JP5717042B2 - Insulating layer forming material - Google Patents

Insulating layer forming material Download PDF

Info

Publication number
JP5717042B2
JP5717042B2 JP2009144812A JP2009144812A JP5717042B2 JP 5717042 B2 JP5717042 B2 JP 5717042B2 JP 2009144812 A JP2009144812 A JP 2009144812A JP 2009144812 A JP2009144812 A JP 2009144812A JP 5717042 B2 JP5717042 B2 JP 5717042B2
Authority
JP
Japan
Prior art keywords
insulating layer
forming material
layer forming
glass
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009144812A
Other languages
Japanese (ja)
Other versions
JP2011001214A (en
Inventor
邦彦 加納
邦彦 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009144812A priority Critical patent/JP5717042B2/en
Publication of JP2011001214A publication Critical patent/JP2011001214A/en
Application granted granted Critical
Publication of JP5717042B2 publication Critical patent/JP5717042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

本発明は、蛍光表示管、各種電子放出素子を有する各種形式のフィールドエミッションディスプレイ、プラズマディスプレイパネル等の平面表示装置等に用いられる絶縁層形成材料に関するものである。   The present invention relates to an insulating layer forming material used for flat display devices such as fluorescent display tubes, various types of field emission displays having various electron-emitting devices, and plasma display panels.

蛍光表示管は、自己発光型の平面表示装置であり、高輝度、低電圧駆動、軽量薄型および高信頼性といった特徴を活かし、家電、オーディオ、計測器等の幅広い分野で利用されている。   The fluorescent display tube is a self-luminous flat display device, and is used in a wide range of fields such as home appliances, audio devices, and measuring instruments, taking advantage of high brightness, low voltage drive, light weight, thinness, and high reliability.

一般的に、蛍光表示管は、対向する前面ガラス基板と背面ガラス基板とを封着した真空容器の中に、フィラメント状カソードと、グリッドおよび蛍光体層を形成したアノードで構成される三極真空管である。カソードから放出された熱電子は、メッシュ状グリッドで加速、制御され、アノード上の蛍光体層を選択的に励起発光させる。これにより所望の表示特性を得ることができる。そして背面ガラス基板上には、Al配線のパターンが形成されており、このAl配線間の絶縁性を確保するために、Al配線上に絶縁層が形成される。さらに、この絶縁層上には、アノードが形成される。   In general, a fluorescent display tube is a triode vacuum tube composed of a filament cathode and an anode formed with a grid and a phosphor layer in a vacuum vessel in which a front glass substrate and a back glass substrate facing each other are sealed. It is. The thermoelectrons emitted from the cathode are accelerated and controlled by the mesh grid, and the phosphor layer on the anode is selectively excited to emit light. Thereby, desired display characteristics can be obtained. An Al wiring pattern is formed on the rear glass substrate, and an insulating layer is formed on the Al wiring in order to ensure insulation between the Al wirings. Furthermore, an anode is formed on the insulating layer.

一般的に、蛍光表示管の絶縁層形成材料には、ガラス粉末が用いられている。ガラス粉末は、ガラス基板の熱変形を防止するために580℃以下、好ましくは570℃以下で焼成できることが重要である。それ故、この用途には、軟化点が580℃以下、好ましくは570℃以下のガラス粉末が使用される。   Generally, glass powder is used as an insulating layer forming material of a fluorescent display tube. It is important that the glass powder can be fired at 580 ° C. or lower, preferably 570 ° C. or lower, in order to prevent thermal deformation of the glass substrate. Therefore, glass powder having a softening point of 580 ° C. or lower, preferably 570 ° C. or lower is used for this purpose.

従来、この種の絶縁層形成材料は、低温で焼成可能な鉛含有ガラス(PbO−B系ガラス)粉末が広く用いられていた。しかし、近年、環境的観点から、鉛を含まない絶縁層形成材料が要求されており、絶縁層形成材料として、アルカリ金属酸化物を含むZnO−B−SiO系ガラス粉末が提案されている(例えば、特許文献1〜3参照)。 Conventionally, lead-containing glass (PbO—B 2 O 3 glass) powder that can be fired at a low temperature has been widely used as this type of insulating layer forming material. However, in recent years, an insulating layer forming material containing no lead has been required from an environmental viewpoint, and ZnO—B 2 O 3 —SiO 2 glass powder containing an alkali metal oxide has been proposed as the insulating layer forming material. (For example, refer to Patent Documents 1 to 3).

特開平5−339029号公報JP-A-5-339029 特開平11−250809号公報JP-A-11-250809 特開2000−226232号公報JP 2000-226232 A

蛍光表示管等に使用される絶縁層形成材料は、下記のように、主に(1)〜(3)の特性が要求される。
(1)Al配線または電極間の導通不良を防止するために絶縁特性が良好であること、特に焼成時にAl配線と反応し、絶縁層中に絶縁不良に至る発泡が生じないこと、
(2)ガラス基板等の熱変形を防止するために、低温で焼成可能であること、
(3)平滑な絶縁層を得るために、熱的安定性が良好であること、
Insulating layer forming materials used for fluorescent display tubes and the like are mainly required to have the characteristics (1) to (3) as described below.
(1) Insulation characteristics are good in order to prevent poor conduction between Al wirings or electrodes, in particular, there is no foaming that reacts with Al wiring during firing and leads to poor insulation in the insulating layer.
(2) To be able to be fired at a low temperature in order to prevent thermal deformation of the glass substrate, etc.
(3) In order to obtain a smooth insulating layer, the thermal stability is good.

特に、車載ディスプレイ等の蛍光表示管は、高輝度化の要請を満たすために、印加電圧が高くなってきていることに加えて、高精細化の要請を満たすために、Al配線間の距離が狭くなってきている。そのため、この用途の絶縁層形成材料は、従来よりも高い絶縁特性が必要になり、この場合、上記(1)〜(3)の特性の内、(1)の特性が重要になる。   In particular, fluorescent display tubes such as in-vehicle displays have a higher applied voltage in order to meet the demand for higher brightness, and the distance between Al wirings is higher to meet the demand for higher definition. It is getting narrower. For this reason, the insulating layer forming material for this application requires higher insulating properties than those in the past, and in this case, among the properties (1) to (3), the property (1) is important.

絶縁不良の原因となる泡は、ガラス中の水分が原因であり、主にAl配線上で発生する。この泡はガラス中の水分がアルミニウムにより還元されて生じたものである。アルミニウムは、非常に還元能力が高い材料であり、ガラス中の水分を容易に還元する。このため、Al配線上に形成される絶縁層形成材料に多量の水分が含まれている場合、焼成時に、
2Al + 3HO → Al + 2H
の反応が生じ、ガラス中に著しいHの発泡が生じる。それゆえガラス中の水分量が少ない程、焼成時に発泡が生じ難くなり、絶縁不良が生じ難くなる。
Bubbles that cause insulation failure are caused by moisture in the glass and are mainly generated on the Al wiring. These bubbles are generated by reducing the moisture in the glass with aluminum. Aluminum is a material having a very high reducing ability and easily reduces moisture in the glass. For this reason, when a large amount of moisture is contained in the insulating layer forming material formed on the Al wiring, during firing,
2Al + 3H 2 O → Al 2 O 3 + 2H 2
Reaction occurs, and significant H 2 foaming occurs in the glass. Therefore, the smaller the amount of moisture in the glass, the less likely foaming will occur during firing and the less likely insulation will be.

ガラス中の水分量を少なくする方法として、(A)ガラスバッチ中にSi等の金属粉末を添加して、ガラスを溶融する方法、(B)溶融ガラス中に窒素ガスでバブリングしながら、ガラスを溶融する方法がある。   As a method for reducing the amount of moisture in the glass, (A) a method of melting a glass by adding a metal powder such as Si in a glass batch, and (B) a method of bubbling glass with nitrogen gas while bubbling with molten nitrogen. There is a way to melt.

しかし、(A)の方法は、Pt等の溶融炉に深刻なダメージを与えやすく、ガラスの溶融コストが高騰してしまう。また、(B)の方法も、特殊な溶融設備を採用せざるを得ず、ガラスの溶融コストが高騰してしまう。   However, the method (A) tends to cause serious damage to a melting furnace such as Pt, and the melting cost of the glass increases. In addition, the method (B) also has to employ special melting equipment, and the melting cost of the glass increases.

そこで、本発明は、Al配線上に絶縁層を形成しても、焼成時にガラス中に発泡が生じ難く、また低温で焼成可能であり、しかも熱的安定性が良好であり、焼成時にガラスに失透が発生し難い絶縁層形成材料を創案することにより、発泡が少なく、且つ表面平滑性が良好な絶縁層を形成し、蛍光表示管等の高輝度化や高精細化に寄与することを技術的課題とする。   Therefore, even if an insulating layer is formed on the Al wiring, the present invention hardly foams in the glass during firing, can be fired at a low temperature, and has good thermal stability. By creating an insulating layer forming material that does not easily cause devitrification, an insulating layer with less foaming and good surface smoothness is formed, contributing to higher brightness and higher definition of fluorescent display tubes, etc. Technical issue.

本発明者は、鋭意努力の結果、ZnO−B−SiO系ガラス粉末に、Cuおよび/またはFeを含有する無機酸化物粉末を少量添加すれば、絶縁特性が顕著に向上することを見出し、本発明として、提案するものである。すなわち、本発明の絶縁層形成材料は、ガラス粉末と無機酸化物粉末を含有する絶縁層形成材料において、(1)ガラス粉末の含有量が70〜99.9質量%、無機酸化物粉末の含有量が0.1〜20質量%であり、(2)ガラス粉末が、ガラス組成として、モル%で、ZnO 15〜45%、B 25〜45%、SiO 5〜25%、BaO 0〜12%、LiO 0〜2.5%、Na O 1〜15%、K O 0.1〜12%を含有し、(3)無機酸化物粉末が、Cuおよび/またはFeを含有することを特徴とする。 As a result of diligent efforts, the present inventor can significantly improve the insulating properties by adding a small amount of inorganic oxide powder containing Cu and / or Fe to ZnO—B 2 O 3 —SiO 2 glass powder. Are proposed as the present invention. That is, the insulating layer forming material of the present invention is an insulating layer forming material containing a glass powder and an inorganic oxide powder. (1) The content of the glass powder is 70 to 99.9% by mass, and the inorganic oxide powder is contained. The amount is 0.1 to 20% by mass, and (2) the glass powder has a glass composition in mol%, ZnO 15 to 45%, B 2 O 3 25 to 45%, SiO 2 5 to 25%, BaO. 0~12%, Li 2 O 0~2.5% , Na 2 O 1~15%, containing K 2 O 0.1~12%, and (3) inorganic oxide powders, Cu and / or Fe It is characterized by containing.

本発明者の調査によると、CuOとFeは、絶縁層形成材料の焼成温度域(530〜580℃)でHOよりも還元されやすいため、絶縁層形成材料中にCuおよび/またはFeを含有する無機酸化物粉末を添加すれば、2Al+3HO→Al+2Hの反応が生じ難くなり、絶縁特性を顕著に高めることができる。しかもCuおよび/またはFeを含有する無機酸化物粉末は、添加量が少なくても効果を発揮するため、ZnO−B−SiO系ガラス粉末の基本特性を損なうことなく、絶縁特性を顕著に高めることができる。 According to the inventor's investigation, CuO and Fe 2 O 3 are more easily reduced than H 2 O in the firing temperature range (530 to 580 ° C.) of the insulating layer forming material. Alternatively, if an inorganic oxide powder containing Fe is added, a reaction of 2Al + 3H 2 O → Al 2 O 3 + 2H 2 is hardly caused, and the insulating characteristics can be remarkably improved. In addition, since the inorganic oxide powder containing Cu and / or Fe exhibits an effect even if the addition amount is small, the insulating characteristics can be obtained without impairing the basic characteristics of the ZnO—B 2 O 3 —SiO 2 glass powder. Can be significantly increased.

本発明の絶縁層形成材料は、ガラス粉末において、ガラス組成中のZnO、B、SiOの含有量を上記範囲に規制しているため、軟化点が低く、580℃以下の温度で絶縁層を形成することができる。また、本発明の絶縁層形成材料は、ガラス粉末において、ガラス組成中のZnO、B、SiO、BaO、Li、Na O、K の含有量を上記範囲に規制しているため、熱的安定性が良好であり、焼成時にガラスが失透し、絶縁層の表面平滑性が損なわれる事態を防止しやすくなる。 In the insulating layer forming material of the present invention, in the glass powder, the content of ZnO, B 2 O 3 and SiO 2 in the glass composition is regulated within the above range, so the softening point is low and the temperature is 580 ° C. or lower. An insulating layer can be formed. Moreover, the insulating layer forming material of the present invention regulates the content of ZnO, B 2 O 3 , SiO 2 , BaO, Li 2 O , Na 2 O, and K 2 O in the glass composition within the above range in the glass powder. Therefore, the thermal stability is good, and it becomes easy to prevent a situation where the glass is devitrified during firing and the surface smoothness of the insulating layer is impaired.

第二に、本発明の絶縁層形成材料は、無機酸化物粉末が、Al−Cr−Fe−Zn系複合酸化物、Al−Cu−Fe−Mn系複合酸化物、Al−Fe−Mn系複合酸化物、Co−Cr−Fe−Mn系複合酸化物、Co−Cr−Fe−Ni系複合酸化物、Co−Cr−Fe−Ni−Si−Zr系複合酸化物、Co−Cr−Fe系複合酸化物、Co−Cr−Fe−Mn系複合酸化物、Co−Cr−Fe−Ni−Zn系複合酸化物、Co−Fe系複合酸化物、Co−Fe−Mn−Ni系複合酸化物、Cr−Cu系複合酸化物、Cr−Cu−Mn系複合酸化物、Cr−Fe系複合酸化物、Cr−Fe−Mn系複合酸化物、Cr−Fe−Zn系複合酸化物、Fe−Mn系複合酸化物、Fe−Ti系複合酸化物、Fe−Ti−W系複合酸化物、Fe−Ti−Zn系複合酸化物、Fe−Zn系複合酸化物の一種または二種以上を含むことを特徴とする。ここで、「・・・系複合酸化物」とは、明示の成分を必須成分として含有する複合酸化物を指す。なお、「複合酸化物」は、2種以上の酸化物が組み合わさって構成される酸化物であり、それぞれの金属イオンが、O2−の最密充填の隙間に平等なイオン格子を形成する酸化物である。 Secondly, the insulating layer forming material of the present invention comprises an inorganic oxide powder comprising an Al—Cr—Fe—Zn composite oxide, an Al—Cu—Fe—Mn composite oxide, and an Al—Fe—Mn composite. Oxide, Co-Cr-Fe-Mn composite oxide, Co-Cr-Fe-Ni composite oxide, Co-Cr-Fe-Ni-Si-Zr composite oxide, Co-Cr-Fe composite Oxide, Co—Cr—Fe—Mn composite oxide, Co—Cr—Fe—Ni—Zn composite oxide, Co—Fe composite oxide, Co—Fe—Mn—Ni composite oxide, Cr -Cu complex oxide, Cr-Cu-Mn complex oxide, Cr-Fe complex oxide, Cr-Fe-Mn complex oxide, Cr-Fe-Zn complex oxide, Fe-Mn complex Oxide, Fe-Ti composite oxide, Fe-Ti-W composite oxide, Fe-Ti Zn-based composite oxide, characterized in that it comprises one or two or more of Fe-Zn-based composite oxide. Here, “... Complex oxide” refers to a complex oxide containing an explicit component as an essential component. The “composite oxide” is an oxide formed by combining two or more kinds of oxides, and each metal ion forms an equal ion lattice in the close-packed gap of O 2−. It is an oxide.

第三に、本発明の絶縁層形成材料は、無機酸化物粉末が、Cu酸化物(CuO、CuO等)またはFe酸化物(Fe、FeO等)を含むことを特徴とする。 Third, the insulating layer forming material of the present invention is characterized in that the inorganic oxide powder contains Cu oxide (CuO, Cu 2 O, etc.) or Fe oxide (Fe 2 O 3 , FeO, etc.). .

第四に、本発明の絶縁層形成材料は、無機酸化物粉末の平均粒子径D50が5μm以下であることを特徴とする。ここで、「平均粒子径D50」とは、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 Fourth, insulating layer-forming material of the present invention, the average particle size D 50 of the inorganic oxide powder is characterized in that it is 5μm or less. Here, the “average particle diameter D 50 ” represents a particle diameter in which the accumulated amount is 50% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method. .

第五に、本発明の絶縁層形成材料は、無機酸化物粉末の最大粒子径Dmaxが20μm以下であることを特徴とする。ここで、「最大粒子径Dmax」とは、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 Fifth, the insulating layer forming material of the present invention is characterized in that the maximum particle diameter Dmax of the inorganic oxide powder is 20 μm or less. Here, the “maximum particle diameter D max ” represents a particle diameter in which the cumulative amount is 99% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method. .

第六に、本発明の絶縁層形成材料は、ガラス粉末が、ガラス組成として、更にTiOを0.1〜10モル%含有することを特徴とする。TiOは、ガラス構造を緻密化し、ガラス中に水分を含み難くする成分であるとともに、アルミニウムによる還元が比較的生じやすい成分であり、ガラス中の水分の還元量を減少させる効果がある。結果として、TiOを添加すれば、絶縁特性を高めることができる。 Sixth, the insulating layer forming material of the present invention is characterized in that the glass powder further contains 0.1 to 10 mol% of TiO 2 as a glass composition. TiO 2 is a component that densifies the glass structure and makes it difficult for moisture to be contained in the glass, and is a component that is relatively easily reduced by aluminum, and has an effect of reducing the amount of water reduced in the glass. As a result, if TiO 2 is added, the insulating properties can be enhanced.

第七に、本発明の絶縁層形成材料は、ガラス粉末が、ガラス組成として、更にBaOを0.1〜12モル%含有することを特徴とする。   Seventh, the insulating layer forming material of the present invention is characterized in that the glass powder further contains 0.1 to 12 mol% of BaO as a glass composition.

第八に、本発明の絶縁層形成材料は、ガラス粉末が、実質的にPbOを含有しないことを特徴とする。ここで、本発明でいう「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm(質量)以下の場合を指す。   Eighth, the insulating layer forming material of the present invention is characterized in that the glass powder does not substantially contain PbO. Here, “substantially not containing PbO” in the present invention refers to a case where the content of PbO in the glass composition is 1000 ppm (mass) or less.

蛍光表示管で使用されるソーダガラス基板は、ガラス組成中にNaOを含有しているが、長期の使用によりNaOがNaに電解し、これが鉛含有ガラス中のPbOを還元させ、Al配線上にPbを樹枝状に析出させる。これは鉛樹と称される現象であるが、この現象が生じると、絶縁層の絶縁特性が損なわれる。しかし、ガラス粉末が実質的にPbOを含有しない構成にすれば、このような不具合は生じ難く、結果として蛍光表示管の高輝度化が可能になる。また、ガラス粉末が実質的にPbOを含有しない構成にすれば、Al配線間の距離を狭めても、導通不良が発生し難く、結果としてAl配線の高精細化が可能になる。なお、本発明の絶縁層形成材料は、鉛含有ガラスで形成された絶縁層の保護層としても用いることができる。このようにすれば、保護層により、鉛樹現象を遮断することができる。 Soda glass substrate to be used in fluorescent display tubes, although containing Na 2 O in the glass composition, Na 2 O is electrolyzed in Na + by long-term use, which is reduced to PbO in the lead-containing glass Then, Pb is deposited in a dendritic manner on the Al wiring. This is a phenomenon called lead tree, but when this phenomenon occurs, the insulating properties of the insulating layer are impaired. However, if the glass powder does not substantially contain PbO, such a problem hardly occurs, and as a result, it is possible to increase the brightness of the fluorescent display tube. Further, if the glass powder does not substantially contain PbO, poor conduction will not occur even if the distance between the Al wirings is reduced, and as a result, the Al wirings can be made highly fine. In addition, the insulating layer forming material of this invention can be used also as a protective layer of the insulating layer formed with lead-containing glass. In this way, the lead tree phenomenon can be blocked by the protective layer.

第九に、本発明の絶縁層形成材料は、ガラス粉末の平均粒子径D50が5μm以下であることを特徴とする。 Ninth, insulating layer-forming material of the present invention, wherein the average particle diameter D 50 of the glass powder is 5μm or less.

第十に、本発明の絶縁層形成材料は、ガラス粉末の最大粒子径Dmaxが20μm以下であることを特徴とする。 Tenth, the insulating layer forming material of the present invention is characterized in that the maximum particle diameter Dmax of the glass powder is 20 μm or less.

第十一に、本発明の絶縁層形成材料は、ガラス粉末の平均粒子径D50が、無機酸化物粉末の平均粒子径D50より大きいことを特徴とする。このようにすれば、ガラス粉末中で2Al+3HO→Al+2Hの反応が生じ難くなり、絶縁特性を一層高めやすくなる。 Eleventh, the insulating layer-forming material of the present invention has an average particle diameter D 50 of the glass powder, being greater than the average particle diameter D 50 of the inorganic oxide powder. This makes it difficult for the reaction of 2Al + 3H 2 O → Al 2 O 3 + 2H 2 to occur in the glass powder, making it easier to improve the insulating properties.

第十二に、本発明の絶縁層形成材料は、軟化点が580℃以下であることを特徴とする。ここで、「軟化点」とは、マクロ型示差熱分析(DTA)装置で測定した値を指し、マクロ型DTAは室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型DTA装置で測定した軟化点は、図1に示す第四屈曲点の温度(T)を指す。 Twelfth, the insulating layer forming material of the present invention has a softening point of 580 ° C. or lower. Here, the “softening point” refers to a value measured with a macro-type differential thermal analysis (DTA) apparatus. The macro-type DTA starts measurement from room temperature, and the rate of temperature rise is 10 ° C./min. The softening point measured by the macro-type DTA apparatus refers to the temperature (T S) of the fourth bending point shown in FIG.

第十三に、本発明の絶縁層形成材料は、Alの絶縁被覆に用いることを特徴とする。   Thirteenth, the insulating layer forming material of the present invention is characterized by being used for an Al insulating coating.

第十四に、本発明の絶縁層形成材料は、蛍光表示管に用いることを特徴とする。   Fourteenth, the insulating layer forming material of the present invention is used for a fluorescent display tube.

マクロ型DTA装置で測定した時の絶縁層形成材料の軟化点を示す模式図である。It is a schematic diagram which shows the softening point of the insulating layer forming material when measured with a macro type DTA apparatus.

本発明の絶縁層形成材料において、ガラス粉末と無機酸化物粉末の混合割合は、ガラス粉末70〜99.9質量%、無機酸化物粉末0.1〜20質量%であり、ガラス粉末80〜99.5質量%、無機酸化物粉末0.5〜10質量%が好ましく、ガラス粉末85〜99.1質量%、無機酸化物粉末0.9〜5質量%がより好ましい。無機酸化物粉末の含有量が0.1質量%より少ないと、無機酸化物による効果を享受し難くなる。一方、無機酸化物粉末の含有量が20質量%より多いと、熱的安定性が低下しやすくなり、しかも無機酸化物粉末の界面に残存泡等が発生しやすくなる。   In the insulating layer forming material of the present invention, the mixing ratio of the glass powder and the inorganic oxide powder is 70 to 99.9% by mass of the glass powder, 0.1 to 20% by mass of the inorganic oxide powder, and 80 to 99 of the glass powder. 0.5 mass%, inorganic oxide powder 0.5-10 mass% is preferable, glass powder 85-99.1 mass%, and inorganic oxide powder 0.9-5 mass% are more preferable. When content of inorganic oxide powder is less than 0.1 mass%, it will become difficult to enjoy the effect by an inorganic oxide. On the other hand, when the content of the inorganic oxide powder is more than 20% by mass, the thermal stability tends to be lowered, and residual bubbles are likely to be generated at the interface of the inorganic oxide powder.

本発明の絶縁層形成材料において、無機酸化物粉末は、Al−Cr−Fe−Zn系複合酸化物、Al−Cu−Fe−Mn系複合酸化物、Al−Fe−Mn系複合酸化物、Co−Cr−Fe−Mn系複合酸化物、Co−Cr−Fe−Ni系複合酸化物、Co−Cr−Fe−Ni−Si−Zr系複合酸化物、Co−Cr−Fe系複合酸化物、Co−Cr−Fe−Mn系複合酸化物、Co−Cr−Fe−Ni−Zn系複合酸化物、Co−Fe系複合酸化物、Co−Fe−Mn−Ni系複合酸化物、Cr−Cu系複合酸化物、Cr−Cu−Mn系複合酸化物、Cr−Fe系複合酸化物、Cr−Fe−Mn系複合酸化物、Cr−Fe−Zn系複合酸化物、Fe−Mn系複合酸化物、Fe−Ti系複合酸化物、Fe−Ti−W系複合酸化物、Fe−Ti−Zn系複合酸化物、Fe−Zn系複合酸化物の一種または二種以上が好ましい。これらの複合酸化物を用いると、Al配線上の発泡を減少させる効果を享受することができる。これらの複合酸化物としては、(Co,Fe,Mn)(Fe,Cr,Mn)、(Ni,Co,Fe)(Fe,Cr)、(Ni,Co,Fe)(Fe,Cr)・(Zn,Fe)(Fe,Cr)、(Co,Fe,Mn)(Fe,Cr,Mn)、(Fe,Mn)(Fe,Mn)(Manganese ferrite black spinel)、(Fe,Mn)(Fe,Cr,Mn)O、Cu(Cr,Mn)、CuCr、(Co,Fe)(Fe,Cr)、(Ni,Co,Fe)(Fe,Cr)・ZrSiO、Fe(Fe,Cr)、(Zn,Fe)(Fe,Cr)、(Zn,Fe)(Fe,Cr,Al)、(Fe,Co)Fe、(Zn,Fe)Fe、(Zn,Fe)(Fe,Cr)、(Fe,Zn)Fe:TiO、(Co,Ni,Zn)TiO、FeTiO、Cr:Fe等を挙げることができる。 In the insulating layer forming material of the present invention, the inorganic oxide powder includes Al—Cr—Fe—Zn composite oxide, Al—Cu—Fe—Mn composite oxide, Al—Fe—Mn composite oxide, Co -Cr-Fe-Mn complex oxide, Co-Cr-Fe-Ni complex oxide, Co-Cr-Fe-Ni-Si-Zr complex oxide, Co-Cr-Fe complex oxide, Co -Cr-Fe-Mn complex oxide, Co-Cr-Fe-Ni-Zn complex oxide, Co-Fe complex oxide, Co-Fe-Mn-Ni complex oxide, Cr-Cu complex Oxide, Cr—Cu—Mn composite oxide, Cr—Fe composite oxide, Cr—Fe—Mn composite oxide, Cr—Fe—Zn composite oxide, Fe—Mn composite oxide, Fe -Ti complex oxide, Fe-Ti-W complex oxide, Fe-Ti- n based composite oxide, one or two or more kinds of Fe-Zn-based composite oxide. When these complex oxides are used, the effect of reducing foaming on the Al wiring can be enjoyed. These composite oxides include (Co, Fe, Mn) (Fe, Cr, Mn) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4 , (Ni, Co, Fe) ( Fe, Cr) 2 O 4. (Zn, Fe) (Fe, Cr) 2 O 4 , (Co, Fe, Mn) (Fe, Cr, Mn) 2 O 4 , (Fe, Mn) (Fe, Mn) 2 O 4 (Manganese ferrite black spinel), (Fe, Mn) (Fe, Cr, Mn) O 4 , Cu (Cr, Mn) 2 O 4 , CuCr 2 O 4 , (Co, Fe) (Fe, Cr) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4 .ZrSiO 4 , Fe (Fe, Cr) 2 O 4 , (Zn, Fe) (Fe, Cr) 2 O 4 , (Zn, Fe) (Fe, Cr, Al ) 2 O 4, (Fe, Co Fe 2 O 4, (Zn, Fe) Fe 2 O 4, (Zn, Fe) (Fe, Cr) 2 O 4, (Fe, Zn) Fe 2 O 4: TiO 2, (Co, Ni, Zn) TiO 4 , Fe 2 TiO 4 , Cr 2 O 3 : Fe 2 O 3 and the like.

また、本発明の絶縁層形成材料において、無機酸化物粉末は、Cu酸化物またはFe酸化物が好ましい。これらの無機酸化物粉末を添加すると、材料コストを低廉化できるとともに、Al配線上の発泡を減少させる効果を享受することができる。   In the insulating layer forming material of the present invention, the inorganic oxide powder is preferably Cu oxide or Fe oxide. When these inorganic oxide powders are added, the material cost can be reduced and the effect of reducing foaming on the Al wiring can be enjoyed.

本発明の絶縁層形成材料において、無機酸化物粉末は黒色であることが好ましい。無機酸化物粉末が黒色であると、絶縁層形成材料に不純物が混入しても、絶縁層が外観不良になりにくい。また、無機酸化物粉末が黒色であると、蛍光表示管等の製造工程において、センサー等で構成部材を認識しやすくなり、製造工程のオートメーション化等を容易に図ることができる。黒色の無機酸化物粉末としては、Al−Cu−Fe−Mn系複合酸化物、Al−Fe−Mn系複合酸化物、Co−Cr−Fe系複合酸化物、Co−Cr−Fe−Mn系複合酸化物、Co−Cr−Fe−Ni系複合酸化物、Co−Cr−Fe−Mn系複合酸化物、Co−Cr−Fe−Ni−Zn系複合酸化物、Co−Fe−Mn−Ni系複合酸化物、Cr−Cu系複合酸化物、Cr−Cu−Mn系複合酸化物、Cr−Fe−Mn系複合酸化物、Fe−Mn系複合酸化物等を挙げることができ、具体的には(Co,Fe,Mn)(Fe,Cr,Mn)、(Ni,Co,Fe)(Fe,Cr)、(Ni,Co,Fe)(Fe,Cr)・(Zn,Fe)(Fe,Cr)、(Co,Fe,Mn)(Fe,Cr,Mn)、(Fe,Mn)(Fe,Mn)、(Fe,Mn)(Fe,Cr,Mn)O、Cu(Cr,Mn)、CuCr、(Co,Fe)(Fe,Cr)等を挙げることができる。 In the insulating layer forming material of the present invention, the inorganic oxide powder is preferably black. When the inorganic oxide powder is black, even if impurities are mixed in the insulating layer forming material, the insulating layer is unlikely to have a poor appearance. Further, when the inorganic oxide powder is black, in the manufacturing process of the fluorescent display tube or the like, it becomes easy to recognize the constituent member by a sensor or the like, and automation of the manufacturing process can be easily achieved. Examples of black inorganic oxide powder include Al-Cu-Fe-Mn composite oxide, Al-Fe-Mn composite oxide, Co-Cr-Fe composite oxide, Co-Cr-Fe-Mn composite oxide. Oxides, Co-Cr-Fe-Ni composite oxides, Co-Cr-Fe-Mn composite oxides, Co-Cr-Fe-Ni-Zn composite oxides, Co-Fe-Mn-Ni composites Oxides, Cr-Cu composite oxides, Cr-Cu-Mn composite oxides, Cr-Fe-Mn composite oxides, Fe-Mn composite oxides, and the like. (Co, Fe, Mn) (Fe, Cr, Mn) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4. Zn, Fe) (Fe, Cr ) 2 O 4, (Co, Fe, Mn) (Fe, Cr, Mn 2 O 4, (Fe, Mn ) (Fe, Mn) 2 O 4, (Fe, Mn) (Fe, Cr, Mn) O 4, Cu (Cr, Mn) 2 O 4, CuCr 2 O 4, (Co , Fe) (Fe, Cr) 2 O 4 and the like.

本発明の絶縁層形成材料において、無機酸化物粉末の平均粒子径D50は5μm以下、4μm以下、特に3μm以下が好ましい。無機酸化物粉末の平均粒子径D50が5μmより大きいと、無機酸化物粉末の表面積が小さくなるため、Al配線上の発泡を減少させる効果を発揮し難くなる。 In the insulating layer forming material of the present invention, the average particle diameter D 50 of the inorganic oxide powder 5μm or less, 4 [mu] m or less, in particular 3μm or less. The average particle diameter D 50 of the inorganic oxide powder is greater than 5 [mu] m, the surface area of the inorganic oxide powder is reduced, it becomes difficult to exhibit the effect of reducing the foaming of the Al wiring.

本発明の絶縁層形成材料において、無機酸化物粉末の最大粒子径Dmaxは20μm以下が好ましく、15μm以下がより好ましい。無機酸化物粉末の最大粒子径Dmaxが20μmより大きいと、絶縁層の表面に表面突起が発生しやすくなり、平滑な絶縁層を得難くなる。 In the insulating layer forming material of the present invention, the maximum particle diameter Dmax of the inorganic oxide powder is preferably 20 μm or less, and more preferably 15 μm or less. If the maximum particle diameter Dmax of the inorganic oxide powder is larger than 20 μm, surface protrusions are likely to occur on the surface of the insulating layer, and it becomes difficult to obtain a smooth insulating layer.

本発明の絶縁層形成材料において、ガラス粉末のガラス組成範囲を上記のように限定した理由を述べる。   The reason for limiting the glass composition range of the glass powder as described above in the insulating layer forming material of the present invention will be described.

ZnOは、溶融温度や軟化点を過剰に上げることなく、熱膨張係数を下げる成分であり、その含有量は15〜45%、好ましくは22〜35%、より好ましくは25〜32%である。ZnOの含有量が少な過ぎると、熱膨張係数が十分に低下せず、ガラス基板等に反りが発生しやすくなる。また、ZnOの含有量が少な過ぎると、軟化点が高くなり、580℃以下の温度で平滑な絶縁層を得難くなる。一方、ZnOの含有量が多過ぎると、熱的安定性が低下し、焼成時にガラスが失透しやすくなる。   ZnO is a component that lowers the thermal expansion coefficient without excessively increasing the melting temperature and softening point, and its content is 15 to 45%, preferably 22 to 35%, more preferably 25 to 32%. When the content of ZnO is too small, the thermal expansion coefficient is not sufficiently lowered, and the glass substrate or the like is likely to be warped. Moreover, when there is too little content of ZnO, a softening point will become high and it will become difficult to obtain a smooth insulating layer at the temperature of 580 degrees C or less. On the other hand, when there is too much content of ZnO, thermal stability will fall and it will become easy to devitrify glass at the time of baking.

は、ガラスの骨格を形成する成分であるとともに、SiOと比較して、溶融温度および軟化点を下げる成分であり、その含有量は25〜45%、好ましくは28〜40%、より好ましくは30〜39%である。Bの含有量が少な過ぎると、熱的安定性が低下し、焼成時にガラスが失透しやすくなる。一方、Bの含有量が多過ぎると、ガラスが分相しやすくなり、この場合、580℃以下の温度で平滑な絶縁層を形成し難くなる。 B 2 O 3 is a component that forms a glass skeleton, and is a component that lowers the melting temperature and softening point compared to SiO 2, and its content is 25 to 45%, preferably 28 to 40%. More preferably, it is 30 to 39%. When B 2 O 3 content is too small, it decreases the thermal stability, the glass tends to be devitrified during firing. On the other hand, when the content of B 2 O 3 is too large, the glass is likely to undergo phase separation, and in this case, it becomes difficult to form a smooth insulating layer at a temperature of 580 ° C. or lower.

の含有量の一部をBaOに置換すれば、具体的にはモル比B/BaOの値を13以下、10以下、特に8以下規制すれば、Al配線上の発泡を減少させることができるとともに、軟化点が低下しやすくなる。 If a part of the content of B 2 O 3 is replaced with BaO, specifically, if the molar ratio B 2 O 3 / BaO is controlled to 13 or less, 10 or less, particularly 8 or less, foaming on the Al wiring Can be reduced, and the softening point tends to decrease.

SiOは、ガラスの骨格を形成する成分であるとともに、熱膨張係数を低下させる効果があり、その含有量は5〜25%、好ましくは12〜21%、より好ましくは15〜19%である。SiOの含有量が少な過ぎると、熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。一方、SiOの含有量が多過ぎると、軟化点が高くなり、580℃以下の温度で平滑な絶縁層を得難くなる。 SiO 2 is a component that forms a glass skeleton and has an effect of reducing the thermal expansion coefficient, and its content is 5 to 25%, preferably 12 to 21%, more preferably 15 to 19%. . When the content of SiO 2 is too small, the thermal stability is lowered, the glass tends to be devitrified when melted or during sintering. On the other hand, if the content of SiO 2 is too large, the softening point becomes high and it becomes difficult to obtain a smooth insulating layer at a temperature of 580 ° C. or lower.

上記成分以外にも、例えば、下記の成分をガラス組成中に添加することができる。   In addition to the above components, for example, the following components can be added to the glass composition.

LiOは、軟化点を下げる成分であり、その含有量は0〜2.5であり、好ましくは0〜2%、特に0〜0.5%未満が好ましい。LiOの含有量が多過ぎると、熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。 Li 2 O is a component that lowers the softening point, and its content is 0 to 2.5 % , preferably 0 to 2%, particularly preferably 0 to less than 0.5%. The content of Li 2 O is too large, thermal stability is lowered, the glass tends to be devitrified when melted or during sintering.

近年、マザーガラス基板に絶縁層を一括して形成する方法が検討されている。この方法は、絶縁層形成材料を含むペーストをマザーガラス基板(既にマザーガラス基板に所定の配線パターンが形成されている)上にスクリーン印刷法等で塗布し、これを焼成した後に、マザーガラス基板を所定のサイズに分断し、複数のガラス基板を得る方法である。この方法を用いれば、複数の絶縁層を一括して形成できるため、蛍光表示管等の製造効率が向上する。特に、マザーガラス基板が大きい程、多くの絶縁層を一括して形成できるため、蛍光表示管等の製造効率が向上する。しかし、マザーガラス基板が大きい程、絶縁層形成材料の焼成時にマザーガラス基板が反りやすくなる。同様にして、マザーガラス基板の板厚が小さい程、絶縁層形成材料の焼成時にマザーガラス基板が反りやすくなる。マザーガラス基板の反りが大きくなれば、マザーガラス基板を所定サイズに分断し難くなることに加えて、焼成工程後に用いる製造装置でマザーガラス基板をピックアップし難くなり、蛍光表示管等の製造効率が低下するおそれがある。発明者の調査によれば、LiOの含有量が多いと、ガラス基板にNa又はKが含まれている場合、絶縁層形成材料の焼成時に、ガラス粉末中のLiとガラス基板中のNa又はKがイオン交換し、その結果、ガラス基板がガラス基板側に凸状に反りやすくなり、蛍光表示管等の製造効率が低下しやすくなる。そこで、LiOの含有量を0.5%未満に規制すれば、絶縁層形成材料とガラス基板に含まれるアルカリイオンがイオン交換し難くなり、蛍光表示管等の製造効率を高めやすくなる。 In recent years, methods for collectively forming an insulating layer on a mother glass substrate have been studied. In this method, a paste containing an insulating layer forming material is applied on a mother glass substrate (a predetermined wiring pattern is already formed on the mother glass substrate) by a screen printing method or the like, fired, and then mother glass substrate Is divided into a predetermined size to obtain a plurality of glass substrates. If this method is used, since a plurality of insulating layers can be formed at once, the manufacturing efficiency of a fluorescent display tube or the like is improved. In particular, the larger the mother glass substrate, the larger the number of insulating layers that can be formed at one time, thereby improving the manufacturing efficiency of fluorescent display tubes and the like. However, the larger the mother glass substrate, the more easily the mother glass substrate warps during firing of the insulating layer forming material. Similarly, the smaller the thickness of the mother glass substrate, the more easily the mother glass substrate warps during firing of the insulating layer forming material. If the warp of the mother glass substrate becomes large, it becomes difficult to divide the mother glass substrate into a predetermined size. In addition, it becomes difficult to pick up the mother glass substrate with a manufacturing apparatus used after the firing process, and the manufacturing efficiency of fluorescent display tubes and the like is improved. May decrease. According to the inventor's investigation, when the content of Li 2 O is large, when the glass substrate contains Na or K, during the firing of the insulating layer forming material, Li + in the glass powder and the glass substrate Na + or K + exchanges ions, and as a result, the glass substrate tends to warp convexly toward the glass substrate, and the manufacturing efficiency of a fluorescent display tube or the like tends to decrease. Therefore, if the content of Li 2 O is regulated to less than 0.5%, it becomes difficult to exchange ions between the insulating layer forming material and the alkali ions contained in the glass substrate, and the production efficiency of a fluorescent display tube or the like can be easily improved.

LiOの含有量の一部または全部をKOに置換すれば、具体的にはモル比LiO/KOの値を1未満、0.5未満、特に0に規制すれば、熱的安定性が向上するとともに、Al配線上の発泡を減少させることができる。 If a part or all of the content of Li 2 O is replaced by K 2 O, specifically, if the value of the molar ratio Li 2 O / K 2 O is controlled to less than 1, less than 0.5, particularly 0. In addition, the thermal stability is improved and the foaming on the Al wiring can be reduced.

NaOは、軟化点を下げる成分であり、その含有量は〜15%、1〜13%、3〜10%、特に5〜8%が好ましい。NaOの含有量が少な過ぎると、軟化点が高くなり、580℃以下の温度で平滑な絶縁層を得難くなる。一方、NaOの含有量が多過ぎると、熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。 Na 2 O is a component that lowers the softening point, and its content is preferably 1 to 15%, 1 to 13%, 3 to 10%, and particularly preferably 5 to 8%. When the content of Na 2 O is too small, the softening point is high, is difficult to obtain a smooth insulating layer at 580 ° C. or lower. On the other hand, when the content of Na 2 O is too large, thermal stability is lowered, the glass tends to be devitrified when melted or during sintering.

Oは、軟化点を下げる成分であり、その含有量は0.1〜12%、0.1〜10%、1〜8%、特に3〜7%が好ましい。KOの含有量が多過ぎると、熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。 K 2 O is a component that lowers the softening point, and its content is preferably 0.1 to 12%, 0.1 to 10%, 1 to 8%, particularly 3 to 7%. When the content of K 2 O is too large, thermal stability is lowered, the glass tends to be devitrified when melted or during sintering.

LiO+NaO+KO(LiO、NaO、KOの合量)は、軟化点、熱的安定性、耐薬品性および熱膨張係数に影響を及ぼす成分であり、その含有量は5〜20%、6〜15%、特に8〜13.5%が好ましい。LiO+NaO+KOの含有量が少な過ぎると、軟化点が高くなり、580℃以下の温度で平滑な絶縁層を得難くなる。一方、LiO+NaO+KOの含有量が多過ぎると、熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなるとともに、熱膨張係数が十分に低下せず、ガラス基板等に反りが発生しやすくなる。 Li 2 O + Na 2 O + K 2 O (total amount of Li 2 O, Na 2 O, K 2 O) is a component that affects the softening point, thermal stability, chemical resistance, and thermal expansion coefficient, and its inclusion The amount is preferably 5 to 20%, 6 to 15%, particularly preferably 8 to 13.5%. When Li 2 O + Na 2 O + K 2 O content is too small, the softening point is high, is difficult to obtain a smooth insulating layer at 580 ° C. or lower. On the other hand, when the content of Li 2 O + Na 2 O + K 2 O is too large, the thermal stability is lowered, the glass is easily devitrified at the time of melting or firing, and the thermal expansion coefficient is not sufficiently lowered. Warpage is likely to occur in the substrate or the like.

MgOは、熱的安定性を高める成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜10%、0〜5%、特に0〜3.5%が好ましい。MgOの含有量が多過ぎると、軟化点が高くなり、580℃以下の温度で平滑な絶縁層を得難くなる。   MgO is a component that enhances thermal stability and is a component that improves water resistance and chemical resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0 to 3.5%. . When there is too much content of MgO, a softening point will become high and it will become difficult to obtain a smooth insulating layer at the temperature of 580 degrees C or less.

CaOは、熱的安定性を高める成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜10%、0〜5%、特に0〜3.5%が好ましい。CaOの含有量が多過ぎると、軟化点が高くなり、580℃以下の温度で平滑な絶縁層を得難くなる。   CaO is a component that enhances thermal stability and is a component that improves water resistance and chemical resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0 to 3.5%. . When there is too much content of CaO, a softening point will become high and it will become difficult to obtain a smooth insulating layer at the temperature of 580 degrees C or less.

SrOは、熱的安定性を高める成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜10%、0〜5%、特に0〜3.5%が好ましい。SrOの含有量が多過ぎると、熱膨張係数が十分に低下せず、ガラス基板等に反りが発生しやすくなる。   SrO is a component that enhances thermal stability and is a component that improves water resistance and chemical resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0 to 3.5%. . When there is too much content of SrO, a thermal expansion coefficient will not fully fall, and it will become easy to generate | occur | produce a curvature in a glass substrate etc.

BaOは、熱的安定性を顕著に高める成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜12%であり好ましくは0.1〜12%、1〜10%、特に2〜7%が好ましい。BaOの含有量が多過ぎると、ガラス基板等の熱膨張係数に整合し難くなり、ガラス基板等に反りが発生しやすくなる。なお、上記の通り、B2O3の一部をBaOで置換すれば、Al配線上の発泡を一層抑制できることから、BaOは、必須成分とすることが好ましい。 BaO is a component improving significantly the thermal stability and a component to improve the water resistance and chemical resistance, its content is 0-12%, preferably from 0.1 to 12%, 1 -10%, particularly 2-7% is preferred. When there is too much content of BaO, it will become difficult to match | combine with the thermal expansion coefficient of a glass substrate etc., and it will become easy to generate | occur | produce a curvature in a glass substrate etc. Note that, as described above, if a part of B2O3 is replaced with BaO, foaming on the Al wiring can be further suppressed, so BaO is preferably an essential component.

Alは、ガラスの分相を抑える成分であり、また耐薬品性を高める成分であり、その含有量は0〜7%、好ましくは0〜5%、より好ましくは0.1〜3%である。Alの含有量が多過ぎると、軟化点が高くなり、580℃以下の温度で平滑な絶縁層を得難くなる。 Al 2 O 3 is a component that suppresses the phase separation of glass and is a component that improves chemical resistance, and its content is 0 to 7%, preferably 0 to 5%, more preferably 0.1 to 3%. %. When the content of Al 2 O 3 is too large, the softening point is high, is difficult to obtain a smooth insulating layer at 580 ° C. or lower.

TiOは、上記の通り、ガラス構造を緻密化し、ガラス中に水分を含み難くする成分であるとともに、アルミニウムによる還元が比較的生じやすい成分であり、ガラス中の水分の還元量を減少させる効果がある。また、TiOは、熱膨張係数を下げる成分である。TiOの含有量は0〜10%、0.1〜7%、特に1〜5%が好ましい。TiOの含有量が多過ぎると、熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなるとともに、軟化点が高くなり、580℃以下の温度で平滑な絶縁層を得難くなる。 As described above, TiO 2 is a component that densifies the glass structure and makes it difficult for moisture to be contained in the glass, and is a component that is relatively easily reduced by aluminum, and has an effect of reducing the reduced amount of moisture in the glass. There is. TiO 2 is a component that lowers the thermal expansion coefficient. The content of TiO 2 is preferably 0 to 10%, 0.1 to 7%, particularly preferably 1 to 5%. When the content of TiO 2 is too large, the thermal stability is lowered, the glass is easily devitrified during melting or firing, the softening point is increased, and a smooth insulating layer is obtained at a temperature of 580 ° C. or lower. It becomes difficult.

CuOは、アルミニウムに非常に還元されやすい成分であり、ガラス組成中に添加すれば、Al配線上の発泡を減少させることができ、結果として、絶縁特性を高めることができる。CuOの含有量は0〜10%、0.1〜5%、特に0.5〜2%が好ましい。CuOの含有量が多過ぎると、焼成時にガラスからCuが析出しやすくなり、Al配線間に絶縁不良が発生するおそれがある。   CuO is a component that is very easily reduced to aluminum, and if added to the glass composition, foaming on the Al wiring can be reduced, and as a result, the insulation characteristics can be improved. The CuO content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 2%. When there is too much content of CuO, it will become easy to precipitate Cu from glass at the time of baking, and there exists a possibility that an insulation defect may generate | occur | produce between Al wiring.

Feは、アルミニウムに非常に還元されやすい成分であり、ガラス組成中に添加すれば、Al配線上の発泡を減少させることができ、結果として、絶縁特性を高めることができる。また、Feは、アルミニウムに還元された場合でも、導電性に乏しいFeになるため、蛍光表示管等に高い電圧が印加されても、Al配線間に絶縁不良が発生し難い利点を有する。Feの含有量は0〜10%、0.3〜5%、特に1〜2.5%が好ましい。Feの含有量が多過ぎると、熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。 Fe 2 O 3 is a component that is very easily reduced to aluminum, and if added to the glass composition, foaming on the Al wiring can be reduced, and as a result, the insulating characteristics can be enhanced. In addition, even when Fe 2 O 3 is reduced to aluminum, it becomes Fe 3 O 4 having poor conductivity. Therefore, even if a high voltage is applied to a fluorescent display tube or the like, an insulation failure occurs between Al wirings. Has difficult advantages. The content of Fe 2 O 3 is preferably 0 to 10%, 0.3 to 5%, particularly preferably 1 to 2.5%. When the content of Fe 2 O 3 is too large, thermal stability is lowered, the glass tends to be devitrified when melted or during sintering.

なお、CuOの含有量が多過ぎると、絶縁層形成材料の焼成後に、Al配線が褐色に変化しやすい。よって、そのような変色が許容されない場合、例えば前面ガラス基板等に用いる場合には、CuOとFeの内、Feを優先的に添加することが好ましい。 In addition, when there is too much content of CuO, after baking of insulating layer forming material, Al wiring will change easily brown. Therefore, when such discoloration is not allowed, for example, when used for a front glass substrate or the like, it is preferable to add Fe 2 O 3 preferentially among CuO and Fe 2 O 3 .

上記成分の他にも、本発明の効果を損なわない範囲で他の成分を添加することができる。例えば、耐水性や耐薬品性を高めるためにZrOを5%(好ましくは2%)まで、また熱的安定性を高めるためにP、希土類酸化物を10モル%まで添加してもよい。 In addition to the above components, other components can be added as long as the effects of the present invention are not impaired. For example, ZrO 2 may be added up to 5% (preferably 2%) to increase water resistance and chemical resistance, and P 2 O 5 and rare earth oxides may be added up to 10 mol% to improve thermal stability. Also good.

本発明に係るガラス粉末は、上記の通り、PbOの含有を完全に排除するものではないが、環境的観点からPbOを実質的に含有しないことが好ましい。また、ガラス中に含まれるPbOは、ビークル中のカーボンによってPbに還元され、これがアノードに付着し、蛍光表示管等の輝度特性を劣化させるおそれもある。   As described above, the glass powder according to the present invention does not completely exclude the inclusion of PbO, but it is preferable that the glass powder does not substantially contain PbO from an environmental viewpoint. In addition, PbO contained in the glass is reduced to Pb by the carbon in the vehicle, which may adhere to the anode and deteriorate the luminance characteristics of the fluorescent display tube and the like.

本発明の絶縁層形成材料において、ハロゲン(特にF、Cl)およびSOを実質的に含まないことが好ましい。ハロゲンおよびSOは焼成時に揮発し、カソードやアノードを汚染して電子の授受を阻害し、その結果、蛍光表示管等の輝度特性を低下させるおそれがある。よって、焼成時の成分揮発による輝度特性の劣化が問題とならないレベルにまでこれらの成分を低減することが好ましい。具体的には、ハロゲンを合量で100ppm(質量)以下、SOを10ppm(質量)以下に規制することが好ましい。ハロゲンおよびSOの含有量を低減するためには、ガラス原料を選択する際にこれらの含有量(不純物として含有する量)が少ないものを選択すればよい。また、ガラスの溶融温度を1300℃以上に設定したり、或いは溶融時間を長くすると、ハロゲンおよびSOの含有量を更に低減することができる。 The insulating layer forming material of the present invention preferably contains substantially no halogen (particularly F 2 , Cl 2 ) and SO 3 . Halogen and SO 3 volatilize during firing, contaminating the cathode and anode and hindering electron transfer, and as a result, there is a risk of deteriorating the luminance characteristics of fluorescent display tubes and the like. Therefore, it is preferable to reduce these components to a level at which deterioration of luminance characteristics due to component volatilization during firing does not become a problem. Specifically, it is preferable to regulate the total amount of halogen to 100 ppm (mass) or less and SO 3 to 10 ppm (mass) or less. In order to reduce the contents of halogen and SO 3 , it is only necessary to select a glass raw material having a small content (content contained as impurities). Further, when the melting temperature of the glass is set to 1300 ° C. or higher, or the melting time is lengthened, the contents of halogen and SO 3 can be further reduced.

本発明の絶縁層形成材料は、必要に応じて、耐火性フィラー粉末、例えばアルミナ、ジルコニア、ジルコン、チタニア、コーディエライト、ムライト、シリカ、ウイレマイト、酸化錫、酸化亜鉛等の粉末を合量で10質量%まで添加することができる。しかし、絶縁層形成材料に耐火性フィラー粉末を添加すると、絶縁層の表面平滑性が損なわれやすくなる。このため、本発明の絶縁層形成材料は、実質的に耐火性フィラー粉末を含有しないことが好ましい。ここで、「実質的に耐火性フィラー粉末を含有しない」とは、絶縁層形成材料中の耐火性フィラー粉末の含有量が1000ppm(質量)以下の場合を指す。   The insulating layer forming material of the present invention may contain a refractory filler powder such as alumina, zirconia, zircon, titania, cordierite, mullite, silica, willemite, tin oxide, zinc oxide, etc. It can be added up to 10% by weight. However, when refractory filler powder is added to the insulating layer forming material, the surface smoothness of the insulating layer tends to be impaired. For this reason, it is preferable that the insulating layer forming material of the present invention contains substantially no refractory filler powder. Here, “substantially no refractory filler powder” refers to the case where the content of the refractory filler powder in the insulating layer forming material is 1000 ppm (mass) or less.

本発明の絶縁層形成材料において、熱膨張係数は100×10−7/℃以下、95×10−7/℃以下、90×10−7/℃以下、特に60〜88×10−7/℃が好ましい。絶縁層形成材料の熱膨張係数が高過ぎると、絶縁層形成材料とガラス基板等の収縮挙動が不整合になるため、ガラス基板等に反りが発生しやすくなり、結果として、蛍光表示管等の製造効率が低下しやすくなる。ここで、本発明でいう「熱膨張係数」とは、JIS R3102に基づいて測定した値を指し、押棒式熱膨張係数測定(TMA)装置により、30〜300℃の温度範囲で測定した値を指す。なお、測定試料は、絶縁層形成材料をプレス成型し、緻密に焼結させた後、直径4mm、長さ40mmの円柱状に研磨加工したものを用いた。 In the insulating layer forming material of the present invention, the thermal expansion coefficient is 100 × 10 −7 / ° C. or lower, 95 × 10 −7 / ° C. or lower, 90 × 10 −7 / ° C. or lower, particularly 60 to 88 × 10 −7 / ° C. Is preferred. If the thermal expansion coefficient of the insulating layer forming material is too high, the shrinkage behavior of the insulating layer forming material and the glass substrate becomes mismatched, so that the glass substrate is likely to be warped, and as a result, the fluorescent display tube, etc. Manufacturing efficiency tends to decrease. Here, the “thermal expansion coefficient” in the present invention refers to a value measured based on JIS R3102, and a value measured in a temperature range of 30 to 300 ° C. by a push rod type thermal expansion coefficient measurement (TMA) device. Point to. As the measurement sample, an insulating layer forming material was press-molded and densely sintered, and then polished into a cylindrical shape having a diameter of 4 mm and a length of 40 mm.

本発明の絶縁層形成材料において、軟化点は580℃以下、570℃以下、特に565℃以下が好ましい。絶縁層形成材料の軟化点が580℃より高いと、ガラスの流動性が乏しくなり、平滑な絶縁層を得難くなることに加えて、絶縁層の緻密性が低下する。また、絶縁層形成材料の軟化点が580℃より高いと、絶縁層の形成に際し、高温焼成が必要になり、ガラス基板等に熱変形等が生じやすくなる。   In the insulating layer forming material of the present invention, the softening point is preferably 580 ° C. or lower, 570 ° C. or lower, particularly 565 ° C. or lower. When the softening point of the insulating layer forming material is higher than 580 ° C., the fluidity of the glass becomes poor, and it becomes difficult to obtain a smooth insulating layer, and the denseness of the insulating layer decreases. Further, if the softening point of the insulating layer forming material is higher than 580 ° C., high temperature firing is required when forming the insulating layer, and thermal deformation or the like is likely to occur in the glass substrate or the like.

本発明の絶縁層形成材料において、ガラス粉末の平均粒子径D50は5μm以下、4μm以下、特に3μm以下が好ましい。ガラス粉末の平均粒子径D50が5μmより大きいと、ガラス粉末が軟化し難くなり、平滑な絶縁層を得難くなる。 In the insulating layer forming material of the present invention, the average particle diameter D 50 of the glass powder 5μm or less, 4 [mu] m or less, in particular 3μm or less. The average particle diameter D 50 of the glass powder is larger than 5 [mu] m, it glass powder is hardly softened, is difficult to obtain a smooth insulating layer.

本発明の絶縁層形成材料において、ガラス粉末の最大粒子径Dmaxは20μm以下が好ましく、15μm以下がより好ましい。ガラス粉末の最大粒子径Dmaxが20μmより大きいと、塗布膜の厚みを均一化することが困難になり、平滑な絶縁層を得難くなる。 In the insulating layer forming material of the present invention, the maximum particle diameter Dmax of the glass powder is preferably 20 μm or less, and more preferably 15 μm or less. When the maximum particle diameter Dmax of the glass powder is larger than 20 μm, it becomes difficult to make the thickness of the coating film uniform, and it becomes difficult to obtain a smooth insulating layer.

本発明の絶縁層形成材料は、ペーストの形態で使用することができる。ペーストの形態で使用する場合、絶縁層形成材料とともに、バインダー、溶剤、可塑剤等を使用する。ペースト中の絶縁層形成材料の含有量は、30〜90質量%が好ましい。絶縁層形成材料の含有量が30質量%より少ないと、ペーストの粘性が低くなり過ぎ、乾燥膜の膜厚を制御することが困難になる。一方、絶縁層形成材料の含有量が90質量%より多いと、ペーストの粘性が高くなり過ぎ、乾燥膜の膜厚を制御することが困難になる。   The insulating layer forming material of the present invention can be used in the form of a paste. When used in the form of a paste, a binder, a solvent, a plasticizer and the like are used together with the insulating layer forming material. The content of the insulating layer forming material in the paste is preferably 30 to 90% by mass. When the content of the insulating layer forming material is less than 30% by mass, the viscosity of the paste becomes too low, and it becomes difficult to control the thickness of the dry film. On the other hand, if the content of the insulating layer forming material is more than 90% by mass, the viscosity of the paste becomes too high, and it becomes difficult to control the thickness of the dry film.

バインダーは、ペーストの粘性を高める成分であるとともに、乾燥後の膜強度を高める成分であり、その含有量は0.1〜20質量%が好ましい。バインダーの含有量が0.1質量%より少ないと、上記効果を得難くなる。一方、バインダーの含有量が20質量%より多いと、絶縁層の膜厚を制御し難くなり、しかも絶縁層中に泡が残存しやすくなり、結果として、平滑な絶縁層を得難くなる。バインダーとして、ニトロセルロース、エチルセルロース、ポリブチルメタアクリレート、ポリビニルブチラール、ポリメチルメタアクリレート、ポリエチルメタアクリレート等を単独、或いは混合して使用することができる。   The binder is a component that increases the viscosity of the paste and also increases the film strength after drying, and the content is preferably 0.1 to 20% by mass. When the content of the binder is less than 0.1% by mass, it is difficult to obtain the above effect. On the other hand, when the content of the binder is more than 20% by mass, it becomes difficult to control the film thickness of the insulating layer, and bubbles easily remain in the insulating layer, and as a result, it becomes difficult to obtain a smooth insulating layer. As the binder, nitrocellulose, ethyl cellulose, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate and the like can be used alone or in combination.

溶剤は、絶縁層形成材料を分散し、ペースト化するための成分であり、その含有量は10〜30質量%が好ましい。溶剤の含有量が10質量%より少ないと、ペーストの粘性が高くなり過ぎ、乾燥膜の膜厚を制御することが困難になる。一方、溶剤の含有量が30質量%より多いと、ペーストの粘性が低くなり過ぎ、乾燥膜の膜厚を制御することが困難になる。溶剤として、ターピネオール、ジエチレングリコールモノブチルエーテルアセテート、2,2,4−トリメチル−1,3−ペンタジオールモノイソブチレート等を単独、或いは混合して使用することができる。   The solvent is a component for dispersing the insulating layer forming material to form a paste, and the content thereof is preferably 10 to 30% by mass. When the solvent content is less than 10% by mass, the viscosity of the paste becomes too high, and it becomes difficult to control the thickness of the dry film. On the other hand, when the content of the solvent is more than 30% by mass, the viscosity of the paste becomes too low, and it becomes difficult to control the thickness of the dry film. As the solvent, terpineol, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate or the like can be used alone or in combination.

可塑剤は、乾燥速度をコントロールするとともに、乾燥膜に柔軟性を与える成分であり、その含有量は0〜10質量%が好ましい。可塑剤の含有量が10質量%より多いと、絶縁層の膜厚を制御し難くなり、しかも絶縁層中に泡が残存しやすくなり、結果として、平滑な絶縁層を得難くなる。可塑剤として、ブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレート等を単独、或いは混合して使用することができる。   The plasticizer is a component that controls the drying speed and imparts flexibility to the dry film, and the content thereof is preferably 0 to 10% by mass. When the content of the plasticizer is more than 10% by mass, it becomes difficult to control the film thickness of the insulating layer, and it becomes easy for bubbles to remain in the insulating layer. As a result, it becomes difficult to obtain a smooth insulating layer. As the plasticizer, butylbenzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, dibutyl phthalate, or the like can be used alone or in combination.

ペーストは、絶縁層形成材料、バインダー、溶剤、可塑剤等を所定の割合で混合した後、三本ローラー等で混練することにより作製することができる。絶縁層は、得られたペーストをスクリーン印刷法で所定の膜厚になるまで積層した後、これを乾燥し、所定温度で焼成することで形成することができる。なお、塗布膜は、ドクターブレード法、ロールコート法、スプレー法、リバースコーター法、グリーンシート法、テーブルコーター法等でも形成することができる。   The paste can be prepared by mixing an insulating layer forming material, a binder, a solvent, a plasticizer, and the like at a predetermined ratio, and then kneading with a three-roller or the like. The insulating layer can be formed by laminating the obtained paste until a predetermined film thickness is obtained by a screen printing method, and then drying and baking at a predetermined temperature. The coating film can also be formed by a doctor blade method, a roll coating method, a spray method, a reverse coater method, a green sheet method, a table coater method, or the like.

本発明の絶縁層形成材料は、上記の要求特性(1)〜(3)を満たすため、プラズマディスプレイパネル等の誘電体材料としても好適である。従来、プラズマディスプレイパネルの電極として、Ag電極が用いられてきたが、近年、部材コストを低廉化するために、Ag電極に替えて、Al電極を用いる試みが検討されている。上記の通り、Al電極上に絶縁層を形成する場合、絶縁層形成材料が、焼成時にAl電極と反応し、絶縁層中に発泡が生じやすいため、Al電極間の絶縁不良が発生しやすくなる。しかし、本発明の絶縁層形成材料は、絶縁特性が良好であるため、このような不具合を防止することができる。   Since the insulating layer forming material of the present invention satisfies the above required characteristics (1) to (3), it is also suitable as a dielectric material for plasma display panels and the like. Conventionally, an Ag electrode has been used as an electrode of a plasma display panel. However, attempts to use an Al electrode instead of the Ag electrode have been studied in recent years in order to reduce the member cost. As described above, when an insulating layer is formed on an Al electrode, the insulating layer forming material reacts with the Al electrode during firing, and foaming tends to occur in the insulating layer. . However, since the insulating layer forming material of the present invention has good insulating properties, such a problem can be prevented.

以下、実施例に基づいて本発明を説明する。表1、2は、本発明の試料No.1〜12を示している。 Hereinafter, the present invention will be described based on examples. Tables 1 and 2, specimen of the present invention No. 1 to 12 are shown.

各試料は次のようにして調製した。まず表1、2に示すガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、均一に混合した後、白金坩堝に入れて1250℃で2時間溶融し、次いで溶融ガラスをフィルム状に成形した。続いて、ガラスフィルムを所望の粒径となるように、ジルコニアボールを用いたアルミナ製ボールミルで所定時間粉砕した後、分級を行い、平均粒子径D50が3μm、最大粒子径Dmaxが13μmのガラス粉末を得た。なお、ガラス中のハロゲンの含有量が100ppm(質量)以下、SOの含有量が10ppm(質量)以下になるように、不純物の少ないガラス原料を選択した。 Each sample was prepared as follows. First, glass materials such as various oxides and carbonates are prepared so as to have the glass composition shown in Tables 1 and 2, and mixed uniformly, then put in a platinum crucible and melted at 1250 ° C. for 2 hours. Molded into a film. Subsequently, the glass film was pulverized for a predetermined time with an alumina ball mill using zirconia balls so as to have a desired particle size, and then classified, and the average particle size D 50 was 3 μm, and the maximum particle size D max was 13 μm. Glass powder was obtained. Incidentally, 100 ppm is the halogen content in the glass (mass) or less, as the content of SO 3 is less than 10 ppm (by weight), were selected small glass raw material impurities.

次に、得られたガラス粉末と表3に記載の無機酸化物粉末とを混合し、絶縁層形成材料を得た。得られた各試料につき、各種特性を評価した。なお、無機酸化物粉末の平均粒子径D50は1μm、最大粒子径Dmaxは5μmであった。 Next, the obtained glass powder and the inorganic oxide powder described in Table 3 were mixed to obtain an insulating layer forming material. Various characteristics were evaluated for each obtained sample. The average particle diameter D 50 of the inorganic oxide powder is 1 [mu] m, maximum particle diameter D max was 5 [mu] m.

熱膨張係数は、JIS R3102に基づいて測定し、TMA装置により、30〜300℃の温度範囲で測定した。なお、測定試料は、各試料を所定形状にプレス成型し、緻密に焼結させた後、直径4mm、長さ40mmの円柱状に研磨加工したものを用いた。   The thermal expansion coefficient was measured based on JIS R3102, and was measured in a temperature range of 30 to 300 ° C. with a TMA apparatus. In addition, as the measurement sample, each sample was press-molded into a predetermined shape and densely sintered, and then polished into a cylindrical shape having a diameter of 4 mm and a length of 40 mm.

ガラス転移点は、TMA装置で測定した。なお、測定試料は、各試料を所定形状にプレス成型し、緻密に焼結させた後、直径4mm、長さ40mmの円柱状に研磨加工したものを用いた。   The glass transition point was measured with a TMA apparatus. In addition, as the measurement sample, each sample was press-molded into a predetermined shape and densely sintered, and then polished into a cylindrical shape having a diameter of 4 mm and a length of 40 mm.

軟化点は、マクロ型DTA装置で測定した。マクロ型DTAは、室温から測定を開始し、昇温速度は10℃/分とした。   The softening point was measured with a macro type DTA apparatus. For the macro type DTA, measurement was started from room temperature, and the rate of temperature increase was 10 ° C./min.

次のようにして、絶縁特性を評価した。まず各試料をビークル(エチルセルロースを5%含有させたターピネオール溶液)中に分散させた後、三本ロールミルで混練してペースト化した。次いで、このペーストをAl配線(配線幅100μm、配線間隔100μm)が施されたソーダガラス基板(熱膨張係数85×10−7/℃)の上にスクリーン印刷法で塗布し、膜厚100μmの塗布膜を形成した。続いて、この塗布膜を150℃で30分間乾燥し、乾燥膜を得た後、電気炉で550℃10分間焼成した。焼成に際し、昇降温速度は10℃/分とした。最後に、顕微鏡で得られた絶縁層の断面を観察し、5μm以上の泡数が5個未満/cmであったものを「○」、5μm以上の泡数が5〜20個/cmであったものを「△」、5μm以上の泡数が20個/cm以上であったものを「×」として評価した。 Insulation characteristics were evaluated as follows. First, each sample was dispersed in a vehicle (a terpineol solution containing 5% ethyl cellulose) and then kneaded with a three-roll mill to form a paste. Next, this paste was applied by screen printing on a soda glass substrate (thermal expansion coefficient 85 × 10 −7 / ° C.) on which Al wiring (wiring width 100 μm, wiring spacing 100 μm) was applied, and coating having a film thickness of 100 μm. A film was formed. Subsequently, this coated film was dried at 150 ° C. for 30 minutes to obtain a dried film, and then baked in an electric furnace at 550 ° C. for 10 minutes. During firing, the temperature raising / lowering rate was 10 ° C./min. Finally, the cross-section of the insulating layer obtained with a microscope was observed, and the number of bubbles of 5 μm or more was less than 5 / cm 2 was “◯”, and the number of bubbles of 5 μm or more was 5 to 20 / cm 2. Were evaluated as “Δ”, and “×” when the number of bubbles of 5 μm or more was 20 / cm 2 or more.

次のようにして、表面平滑性を評価した。まず各試料をビークル(エチルセルロースを5%含有させたターピネオール)中に分散させた後、三本ロールミルで混練してペースト化した。次いで、このペーストをソーダガラス基板(熱膨張係数:85×10−7/℃)の上にスクリーン印刷法で塗布し、膜厚100μmの塗布膜を形成した。続いて、この塗布膜を150℃で30分間乾燥し、乾燥膜を得た後、電気炉で560℃30分間焼成した。焼成に際し、昇降温速度は10℃/分とした。最後に、得られた絶縁層の平均表面粗さRaを触針式表面粗さ計で測定し、平均表面粗さRaが3μm以下のものを「○」、3μmを超えるものを「×」として評価した。 The surface smoothness was evaluated as follows. First, each sample was dispersed in a vehicle (terpineol containing 5% ethyl cellulose) and then kneaded with a three-roll mill to form a paste. Next, this paste was applied on a soda glass substrate (thermal expansion coefficient: 85 × 10 −7 / ° C.) by a screen printing method to form a coating film having a thickness of 100 μm. Subsequently, the coated film was dried at 150 ° C. for 30 minutes to obtain a dried film, and then baked in an electric furnace at 560 ° C. for 30 minutes. During firing, the temperature raising / lowering rate was 10 ° C./min. Finally, the average surface roughness Ra of the obtained insulating layer was measured with a stylus type surface roughness meter, and those having an average surface roughness Ra of 3 μm or less were evaluated as “O” and those exceeding 3 μm as “X”. evaluated.

次のようにして、輝度特性を評価した。まず予め輝度特性に影響がないことが確認された鉛含有ガラスを用い、蛍光表示管を作製した。この蛍光表示管の輝度特性を測定し、これを100%とした。次に、表中の各試料を用いて作製した蛍光表示管の輝度特性を測定し、輝度特性が相対値で90%以上のものを「○」、90%未満のものを「×」として評価した。蛍光表示管は、内部に蛍光体、リード配線、絶縁層、グリッド、フィラメント、アノード等を組み込み、前面ガラス基板と背面ガラス基板を封着材料で封着することにより作製した。なお、封着材料は、予め輝度特性に影響がないことが確認されたものを使用した。   The luminance characteristics were evaluated as follows. First, a fluorescent display tube was manufactured using lead-containing glass that was previously confirmed to have no influence on luminance characteristics. The luminance characteristics of this fluorescent display tube were measured and set to 100%. Next, the luminance characteristics of the fluorescent display tube produced using each sample in the table were measured, and the luminance characteristics of which the relative value was 90% or more were evaluated as “◯”, and the luminance characteristics of less than 90% were evaluated as “X”. did. The fluorescent display tube was fabricated by incorporating a phosphor, lead wiring, insulating layer, grid, filament, anode, and the like inside, and sealing the front glass substrate and the back glass substrate with a sealing material. Note that the sealing material used was confirmed to have no influence on the luminance characteristics in advance.

次のようにして、反り量を評価した。まず各試料をビークル(エチルセルロースを5%含有させたターピネオール溶液)中に分散させた後、三本ロールミルで混練してペースト化した。次に、このペーストを300mm×300mm×1.8mm厚のソーダガラス基板(熱膨張係数:85×10−7/℃)の中央部分にスクリーン印刷機で塗布し、100mm×100mmの塗布膜を形成した。続いて、この塗布膜を電気炉で560℃30分間焼成し、30μm厚の絶縁層を形成した。焼成に際し、昇降温速度は5℃/分とした。最後に、絶縁層の表面を触針式表面粗さ計(株式会社東京精密製サーフコム756A)で測定することにより、90mm幅におけるソーダガラス基板の最大反り量を測定し、最大反り量が15μm未満のものを「○」とし、最大反り量が15〜30μmであるものを「△」とし、最大反り量が30μmより大きいものを「×」として評価した。 The amount of warpage was evaluated as follows. First, each sample was dispersed in a vehicle (a terpineol solution containing 5% ethyl cellulose) and then kneaded with a three-roll mill to form a paste. Next, this paste is applied to a central portion of a 300 mm × 300 mm × 1.8 mm thick soda glass substrate (thermal expansion coefficient: 85 × 10 −7 / ° C.) with a screen printer to form a 100 mm × 100 mm coating film. did. Subsequently, this coating film was baked in an electric furnace at 560 ° C. for 30 minutes to form an insulating layer having a thickness of 30 μm. During firing, the temperature raising / lowering rate was 5 ° C./min. Finally, by measuring the surface of the insulating layer with a stylus type surface roughness meter (Surfcom 756A manufactured by Tokyo Seimitsu Co., Ltd.), the maximum amount of warpage of the soda glass substrate at a width of 90 mm is measured, and the maximum amount of warpage is less than 15 μm. The case where the maximum warp amount was 15-30 μm was evaluated as “Δ”, and the case where the maximum warp amount was larger than 30 μm was evaluated as “x”.

表1、2から明らかなように、試料No.1〜9は、軟化点が580℃以下であり、且つ絶縁特性、表面平滑性および輝度特性が良好であった。なお、試料No.3〜9は、反り量の評価も良好であった。   As apparent from Tables 1 and 2, Sample No. Nos. 1 to 9 had a softening point of 580 ° C. or lower, and good insulating properties, surface smoothness and luminance properties. Sample No. 3 to 9 also had good evaluation of the amount of warpage.

一方、表2から明らかなように、試料No.10〜12は、Cu、Feを含む無機酸化物粉末を含有していないため、絶縁特性の評価が不良であった。また、試料No.10は、ガラス組成中のSiOの含有量が多いため、軟化点が高く、表面平滑性の評価が不良であった。さらに、試料No.12は、ガラス組成中のLiOの含有量が多いため、反り量の評価が不良であった。なお、試料No.12は、ガラス基板の板厚が大きい場合には、反り量の評価が「○」になると考えられる。 On the other hand, as apparent from Table 2, the sample No. Since Nos. 10 to 12 did not contain inorganic oxide powder containing Cu and Fe, the evaluation of the insulating properties was poor. Sample No. No. 10 had a high softening point due to a large content of SiO 2 in the glass composition, and the surface smoothness evaluation was poor. Furthermore, sample no. 12, because many Li 2 O content in the glass composition, the amount of warpage evaluation was poor. Sample No. No. 12 is considered that the evaluation of the warpage amount becomes “◯” when the thickness of the glass substrate is large.

本発明の絶縁層形成材料は、Al配線の絶縁被覆に好適である。また、本発明の絶縁層形成材料は、蛍光表示管、各種電子放出素子を有する各種形式のフィールドエミッションディスプレイ、プラズマディスプレイパネル、有機エレクトロルミネセンスディスプレイ、無機エレクトロルミネセンスディスプレイ等の平面表示装置等に好適であり、平面蛍光ランプ(Flat Fluorecent Lamp、略してFFLと称される)等の電極被覆に用いることもできる。   The insulating layer forming material of the present invention is suitable for insulating coating of Al wiring. In addition, the insulating layer forming material of the present invention is used in flat display devices such as fluorescent display tubes, various types of field emission displays having various electron-emitting devices, plasma display panels, organic electroluminescent displays, and inorganic electroluminescent displays. It is suitable and can also be used for electrode coating such as a flat fluorescent lamp (referred to as FFL for short).

Claims (14)

ガラス粉末と無機酸化物粉末を含有する絶縁層形成材料において、
(1)ガラス粉末の含有量が70〜99.9質量%、無機酸化物粉末の含有量が0.1〜20質量%であり、
(2)ガラス粉末が、ガラス組成として、モル%で、ZnO 15〜45%、B 25〜45%、SiO 5〜25%、BaO 0〜12%、LiO 0〜2.5%、Na O 1〜15%、K O 0.1〜12%を含有し、
(3)無機酸化物粉末が、Cuおよび/またはFeを含有することを特徴とする絶縁層形成材料。
In the insulating layer forming material containing glass powder and inorganic oxide powder,
(1) The content of the glass powder is 70 to 99.9% by mass, the content of the inorganic oxide powder is 0.1 to 20% by mass,
(2) glass powder, as a glass composition, in mol%, 15~45% ZnO, B 2 O 3 25~45%, SiO 2 5~25%, BaO 0~12%, Li 2 O 0~2. 5%, Na 2 O 1~15% , containing K 2 O 0.1~12%,
(3) The insulating layer forming material, wherein the inorganic oxide powder contains Cu and / or Fe.
無機酸化物粉末が、Al−Cr−Fe−Zn系複合酸化物、Al−Cu−Fe−Mn系複合酸化物、Al−Fe−Mn系複合酸化物、Co−Cr−Fe−Mn系複合酸化物、Co−Cr−Fe−Ni系複合酸化物、Co−Cr−Fe−Ni−Si−Zr系複合酸化物、Co−Cr−Fe系複合酸化物、Co−Cr−Fe−Mn系複合酸化物、Co−Cr−Fe−Ni−Zn系複合酸化物、Co−Fe系複合酸化物、Co−Fe−Mn−Ni系複合酸化物、Cr−Cu系複合酸化物、Cr−Cu−Mn系複合酸化物、Cr−Fe系複合酸化物、Cr−Fe−Mn系複合酸化物、Cr−Fe−Zn系複合酸化物、Fe−Mn系複合酸化物、Fe−Ti系複合酸化物、Fe−Ti−W系複合酸化物、Fe−Ti−Zn系複合酸化物、Fe−Zn系複合酸化物の一種または二種以上を含むことを特徴とする請求項1に記載の絶縁層形成材料。   Inorganic oxide powder is Al-Cr-Fe-Zn composite oxide, Al-Cu-Fe-Mn composite oxide, Al-Fe-Mn composite oxide, Co-Cr-Fe-Mn composite oxide. Co-Cr-Fe-Ni complex oxide, Co-Cr-Fe-Ni-Si-Zr complex oxide, Co-Cr-Fe complex oxide, Co-Cr-Fe-Mn complex oxide Co-Cr-Fe-Ni-Zn composite oxide, Co-Fe composite oxide, Co-Fe-Mn-Ni composite oxide, Cr-Cu composite oxide, Cr-Cu-Mn system Complex oxide, Cr—Fe complex oxide, Cr—Fe—Mn complex oxide, Cr—Fe—Zn complex oxide, Fe—Mn complex oxide, Fe—Ti complex oxide, Fe— Ti-W complex oxide, Fe-Ti-Zn complex oxide, Fe-Zn complex oxide Insulating layer forming material according to claim 1, characterized in that it comprises one oxide or two or more. 無機酸化物粉末が、Cu酸化物またはFe酸化物を含むことを特徴とする請求項1に記載の絶縁層形成材料。   The insulating layer forming material according to claim 1, wherein the inorganic oxide powder contains Cu oxide or Fe oxide. 無機酸化物粉末の平均粒子径D50が5μm以下であることを特徴とする請求項1〜3のいずれかに記載の絶縁層形成材料。 The insulating layer forming material according to claim 1, wherein the inorganic oxide powder has an average particle diameter D 50 of 5 μm or less. 無機酸化物粉末の最大粒子径Dmaxが20μm以下であることを特徴とする請求項1〜4のいずれかに記載の絶縁層形成材料。 Insulating layer-forming material according to claim 1, the maximum particle diameter D max of the inorganic oxide powder is characterized in that it is 20μm or less. ガラス粉末が、ガラス組成として、更にTiOを0.1〜10モル%含有することを特徴とする請求項1〜5のいずれかに記載の絶縁層形成材料。 The insulating layer forming material according to claim 1, wherein the glass powder further contains 0.1 to 10 mol% of TiO 2 as a glass composition. ガラス粉末が、ガラス組成として、更にBaOを0.1〜12モル%含有することを特徴とする請求項1〜6のいずれかに記載の絶縁層形成材料。   The insulating material for forming an insulating layer according to any one of claims 1 to 6, wherein the glass powder further contains 0.1 to 12 mol% of BaO as a glass composition. ガラス粉末が、実質的にPbOを含有しないことを特徴とする請求項1〜7のいずれかに記載の絶縁層形成材料。   The insulating layer forming material according to claim 1, wherein the glass powder does not substantially contain PbO. ガラス粉末の平均粒子径D50が5μm以下であることを特徴とする請求項1〜8のいずれかに記載の絶縁層形成材料。 The insulating layer forming material according to claim 1, wherein the glass powder has an average particle diameter D 50 of 5 μm or less. ガラス粉末の最大粒子径Dmaxが20μm以下であることを特徴とする請求項1〜9のいずれかに記載の絶縁層形成材料。 The insulating layer forming material according to claim 1, wherein the glass powder has a maximum particle diameter D max of 20 μm or less. ガラス粉末の平均粒子径D50が、無機酸化物粉末の平均粒子径D50より大きいことを特徴とする請求項1〜10のいずれかに記載の絶縁層形成材料。 The average particle diameter D 50 of the glass powder, the insulating layer forming material according to claim 1, characterized in that larger than the average particle diameter D 50 of the inorganic oxide powder. 軟化点が580℃以下であることを特徴とする請求項1〜11のいずれかに記載の絶縁層形成材料。   The insulating layer forming material according to any one of claims 1 to 11, wherein a softening point is 580 ° C or lower. Alの絶縁被覆に用いることを特徴とする請求項1〜12のいずれかに記載の絶縁層形成材料。   The insulating layer forming material according to claim 1, wherein the insulating layer forming material is used for an Al insulating coating. 蛍光表示管に用いることを特徴とする請求項1〜13のいずれかに記載の絶縁層形成材料。   The insulating layer forming material according to claim 1, wherein the insulating layer forming material is used for a fluorescent display tube.
JP2009144812A 2009-06-18 2009-06-18 Insulating layer forming material Active JP5717042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144812A JP5717042B2 (en) 2009-06-18 2009-06-18 Insulating layer forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144812A JP5717042B2 (en) 2009-06-18 2009-06-18 Insulating layer forming material

Publications (2)

Publication Number Publication Date
JP2011001214A JP2011001214A (en) 2011-01-06
JP5717042B2 true JP5717042B2 (en) 2015-05-13

Family

ID=43559517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144812A Active JP5717042B2 (en) 2009-06-18 2009-06-18 Insulating layer forming material

Country Status (1)

Country Link
JP (1) JP5717042B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687997B1 (en) * 1992-03-02 1996-07-05 Degussa Prod Ceramiques GLASS SINTERS CONTAINING ZINC, FREE OF LEAD AND CADMIUM - PROCESS OF MANUFACTURE AND USE.
JP4370686B2 (en) * 1999-06-09 2009-11-25 旭硝子株式会社 Barium borosilicate glass and glass ceramic composition
JP2002362942A (en) * 2001-06-07 2002-12-18 Asahi Glass Co Ltd Glass frit and method of coating aluminum electrode
JP4324965B2 (en) * 2003-03-24 2009-09-02 日本電気硝子株式会社 Insulation material for display tube
JP2006282467A (en) * 2005-04-01 2006-10-19 Sumitomo Metal Mining Co Ltd Glass composition and glass paste composition

Also Published As

Publication number Publication date
JP2011001214A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5041323B2 (en) Powder material and paste material
JP4598008B2 (en) Lead-free glass composition and glass paste having acid resistance
JP5309629B2 (en) Lead-free glass composition having acid resistance
KR101242636B1 (en) Vanadium-phosphate glass
JP5018032B2 (en) Lead-free glass for electrode coating
JP2006282467A (en) Glass composition and glass paste composition
JP4791746B2 (en) Lead-free borosilicate glass frit and its glass paste
JP2005336048A (en) Glass composition, paste composition, and plasma display panel
JP4324965B2 (en) Insulation material for display tube
JP2007332009A (en) Lead-free insulating glass composition and lead-free insulating glass paste
JP5299834B2 (en) Support frame forming glass powder, support frame forming material, support frame, and method of manufacturing support frame
JP2007246382A (en) Dielectric material for plasma display panel
JP2005194120A (en) Glass ceramic powder composition and glass paste
JP2001058844A (en) Glass composition for fluorescent character display tube, electrical insulation material and partition material
JP5717042B2 (en) Insulating layer forming material
JP5025209B2 (en) Lead-free borosilicate glass frit and glass paste for forming an insulating layer
JP5761545B2 (en) Insulating layer forming glass composition and insulating layer forming material
JP5152686B2 (en) Support frame forming material
JP2009167025A (en) Insulation layer-forming glass composition and insulation layer-forming material
JP2008050252A (en) Method for manufacturing glass substrate with partition wall
JP2009167024A (en) Insulation layer-forming glass composition and insulation layer-forming material
JP5286777B2 (en) Photosensitive conductive paste
JP2001146436A (en) Insulating material for fluorescent character display tube
KR100882769B1 (en) Lead free glass for forming barrier rib, glass ceramics composition for forming barrier rib and plasma display panel
JP2006290683A (en) Dielectric film and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5717042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150308