm or less, and there is a limit to fine patterning. It was. In the screen printing method, the accuracy of the printing mask depends on the accuracy of the mask plate making. Therefore, when the printing mask becomes large, the dimensional error of the mask pattern increases. For this reason, in the case of a PDP having a large area of 30 inches or more, it is increasingly technically difficult to produce a high-definition PDP.
 さらに、PDPには透過型と反射型があるが、反射型では背面ガラスの発光層側にアドレス電極および絶縁層の隔壁(リブ)が設けられ、その後に蛍光体が形成されている。アドレス電極を導電ペーストで印刷し、乾燥させた後、隔壁用の印刷マスクによって絶縁ガラスペーストを所定の高さ、幅によって異なるが、焼成前の高さ200μmの隔壁では、15回以上重ねて印刷する。その後、導電ペーストおよび絶縁ペーストを一括に焼成してアドレス電極および隔壁を形成する。しかしながら、大型のPDPになればなるほどガラス基板の一端を基準として、隔壁用の位置合わせを行うと、ガラス基板の他端では、すでに導電ペーストのパターンピッチ(印刷マスクの寸法精度に依存する)と隔壁用の印刷マスクのパターンピッチとが累積されることから、アドレス電極と隔壁との間に大きな位置ずれが生じてしまう。このため高精細な電極パターンが得られず、大型化も非常に制限されるようになり、問題点の解決が必要となっている。 Furthermore, PDP has a transmission type and a reflection type. In the reflection type, an address electrode and a partition wall (rib) of an insulating layer are provided on the light emitting layer side of the back glass, and a phosphor is formed after that. After the address electrodes are printed with a conductive paste and dried, the insulating glass paste is printed depending on the height and width of the insulating glass paste, depending on the height and width of the barrier ribs. To do. Thereafter, the conductive paste and the insulating paste are baked together to form address electrodes and barrier ribs. However, the larger the PDP, the more the position of the partition is aligned with respect to one end of the glass substrate, and the other end of the glass substrate already has the pattern pitch of the conductive paste (depending on the dimensional accuracy of the printing mask). Since the pattern pitch of the printing mask for the partition is accumulated, a large positional deviation occurs between the address electrode and the partition. For this reason, a high-definition electrode pattern cannot be obtained, and the enlargement is very limited, and it is necessary to solve the problem.
 これらスクリーン印刷の欠点を改良する方法としては、絶縁ペーストを焼成後、導電ペーストを印刷し、焼成して電極形状の改良を図ったもの、アノードの電極形成にフォトリソグラフィ技術を用いたもの及びフォトレジストを用いたフォトリソグラフィ技術による導電ペーストが提案されている(特許文献1~3参照)。 As a method for improving the disadvantages of these screen printing methods, after baking the insulating paste, printing the conductive paste and baking it to improve the electrode shape, using the photolithographic technique to form the anode electrode, and photo A conductive paste using a photolithography technique using a resist has been proposed (see Patent Documents 1 to 3).
 また、環境などへの配慮から、水またはアルカリ水溶液で現像可能であることが望まれ、有機成分中にカルボキシル基や、変性セルロース樹脂を導入したものが提案されている(特許文献4参照)。 In consideration of the environment and the like, it is desired that development is possible with water or an alkaline aqueous solution, and a product in which a carboxyl group or a modified cellulose resin is introduced into an organic component has been proposed (see Patent Document 4).
特開平1-206538号公報Japanese Patent Laid-Open No. 1-206538 特開平1-296534号公報JP-A-1-296534 特開昭63-205255号公報JP 63-205255 A 特開平2-25847号公報JP-A-2-25847
 例えば上記の特開平1-206538号公報、特開平1-296534号公報及び特開昭63-205255号公報に記載のものは、スクリーン印刷の欠点の改良を図ったものではあるが、微細パターン形成に加えて低抵抗と大型化を同時に満足する技術としては、十分ではなかった。 For example, those described in JP-A-1-206538, JP-A-1-296534, and JP-A-63-205255 are intended to improve the drawbacks of screen printing, but fine pattern formation is possible. In addition, it was not sufficient as a technology that satisfies both low resistance and large size at the same time.
 さらに、特開平2-25847号公報に記載されている感光性ペーストは、ペースト中のガラスと有機成分が反応し、時間経過と共にペーストの粘度が増加し、パターン形成不良を起こす欠点があった。 Furthermore, the photosensitive paste described in JP-A-2-25847 has a defect that the glass in the paste reacts with organic components, the viscosity of the paste increases with time, and pattern formation is poor.
 本発明の目的は、これらの問題を鑑み、高精細パターンの導電回路形成が可能で、かつ、ペーストの増粘が抑制された、薄膜で接着強度が高く、低抵抗の電極パターンを与えるのに好適な感光性導電ペーストを提供することにある。 In view of these problems, the object of the present invention is to provide a high-definition pattern conductive circuit and to provide a low-resistance electrode pattern with high adhesive strength and low resistance, which suppresses thickening of the paste. The object is to provide a suitable photosensitive conductive paste.
 本発明に依れば、Bi23を60~80質量%(ただし80質量%を含まず)含有し、軟化点が400~500℃の範囲のガラスフリットが、導電性粉末および感光性有機成分を含有する感光性導電ペースト中に5~50質量%含有されることを特徴とする感光性導電ペースト(第1ペースト)が提供される。 According to the present invention, a glass frit containing 60 to 80% by mass (but not including 80% by mass) of Bi 2 O 3 and having a softening point in the range of 400 to 500 ° C. is formed of conductive powder and photosensitive organic Provided is a photosensitive conductive paste (first paste) characterized by being contained in an amount of 5 to 50% by mass in the photosensitive conductive paste containing the components.
 第1ぺーストは、ガラスフリットが質量%でBi23を65~80%(ただし80%を含まず)、SiO2を0~15%、B23を4~20%、ZnOを1~20%含むことを特徴とする感光性導電ペースト(第2ペースト)であってもよい。 The first paste has a glass frit of mass%, Bi 2 O 3 65-80% (excluding 80%), SiO 2 0-15%, B 2 O 3 4-20% and ZnO. It may be a photosensitive conductive paste (second paste) characterized by containing 1 to 20%.
 第2ペーストは、ガラスフリットがZnOを5~20質量%含むことを特徴とする感光性導電ペースト(第3ペースト)であってもよい。 The second paste may be a photosensitive conductive paste (third paste) characterized in that the glass frit contains 5 to 20% by mass of ZnO.
 第1乃至第3ペーストのいずれか1つは、ガラスフリットが平均粒子径0.5~1.5μm、90%粒子径1~3μm及びトップサイズ7μm以下であることを特徴とする感光性導電ペースト(第4ペースト)であってもよい。 Any one of the first to third pastes is a photosensitive conductive paste characterized in that the glass frit has an average particle size of 0.5 to 1.5 μm, a 90% particle size of 1 to 3 μm, and a top size of 7 μm or less. (4th paste) may be sufficient.
 第1乃至第4ペーストのいずれか1つは、ガラスフリットの30℃~300℃における熱膨張係数が75×10-7/℃~120×10-7/℃であることを特徴とする感光性導電ペースト(第5ペースト)であってもよい。 Any one of the first to fourth pastes is characterized in that the glass frit has a thermal expansion coefficient at 30 ° C. to 300 ° C. of 75 × 10 −7 / ° C. to 120 × 10 −7 / ° C. A conductive paste (fifth paste) may be used.
 本発明に依れば、第1乃至第5ペーストのいずれか1つを使用していることを特徴とする電界放出型ディスプレイ用パネルが提供される。 According to the present invention, there is provided a field emission display panel characterized by using any one of first to fifth pastes.
 本発明に依れば、第1乃至第5ペーストのいずれか1つを使用していることを特徴とするプラズマディスプレイ用パネルが提供される。 According to the present invention, there is provided a plasma display panel characterized by using any one of the first to fifth pastes.
 本発明に依れば、第1乃至第5ペーストのいずれか1つを使用していることを特徴とする電子材料用基板が提供される。 According to the present invention, there is provided an electronic material substrate characterized in that any one of first to fifth pastes is used.
詳細な説明Detailed description
 本発明により、フォトリソグラフィ法により高精細のパターン解像度が得られ、かつ、低抵抗を有する電極パターンが形成でき、さらに、ガラスフリットと有機成分との反応によるペーストの増粘を抑制出来るような感光性導電ペーストを得ることが出来る。 According to the present invention, a photolithographic method can provide a high-definition pattern resolution, can form an electrode pattern having a low resistance, and can suppress a thickening of a paste due to a reaction between a glass frit and an organic component. Conductive paste can be obtained.
 本発明は導電ペーストに感光性を付与し、これにフォトリソグラフィ技術を用いて、微細で低抵抗な電極が効率よく形成できるようにするものである。 The present invention imparts photosensitivity to a conductive paste, and by using a photolithographic technique for this, a fine and low resistance electrode can be efficiently formed.
 使用される導電性粉末は、導電性を有する粉末であればよいが、好ましくはAg、Au、Pd、Ni、Cu、AlおよびPtの群から選ばれる少なくとも1種を含むもので、ガラス基板上に600℃以下の温度で焼き付けできる低抵抗の導電性粉末が使用される。 The conductive powder used may be any conductive powder, but preferably contains at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al and Pt. In addition, a low-resistance conductive powder that can be baked at a temperature of 600 ° C. or lower is used.
 ガラスフリットは導電性粉末をガラス基板上に強固に焼き付けることが可能であり、また導電性粉末を焼結するための焼結助剤の効果や導体抵抗を下げる効果がある。 The glass frit can firmly bake the conductive powder on the glass substrate, and has the effect of a sintering aid for sintering the conductive powder and the effect of reducing the conductor resistance.
 ガラスフリットの組成の決定においては、焼付け温度を低くするために、軟化点を低く調整すること、基板との密着強度の点から熱膨張係数を制御すること、が重要であるが、本発明のようにペースト化するためには、感光性成分や溶剤の役割をする有機成分と反応しないことも重要である。一般的な感光成分にはフォトリソグラフィが可能でありつつも、構成成分の組成変化による特性調節が容易なカルボキシル基を有するアクリル系樹脂が使われる。このカルボキシル基を有するアクリル系樹脂は、ペースト中の無機成分の分散性を良好にし、適切な粘度及び弾性を有させる役割も担っている。しかし、カルボキシル基はガラス原料の金属成分とキレート化し、粘度を上昇させる原因となるため、そのようなガラス原料は避ける必要がある。アルカリ成分は、キレート化しやすい。 In determining the composition of the glass frit, in order to lower the baking temperature, it is important to adjust the softening point low, and to control the thermal expansion coefficient from the viewpoint of adhesion strength with the substrate. In order to make a paste like this, it is also important not to react with a photosensitive component or an organic component serving as a solvent. As a general photosensitive component, an acrylic resin having a carboxyl group, which allows photolithography but easily adjusts the characteristics by changing the composition of components, is used. The acrylic resin having a carboxyl group also plays a role of improving the dispersibility of the inorganic component in the paste and having appropriate viscosity and elasticity. However, since the carboxyl group chelates with the metal component of the glass raw material and increases the viscosity, it is necessary to avoid such glass raw material. Alkali components are easily chelated.
 質量%でBi23を65~80%(ただし80%を含まず)、SiO2を0~15%、B23を4~20%、ZnOを5~20%含むガラスフリットを5~50質量%含有することが好ましい。この範囲であると600℃以下で導体膜をガラス基板上に強固に焼き付けできるガラスフリットが得られる。 5% by weight glass frit containing 65 to 80% Bi 2 O 3 (not including 80%), 0 to 15% SiO 2 , 4 to 20% B 2 O 3 and 5 to 20% ZnO It is preferably contained at 50% by mass. Within this range, a glass frit capable of firmly baking the conductor film on the glass substrate at 600 ° C. or lower can be obtained.
 SiO2はガラス形成成分であり、別のガラス形成成分であるB23と共存させることにより、安定したガラスを形成することができるもので、15%(質量%、以下においても同様である)まで含有できる。15%より多くなると軟化点が上昇し、600℃以下でガラス基板上に焼き付けることが難しくなる。 SiO 2 is a glass forming component, and can coexist with B 2 O 3 , which is another glass forming component, to form a stable glass. 15% (mass%, the same applies below) ) Can be contained. If it exceeds 15%, the softening point rises and it becomes difficult to bake on a glass substrate at 600 ° C. or lower.
 B23はSiO2同様のガラス形成成分であり、ガラス溶融を容易とし、導電ペーストの電気絶縁性、強度、熱膨張係数などの電気、機械および熱的特性を損なうことのないように焼き付け温度を600℃以下の範囲に制御するために配合される。ガラス中に4~20%で含有させるのが好ましい。4%未満ではガラスの流動性が不充分となり、焼結性が損なわれ密着強度が低下する。他方20%を越えるとガラスの化学的耐久性が低下し、ペースト粘度を上昇させる。より好ましくは7~17%の範囲である。 B 2 O 3 is a glass-forming component similar to SiO 2 , which facilitates glass melting and is baked so as not to impair the electrical, mechanical and thermal properties such as the electrical insulation, strength and thermal expansion coefficient of the conductive paste. It mix | blends in order to control temperature in the range of 600 degrees C or less. It is preferably contained in the glass at 4 to 20%. If it is less than 4%, the fluidity of the glass becomes insufficient, the sinterability is impaired, and the adhesion strength is lowered. On the other hand, if it exceeds 20%, the chemical durability of the glass is lowered and the paste viscosity is increased. More preferably, it is in the range of 7 to 17%.
 Bi23はガラスの軟化点を下げ、適度に流動性を与え、熱膨張係数を適宜範囲に調整するもので、ガラス中に60~80%(ただし80%を含まず)で含有させる。60%未満ではガラスの上記作用を発揮しえない。他方80%を越えるとガラスが不安定となり失透を生じ易い。より好ましくは68~79%の範囲である。 Bi 2 O 3 lowers the softening point of the glass, imparts moderate fluidity, and adjusts the thermal expansion coefficient to an appropriate range, and is contained in the glass at 60 to 80% (but not including 80%). If it is less than 60%, the above action of the glass cannot be exhibited. On the other hand, if it exceeds 80%, the glass becomes unstable and devitrification tends to occur. More preferably, it is in the range of 68 to 79%.
 ZnOはガラスの軟化点を下げ、熱膨張係数を適宜範囲に調整するもので、ガラス中に1~20%含有させる。1%未満ではガラスの流動性が不十分となり、焼結性が損なわれ密着強度が低下する。他方20%を越えるとガラスが不安定となり失透を生じ易い。より好ましくは5~20%の範囲であり、さらに好ましくは5~12%の範囲である。 ZnO lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range, and is contained in the glass in an amount of 1 to 20%. If it is less than 1%, the fluidity of the glass becomes insufficient, the sinterability is impaired, and the adhesion strength decreases. On the other hand, if it exceeds 20%, the glass becomes unstable and devitrification tends to occur. A more preferred range is 5 to 20%, and a further more preferred range is 5 to 12%.
 この他にも、化学的耐久性を向上させる目的でRO(MgO、CaO、SrO、BaO)、Al23などを加えても良い。 In addition, RO (MgO, CaO, SrO, BaO), Al 2 O 3 or the like may be added for the purpose of improving chemical durability.
 ガラスフリットの粒子径は、微粒子であればあるほど、低温で融解するので好ましい。50%径が0.5~1.5μmの範囲、90%径が1~3μmの範囲及びトップサイズ7μm以下が好ましく、低温で融解し、ガラス基板上に強固に接着するので好ましい。 The particle size of the glass frit is preferably as fine particles as it melts at a low temperature. The 50% diameter is preferably in the range of 0.5 to 1.5 μm, the 90% diameter is in the range of 1 to 3 μm, and the top size is 7 μm or less, and is preferable because it melts at a low temperature and adheres firmly to the glass substrate.
 感光性導電ペースト中のガラスフリット含有量としては、5~50質量%であることが好ましい。ガラスフリットは電気絶縁性であるので含有量が50質量%を越えると電極の抵抗が増大するので好ましくない。5質量%以下では、電極膜とガラス基板との強固な接着強度が得られにくい。 The glass frit content in the photosensitive conductive paste is preferably 5 to 50% by mass. Since the glass frit is electrically insulating, if the content exceeds 50% by mass, the resistance of the electrode increases, which is not preferable. If it is 5% by mass or less, it is difficult to obtain a strong adhesive strength between the electrode film and the glass substrate.
 以下、実施例に基づき、説明する。 Hereinafter, description will be made based on examples.
 ガラスフリットは、Bi23源として酸化ビスマスを、SiO2源として微粉珪砂を、B23源としてほう酸を、Al23源としてアルミナを、ZnO源として亜鉛華を、MgO源として酸化マグネシウムを、CaO源として炭酸カルシウムを、SrO源として炭酸ストロンチウムを、BaO源として炭酸バリウムを要した。これらを所望の低融点ガラス組成となるべく調合したうえで、白金ルツボに投入し、電気加熱炉内で1100~1200℃、1~2時間で加熱溶融して表1の実施例1~5、表2の比較例1~5に示す組成のガラスを得た。 Glass frit, bismuth oxide as Bi 2 O 3 source, a fine silica sand as a SiO 2 source, a boric acid as a B 2 O 3 source, alumina as Al 2 O 3 source, a zinc oxide as a ZnO source, as MgO source Magnesium oxide, calcium carbonate as the CaO source, strontium carbonate as the SrO source, and barium carbonate as the BaO source were required. These were prepared to have a desired low-melting glass composition and then put into a platinum crucible and heated and melted in an electric heating furnace at 1100 to 1200 ° C. for 1 to 2 hours. Examples 1 to 5 in Table 1 Glasses having the compositions shown in Comparative Examples 1 to 5 were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ガラスの一部は型に流し込み、ブロック状にして熱物性(熱膨張係数、軟化点)測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径0.5~1.5μm、最大粒径7μm未満の粉末状に整粒した。 A part of the glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point). The remaining glass was flaked with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder having an average particle size of 0.5 to 1.5 μm and a maximum particle size of less than 7 μm.
 軟化点は、リトルトン粘度計を用い、粘度係数η=107.6 に達したときの温度とした。また、熱膨張係数は、熱膨張計を用い、5℃/分で昇温したときの30~300℃での伸び量から求めた。 The softening point was the temperature at which the viscosity coefficient η = 10 7.6 was reached using a Littleton viscometer. The thermal expansion coefficient was determined from the amount of elongation at 30 to 300 ° C. when the temperature was increased at 5 ° C./min using a thermal dilatometer.
 (感光性ペーストの作製) 残余の感光性導電ペースト用ガラスフリットを感光性化合物(2-ヒドロキシ-3-フェノキシプロピルアクリレート)を含む有機成分に分散し、感光性ペーストを得た。 (Preparation of photosensitive paste) The remaining glass frit for photosensitive conductive paste was dispersed in an organic component containing a photosensitive compound (2-hydroxy-3-phenoxypropyl acrylate) to obtain a photosensitive paste.
 得られた感光性ペーストについて、分散直後のペースト粘度[V1]と5℃冷温室に24時間静置した後のペースト粘度[V2]を測定し、[V2/V1]が1.2未満の場合を感光性成分との反応が無いと判断して◎を、1.2~1.5の範囲に有る場合を感光性成分との反応が有るが、実用上の問題は無いと判断して○を、1.5を超える場合を感光性成分との反応が有ると判断して×とした。 When the obtained photosensitive paste was measured for paste viscosity [V1] immediately after dispersion and paste viscosity [V2] after standing in a 5 ° C. cold room for 24 hours, and [V2 / V1] is less than 1.2 Is judged to have no reaction with the photosensitive component, and when it is in the range of 1.2 to 1.5, there is a reaction with the photosensitive component, but it is judged that there is no practical problem. Was determined to be x when it exceeded 1.5, because there was a reaction with the photosensitive component.
 また、焼成膜のテープ剥離試験を行い、剥離がないものを○、剥離があるものを×として、接着強度を評価した。 In addition, a tape peeling test of the fired film was performed, and the adhesive strength was evaluated with ○ indicating that there was no peeling and × indicating that there was peeling.
 (結果) 表1における実施例1~5に示すように、本発明の組成範囲内においては、感光性有機成分との反応によるペースト粘度の上昇が抑制されており、プラズマディスプレイパネル、プラズマアドレス液晶表示パネルやその他の電気・電子回路における高精細パターン形成に用いられる感光性導電ペーストに好適に使用できる。 (Results) As shown in Examples 1 to 5 in Table 1, within the composition range of the present invention, the increase in paste viscosity due to the reaction with the photosensitive organic component is suppressed, and the plasma display panel, plasma address liquid crystal It can be suitably used for a photosensitive conductive paste used for high-definition pattern formation in display panels and other electric / electronic circuits.
 他方、本発明の組成範囲を外れる表2における比較例1~5は、好ましい物性値や接着強度が得られず、さらに感光性成分との反応によるペースト粘度の上昇が認められ、高精細パターン形成に用いられる感光性ペーストとして適用し得ない。 On the other hand, Comparative Examples 1 to 5 in Table 2 outside the composition range of the present invention did not provide preferable physical property values and adhesive strength, and further, an increase in paste viscosity due to reaction with the photosensitive component was observed. It cannot be applied as a photosensitive paste used in the above.

Claims (8)

  1. Bi23を60~80質量%(ただし80質量%を含まず)含有し、軟化点が400~500℃の範囲のガラスフリットが、導電性粉末および感光性有機成分を含有する感光性導電ペースト中に5~50質量%含有されることを特徴とする感光性導電ペースト。 Photosensitive conductive material containing Bi 2 O 3 in an amount of 60 to 80% by mass (excluding 80% by mass) and having a softening point in the range of 400 to 500 ° C. containing conductive powder and a photosensitive organic component. A photosensitive conductive paste characterized by containing 5 to 50% by mass in the paste.
  2. ガラスフリットが質量%でBi23を65~80%(ただし80%を含まず)、SiO2を0~15%、B23を4~20%、ZnOを1~20%含むことを特徴とする請求項1に記載の感光性導電ペースト。 Glass frit contains 65 to 80% Bi 2 O 3 (excluding 80%), SiO 2 0 to 15%, B 2 O 3 4 to 20% and ZnO 1 to 20% by mass%. The photosensitive electrically conductive paste of Claim 1 characterized by these.
  3. ガラスフリットがZnOを5~20質量%含むことを特徴とする請求項2に記載の感光性導電ペースト。 3. The photosensitive conductive paste according to claim 2, wherein the glass frit contains 5 to 20% by mass of ZnO.
  4. ガラスフリットが平均粒子径0.5~1.5μm、90%粒子径1~3μm及びトップサイズ7μm以下であることを特徴とする請求項1乃至3のいずれか1項に記載の感光性導電ペースト。 4. The photosensitive conductive paste according to claim 1, wherein the glass frit has an average particle size of 0.5 to 1.5 μm, a 90% particle size of 1 to 3 μm, and a top size of 7 μm or less. .
  5. ガラスフリットの30℃~300℃における熱膨張係数が75×10-7/℃~120×10-7/℃であることを特徴とする請求項1乃至4のいずれか1項に記載の感光性導電ペースト。 5. The photosensitive property according to claim 1, wherein the glass frit has a thermal expansion coefficient of 30 × 10 −7 / ° C. to 120 × 10 −7 / ° C. at 30 ° C. to 300 ° C. Conductive paste.
  6. 請求項1乃至5のいずれかの感光性導電ペーストを使用していることを特徴とする電界放出型ディスプレイ用パネル。 6. A field emission display panel, wherein the photosensitive conductive paste according to claim 1 is used.
  7. 請求項1乃至5のいずれかの感光性導電ペーストを使用していることを特徴とするプラズマディスプレイ用パネル。 6. A plasma display panel, wherein the photosensitive conductive paste according to claim 1 is used.
  8. 請求項1乃至5のいずれかの感光性導電ペーストを使用していることを特徴とする電子材料用基板。 6. A substrate for electronic materials, wherein the photosensitive conductive paste according to claim 1 is used.
PCT/JP2009/061013 2008-06-25 2009-06-17 Photosensitive conductive paste WO2009157354A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-166045 2008-06-25
JP2008166045A JP2010008578A (en) 2008-06-25 2008-06-25 Photosensitive conductive paste

Publications (1)

Publication Number Publication Date
WO2009157354A1 true WO2009157354A1 (en) 2009-12-30

Family

ID=41444422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061013 WO2009157354A1 (en) 2008-06-25 2009-06-17 Photosensitive conductive paste

Country Status (2)

Country Link
JP (1) JP2010008578A (en)
WO (1) WO2009157354A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066993A (en) * 2010-08-26 2012-04-05 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766649B2 (en) * 2015-08-20 2020-10-14 東レ株式会社 Manufacturing method of antenna board, manufacturing method of antenna board with wiring and electrodes, and manufacturing method of RFID element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339554A (en) * 1998-03-19 1999-12-10 Toray Ind Inc Conductive powder, conductive paste, plasma display and substrate therefor
JP2003104755A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Paste
JP2004127529A (en) * 2002-09-30 2004-04-22 Taiyo Ink Mfg Ltd Photosensitive conductive paste and plasma display panel having electrode formed by using same
JP2006321976A (en) * 2005-03-09 2006-11-30 E I Du Pont De Nemours & Co Black conductive composition, black electrode and method for forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339554A (en) * 1998-03-19 1999-12-10 Toray Ind Inc Conductive powder, conductive paste, plasma display and substrate therefor
JP2003104755A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Paste
JP2004127529A (en) * 2002-09-30 2004-04-22 Taiyo Ink Mfg Ltd Photosensitive conductive paste and plasma display panel having electrode formed by using same
JP2006321976A (en) * 2005-03-09 2006-11-30 E I Du Pont De Nemours & Co Black conductive composition, black electrode and method for forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066993A (en) * 2010-08-26 2012-04-05 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same

Also Published As

Publication number Publication date
JP2010008578A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5309629B2 (en) Lead-free glass composition having acid resistance
JP4598008B2 (en) Lead-free glass composition and glass paste having acid resistance
JP2006282467A (en) Glass composition and glass paste composition
JP4791746B2 (en) Lead-free borosilicate glass frit and its glass paste
JP2007001846A (en) Glass composition having acid resistance
JP2007182365A (en) Non-lead glass for covering electrodes
JP2008030994A (en) Bismuth-based lead-free powdered glass
JP2005336048A (en) Glass composition, paste composition, and plasma display panel
JP2011178634A (en) Lead-free low-melting-point glass having acid resistance
JP2007332009A (en) Lead-free insulating glass composition and lead-free insulating glass paste
WO2009157354A1 (en) Photosensitive conductive paste
JP2000226231A (en) Leadless low-melting glass composition
JP2005194120A (en) Glass ceramic powder composition and glass paste
JP2000226232A (en) Leadless low-melting glass composition
JP5286777B2 (en) Photosensitive conductive paste
JPH11109888A (en) Laminated electrode
JP2008050252A (en) Method for manufacturing glass substrate with partition wall
JP2008081346A (en) Lead-free borosilicate glass frit for forming insulating layer and glass paste thereof
JP2007308320A (en) Dielectric composition, dielectric paste composition, and dielectric obtained by using the paste composition
JPH09147750A (en) Electrode for plasma display panel, and plasma display panel
JP2009167025A (en) Insulation layer-forming glass composition and insulation layer-forming material
JP2006290683A (en) Dielectric film and method for manufacturing the same
JP2008214144A (en) Dielectric composition, dielectric using the dielectric composition and dielectric paste
JP5717042B2 (en) Insulating layer forming material
JP5761545B2 (en) Insulating layer forming glass composition and insulating layer forming material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770064

Country of ref document: EP

Kind code of ref document: A1