JP2009167025A - Insulation layer-forming glass composition and insulation layer-forming material - Google Patents

Insulation layer-forming glass composition and insulation layer-forming material Download PDF

Info

Publication number
JP2009167025A
JP2009167025A JP2008004153A JP2008004153A JP2009167025A JP 2009167025 A JP2009167025 A JP 2009167025A JP 2008004153 A JP2008004153 A JP 2008004153A JP 2008004153 A JP2008004153 A JP 2008004153A JP 2009167025 A JP2009167025 A JP 2009167025A
Authority
JP
Japan
Prior art keywords
insulating layer
glass
glass composition
forming
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008004153A
Other languages
Japanese (ja)
Inventor
Taketami Kikutani
武民 菊谷
Junichi Izeki
淳一 井関
Kunihiko Kano
邦彦 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2008004153A priority Critical patent/JP2009167025A/en
Publication of JP2009167025A publication Critical patent/JP2009167025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation layer-forming glass composition and an insulation layer-forming material not substantially containing PbO in its glass composition and having good thermal stability of glass, a low softening point and a coefficient of thermal expansion matched to the shrinkage behavior of a glass substrate or the like. <P>SOLUTION: The insulation layer-forming glass composition comprises, by mol, 40-55% ZnO, 20-35% B<SB>2</SB>O<SB>3</SB>, 5-20% SiO<SB>2</SB>, 0-7% Al<SB>2</SB>O<SB>3</SB>, 0-12% Li<SB>2</SB>O, 1-13% Na<SB>2</SB>O, 0-10% K<SB>2</SB>O and 0-12% (MgO+CaO+SrO+BaO) as its glass composition, the molar ratio of ZnO to B<SB>2</SB>O<SB>3</SB>being 1.2-2.5 and PbO not being substantially contained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蛍光表示管、各種電子放出素子を有する各種形式のフィールドエミッションディスプレイ、プラズマディスプレイパネル等の平面表示装置等に用いられる絶縁層形成用ガラス組成物およびこれを用いた絶縁層形成用材料に関するものである。   The present invention relates to a glass composition for forming an insulating layer used for flat display devices such as fluorescent display tubes, various types of field emission displays having various electron-emitting devices, plasma display panels, and the like, and an insulating layer forming material using the same It is about.

蛍光表示管は、自己発光型の平面表示装置であり、高輝度、低電圧駆動、軽量薄型および高信頼性といった特徴を活かし、家電、オーディオ、計測器等の幅広い分野で利用されている。   The fluorescent display tube is a self-luminous flat display device, and is used in a wide range of fields such as home appliances, audio devices, and measuring instruments, taking advantage of high brightness, low voltage drive, light weight, thinness, and high reliability.

一般的に、蛍光表示管は、対向する前面ガラス基板と背面ガラス基板とを封着した真空容器の中に、フィラメント状カソードと、グリッドおよび蛍光体層を形成したアノードで構成される三極真空管である。また、アノード電極上には、絶縁層が形成されている。カソードから放出された熱電子は、メッシュ状グリッドで加速、制御され、アノード上の蛍光体層を選択的に励起発光させる。これにより所望の表示特性を得ることができる。   In general, a fluorescent display tube is a triode vacuum tube composed of a filament cathode and an anode formed with a grid and a phosphor layer in a vacuum vessel in which a front glass substrate and a back glass substrate facing each other are sealed. It is. An insulating layer is formed on the anode electrode. The thermoelectrons emitted from the cathode are accelerated and controlled by the mesh grid, and the phosphor layer on the anode is selectively excited to emit light. Thereby, desired display characteristics can be obtained.

一般的に、蛍光表示管の絶縁層形成用材料には、ガラス粉末が用いられている。ガラス粉末は、ガラス基板の熱変形を防止するために580℃以下、好ましくは570℃以下で焼成できることが重要である。それ故、この用途には、軟化点が580℃以下、好ましくは570℃以下のガラス粉末が使用される。   Generally, glass powder is used as a material for forming an insulating layer of a fluorescent display tube. It is important that the glass powder can be fired at 580 ° C. or lower, preferably 570 ° C. or lower, in order to prevent thermal deformation of the glass substrate. Therefore, glass powder having a softening point of 580 ° C. or lower, preferably 570 ° C. or lower is used for this purpose.

従来、この種の絶縁層形成用材料は、低温で焼成可能な鉛含有ガラス(PbO−B23系ガラス)粉末が広く用いられていた。しかし、近年、環境的観点から、鉛を含まない絶縁層形成用材料が要求されており、絶縁層形成用材料として、アルカリ金属酸化物を含むZnO−B23−SiO2系ガラス粉末が提案されている(例えば、特許文献1〜3参照)。
特開平5−339029号公報 特開平11−250809号公報 特開2000−226232号公報
Conventionally, lead-containing glass (PbO—B 2 O 3 glass) powder that can be fired at a low temperature has been widely used as this type of insulating layer forming material. However, in recent years, from an environmental point of view, a material for forming an insulating layer that does not contain lead is required. As the material for forming an insulating layer, ZnO—B 2 O 3 —SiO 2 glass powder containing an alkali metal oxide is used. It has been proposed (see, for example, Patent Documents 1 to 3).
JP-A-5-339029 JP-A-11-250809 JP 2000-226232 A

平面表示装置等に使用される絶縁層形成用材料は、次のような特性が要求される。
(1)配線または電極間の導通不良を防止するために、絶縁特性が良好であること。
(2)平面表示装置等の輝度特性を維持するために、輝度特性を劣化させる揮発物を発生させないこと。
(3)平滑な絶縁層を得るために、熱的安定性が良好であること。
(4)ガラス基板等の熱変形を防止するために、低温で焼成可能であること。
(5)ガラス基板等の反りを防止するために、ガラス基板等の収縮挙動に整合した熱膨張係数を有すること等の特性が要求される。
An insulating layer forming material used for a flat display device or the like is required to have the following characteristics.
(1) Insulation characteristics are good in order to prevent poor conduction between wirings or electrodes.
(2) In order to maintain the luminance characteristics of a flat display device or the like, volatile substances that deteriorate the luminance characteristics should not be generated.
(3) Thermal stability is good in order to obtain a smooth insulating layer.
(4) In order to prevent thermal deformation of the glass substrate or the like, it should be bakable at a low temperature.
(5) In order to prevent warping of the glass substrate or the like, characteristics such as having a thermal expansion coefficient matched to the shrinkage behavior of the glass substrate or the like are required.

従来の鉛含有ガラスは、熱的安定性が良好であり、且つガラス組成中にPbOを多量に含有しているため、ガラスの軟化点が低く、しかも熱膨張係数が小さいため、上記要求特性(3)〜(5)を満たすことができる。   The conventional lead-containing glass has good thermal stability and contains a large amount of PbO in the glass composition, so the glass has a low softening point and a low coefficient of thermal expansion. 3) to (5) can be satisfied.

しかし、ZnO−B23−SiO2系ガラスは、ガラス組成中にPbOを含有していないため、ガラスの熱的安定性を維持した上で軟化点を下げることが困難であった。また、ZnO−B23−SiO2系ガラスは、ガラスの軟化点を下げるためにアルカリ金属酸化物を一定量含有させる必要があるため、ガラスの軟化点を下げると同時に、熱膨張係数を下げることが困難であった。このような事情から、ZnO−B23−SiO2系ガラスは、上記要求特性(3)〜(5)を同時に満たすことが困難であった。 However, since ZnO—B 2 O 3 —SiO 2 glass does not contain PbO in the glass composition, it has been difficult to lower the softening point while maintaining the thermal stability of the glass. Moreover, since it is necessary for ZnO—B 2 O 3 —SiO 2 -based glass to contain a certain amount of alkali metal oxide in order to lower the glass softening point, at the same time lowering the glass softening point, the coefficient of thermal expansion is reduced. It was difficult to lower. Under such circumstances, it has been difficult for the ZnO—B 2 O 3 —SiO 2 glass to satisfy the above required characteristics (3) to (5) at the same time.

また、近年、マザーガラス基板に絶縁層を一括して形成する方法が検討されている。この方法は、絶縁層形成用材料を含むペーストをマザーガラス基板(既にマザーガラス基板に所定の配線パターンが形成されている)上にスクリーン印刷法等で塗布し、これを焼成した後に、マザーガラス基板を所定のサイズに分断し、複数のガラス基板を得る方法である。この方法を用いれば、複数の絶縁層を一括して形成できるため、蛍光表示管等の製造効率が向上する。特に、マザーガラス基板が大きい程、多くの絶縁層を一括して形成できるため、蛍光表示管等の製造効率が向上する。しかし、マザーガラス基板と絶縁層形成材料の収縮挙動が整合していない場合、マザーガラス基板が大きい程、焼成工程でマザーガラス基板が反りやすくなる。マザーガラス基板の反りが大きくなれば、マザーガラス基板を所定サイズに分断し難くなることに加えて、絶縁層形成用材料の焼成工程後に用いる製造装置でマザーガラス基板をピックアップし難くなり、蛍光表示管等の歩留まりが低下するおそれがある。したがって、この方法を用いる場合、絶縁層形成用材料の収縮挙動は、厳密にマザーガラス基板の収縮挙動に整合させる必要があり、上記要求特性(5)は特に重要になる。   In recent years, methods for collectively forming an insulating layer on a mother glass substrate have been studied. In this method, a paste containing a material for forming an insulating layer is applied on a mother glass substrate (a predetermined wiring pattern is already formed on the mother glass substrate) by screen printing or the like, fired, and then mother glass. In this method, a plurality of glass substrates are obtained by dividing the substrate into a predetermined size. If this method is used, since a plurality of insulating layers can be formed at once, the manufacturing efficiency of a fluorescent display tube or the like is improved. In particular, the larger the mother glass substrate, the larger the number of insulating layers that can be formed at one time, thereby improving the manufacturing efficiency of fluorescent display tubes and the like. However, when the shrinkage behavior of the mother glass substrate and the insulating layer forming material is not matched, the larger the mother glass substrate, the easier the mother glass substrate warps in the firing process. If the warp of the mother glass substrate becomes large, it becomes difficult to divide the mother glass substrate into a predetermined size. In addition, it becomes difficult to pick up the mother glass substrate with a manufacturing apparatus used after the baking process of the insulating layer forming material. There is a risk that the yield of pipes and the like will decrease. Therefore, when this method is used, the shrinkage behavior of the insulating layer forming material must be strictly matched to the shrinkage behavior of the mother glass substrate, and the required characteristic (5) is particularly important.

なお、従来の鉛含有ガラスは、従来の製品において上記要求特性(1)および(2)を満足するが、蛍光表示管等の高性能化等が進むにつれて、印加電圧等が高くなるため、近年、上記要求特性(1)および(2)を更に改良する必要性が生じている。   In addition, the conventional lead-containing glass satisfies the above required characteristics (1) and (2) in conventional products. However, as the performance of fluorescent display tubes and the like increases, the applied voltage and the like increase in recent years. There is a need to further improve the required characteristics (1) and (2).

そこで、本発明は、ガラス組成中にPbOを含有せず、またガラスの熱的安定性が良好であるとともに、軟化点が低く、しかもガラス基板等の収縮挙動に整合した熱膨張係数を有する絶縁層形成用ガラス組成物および絶縁層形成用材料を提供することを技術的課題とする。   Therefore, the present invention does not contain PbO in the glass composition, has good thermal stability of the glass, has a low softening point, and has a thermal expansion coefficient that matches the shrinkage behavior of the glass substrate or the like. It is a technical problem to provide a glass composition for forming a layer and a material for forming an insulating layer.

本発明者は、鋭意努力の結果、ZnO−B23−SiO2系ガラスのガラス組成範囲をモル%で、ZnO 40〜55%、B23 20〜35%、SiO2 5〜20%、Al23 0〜7%、Li2O 0〜12%、Na2O 1〜13%、K2O 0〜10%、MgO+CaO+SrO+BaO(MgO、CaO、SrOおよびBaOの合量) 0〜12%に規制するとともに、モル比ZnO/B23の値を一定範囲に規制することで上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の絶縁層形成用ガラス組成物は、ガラス組成として、モル%で、ZnO 40〜55%、B23 20〜35%、SiO2 5〜20%、Al23 0〜7%、Li2O 0〜12%、Na2O 1〜13%、K2O 0〜10%、MgO+CaO+SrO+BaO 0〜12%を含有し、モル比ZnO/B23の値が1.2〜2.5であり、且つ実質的にPbOを含有しないことを特徴とする。ここで、本発明でいう「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm(質量)以下の場合を指す。 As a result of diligent efforts, the present inventor has made the glass composition range of ZnO—B 2 O 3 —SiO 2 glass in mol%, ZnO 40 to 55%, B 2 O 3 20 to 35%, SiO 2 5 to 20 %, Al 2 O 3 0-7%, Li 2 O 0-12%, Na 2 O 1-13%, K 2 O 0-10%, MgO + CaO + SrO + BaO (total amount of MgO, CaO, SrO and BaO) 0 The present inventors have found that the above technical problem can be solved by regulating the molar ratio ZnO / B 2 O 3 to a certain range while regulating it to 12%, and propose as the present invention. That is, the glass composition for forming an insulating layer of the present invention has a glass composition of mol%, ZnO 40 to 55%, B 2 O 3 20 to 35%, SiO 2 5 to 20%, Al 2 O 3 0 to 0. 7%, Li 2 O 0-12%, Na 2 O 1-13%, K 2 O 0-10%, MgO + CaO + SrO + BaO 0-12%, molar ratio ZnO / B 2 O 3 is 1.2 It is -2.5 and does not contain PbO substantially, It is characterized by the above-mentioned. Here, “substantially not containing PbO” in the present invention refers to a case where the content of PbO in the glass composition is 1000 ppm (mass) or less.

本発明の絶縁層形成用ガラス組成物は、ガラス組成範囲を上記のように規制しているため、ガラスの軟化点が低いにもかかわらず、熱的安定性が良好、つまりガラスが失透し難く、ガラスの失透に起因して、絶縁層の表面平滑性が損なわれる事態を防止することができる。なお、絶縁層の表面平滑性が損なわれると、局所的に絶縁層の絶縁特性が悪化しやすくなる。   Since the glass composition for forming an insulating layer of the present invention regulates the glass composition range as described above, it has good thermal stability, that is, the glass is devitrified despite its low softening point. It is difficult to prevent the surface smoothness of the insulating layer from being impaired due to the devitrification of the glass. Note that when the surface smoothness of the insulating layer is impaired, the insulating properties of the insulating layer are likely to deteriorate locally.

本発明の絶縁層形成用ガラス組成物は、ZnOの含有量、MgO+CaO+SrO+BaOの含有量およびモル比ZnO/B23の値を規制しているため、ガラスの軟化点を下げると同時に、熱膨張係数を容易に下げることができ、結果として、ガラス基板等の熱変形を防止した上でガラス基板の反りを低減することができる。 The glass composition for forming an insulating layer of the present invention regulates the content of ZnO, the content of MgO + CaO + SrO + BaO and the value of the molar ratio ZnO / B 2 O 3. The coefficient can be easily lowered, and as a result, the warpage of the glass substrate can be reduced while preventing thermal deformation of the glass substrate or the like.

さらに、本発明の絶縁層形成用ガラス組成物は、ガラス組成中に実質的にPbOを含有しない。このようにすれば、近年の環境的要請を的確に満たすことができる。   Furthermore, the glass composition for insulating layer formation of this invention does not contain PbO substantially in a glass composition. In this way, it is possible to accurately meet recent environmental demands.

第二に、本発明の絶縁層形成用ガラス組成物は、実質的にBi23を含有しないことに特徴付けられる。ここで、本発明でいう「実質的にBi23を含有しない」とは、ガラス組成中のBi23の含有量が1000ppm(質量)以下の場合を指す。このようにすれば、近年の環境的要請を的確に満たすことができる。 Second, the glass composition for forming an insulating layer according to the present invention is characterized by substantially not containing Bi 2 O 3 . Here, “substantially does not contain Bi 2 O 3 ” in the present invention refers to a case where the content of Bi 2 O 3 in the glass composition is 1000 ppm (mass) or less. In this way, it is possible to accurately meet recent environmental demands.

第三に、本発明の絶縁層形成用ガラス組成物は、ガラス組成として、モル%で、Li2O+Na2O+K2O(Li2O、Na2OおよびK2Oの合量)を4〜17%含有し、モル比Na2O/(Li2O+Na2O+K2O)の値が0.2〜0.8であることに特徴付けられる。 Thirdly, the glass composition for forming an insulating layer of the present invention has a glass composition of mol% and Li 2 O + Na 2 O + K 2 O (total amount of Li 2 O, Na 2 O and K 2 O) of 4 to 4%. It is characterized by containing 17% and a molar ratio Na 2 O / (Li 2 O + Na 2 O + K 2 O) of 0.2-0.8.

第四に、本発明の絶縁層形成用ガラス組成物は、更に、ガラス組成として、モル%で、TiO2を0.01〜10%含有することに特徴付けられる。このようにすれば、絶縁層に生じる発泡を低減できるため、ガラスの絶縁特性を大幅に向上させることができる。 Fourthly, the glass composition for forming an insulating layer of the present invention is further characterized by containing 0.01 to 10% of TiO 2 as a glass composition in mol%. In this way, since foaming generated in the insulating layer can be reduced, the insulating properties of the glass can be greatly improved.

第五に、本発明の絶縁層形成用ガラス組成物は、ガラス組成として、モル%で、BaOを1〜8%含有することに特徴付けられる。   Fifth, the glass composition for forming an insulating layer of the present invention is characterized by containing 1 to 8% of BaO as a glass composition in mol%.

第六に、本発明の絶縁層形成用ガラス組成物は、更に、ガラス組成として、モル%で、希土類酸化物を0.01〜10%含有することに特徴付けられる。このようにすれば、ZnOの含有量が多い場合にガラスの熱的安定性を向上させることができる。   Sixth, the glass composition for forming an insulating layer of the present invention is further characterized by containing 0.01 to 10% of a rare earth oxide as a glass composition in mol%. If it does in this way, when there is much content of ZnO, the thermal stability of glass can be improved.

第七に、本発明の絶縁層形成用材料は、上記の絶縁層形成用ガラス組成物からなるガラス粉末90〜100質量%と、着色剤0〜10質量%とを含有することに特徴付けられる。   Seventh, the material for forming an insulating layer of the present invention is characterized by containing 90 to 100% by mass of a glass powder made of the above glass composition for forming an insulating layer and 0 to 10% by mass of a colorant. .

第八に、本発明の絶縁層形成用材料は、熱膨張係数が78×10-7/℃以下であることに特徴付けられる。ここで、本発明でいう「熱膨張係数」とは、JIS R3102に基づいて測定した値を指し、押棒式熱膨張係数測定(TMA)装置により、30〜300℃の温度範囲で測定した値を指す。なお、測定試料は、絶縁層形成用材料をプレス成型し、緻密に焼成した後、直径4mm、長さ40mmの円柱状に研磨加工したものを用いる。 Eighth, the insulating layer forming material of the present invention is characterized by a thermal expansion coefficient of 78 × 10 −7 / ° C. or less. Here, the “thermal expansion coefficient” in the present invention refers to a value measured based on JIS R3102, and a value measured in a temperature range of 30 to 300 ° C. by a push rod type thermal expansion coefficient measurement (TMA) device. Point to. As the measurement sample, an insulating layer forming material is press-molded and densely fired, and then polished into a cylindrical shape having a diameter of 4 mm and a length of 40 mm.

第九に、本発明の絶縁層形成用材料は、軟化点が580℃以下であることに特徴付けられる。ここで、本発明でいう「軟化点」とは、マクロ型示差熱分析(DTA)装置で測定した値を指し、マクロ型DTAは室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型DTA装置で測定した軟化点は、図1に示す第四屈曲点の温度(TS)を指す。 Ninth, the material for forming an insulating layer according to the present invention is characterized in that the softening point is 580 ° C. or lower. Here, the “softening point” in the present invention refers to a value measured with a macro-type differential thermal analysis (DTA) device, the macro-type DTA starts measurement from room temperature, and the rate of temperature increase is 10 ° C./min. To do. The softening point measured by the macro-type DTA apparatus refers to the temperature (T S) of the fourth bending point shown in FIG.

第十に、本発明の絶縁層形成用材料は、平均粒子径D50が15μm以下であることに特徴付けられる。ここで、本発明でいう「平均粒子径D50」とは、レーザー回折法で測定した値を指す。 Tenth, the insulating layer forming material of the present invention is characterized in that the average particle diameter D 50 is 15 μm or less. Here, “average particle diameter D 50 ” as used in the present invention refers to a value measured by a laser diffraction method.

第十一に、本発明の絶縁層形成用材料は、最大粒子径Dmaxが30μm以下であることに特徴付けられる。ここで、本発明でいう「最大粒子径Dmax」とは、レーザー回折法で測定した値を指す。 Eleventh, the material for forming an insulating layer of the present invention is characterized in that the maximum particle diameter D max is 30 μm or less. Here, “maximum particle diameter D max ” as used in the present invention refers to a value measured by a laser diffraction method.

第十二に、本発明の絶縁層形成用材料は、蛍光表示管に用いることに特徴付けられる。   Twelfth, the insulating layer forming material of the present invention is characterized by being used for a fluorescent display tube.

本発明の絶縁層形成用ガラス組成物のガラス組成範囲を上記のように限定した理由を述べる。なお、以下の%表示は、特に限定がある場合を除き、モル%を指す。   The reason for limiting the glass composition range of the glass composition for forming an insulating layer of the present invention as described above will be described. In addition, the following% display points out mol% unless there is particular limitation.

ZnOは、ガラスの溶融温度や軟化点を過剰に上げることなく、熱膨張係数を下げる成分であり、その含有量は40〜55%、好ましくは43〜53%、より好ましくは45〜50%である。ZnOの含有量が40%より少ないと、ガラスの熱膨張係数が十分に低下せず、焼成時にガラスの収縮挙動がガラス基板等の収縮挙動に整合し難くなり、ガラス基板等に反りが発生しやすくなる。また、ZnOの含有量が40%より少ないと、ガラスの軟化点が高くなり過ぎ、580℃以下の温度で平滑な絶縁層を得難くなる。一方、ZnOの含有量が55%より多いと、ガラスの熱的安定性が低下し、焼成時にガラスが失透しやすくなる。   ZnO is a component that lowers the thermal expansion coefficient without excessively raising the melting temperature and softening point of the glass, and its content is 40 to 55%, preferably 43 to 53%, more preferably 45 to 50%. is there. If the ZnO content is less than 40%, the thermal expansion coefficient of the glass is not sufficiently lowered, and the shrinkage behavior of the glass becomes difficult to match the shrinkage behavior of the glass substrate at the time of firing, and the glass substrate is warped. It becomes easy. On the other hand, if the ZnO content is less than 40%, the softening point of the glass becomes too high, and it becomes difficult to obtain a smooth insulating layer at a temperature of 580 ° C. or lower. On the other hand, when the content of ZnO is more than 55%, the thermal stability of the glass is lowered, and the glass is easily devitrified during firing.

23は、ガラスの骨格を形成する成分であるとともに、ガラスの溶融温度および軟化点を下げる成分であり、その含有量は20〜35%、好ましくは22〜32%、より好ましくは25〜31%である。B23の含有量が20%より少ないと、ガラスの軟化点が高くなり過ぎ、580℃以下の温度で平滑な絶縁層を得難くなる。一方、B23の含有量が35%より多いと、ガラスが分相しやすくなり、この場合、580℃以下の温度で焼成すると、平滑な絶縁層を得難くなり、ガラスの絶縁特性が悪化しやすくなる。 B 2 O 3 is a component that forms a glass skeleton and lowers the melting temperature and softening point of the glass, and its content is 20 to 35%, preferably 22 to 32%, more preferably 25. ~ 31%. If the content of B 2 O 3 is less than 20%, the softening point of the glass becomes too high, and it becomes difficult to obtain a smooth insulating layer at a temperature of 580 ° C. or lower. On the other hand, if the content of B 2 O 3 is more than 35%, the glass tends to be phase-separated. In this case, if it is baked at a temperature of 580 ° C. or less, it becomes difficult to obtain a smooth insulating layer, and the insulating properties of the glass are low. It becomes easy to get worse.

SiO2は、ガラスの骨格を形成する成分であるとともに、熱膨張係数を低下させる効果があり、その含有量は5〜20%、好ましくは7〜16%、より好ましくは8〜13%である。SiO2の含有量が5%より少ないと、ガラスの熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。一方、SiO2の含有量が20%より多いと、ガラスの軟化点が高くなり過ぎ、580℃以下の温度で平滑な絶縁層を得難くなる。 SiO 2 is a component that forms a skeleton of glass and has an effect of reducing the thermal expansion coefficient, and its content is 5 to 20%, preferably 7 to 16%, more preferably 8 to 13%. . When the content of SiO 2 is less than 5%, the thermal stability of the glass is lowered, and the glass tends to be devitrified during melting or firing. On the other hand, if the content of SiO 2 is more than 20%, the softening point of the glass becomes too high, and it becomes difficult to obtain a smooth insulating layer at a temperature of 580 ° C. or lower.

Al23は、ガラスの分相を抑える成分であり、またガラスの耐薬品性を高める成分であり、その含有量は0〜7%、好ましくは0〜5%、より好ましくは0.1〜3%である。Al23の含有量が7%より多いと、ガラスの軟化点が高くなり過ぎ、580℃以下の温度で平滑な絶縁層を得難くなる。 Al 2 O 3 is a component that suppresses the phase separation of glass and is a component that increases the chemical resistance of glass, and its content is 0 to 7%, preferably 0 to 5%, more preferably 0.1. ~ 3%. When the content of Al 2 O 3 is more than 7%, the softening point of the glass becomes too high, and it becomes difficult to obtain a smooth insulating layer at a temperature of 580 ° C. or lower.

Li2Oは、ガラスの軟化点を下げる成分であり、その含有量は0〜12%、好ましくは0〜5%、より好ましくは0.1〜3%である。Li2Oの含有量が12%より多いと、ガラスの熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。 Li 2 O is a component that lowers the softening point of the glass, and its content is 0 to 12%, preferably 0 to 5%, more preferably 0.1 to 3%. When the content of Li 2 O is more than 12%, the thermal stability of the glass is lowered, and the glass is easily devitrified at the time of melting or firing.

Na2Oは、ガラスの軟化点を下げる成分であり、その含有量は1〜13%、好ましくは1〜9%、より好ましくは2〜7%である。Na2Oの含有量が1%より少ないと、ガラスの軟化点が高くなり過ぎ、580℃以下の温度で平滑な絶縁層を得難くなる。一方、Na2Oの含有量が13%より多いと、ガラスの熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。 Na 2 O is a component that lowers the softening point of glass, and its content is 1 to 13%, preferably 1 to 9%, more preferably 2 to 7%. When the content of Na 2 O is less than 1%, the softening point of the glass becomes too high, and it becomes difficult to obtain a smooth insulating layer at a temperature of 580 ° C. or lower. On the other hand, when the content of Na 2 O is more than 13%, the thermal stability of the glass is lowered, and the glass is easily devitrified during melting or firing.

2Oは、ガラスの軟化点を下げる成分であり、その含有量は0〜10%、好ましくは0〜5%、より好ましくは0.1〜3.5%である。K2Oの含有量が10%より多いと、ガラスの熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。 K 2 O is a component that lowers the softening point of the glass, and its content is 0 to 10%, preferably 0 to 5%, more preferably 0.1 to 3.5%. When the content of K 2 O is more than 10%, the thermal stability of the glass is lowered, and the glass is easily devitrified at the time of melting or firing.

MgO+CaO+SrO+BaOは、ガラスの熱的安定性を向上させる成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜12%、好ましくは1〜10%、より好ましくは2〜7%である。MgO+CaO+SrO+BaOの含有量が12%より多いと、ガラスの熱膨張係数が十分に低下せず、焼成時にガラスの収縮挙動がガラス基板等の収縮挙動に整合し難くなり、ガラス基板等に反りが発生しやすくなる。   MgO + CaO + SrO + BaO is a component that improves the thermal stability of glass, and is a component that improves water resistance and chemical resistance. Its content is 0 to 12%, preferably 1 to 10%, more preferably 2 ~ 7%. If the content of MgO + CaO + SrO + BaO is more than 12%, the thermal expansion coefficient of the glass is not sufficiently lowered, and the shrinkage behavior of the glass is difficult to match the shrinkage behavior of the glass substrate during firing, and the glass substrate is warped. It becomes easy.

モル比ZnO/B23の値は、ガラスの軟化点、熱膨張係数および熱的安定性に影響を及ぼす成分比率であり、モル比ZnO/B23の値を1.2〜2.5、好ましくは1.4〜2に規制すれば、ガラスの軟化点を下げると同時に、熱膨張係数を下げやすくなり、結果として、ガラス基板等の熱変形を防止した上でガラス基板の反りを低減することができる。モル比ZnO/B23の値が2.5より大きいと、ガラスの熱的安定性が低下しやすくなる。一方、モル比ZnO/B23の値が1.2未満であると、ガラスの熱膨張係数が十分に低下せず、焼成時にガラスの収縮挙動がガラス基板等の収縮挙動に整合し難くなり、ガラス基板等に反りが発生しやすくなる。また、モル比ZnO/B23の値が1.2未満であると、ガラスの軟化点が高くなり過ぎ、580℃以下の温度で平滑な絶縁層を得難くなる。 The value of the molar ratio ZnO / B 2 O 3 is a component ratio that affects the softening point, thermal expansion coefficient, and thermal stability of the glass, and the molar ratio ZnO / B 2 O 3 is 1.2-2. .5, preferably 1.4-2, lowering the softening point of the glass and at the same time making it easier to lower the thermal expansion coefficient. As a result, the glass substrate is warped while preventing thermal deformation of the glass substrate or the like. Can be reduced. When the value of the molar ratio ZnO / B 2 O 3 is larger than 2.5, the thermal stability of the glass tends to be lowered. On the other hand, when the molar ratio ZnO / B 2 O 3 is less than 1.2, the thermal expansion coefficient of the glass is not sufficiently lowered, and the shrinkage behavior of the glass is difficult to match the shrinkage behavior of the glass substrate or the like during firing. Therefore, the glass substrate or the like is likely to be warped. If the molar ratio ZnO / B 2 O 3 is less than 1.2, the softening point of the glass becomes too high, and it becomes difficult to obtain a smooth insulating layer at a temperature of 580 ° C. or lower.

本発明の絶縁層形成用ガラス組成物には、上記成分以外にも、下記の成分をガラス組成中に含有させることができる。   In addition to the above components, the glass composition for forming an insulating layer of the present invention can contain the following components in the glass composition.

Li2O+Na2O+K2Oは、ガラスの軟化点、熱的安定性、耐薬品性および熱膨張係数に影響を及ぼし、その含有量は4〜17%、好ましくは5〜12%、より好ましくは5〜10%である。Li2O+Na2O+K2Oの含有量が4%より少ないと、ガラスの軟化点が高くなり過ぎ、580℃以下の温度で平滑な絶縁層を得難くなる。一方、Li2O+Na2O+K2Oの含有量が17%より多いと、ガラスの熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。また、Li2O+Na2O+K2Oの含有量が17%より多いと、ガラスの熱膨張係数が十分に低下せず、焼成時にガラスの収縮挙動がガラス基板等の収縮挙動に整合し難くなり、ガラス基板等に反りが発生しやすくなる。 Li 2 O + Na 2 O + K 2 O affects the softening point, thermal stability, chemical resistance and thermal expansion coefficient of the glass, and its content is 4-17%, preferably 5-12%, more preferably 5 to 10%. If the content of Li 2 O + Na 2 O + K 2 O is less than 4%, the softening point of the glass becomes too high, and it becomes difficult to obtain a smooth insulating layer at a temperature of 580 ° C. or lower. On the other hand, if the content of Li 2 O + Na 2 O + K 2 O is more than 17%, the thermal stability of the glass is lowered, and the glass tends to be devitrified during melting or firing. Further, if the content of Li 2 O + Na 2 O + K 2 O is more than 17%, the thermal expansion coefficient of the glass is not sufficiently lowered, and the shrinkage behavior of the glass at the time of firing becomes difficult to match the shrinkage behavior of the glass substrate, The glass substrate or the like is likely to warp.

モル比Na2O/(Li2O+Na2O+K2O)は、ガラスの熱的安定性を維持しつつ、ガラスの軟化点を下げ、更には熱膨張係数を下げるために重要な成分比率、つまりアルカリ混合効果を適確に享受するために重要な成分比率であり、その値は0.2〜0.8、好ましくは0.4〜0.75、より好ましくは0.4〜0.7である。モル比Na2O/(Li2O+Na2O+K2O)の値が0.2より小さいと、ガラスの軟化点が十分に低下せず、焼成温度が高くなる傾向がある。また、モル比Na2O/(Li2O+Na2O+K2O)の値が0.2より小さいと、ガラスの熱的安定性が損なわれ、或いは熱膨張係数が大きくなる傾向がある。一方、モル比Na2O/(Li2O+Na2O+K2O)の値が0.8より大きいと、ガラスの軟化点が十分に低下せず、焼成温度が高くなる傾向がある。 The molar ratio Na 2 O / (Li 2 O + Na 2 O + K 2 O) is an important component ratio for lowering the softening point of the glass and further lowering the thermal expansion coefficient while maintaining the thermal stability of the glass. It is an important component ratio for properly enjoying the alkali mixing effect, and its value is 0.2 to 0.8, preferably 0.4 to 0.75, more preferably 0.4 to 0.7. is there. If the value of the molar ratio Na 2 O / (Li 2 O + Na 2 O + K 2 O) is smaller than 0.2, the softening point of the glass does not sufficiently decrease, and the firing temperature tends to increase. On the other hand, if the molar ratio Na 2 O / (Li 2 O + Na 2 O + K 2 O) is less than 0.2, the thermal stability of the glass tends to be impaired, or the thermal expansion coefficient tends to increase. On the other hand, if the molar ratio Na 2 O / (Li 2 O + Na 2 O + K 2 O) is greater than 0.8, the softening point of the glass is not sufficiently lowered, and the firing temperature tends to increase.

MgOは、ガラスの熱的安定性を向上させる成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜10%、好ましくは0〜5%、より好ましくは0〜3.5%である。MgOの含有量が10%より多いと、ガラスの熱膨張係数が十分に低下せず、焼成時にガラスの収縮挙動がガラス基板等の収縮挙動に整合し難くなり、ガラス基板等に反りが発生しやすくなる。   MgO is a component that improves the thermal stability of the glass and is a component that improves water resistance and chemical resistance. Its content is 0 to 10%, preferably 0 to 5%, more preferably 0. ~ 3.5%. If the MgO content is more than 10%, the thermal expansion coefficient of the glass is not sufficiently lowered, and the shrinkage behavior of the glass is difficult to match the shrinkage behavior of the glass substrate during firing, and the glass substrate is warped. It becomes easy.

CaOは、ガラスの熱的安定性を向上させる成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜10%、好ましくは0〜5%、より好ましくは0〜3.5%である。CaOの含有量が10%より多いと、ガラスの熱膨張係数が十分に低下せず、焼成時にガラスの収縮挙動がガラス基板等の収縮挙動に整合し難くなり、ガラス基板等に反りが発生しやすくなる。   CaO is a component that improves the thermal stability of the glass and is a component that improves water resistance and chemical resistance. Its content is 0 to 10%, preferably 0 to 5%, more preferably 0. ~ 3.5%. When the content of CaO is more than 10%, the thermal expansion coefficient of the glass is not sufficiently lowered, and the shrinkage behavior of the glass is difficult to match the shrinkage behavior of the glass substrate during firing, and the glass substrate is warped. It becomes easy.

SrOは、ガラスの熱的安定性を向上させる成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜10%、好ましくは0〜5%、より好ましくは0〜3.5%である。SrOの含有量が10%より多いと、ガラスの熱膨張係数が十分に低下せず、焼成時にガラスの収縮挙動がガラス基板等の収縮挙動に整合し難くなり、ガラス基板等に反りが発生しやすくなる。   SrO is a component that improves the thermal stability of the glass and is a component that improves water resistance and chemical resistance. Its content is 0 to 10%, preferably 0 to 5%, more preferably 0. ~ 3.5%. When the content of SrO is more than 10%, the thermal expansion coefficient of the glass is not sufficiently lowered, and the shrinkage behavior of the glass is difficult to match the shrinkage behavior of the glass substrate during firing, and the glass substrate is warped. It becomes easy.

BaOは、ガラスの熱的安定性を向上させる成分であり、また耐水性や耐薬品性を改良する成分であり、その含有量は0〜10%、好ましくは0.1〜10%、より好ましくは1〜8%である。BaOの含有量が10%より多いと、焼成時にガラスの収縮挙動がガラス基板等の収縮挙動に整合し難くなり、ガラス基板等に反りが発生しやすくなる。   BaO is a component that improves the thermal stability of glass, and is a component that improves water resistance and chemical resistance, and its content is 0 to 10%, preferably 0.1 to 10%, more preferably. Is 1-8%. When the content of BaO is more than 10%, the shrinkage behavior of the glass becomes difficult to match the shrinkage behavior of the glass substrate or the like during firing, and the glass substrate or the like is likely to be warped.

TiO2は、ガラスの熱膨張係数を下げる成分であり、またガラスの絶縁特性を向上させる成分であり、その含有量は0〜10%、好ましくは0.01〜7%、より好ましくは0.1〜3%である。TiO2の含有量が10%より多いと、ガラスの熱的安定性が低下し、溶融時または焼成時にガラスが失透しやすくなる。ガラスの絶縁特性を確実に向上させるためには、TiO2の含有量を0.1%以上にすればよい。 TiO 2 is a component that lowers the thermal expansion coefficient of the glass and is a component that improves the insulating properties of the glass, and its content is 0 to 10%, preferably 0.01 to 7%, more preferably 0.00. 1 to 3%. When the content of TiO 2 is more than 10%, the thermal stability of the glass is lowered, and the glass is easily devitrified during melting or firing. In order to reliably improve the insulating properties of the glass, the content of TiO 2 may be 0.1% or more.

ランタノイド酸化物は、ZnOの含有量が多い場合にガラスの熱的安定性を向上させる成分であり、その含有量は0〜10%、好ましくは0.01〜10%、より好ましくは0.5〜2%である。ランタノイド酸化物の含有量が10%より多いと、ランタノイド酸化物の導入原料が高価であるため、バッチコストが上昇するとともに、ガラス組成の成分バランスが崩れて、逆にガラスの熱的安定性が損なわれるおそれがある。なお、ランタノイド酸化物として、例えば、La23、Gd23、CeO2等を使用することができる。 A lanthanoid oxide is a component that improves the thermal stability of glass when the content of ZnO is large, and the content is 0 to 10%, preferably 0.01 to 10%, more preferably 0.5. ~ 2%. If the content of the lanthanoid oxide is more than 10%, since the raw material for introducing the lanthanoid oxide is expensive, the batch cost increases, the balance of the components of the glass composition is lost, and conversely, the thermal stability of the glass is reduced. There is a risk of damage. As the lanthanoid oxide, for example, La 2 O 3 , Gd 2 O 3 , CeO 2 or the like can be used.

La23は、ZnOの含有量が多い場合にガラスの熱的安定性を向上させることができる成分であり、その含有量は0〜10%、好ましくは0.01〜10%、より好ましくは0.5〜2%である。La23の含有量が10%より多いと、La23の導入原料が高価であるため、バッチコストが上昇するとともに、ガラス組成の成分バランスが崩れて、逆にガラスの熱的安定性が損なわれるおそれがある。 La 2 O 3 is a component that can improve the thermal stability of glass when the content of ZnO is large, and its content is 0 to 10%, preferably 0.01 to 10%, more preferably. Is 0.5-2%. If the content of La 2 O 3 is more than 10%, the introduced raw material of La 2 O 3 is expensive, so the batch cost rises and the component balance of the glass composition is lost, and conversely the thermal stability of the glass May be impaired.

上記成分の他にも、本発明の効果を損なわない範囲で他の成分を添加することができる。例えば、耐水性や耐薬品性を向上させるためにZrO2を5%(好ましくは2%)まで、またガラスの熱的安定性を向上させるのためにP25を10%まで添加してもよい。 In addition to the above components, other components can be added as long as the effects of the present invention are not impaired. For example, ZrO 2 is added up to 5% (preferably 2%) to improve water resistance and chemical resistance, and P 2 O 5 is added up to 10% to improve the thermal stability of glass. Also good.

本発明の絶縁層形成用ガラス組成物は、既述の通り、環境的観点からPbOを実質的に含有しない。また、ガラス中に含まれるPbOは、ビークル中のカーボンによってPbに還元され、これがアノードに付着し、平面表示装置等の輝度特性を劣化させるおそれもある。さらに、Bi23も環境的影響が懸念される場合があるため、本発明の絶縁層形成用ガラス組成物において、Bi23を実質的に含有しないことが好ましい。 As described above, the glass composition for forming an insulating layer of the present invention substantially does not contain PbO from the environmental viewpoint. In addition, PbO contained in the glass is reduced to Pb by the carbon in the vehicle, which may adhere to the anode and deteriorate the luminance characteristics of the flat display device or the like. Furthermore, since Bi 2 O 3 may also have an environmental impact, it is preferable that the glass composition for forming an insulating layer of the present invention does not substantially contain Bi 2 O 3 .

本発明の絶縁層形成用ガラス組成物において、ハロゲン(特に、F2、Cl2)およびSO3を実質的に含まないことが好ましい。ハロゲンおよびSO3は焼成時に揮発し、カソードやアノードを汚染して電子の授受を阻害し、その結果、平面表示装置の輝度特性を低下させるおそれがある。よって、焼成時の成分揮発による輝度特性の劣化が問題とならないレベルにまでこれらの成分を低減することが好ましい。具体的には、ハロゲンを合量で100ppm(質量)以下、SO3を10ppm(質量)以下に規制することが好ましい。ハロゲンおよびSO3の含有量を低減するためには、ガラス原料を選択する際にこれらの含有量が少ないものを選択すればよい。また、ガラスの溶融温度を1300℃以上に設定したり、或いは溶融時間を長くすると、ハロゲンおよびSO3の含有量を更に低減することができる。 In the glass composition for forming an insulating layer of the present invention, it is preferable that halogen (particularly, F 2 , Cl 2 ) and SO 3 are not substantially contained. Halogen and SO 3 volatilize during firing, contaminating the cathode and anode and hindering electron transfer, and as a result, there is a risk of deteriorating the luminance characteristics of the flat display device. Therefore, it is preferable to reduce these components to a level at which deterioration of luminance characteristics due to component volatilization during firing does not become a problem. Specifically, it is preferable to regulate the total amount of halogen to 100 ppm (mass) or less and SO 3 to 10 ppm (mass) or less. In order to reduce the contents of halogen and SO 3 , it is only necessary to select those having a low content when glass raw materials are selected. Further, when the melting temperature of the glass is set to 1300 ° C. or higher, or the melting time is lengthened, the contents of halogen and SO 3 can be further reduced.

本発明の絶縁層形成用材料は、上記の絶縁層形成用ガラス組成物からなるガラス粉末90〜100質量%と、着色剤0〜10質量%とを含有し、好ましくは上記の絶縁層形成用ガラス組成物からなるガラス粉末95〜100質量%と、着色剤0〜5質量%とを含有し、より好ましくは上記の絶縁層形成用ガラス組成物からなるガラス粉末95〜99.9質量%と、着色剤0.1〜5質量%とを含有する。一般的に、本発明の絶縁層形成用材料は、絶縁層の表面平滑性を向上させるために、上記の絶縁層形成用ガラス組成物からなるガラス粉末のみで構成されるが、必要に応じて着色剤を10質量%まで添加することもできる。しかし、着色剤の含有量が10質量%より多いと、絶縁層の表面平滑性が損なわれやすくなり、しかも絶縁層に泡等が残存しやすくなる。   The insulating layer forming material of the present invention contains 90 to 100% by weight of glass powder made of the above glass composition for forming an insulating layer and 0 to 10% by weight of a colorant, preferably for forming the above insulating layer. Glass powder 95 to 100% by mass composed of glass composition and 0 to 5% by mass of colorant, more preferably 95 to 99.9% by mass of glass powder composed of the above glass composition for forming an insulating layer And 0.1 to 5% by mass of a colorant. In general, the insulating layer forming material of the present invention is composed only of glass powder made of the above insulating layer forming glass composition in order to improve the surface smoothness of the insulating layer. A colorant can also be added up to 10% by weight. However, if the content of the colorant is more than 10% by mass, the surface smoothness of the insulating layer tends to be impaired, and bubbles and the like are likely to remain in the insulating layer.

着色剤として、Cu系酸化物、Al系酸化物、Fe系酸化物、Cr系酸化物、Ti系酸化物、Co系酸化物、Mn系酸化物、Zn系酸化物およびこれらのスピネル型複合酸化物等が使用可能であり、特に、着色剤として、Cu系酸化物、Cr系酸化物およびMn系酸化物が好ましい。Cu系酸化物、Cr系酸化物およびMn系酸化物は、黒色であるため、絶縁層形成用材料に不純物が混入しても、絶縁層が外観不良になり難い。また、絶縁層形成用材料にこれらの着色剤を含有させると、絶縁層の反射を低減できるため、平面表示装置等のコントラストを向上させることができる。さらに、絶縁層形成用材料にこれらの着色剤を含有させると、平面表示装置等の製造工程において、センサー等で構成部材を認識しやすくなり、製造工程のオートメーション化等を容易に図ることができる。また、絶縁層の反射率を上げる必要性がある場合には、着色剤として、Ti系酸化物、Zn系酸化物等の白色顔料を添加すればよい。   As colorants, Cu-based oxides, Al-based oxides, Fe-based oxides, Cr-based oxides, Ti-based oxides, Co-based oxides, Mn-based oxides, Zn-based oxides, and spinel complex oxides thereof In particular, Cu-based oxides, Cr-based oxides, and Mn-based oxides are preferable as the colorant. Since Cu-based oxides, Cr-based oxides, and Mn-based oxides are black, even if impurities are mixed into the insulating layer forming material, the insulating layer is unlikely to have a poor appearance. Further, when these coloring agents are contained in the insulating layer forming material, reflection of the insulating layer can be reduced, so that contrast of a flat display device or the like can be improved. Furthermore, when these coloring agents are contained in the insulating layer forming material, it becomes easy to recognize the constituent members by a sensor or the like in the manufacturing process of a flat display device or the like, and automation of the manufacturing process can be facilitated. . In addition, when there is a need to increase the reflectance of the insulating layer, a white pigment such as a Ti-based oxide or a Zn-based oxide may be added as a colorant.

本発明の絶縁層形成用材料は、必要に応じて、耐火性フィラー粉末、例えばアルミナ、ジルコニア、ジルコン、チタニア、コーディエライト、ムライト、シリカ、ウイレマイト、酸化錫、酸化亜鉛等の粉末を合量で10質量%まで添加することができる。しかし、絶縁層形成用材料に耐火性フィラー粉末を含有させると、絶縁層の表面平滑性が損なわれやすくなるため、本発明の絶縁層形成用材料は、実質的に耐火性フィラー粉末を含有しないことが好ましい。ここで、「実質的に耐火性フィラー粉末を含有しない」とは、絶縁層形成材料中の耐火性フィラー粉末の含有量が1000ppm(質量)以下の場合を指す。   The material for forming an insulating layer of the present invention comprises a refractory filler powder such as alumina, zirconia, zircon, titania, cordierite, mullite, silica, willemite, tin oxide, zinc oxide and the like as necessary. Up to 10% by weight. However, if the insulating layer forming material contains a refractory filler powder, the surface smoothness of the insulating layer is liable to be impaired. Therefore, the insulating layer forming material of the present invention does not substantially contain the refractory filler powder. It is preferable. Here, “substantially no refractory filler powder” refers to the case where the content of the refractory filler powder in the insulating layer forming material is 1000 ppm (mass) or less.

本発明の絶縁層形成用材料において、熱膨張係数は78×10-7/℃以下が好ましく、75×10-7/℃以下がより好ましく、73×10-7/℃未満が更に好ましい。絶縁層形成用材料の熱膨張係数が78×10-7/℃より大きいと、焼成後にガラス基板等に反りが発生しやすくなり、その後の製造工程で不具合が生じるおそれがある。絶縁層形成用材料の熱膨張係数は、ガラス基板等に対して5〜30×10-7/℃、好ましくは7〜20×10-7/℃、より好ましくは12〜20×10-7/℃程度低く設計することが重要である。このようにすれば、焼成時に絶縁層形成用材料とガラス基板等の収縮挙動を整合させることができ、ガラス基板等に反りが発生し難くなる。特に、蛍光表示管用ソーダガラス基板(熱膨張係数85×10-7/℃)の場合、絶縁層形成用材料の好適な熱膨張係数は55〜78×10-7/℃、好ましくは65〜78×10-7/℃、より好ましくは65〜73×10-7/℃である。 In the insulating layer forming material of the present invention, the thermal expansion coefficient is preferably 78 × 10 −7 / ° C. or less, more preferably 75 × 10 −7 / ° C. or less, and still more preferably less than 73 × 10 −7 / ° C. When the thermal expansion coefficient of the insulating layer forming material is larger than 78 × 10 −7 / ° C., the glass substrate or the like is likely to be warped after firing, and there is a possibility that problems may occur in the subsequent manufacturing process. Thermal expansion coefficient of the insulating layer forming material is, 5~30 × 10 -7 / ℃ the glass substrate or the like, preferably 7~20 × 10 -7 / ℃, more preferably 12 to 20 × 10 -7 / It is important to design at a low temperature. In this way, the shrinkage behavior of the insulating layer forming material and the glass substrate or the like can be matched during firing, and the glass substrate or the like is less likely to warp. In particular, in the case of a soda glass substrate for a fluorescent display tube (thermal expansion coefficient 85 × 10 −7 / ° C.), a suitable thermal expansion coefficient of the insulating layer forming material is 55 to 78 × 10 −7 / ° C., preferably 65 to 78. × 10 −7 / ° C., more preferably 65 to 73 × 10 −7 / ° C.

本発明の絶縁層形成用材料において、軟化点は580℃以下が好ましく、570℃以下がより好ましく、560℃以下が更に好ましい。絶縁層形成用材料の軟化点が580℃より高いと、絶縁層の形成に際し、高温焼成が必要になり、ガラス基板等に熱変形等が生じやすくなる。また、絶縁層形成用材料の軟化点が580℃より高いと、ガラスの流動性が乏しくなり、平滑な絶縁層を得難くなる。   In the insulating layer forming material of the present invention, the softening point is preferably 580 ° C. or lower, more preferably 570 ° C. or lower, and further preferably 560 ° C. or lower. When the softening point of the insulating layer forming material is higher than 580 ° C., high-temperature firing is required when forming the insulating layer, and thermal deformation or the like is likely to occur in the glass substrate or the like. On the other hand, when the softening point of the insulating layer forming material is higher than 580 ° C., the fluidity of the glass becomes poor and it becomes difficult to obtain a smooth insulating layer.

本発明の絶縁層形成用材料において、平均粒子径D50は15μm以下が好ましく、10μm以下がより好ましく、7μm以下が更に好ましい。絶縁層形成用材料の平均粒子径D50が15μmより大きいと、ガラスが軟化し難くなり、平滑な絶縁層を得難くなる。 In the insulating layer forming material of the present invention, the average particle diameter D 50 is preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 7 μm or less. If the average particle diameter D 50 of the insulating layer forming material is larger than 15 μm, the glass is difficult to soften and it is difficult to obtain a smooth insulating layer.

本発明の絶縁層形成用材料において、最大粒子径Dmaxは30μm以下が好ましく、25μm以下がより好ましく、20μm以下が更に好ましい。絶縁層形成用材料の平均粒子径Dmaxが30μmより大きいと、スクリーン印刷で塗布膜を形成する場合、スクリーンメッシュのメッシュサイズを大きくする必要があるため、塗布膜の厚みを均一化することが困難になり、その結果、平滑な絶縁層を得難くなる。 In the insulating layer forming material of the present invention, the maximum particle diameter D max is preferably 30 μm or less, more preferably 25 μm or less, and further preferably 20 μm or less. If the average particle diameter D max of the insulating layer forming material is larger than 30 μm, it is necessary to increase the mesh size of the screen mesh when forming the coating film by screen printing. As a result, it becomes difficult to obtain a smooth insulating layer.

本発明の絶縁層形成用材料は、ペーストの形態で使用することができる。ペーストの形態で使用する場合、絶縁層形成材料とともに、熱可塑性樹脂、可塑剤、溶剤等を使用する。ペースト中の絶縁層形成材料の含有量は、30〜90質量%が好ましい。絶縁層形成材料の含有量が30質量%より少ないと、ペーストの粘性が低くなり過ぎ、乾燥膜の膜厚を制御することが困難になる。一方、絶縁層形成材料の含有量が90質量%より多いと、ペーストの粘性が高くなり過ぎ、乾燥膜の膜厚を制御することが困難になる。   The insulating layer forming material of the present invention can be used in the form of a paste. When used in the form of a paste, a thermoplastic resin, a plasticizer, a solvent and the like are used together with the insulating layer forming material. The content of the insulating layer forming material in the paste is preferably 30 to 90% by mass. When the content of the insulating layer forming material is less than 30% by mass, the viscosity of the paste becomes too low, and it becomes difficult to control the thickness of the dry film. On the other hand, if the content of the insulating layer forming material is more than 90% by mass, the viscosity of the paste becomes too high, and it becomes difficult to control the thickness of the dry film.

熱可塑性樹脂は、乾燥後の膜強度を高め、また柔軟性を付与する成分であり、その含有量は0.1〜20質量%が好ましい。熱可塑性樹脂の含有量が0.1質量%より小さいと、上記効果を得難くなる。一方、熱可塑性樹脂の含有量が20質量%より多いと、絶縁層の膜厚を制御し難くなり、しかも絶縁層中に泡が残存しやすくなり、結果として、平滑な絶縁層を得難くなる。熱可塑性樹脂として、エチルセルロース、ポリブチルメタアクリレート、ポリビニルブチラール、ポリメチルメタアクリレート、ポリエチルメタアクリレート等を単独あるいは混合して使用することができる。   The thermoplastic resin is a component that increases the film strength after drying and imparts flexibility, and its content is preferably 0.1 to 20% by mass. When the content of the thermoplastic resin is less than 0.1% by mass, it is difficult to obtain the above effect. On the other hand, if the content of the thermoplastic resin is more than 20% by mass, it becomes difficult to control the film thickness of the insulating layer, and bubbles are likely to remain in the insulating layer, resulting in difficulty in obtaining a smooth insulating layer. . As the thermoplastic resin, ethyl cellulose, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate and the like can be used alone or in combination.

可塑剤は、乾燥速度をコントロールするとともに、乾燥膜に柔軟性を与える成分であり、その含有量は0〜10質量%が好ましい。可塑剤の含有量が10質量%より多いと、絶縁層の膜厚を制御し難くなり、しかも絶縁層中に泡が残存しやすくなり、結果として、平滑な絶縁層を得難くなる。可塑剤として、ブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレート等を単独あるいは混合して使用することができる。   The plasticizer is a component that controls the drying speed and imparts flexibility to the dry film, and the content thereof is preferably 0 to 10% by mass. When the content of the plasticizer is more than 10% by mass, it becomes difficult to control the film thickness of the insulating layer, and it becomes easy for bubbles to remain in the insulating layer. As a result, it becomes difficult to obtain a smooth insulating layer. As the plasticizer, butylbenzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, dibutyl phthalate, or the like can be used alone or in combination.

溶剤は、絶縁層形成用材料を分散し、ペースト化するための成分であり、その含有量は10〜30質量%が好ましい。溶剤の含有量が30質量%より多いと、ペーストの粘性が低くなり過ぎ、乾燥膜の膜厚を制御することが困難になる。一方、溶剤の含有量が10質量%より少ないと、ペーストの粘性が高くなり過ぎ、乾燥膜の膜厚を制御することが困難になる。溶剤として、ターピネオール、ジエチレングリコールモノブチルエーテルアセテート、2,2,4−トリメチル−1,3−ペンタジオールモノイソブチレート等を単独または混合して使用することができる。   A solvent is a component for disperse | distributing the insulating layer forming material, and making it into paste, The content is preferable 10-30 mass%. When the content of the solvent is more than 30% by mass, the viscosity of the paste becomes too low, and it becomes difficult to control the thickness of the dry film. On the other hand, when the content of the solvent is less than 10% by mass, the viscosity of the paste becomes too high, and it becomes difficult to control the thickness of the dry film. As the solvent, terpineol, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate or the like can be used alone or in combination.

ペーストは、絶縁層形成用材料、熱可塑性樹脂、可塑剤、溶剤等を用意し、これを所定の割合で混合した後、三本ローラー等で混練することにより作製することができる。絶縁層は、得られたペーストをスクリーン印刷法で所定の膜厚になるまで積層した後、これを乾燥し、所定温度で焼成することで形成することができる。なお、塗布膜は、ドクターブレード法、ロールコート法、スプレー法、リバースコーター法、グリーンシート法、テーブルコーター法等でも形成することができる。   The paste can be prepared by preparing an insulating layer forming material, a thermoplastic resin, a plasticizer, a solvent, and the like, mixing them at a predetermined ratio, and then kneading with a three-roller or the like. The insulating layer can be formed by laminating the obtained paste until a predetermined film thickness is obtained by a screen printing method, and then drying and baking at a predetermined temperature. The coating film can also be formed by a doctor blade method, a roll coating method, a spray method, a reverse coater method, a green sheet method, a table coater method, or the like.

本発明の絶縁層形成用材料は、鉛含有ガラスで生じる鉛樹問題が生じないため、蛍光表示管に好適に使用することができる。ソーダガラス基板は、ガラス組成中にNa2Oを含有しているが、長期の使用によりNa2OがNa+に電解し、これが鉛含有ガラス中のPbOを還元させ、アノード電極上にPbを樹枝状に析出させる。これは鉛樹と称される現象であるが、この現象が生じると、絶縁層の絶縁特性が損なわれる。しかし、本発明の絶縁層形成用材料は、ガラス組成中にPbOを含有しないため、鉛樹問題は生じない。なお、本発明の絶縁層形成用材料は、鉛含有ガラスで形成された絶縁層を保護する絶縁層として用いることができる。このようにすれば、鉛含有ガラスが本発明の絶縁層形成用材料で保護されているため、鉛樹問題が生じにくくなる。 Since the insulating layer forming material of the present invention does not cause a lead tree problem caused by lead-containing glass, it can be suitably used for a fluorescent display tube. Soda glass substrate, although containing Na 2 O in the glass composition, Na 2 O is electrolyzed in Na + by long-term use, which is reduced to PbO in the lead-containing glass, a Pb on the anode electrode Precipitate in dendritic form. This is a phenomenon called lead tree, but when this phenomenon occurs, the insulating properties of the insulating layer are impaired. However, since the insulating layer forming material of the present invention does not contain PbO in the glass composition, the lead tree problem does not occur. The insulating layer forming material of the present invention can be used as an insulating layer for protecting an insulating layer formed of lead-containing glass. In this way, the lead-containing problem is less likely to occur because the lead-containing glass is protected by the insulating layer forming material of the present invention.

以下、実施例に基づいて本発明を説明する。   Hereinafter, the present invention will be described based on examples.

表1〜3は、本発明の実施例(試料No.1〜12)、比較例(試料No.13〜15)を示している。   Tables 1 to 3 show examples (samples Nos. 1 to 12) and comparative examples (samples Nos. 13 to 15) of the present invention.

Figure 2009167025
Figure 2009167025

Figure 2009167025
Figure 2009167025

Figure 2009167025
Figure 2009167025

各試料は次のようにして調製した。まず表1〜4に示すガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、均一に混合した後、白金坩堝に入れて1250℃で2時間溶融し、次いで溶融ガラスの一部をフィルム状に成形し、残りの溶融ガラスを密度測定用試料として板状に成形した。続いて、ガラスフィルムを所望の粒径となるように、ジルコニアボールを用いたアルミナ製ボールミルで所定時間粉砕した後、空気分級を行い、平均粒子径D50が5μm、最大粒子径Dmaxが15μmのガラス粉末を得た。なお、ガラス中のハロゲンの含有量が100ppm(質量)以下、SO3の含有量が10ppm(質量)以下になるように、不純物の少ないガラス原料を選択した。 Each sample was prepared as follows. First, glass materials such as various oxides and carbonates are prepared so as to have the glass compositions shown in Tables 1 to 4, and mixed uniformly, and then put in a platinum crucible and melted at 1250 ° C. for 2 hours. A part was formed into a film shape, and the remaining molten glass was formed into a plate shape as a sample for density measurement. Subsequently, the glass film is ground for a predetermined time with an alumina ball mill using zirconia balls so as to have a desired particle size, and then air classification is performed. The average particle size D 50 is 5 μm, and the maximum particle size D max is 15 μm. Glass powder was obtained. Incidentally, 100 ppm is the halogen content in the glass (mass) or less, as the content of SO 3 is less than 10 ppm (by weight), were selected small glass raw material impurities.

密度は、周知のアルキメデス法で測定した。   The density was measured by the well-known Archimedes method.

熱膨張係数は、JIS R3102に基づいて測定し、TMA装置により、30〜300℃の温度範囲で測定した。なお、測定試料は、各試料を所定形状にプレス成型し、緻密に焼成した後、直径4mm、長さ40mmの円柱状に研磨加工したものを用いた。   The thermal expansion coefficient was measured based on JIS R3102, and was measured in a temperature range of 30 to 300 ° C. with a TMA apparatus. In addition, as the measurement sample, each sample was press-molded into a predetermined shape, densely fired, and then polished into a cylindrical shape having a diameter of 4 mm and a length of 40 mm.

ガラス転移点は、TMA装置で測定した。なお、測定試料は、各試料を所定形状にプレス成型し、緻密に焼成した後、直径4mm、長さ40mmの円柱状に研磨加工したものを用いた。   The glass transition point was measured with a TMA apparatus. In addition, as the measurement sample, each sample was press-molded into a predetermined shape, densely fired, and then polished into a cylindrical shape having a diameter of 4 mm and a length of 40 mm.

軟化点は、マクロ型DTA装置で測定した。マクロ型DTAは、室温から測定を開始し、昇温速度は10℃/分とした。   The softening point was measured with a macro type DTA apparatus. For the macro type DTA, measurement was started from room temperature, and the rate of temperature increase was 10 ° C./min.

絶縁特性は、以下のようにして評価した。まず各試料をビークル(エチルセルロースを5%含有させたターピネオール溶液)中に分散させた後、三本ロールミルで混練してペースト化した。次いで、このペーストをアルミニウム配線が施されたソーダガラス基板(熱膨張係数85×10-7/℃)上にスクリーン印刷法で塗布し、塗布膜を形成した。続いて、この塗布膜を150℃で30分間乾燥し、乾燥膜を得た後、電気炉で560℃30分間焼成し、25μmの絶縁層を得た。焼成に際し、昇降温速度は10℃/分とした。最後に、このような方法で得られた絶縁層の断面に発生した泡数を電子顕微鏡で評価した。具体的には、100μmの幅で絶縁層の表面に発泡が全く認められなかったものを「○」、発泡は認められたが1〜4個/cm2であったものを「△」、発泡が5個/cm2以上であったものを「×」として評価した。 Insulation characteristics were evaluated as follows. First, each sample was dispersed in a vehicle (a terpineol solution containing 5% ethyl cellulose) and then kneaded with a three-roll mill to form a paste. Next, this paste was applied by screen printing on a soda glass substrate (thermal expansion coefficient 85 × 10 −7 / ° C.) provided with aluminum wiring to form a coating film. Subsequently, this coated film was dried at 150 ° C. for 30 minutes to obtain a dried film, and then baked in an electric furnace at 560 ° C. for 30 minutes to obtain a 25 μm insulating layer. During firing, the temperature raising / lowering rate was 10 ° C./min. Finally, the number of bubbles generated in the cross section of the insulating layer obtained by such a method was evaluated with an electron microscope. Specifically, “◯” indicates that foaming was not observed at the surface of the insulating layer with a width of 100 μm, and “△” indicates foaming that was observed but 1 to 4 / cm 2. there were evaluated what was 5 / cm 2 or more as "×".

表面平滑性は、以下のようにして評価した。まず各試料をビークル(エチルセルロースを5%含有させたターピネオール)中に分散させた後、三本ロールミルで混練してペースト化した。次いで、このペーストをソーダガラス基板(熱膨張係数:85×10-7/℃)上にスクリーン印刷法で塗布し、膜厚200μmの塗布膜を形成した。続いて、この塗布膜を150℃で30分間乾燥し、乾燥膜を得た後、電気炉で560℃30分間焼成した。焼成に際し、昇降温速度は10℃/分とした。最後に、得られた絶縁層の表面粗さRaを触針式表面粗さ計で測定し、表面粗さRaが1μm以下のものを「○」、1μmを超えるものを「×」として評価した。 The surface smoothness was evaluated as follows. First, each sample was dispersed in a vehicle (terpineol containing 5% ethyl cellulose) and then kneaded with a three-roll mill to form a paste. Next, this paste was applied on a soda glass substrate (thermal expansion coefficient: 85 × 10 −7 / ° C.) by a screen printing method to form a coating film having a thickness of 200 μm. Subsequently, the coated film was dried at 150 ° C. for 30 minutes to obtain a dried film, and then baked in an electric furnace at 560 ° C. for 30 minutes. During firing, the temperature raising / lowering rate was 10 ° C./min. Finally, the surface roughness Ra of the obtained insulating layer was measured with a stylus type surface roughness meter, and those having a surface roughness Ra of 1 μm or less were evaluated as “◯”, and those exceeding 1 μm were evaluated as “X”. .

輝度特性は、以下のようにして評価した。まず予め輝度特性に影響がないことが確認された鉛含有ガラスを用い、蛍光表示管を作製した。この蛍光表示管の輝度特性を測定し、これを100%とした。次に、表中の各試料を用いて作製した蛍光表示管の輝度特性を測定し、輝度特性が相対値で90%以上のものを「○」、90%未満のものを「×」として評価した。蛍光表示管は、内部に蛍光体、リード配線、絶縁層、グリッド、フィラメント、アノード等を組み込み、前面ガラス基板と背面ガラス基板を封着材料で封着することにより作製した。なお、封着材料は、予め輝度特性に影響がないことが確認されたものを使用した。   The luminance characteristics were evaluated as follows. First, a fluorescent display tube was manufactured using lead-containing glass that was previously confirmed to have no influence on luminance characteristics. The luminance characteristics of this fluorescent display tube were measured and set to 100%. Next, the luminance characteristics of the fluorescent display tube produced using each sample in the table were measured, and the luminance characteristics of which the relative value was 90% or more were evaluated as “◯”, and those with less than 90% were evaluated as “X”. did. The fluorescent display tube was fabricated by incorporating a phosphor, lead wiring, insulating layer, grid, filament, anode, and the like inside, and sealing the front glass substrate and the back glass substrate with a sealing material. Note that the sealing material used was confirmed to have no influence on the luminance characteristics in advance.

反り特性は、次のようにして評価した。まず各試料をビークル(エチルセルロースを5%含有させたターピネオール溶液)中に分散させた後、三本ロールミルで混練してペースト化した。次に、このペーストを100mm×100mm×1.1mm厚のソーダガラス基板(熱膨張係数:85×10-7/℃)の中央部分にスクリーン印刷機で塗布し、70mm×40mmの塗布膜を形成した。続いて、この塗布膜を電気炉で560℃30分間焼成し、25μm厚の絶縁膜を形成した。焼成に際し、昇降温速度は5℃/分とした。最後に、ソータガラス基板の板幅方向に沿って平行にレーザービームを照射し、レーザービームの遮光変化量を測定することにより、ソーダガラス基板の反り量を測定し、反り量が0.6mm未満のものを「○」とし、0.6mm以上のものを「×」として評価した。なお、反り量の測定は、ソーダガラス基板の各辺について1回ずつ行い、すべての辺で反り量が0.6mm未満であれば、「○」として評価した。 The warpage property was evaluated as follows. First, each sample was dispersed in a vehicle (a terpineol solution containing 5% ethyl cellulose) and then kneaded with a three-roll mill to form a paste. Next, this paste is applied to a central portion of a 100 mm × 100 mm × 1.1 mm thick soda glass substrate (thermal expansion coefficient: 85 × 10 −7 / ° C.) with a screen printer to form a 70 mm × 40 mm coating film. did. Subsequently, this coating film was baked in an electric furnace at 560 ° C. for 30 minutes to form an insulating film having a thickness of 25 μm. During firing, the temperature raising / lowering rate was 5 ° C./min. Finally, the amount of warpage of the soda glass substrate is measured by irradiating a laser beam in parallel along the plate width direction of the sorter glass substrate and measuring the amount of change in shading of the laser beam, and the amount of warpage is less than 0.6 mm. A thing was evaluated as “◯”, and a thing of 0.6 mm or more was evaluated as “×”. The warpage amount was measured once for each side of the soda glass substrate. If the warpage amount was less than 0.6 mm on all sides, the warpage amount was evaluated as “◯”.

表1〜3から明らかなように、試料No.1〜12は、熱膨張係数が78×10-7/℃以下、軟化点が580℃以下であり、且つ絶縁特性、表面平滑性、輝度特性および反り特性が良好であった。 As is apparent from Tables 1 to 3, sample No. Nos. 1 to 12 had a thermal expansion coefficient of 78 × 10 −7 / ° C. or lower, a softening point of 580 ° C. or lower, and good insulating characteristics, surface smoothness, luminance characteristics, and warping characteristics.

表3から明らかなように、試料No.13は、ガラスの軟化点が高く、平滑な絶縁層を得ることができず、熱膨張係数が高かった。その結果、試料No.13において、表面平滑性および反り特性の評価が不良であった。また、試料No.13は、表面平滑性の評価が不良であるため、絶縁層の絶縁特性は、局所的に悪化するおそれがあると考えられる。試料No.14は、熱的安定性が乏しく、絶縁層の表面に結晶が析出し、平滑な絶縁層を得ることができなかった。その結果、試料No.14において、表面平滑性の評価が不良であった。また、試料No.14は、表面平滑性の評価が不良であるため、絶縁層の絶縁特性は、局所的に悪化するおそれがあると考えられる。試料No.15は、熱的安定性が乏しく、絶縁層の表面に結晶が析出し、平滑な絶縁層を得ることができず、更には熱膨張係数が高かった。その結果、試料No.15において、表面平滑性および反り特性の評価が不良であった。また、試料No.15は、表面平滑性の評価が不良であるため、絶縁層の絶縁特性は、局所的に悪化するおそれがあると考えられる。   As apparent from Table 3, the sample No. No. 13 had a high softening point of glass, a smooth insulating layer could not be obtained, and the thermal expansion coefficient was high. As a result, sample no. In No. 13, the evaluation of the surface smoothness and warpage characteristics was poor. Sample No. In No. 13, since the evaluation of the surface smoothness is poor, it is considered that the insulating properties of the insulating layer may be locally deteriorated. Sample No. No. 14 had poor thermal stability, crystals were deposited on the surface of the insulating layer, and a smooth insulating layer could not be obtained. As a result, sample no. In 14, the evaluation of the surface smoothness was poor. Sample No. No. 14 has a poor evaluation of surface smoothness, and thus the insulating properties of the insulating layer may be locally deteriorated. Sample No. No. 15 had poor thermal stability, crystals precipitated on the surface of the insulating layer, a smooth insulating layer could not be obtained, and the thermal expansion coefficient was high. As a result, sample no. 15, the evaluation of the surface smoothness and warpage characteristics was poor. Sample No. No. 15 has a poor evaluation of the surface smoothness, and it is considered that the insulating properties of the insulating layer may locally deteriorate.

試料No.1〜12に着色剤としてCu系酸化物を3質量%添加した絶縁層形成用材料、試料No.1〜12に着色剤としてMn系酸化物を3質量%添加した絶縁層形成用材料および試料No.1〜12に着色剤としてCr系酸化物を3質量%添加した絶縁層形成用材料について、上記と同様に表面平滑性、絶縁特性、輝度特性および反り特性を評価した。その結果、いずれの試料も表面平滑性、絶縁特性、輝度特性および反り特性の評価が良好であった。   Sample No. 1-12, a material for forming an insulating layer obtained by adding 3% by mass of a Cu-based oxide as a colorant; Insulating layer forming material in which 3% by mass of Mn-based oxide as a colorant is added to 1 to 12 and Sample No. The surface smoothness, insulating characteristics, luminance characteristics, and warping characteristics were evaluated in the same manner as described above for materials for forming an insulating layer in which 3% by mass of Cr-based oxide as a colorant was added to 1-12. As a result, all the samples had good evaluation of surface smoothness, insulation characteristics, luminance characteristics and warpage characteristics.

本発明の絶縁層形成用ガラス組成物および絶縁層形成用材料は、蛍光表示管、各種電子放出素子を有する各種形式のフィールドエミッションディスプレイ、プラズマディスプレイパネル、有機エレクトロルミネセンスディスプレイ、無機エレクトロルミネセンスディスプレイ等の平面表示装置等に好適である。また、本発明の絶縁層形成用ガラス組成物および絶縁層形成用材料は、平面蛍光ランプ(Flat Fluorecent Lamp、略してFFLと称される)等の電極被覆に用いることもできる。   The glass composition for forming an insulating layer and the material for forming an insulating layer of the present invention include a fluorescent display tube, various types of field emission displays having various electron-emitting devices, a plasma display panel, an organic electroluminescent display, and an inorganic electroluminescent display. It is suitable for a flat display device. The glass composition for forming an insulating layer and the material for forming an insulating layer of the present invention can also be used for electrode coating of a flat fluorescent lamp (referred to as FFL for short).

マクロ型DTA装置で測定した時のガラスの軟化点を示す模式図である。It is a schematic diagram which shows the softening point of glass when it measures with a macro type | mold DTA apparatus.

Claims (12)

ガラス組成として、モル%で、ZnO 40〜55%、B23 20〜35%、SiO2 5〜20%、Al23 0〜7%、Li2O 0〜12%、Na2O 1〜13%、K2O 0〜10%、MgO+CaO+SrO+BaO 0〜12%を含有し、モル比ZnO/B23の値が1.2〜2.5であり、且つ実質的にPbOを含有しないことを特徴とする絶縁層形成用ガラス組成物。 As a glass composition, in mol%, ZnO 40~55%, B 2 O 3 20~35%, SiO 2 5~20%, Al 2 O 3 0~7%, Li 2 O 0~12%, Na 2 O 1 to 13%, K 2 O 0 to 10%, MgO + CaO + SrO + BaO 0 to 12%, molar ratio ZnO / B 2 O 3 is 1.2 to 2.5, and substantially contains PbO A glass composition for forming an insulating layer, characterized by not. 実質的にBi23を含有しないことを特徴とする請求項1に記載の絶縁層形成用ガラス組成物。 The glass composition for forming an insulating layer according to claim 1, which does not substantially contain Bi 2 O 3 . ガラス組成として、モル%で、Li2O+Na2O+K2Oを4〜17%含有し、モル比Na2O/(Li2O+Na2O+K2O)の値が0.2〜0.8であることを特徴とする請求項1または2に記載の絶縁層形成用ガラス組成物。 As a glass composition, it contains 4 to 17% of Li 2 O + Na 2 O + K 2 O in mol%, and the value of molar ratio Na 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.2 to 0.8. The glass composition for forming an insulating layer according to claim 1 or 2. 更に、ガラス組成として、モル%で、TiO2を0.01〜10%含有することを特徴とする請求項1〜3のいずれかに記載の絶縁層形成用ガラス組成物。 Further, as a glass composition, in mol%, the insulating layer forming the glass composition according to any one of claims 1 to 3, characterized in that it contains TiO 2 0.01 to 10%. ガラス組成として、モル%で、BaOを1〜8%含有することを特徴とする請求項1〜4のいずれかに記載の絶縁層形成用ガラス組成物。   The glass composition for forming an insulating layer according to any one of claims 1 to 4, wherein the glass composition contains 1 to 8% of BaO in mol%. 更に、ガラス組成として、モル%で、希土類酸化物を0.01〜10%含有することを特徴とする請求項1〜5のいずれかに記載の絶縁層形成用ガラス組成物。   The glass composition for forming an insulating layer according to any one of claims 1 to 5, further comprising 0.01 to 10% of a rare earth oxide in mol% as a glass composition. 請求項1〜6のいずれかに記載の絶縁層形成用ガラス組成物からなるガラス粉末90〜100質量%と、着色剤0〜10質量%とを含有することを特徴とする絶縁層形成用材料。   An insulating layer forming material comprising: 90 to 100% by mass of a glass powder comprising the glass composition for forming an insulating layer according to any one of claims 1 to 6; and 0 to 10% by mass of a colorant. . 熱膨張係数が78×10-7/℃以下であることを特徴とする請求項7に記載の絶縁層形成用ガラス組成物。 The thermal expansion coefficient is 78 × 10 −7 / ° C. or less, The glass composition for forming an insulating layer according to claim 7. 軟化点が580℃以下であることを特徴とする請求項7または8に記載の絶縁層形成用材料。   The material for forming an insulating layer according to claim 7 or 8, wherein the softening point is 580 ° C or lower. 平均粒子径D50が15μm以下であることを特徴とする請求項7〜9のいずれかに記載の絶縁層形成用材料。 10. The insulating layer forming material according to claim 7, wherein an average particle diameter D 50 is 15 μm or less. 最大粒子径Dmaxが30μm以下であることを特徴とする請求項7〜10のいずれかに記載の絶縁層形成用材料。 The material for forming an insulating layer according to any one of claims 7 to 10, wherein a maximum particle diameter Dmax is 30 µm or less. 蛍光表示管に用いることを特徴とする請求項7〜11のいずれかに記載の絶縁層形成用材料。   The insulating layer forming material according to claim 7, wherein the insulating layer forming material is used for a fluorescent display tube.
JP2008004153A 2008-01-11 2008-01-11 Insulation layer-forming glass composition and insulation layer-forming material Pending JP2009167025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008004153A JP2009167025A (en) 2008-01-11 2008-01-11 Insulation layer-forming glass composition and insulation layer-forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008004153A JP2009167025A (en) 2008-01-11 2008-01-11 Insulation layer-forming glass composition and insulation layer-forming material

Publications (1)

Publication Number Publication Date
JP2009167025A true JP2009167025A (en) 2009-07-30

Family

ID=40968674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004153A Pending JP2009167025A (en) 2008-01-11 2008-01-11 Insulation layer-forming glass composition and insulation layer-forming material

Country Status (1)

Country Link
JP (1) JP2009167025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318555A1 (en) * 2010-06-29 2011-12-29 Dana Craig Bookbinder Glass Sheets With Improved Mechanical Strength
CN109264988A (en) * 2018-11-19 2019-01-25 中国建筑材料科学研究总院有限公司 Glass composition, the glass slurry containing the glass composition, vacuum glass and resistance unit and preparation method containing the glass composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163635A (en) * 1999-12-06 2001-06-19 Asahi Glass Co Ltd Lead-free low melting point glass for formation of barrier rib and glass ceramic composition
JP2001172046A (en) * 1999-12-20 2001-06-26 Asahi Glass Co Ltd Low melting point glass for forming bulkhead
JP2004307329A (en) * 2003-03-24 2004-11-04 Nippon Electric Glass Co Ltd Insulating material for display tube
JP2007091566A (en) * 2005-09-30 2007-04-12 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163635A (en) * 1999-12-06 2001-06-19 Asahi Glass Co Ltd Lead-free low melting point glass for formation of barrier rib and glass ceramic composition
JP2001172046A (en) * 1999-12-20 2001-06-26 Asahi Glass Co Ltd Low melting point glass for forming bulkhead
JP2004307329A (en) * 2003-03-24 2004-11-04 Nippon Electric Glass Co Ltd Insulating material for display tube
JP2007091566A (en) * 2005-09-30 2007-04-12 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318555A1 (en) * 2010-06-29 2011-12-29 Dana Craig Bookbinder Glass Sheets With Improved Mechanical Strength
US9434633B2 (en) * 2010-06-29 2016-09-06 Corning Incorporated Glass sheets with improved mechanical strength
US9908803B2 (en) 2010-06-29 2018-03-06 Corning Incorporated Glass sheets with improved mechanical strength
CN109264988A (en) * 2018-11-19 2019-01-25 中国建筑材料科学研究总院有限公司 Glass composition, the glass slurry containing the glass composition, vacuum glass and resistance unit and preparation method containing the glass composition

Similar Documents

Publication Publication Date Title
JP5309629B2 (en) Lead-free glass composition having acid resistance
JP4598008B2 (en) Lead-free glass composition and glass paste having acid resistance
JP2005041734A (en) Glass for dielectric formation and dielectric formation material for plasma display panel
US7326666B2 (en) Glass for forming barrier ribs, and plasma display panel
JP5018032B2 (en) Lead-free glass for electrode coating
JP2006282467A (en) Glass composition and glass paste composition
JP2005336048A (en) Glass composition, paste composition, and plasma display panel
JP4924985B2 (en) Dielectric material for plasma display panel
JP2007246382A (en) Dielectric material for plasma display panel
JP4324965B2 (en) Insulation material for display tube
JP5299834B2 (en) Support frame forming glass powder, support frame forming material, support frame, and method of manufacturing support frame
JP2009167025A (en) Insulation layer-forming glass composition and insulation layer-forming material
JP2001058844A (en) Glass composition for fluorescent character display tube, electrical insulation material and partition material
JP5025209B2 (en) Lead-free borosilicate glass frit and glass paste for forming an insulating layer
JP2009167024A (en) Insulation layer-forming glass composition and insulation layer-forming material
JP5761545B2 (en) Insulating layer forming glass composition and insulating layer forming material
JP5717042B2 (en) Insulating layer forming material
JP2008050252A (en) Method for manufacturing glass substrate with partition wall
JP6278230B2 (en) Glass substrate for organic EL device
JP2001146436A (en) Insulating material for fluorescent character display tube
JP2009037890A (en) Method for manufacturing plasma display member
JP4958078B2 (en) A material for a plasma display panel, a method for producing a rear glass substrate for a plasma display panel, and a rear glass substrate for a plasma display panel produced by the method.
JP2007294321A (en) Plasma display panel
JP2006290683A (en) Dielectric film and method for manufacturing the same
JP2003327448A (en) Forming material for plasma display and glass powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130520