JP2008214144A - Dielectric composition, dielectric using the dielectric composition and dielectric paste - Google Patents

Dielectric composition, dielectric using the dielectric composition and dielectric paste Download PDF

Info

Publication number
JP2008214144A
JP2008214144A JP2007055283A JP2007055283A JP2008214144A JP 2008214144 A JP2008214144 A JP 2008214144A JP 2007055283 A JP2007055283 A JP 2007055283A JP 2007055283 A JP2007055283 A JP 2007055283A JP 2008214144 A JP2008214144 A JP 2008214144A
Authority
JP
Japan
Prior art keywords
glass
mass
dielectric
glass powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055283A
Other languages
Japanese (ja)
Inventor
Keisuke Mori
圭介 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007055283A priority Critical patent/JP2008214144A/en
Publication of JP2008214144A publication Critical patent/JP2008214144A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/38Dielectric or insulating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric composition capable of obtaining a dense fired film on soda lime glass containing no lead, free from the discoloration of a silver electrode and capable of obtaining low specific dielectric constant and to provide a dielectric and a dielectric paste. <P>SOLUTION: The dielectric composition comprises glass powder prepared by mixing glass powder containing bismuth and no lead and no alkali with glass powder containing no lead and no bismuth, and at least one or more kind of inorganic oxide powder of quartz, alumina, zirconia, zircon, forsterite, titanium oxide and heat resistant black pigment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プラズマディスプレイパネル(以下説明の便宜上「PDP」という)、蛍光表示管(以下説明の便宜上「VFD」という)をはじめとする表示装置の誘電体組成物、誘電体および誘電体ペーストに関する。   The present invention relates to a dielectric composition, a dielectric, and a dielectric paste of a display device including a plasma display panel (hereinafter referred to as “PDP” for convenience of explanation) and a fluorescent display tube (hereinafter referred to as “VFD” for convenience of explanation). .

PDPは大型フラットディスプレイとして脚光を浴び大型テレビ受像機として実現化され、広く用いられている。このPDPは一対のガラス板を微少間隔を隔てて対向配置しその周囲を封着して放電空間を設け、放電により発生する紫外線で刺激発光する蛍光体により映像を映す仕組みとなしたもので、映像が表示される側のガラス板を前面板、他方のガラス板を背面板と呼んでいる。図1は一般的なAC型PDPの前面板1と背面板2の構造を例示したもので、背面板2にはストライプ状の隔壁16が形成され、これら隔壁16の凹部の底面には隔壁16と平行に1本の電極(アドレス電極)13が形成され、ガラス基板10の上に前記電極13の表面を覆う誘電体層(アドレス保護層)15が設けられている。さらにこれら隔壁16の壁面などには紫外線で励起する蛍光体17が塗付されている。PDPの輝度を高めるため、アドレス保護層15や隔壁16は、蛍光体17の発光を反射する白色であることが求められている。一方、前面板1は、ガラス基板10の上にストライプ状のITO等により形成される透明電極11と該透明電極上に設けられた1本の銀等により形成されたバス電極12が配され、さらにこのバス電極12を覆うようにガラス等で構成される可視光に透明な誘電体膜が形成され、この誘電体膜を覆うようにMgO膜14が蒸着により形成された構成となしている。ここで、PDPの形成方法として、銀で形成される電極、誘電体や隔壁等の形成には既存の厚膜技術が用いられる。   PDP has been widely used as a large flat screen display, realized as a large television receiver. This PDP is a mechanism in which a pair of glass plates are arranged opposite to each other with a small interval, and the periphery is sealed to provide a discharge space, and an image is projected by a phosphor that stimulates and emits light by ultraviolet rays generated by discharge. The glass plate on the side where the image is displayed is called the front plate, and the other glass plate is called the back plate. FIG. 1 exemplifies the structure of a front plate 1 and a back plate 2 of a general AC type PDP. A striped partition 16 is formed on the back plate 2, and the partition 16 is formed on the bottom of the recesses of these partitions 16. One electrode (address electrode) 13 is formed in parallel to the electrode substrate 10, and a dielectric layer (address protection layer) 15 covering the surface of the electrode 13 is provided on the glass substrate 10. Further, the wall surfaces of the partition walls 16 are coated with a phosphor 17 that is excited by ultraviolet rays. In order to increase the brightness of the PDP, the address protection layer 15 and the barrier ribs 16 are required to be white that reflects the light emitted from the phosphor 17. On the other hand, the front plate 1 is provided with a transparent electrode 11 formed of striped ITO or the like on a glass substrate 10 and a bus electrode 12 formed of one silver or the like provided on the transparent electrode, Further, a transparent dielectric film made of glass or the like is formed so as to cover the bus electrode 12, and an MgO film 14 is formed by vapor deposition so as to cover the dielectric film. Here, as a method for forming the PDP, an existing thick film technique is used for forming an electrode formed of silver, a dielectric, a partition, and the like.

また、一般的なVFDはその一例を図2に示すように、フェイスガラス21とガラス基板22とから構成される真空容器を持ち、該真空容器中のフィラメント26より放出される電子を格子電極23で制御しセグメント電極24に衝突せしめ該セグメント電極24上の蛍光体を刺激発光させて文字、記号等を表示する仕組みとなしたもので、ガラス基板22に表示部となるセグメント電極24が形成され、さらに該セグメント電極24と当該電極への信号を伝達する配線27間を絶縁する絶縁層25が設けられている。ここで、セグメント電極24は厚膜銀ペーストで形成されることが多く、これを覆う絶縁体は誘電体ペーストで形成され、セグメント電極24はグラファイトを主成分とする厚膜ペーストで形成される。なお、セグメント電極24と配線27の導通を確保する為、絶縁層25はスルーホールを形成するように印刷する。28は端子である。   As shown in FIG. 2, a general VFD has a vacuum vessel composed of a face glass 21 and a glass substrate 22, and electrons emitted from a filament 26 in the vacuum vessel are lattice electrodes 23. In this structure, the fluorescent material on the segment electrode 24 is caused to collide with the segment electrode 24 to stimulate light emission to display characters, symbols, etc., and the segment electrode 24 serving as a display portion is formed on the glass substrate 22. Further, an insulating layer 25 is provided to insulate between the segment electrode 24 and the wiring 27 for transmitting a signal to the electrode. Here, the segment electrode 24 is often formed of a thick film silver paste, an insulator covering the segment electrode 24 is formed of a dielectric paste, and the segment electrode 24 is formed of a thick film paste mainly composed of graphite. In order to ensure electrical connection between the segment electrode 24 and the wiring 27, the insulating layer 25 is printed so as to form a through hole. 28 is a terminal.

前記PDPは基板に高歪点ガラス(旭硝子製PD−200)やソーダライムガラスを用いるため、焼成温度は高々600℃程度である。これはガラスの軟化点をこの温度以下にしなければ、緻密な焼成膜が得られないからである。そこで、従来のガラスは、有害物である鉛を含有させてこの軟化点を実現していた(特許文献1参照)。しかしながら、ガラスに含まれる鉛はディスプレイデバイスが廃棄されるときはもちろん、ディスプレイデバイスを製造する際も廃棄物として地球環境に放出され土壌、地下水、河川等の汚染、公害などの環境問題を引き起こすという難点がある。   Since the PDP uses high strain point glass (PD-200 manufactured by Asahi Glass) or soda lime glass for the substrate, the firing temperature is about 600 ° C. at most. This is because a dense fired film cannot be obtained unless the softening point of the glass is lower than this temperature. Therefore, the conventional glass has realized this softening point by containing lead which is a harmful substance (see Patent Document 1). However, lead contained in glass is released into the global environment as waste when manufacturing display devices, as well as when disposing display devices, causing environmental problems such as pollution of soil, groundwater, rivers, and pollution. There are difficulties.

一方、B−Si−Zn系ガラスは比誘電率が鉛ガラスよりも低くできる特徴があるため、PDP等の消費電力を少なくできることが期待される。しかし、B−Si−Zn系ガラスでアドレス保護層を形成すると、焼成の際に銀電極のアドレス電極と反応し黄色に変色してしまうため、焼成の際に銀電極との変色を抑える添加物(銅化合物等)を加えたB−Si−Znガラスが提案されている(特許文献2、特許文献3、特許文献4、特許文献5参照)。しかし、変色を抑える添加物はガラスを着色し、白色のアドレス保護層を実現できなくする。具体的には、例えば銅を含むガラスは青色を呈する。このため、焼成の際に銀電極による変色が生じないビスマス系ガラスを用いたアドレス保護層材料が提案されている(特許文献6、特許文献7参照)。しかしながら、ビスマス系ガラスは鉛ガラスと比誘電率が変わらないことから、結果的にPDP等の表示装置の消費電力の低下は望めなかった。
特開2001−52621号公報 特開2004−35297号公報 特開2005−320227号公報 特開2006−117440号公報 特開2006−232620号公報 特開2002−53342号公報 特開2005−231923号公報
On the other hand, since B-Si-Zn-based glass has a characteristic that the relative dielectric constant can be made lower than that of lead glass, it is expected that the power consumption of PDP or the like can be reduced. However, when the address protective layer is formed of B-Si-Zn glass, it reacts with the address electrode of the silver electrode during firing and turns yellow, so that the additive that suppresses discoloration with the silver electrode during firing is added. B-Si-Zn glass to which (a copper compound or the like) is added has been proposed (see Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5). However, additives that suppress discoloration color the glass, making it impossible to achieve a white address protection layer. Specifically, for example, glass containing copper exhibits a blue color. For this reason, an address protective layer material using bismuth-based glass that does not cause discoloration due to a silver electrode during firing has been proposed (see Patent Documents 6 and 7). However, since the dielectric constant of bismuth-based glass is not different from that of lead glass, a reduction in power consumption of a display device such as a PDP cannot be expected as a result.
JP 2001-52621 A JP 2004-35297 A JP 2005-320227 A JP 2006-117440 A JP 2006-232620 A JP 2002-53342 A JP-A-2005-231923

本発明は、前記した従来技術の実状に鑑みてなされたもので、鉛を含まないガラスで、ソーダライムガラス上に緻密な焼成膜を得ることができ、銀電極との変色も無く、かつ低い比誘電率を実現できる誘電体組成物と誘電体および誘電体ペーストを提供しようとするものである。   The present invention has been made in view of the actual state of the prior art described above. It is a glass containing no lead, and a dense fired film can be obtained on soda lime glass. An object of the present invention is to provide a dielectric composition, a dielectric and a dielectric paste capable of realizing a relative dielectric constant.

本発明に係る誘電体組成物は、ガラス粉末A70〜95質量%と、石英、アルミナ、ジルコニア、ジルコン、フォルステライト、酸化チタン、耐熱黒色顔料のうち少なくとも1種類以上の無機酸化物粉末B5〜30質量%を含有する誘電体組成物であって、ガラス粉末Aが、鉛とアルカリを含まないでビスマスを含む第1のガラス粉末70〜95質量%および鉛とビスマスを含まない第2のガラス粉末5〜30質量%を混合してなることを特徴とするものである。   The dielectric composition according to the present invention comprises 70 to 95% by mass of glass powder A and at least one inorganic oxide powder B5 to 30 among quartz, alumina, zirconia, zircon, forsterite, titanium oxide, and heat-resistant black pigment. A dielectric composition containing mass%, wherein the glass powder A contains 70 to 95 mass% of the first glass powder containing bismuth without containing lead and alkali, and the second glass powder containing no bismuth and lead. 5-30 mass% is mixed, It is characterized by the above-mentioned.

また、本発明に係る誘電体組成物は、前記第1のガラス粉末が鉛とアルカリを含まず酸化物換算でBi 60〜90質量%、SiO 1〜15質量%、Al 1〜15質量%、B 2〜15質量%を含有し、前記第2のガラス粉末がSiO 5〜35質量%、Al 1〜7質量%、B 15〜45質量%、ZnO 20〜45質量%、LiO、NaO、KOのうち少なくとも1種類以上から選択されるアルカリ金属酸化物を合計で1〜15質量%を含有することを特徴とするものである。 Further, in the dielectric composition according to the present invention, the first glass powder does not contain lead and alkali, and Bi 2 O 3 60 to 90% by mass, SiO 2 1 to 15% by mass, Al 2 O in terms of oxides 3 to 15% by mass, 2 to 15% by mass of B 2 O 3 , and the second glass powder is 5 to 35% by mass of SiO 2, 1 to 7% by mass of Al 2 O 3 , and B 2 O 3 15. It contains 1 to 15% by mass in total of alkali metal oxides selected from at least one of ˜45% by mass, ZnO 20 to 45% by mass, Li 2 O, Na 2 O, and K 2 O. It is a feature.

本発明に係る誘電体は、前記した誘電体組成物のいずれか一方の誘電体組成物を使用して形成されることを特徴とし、さらに本発明に係る誘電体ペーストは、前記した誘電体組成物のいずれか一方の誘電体組成物の粉末100質量部に対し、樹脂0.5〜10質量部、有機溶剤20〜45質量部を含有することを特徴とするものである。   The dielectric according to the present invention is formed using any one of the above-described dielectric compositions, and the dielectric paste according to the present invention further includes the dielectric composition described above. The resin composition is characterized by containing 0.5 to 10 parts by mass of a resin and 20 to 45 parts by mass of an organic solvent with respect to 100 parts by mass of the powder of any one of the dielectric compositions.

本発明の誘電体組成物、誘電体および誘電体ペーストは、ガラスに鉛を含まないため、表示装置の製造工程や廃棄の際に鉛が放出されることがない。このため土壌、地下水、河川等の汚染、公害などの環境問題を引き起こすことがない。また、本発明は、ビスマスを含む第1のガラスと、鉛とビスマスを含まない第2のガラスを混合してなるガラス粉末Aにより、低い誘電率を実現でき、銀電極との発色を抑えることが可能となる。さらに混合ガラス粉末Aと無機酸化物粉末Bを組み合わせることで焼成による基板の反りを抑制し、表示装置の寸法精度を確保することが可能となり、表示装置の精度向上に多大な効果を奏する。   Since the dielectric composition, the dielectric, and the dielectric paste of the present invention do not contain lead in glass, lead is not released during the manufacturing process or disposal of the display device. For this reason, it does not cause environmental problems such as pollution of soil, groundwater, rivers, and pollution. In addition, the present invention can realize a low dielectric constant and suppress the color development with the silver electrode by the glass powder A formed by mixing the first glass containing bismuth and the second glass not containing lead and bismuth. Is possible. Further, by combining the mixed glass powder A and the inorganic oxide powder B, it is possible to suppress warping of the substrate due to firing, and to ensure the dimensional accuracy of the display device, which has a great effect on improving the accuracy of the display device.

本発明の誘電体組成物は、鉛とアルカリを含まずビスマスを含む第1のガラス粉末70〜95質量%と鉛とビスマスを含まない第2のガラス粉末5〜30質量%を混合したガラス粉末Aを用いることを規定している。このように混合割合を規定しているのは、第2のガラス粉末が30質量%を超えて混合されると、焼成において銀電極により誘電体が黄色く変色してしまい、他方、第2のガラス粉末が5質量%未満では誘電体の比誘電率の低下を望めないためである。より望ましくは第1のガラス粉末70〜90質量%と第2のガラス粉末10〜30質量%でガラス粉末Aを構成する。なお、第2のガラス粉末のみで誘電体を形成すると銀電極の変色が発生するため好ましくない。また、銀電極の変色や比誘電率は、各ガラスの組成に起因するものである。   The dielectric composition of the present invention is a glass powder obtained by mixing 70 to 95% by mass of the first glass powder not containing lead and alkali and containing bismuth and 5 to 30% by mass of the second glass powder not containing lead and bismuth. A is specified. In this way, the mixing ratio is specified because when the second glass powder exceeds 30% by mass, the dielectric is discolored yellow by the silver electrode during firing, while the second glass powder This is because if the powder is less than 5% by mass, a decrease in the dielectric constant of the dielectric cannot be expected. More desirably, the glass powder A is composed of 70 to 90% by mass of the first glass powder and 10 to 30% by mass of the second glass powder. Note that it is not preferable to form the dielectric with only the second glass powder because discoloration of the silver electrode occurs. Moreover, the discoloration and relative dielectric constant of the silver electrode are caused by the composition of each glass.

次に、本発明の誘電体組成物において、無機酸化物粉末Bは基板の反りを抑制するために加えられるもので、ガラス粉末Aに対する該無機酸化物粉末Bの含有量を5〜30質量%に規定したのは、5質量%未満では焼成による基板の反りを抑制することができず、他方、30質量%を超えると緻密な誘電体を形成することができないためである。より望ましくは5〜25質量%の範囲である。なお、無機酸化物粉末Bは石英、アルミナ、ジルコニア、ジルコン、フォルステライト、酸化チタン、耐熱黒色顔料から選ばれる。   Next, in the dielectric composition of the present invention, the inorganic oxide powder B is added to suppress warpage of the substrate, and the content of the inorganic oxide powder B with respect to the glass powder A is 5 to 30% by mass. The reason is that if the amount is less than 5% by mass, the warp of the substrate due to firing cannot be suppressed, and if it exceeds 30% by mass, a dense dielectric cannot be formed. More desirably, it is in the range of 5 to 25% by mass. The inorganic oxide powder B is selected from quartz, alumina, zirconia, zircon, forsterite, titanium oxide, and heat-resistant black pigment.

ここで、前記ガラス粉末Aと無機酸化物粉末Bを組み合わせる理由について説明する。
生産性等の向上から、近年、PDPをはじめとする表示装置は1枚の大型基板で多面取りすることが行なわれている。表示装置は高画質化から高精細化しており、誘電体を形成(焼成)することで基板が反るようなことがあると、表示装置の寸法精度を確保することができず、結果的に高画質を確保できない。このため基板の反りは可及的に抑制する必要がある。本発明においては、第1のガラス粉末と無機酸化物粉末Bで誘電体を構成しても基板が反ることはない。しかし、第1のガラス粉末と第2のガラス粉末を混合してなるガラス粉末Aを用いると焼成により基板が反り変形する。これは、焼成とその後の冷却によるガラスの膨張と収縮に起因する。つまり、ガラス粉末や基板は、焼成により500℃以上の温度まで加熱され熱膨張するが、室温まで温度を下げる際は熱膨張係数の分だけ焼結したガラス粉末や基板は収縮し、基板の収縮よりも焼結したガラスの収縮が大きければ、基板の反りが発生する。
Here, the reason why the glass powder A and the inorganic oxide powder B are combined will be described.
In recent years, display devices such as PDP have been multi-sided with a single large substrate in order to improve productivity and the like. The display device has been improved from high image quality to high definition, and if the substrate is warped by forming (firing) the dielectric, the dimensional accuracy of the display device cannot be secured, and as a result High image quality cannot be ensured. For this reason, it is necessary to suppress the warpage of the substrate as much as possible. In the present invention, even if the dielectric is composed of the first glass powder and the inorganic oxide powder B, the substrate does not warp. However, when glass powder A formed by mixing the first glass powder and the second glass powder is used, the substrate is warped and deformed by firing. This is due to the expansion and contraction of the glass due to firing and subsequent cooling. In other words, the glass powder and the substrate are heated to a temperature of 500 ° C. or higher by firing, and thermally expand. However, when the temperature is lowered to room temperature, the sintered glass powder and substrate contract by the thermal expansion coefficient, and the substrate contracts. If the shrinkage of the sintered glass is larger than that, the substrate warps.

通常、室温からガラス転移点(ガラスによって異なるが本発明の第1のガラス粉末および第2のガラス粉末では450℃〜500℃)まで誘電体(本発明では第1のガラス粉末および第2のガラス粉末)の熱膨張係数は、ソーダライムガラス基板(ガラス転移点550〜650℃、室温から400℃までの熱膨張係数85×10−7)の熱膨張係数に追従する値に設計されている。しかし、一般的にはガラス転移点よりも高温では、ガラスの熱膨張係数は、低温でのそれに対し1桁近く高い値を示す。温度よってはソーダライムガラス基板よりも第1のガラス粉末や第2のガラス粉末の熱膨張係数が1桁近く大きくなるのである。さらに、ガラス転移点より高温で、鉛を含むガラスや、ビスマスを含む第1のガラス粉末と、第2のガラス粉末の熱膨張係数を比較すると、第2のガラス粉末のそれは、より大きな値である。そのため、第2のガラス粉末を含むと基板の反りが問題となるのである。したがって、基板の反りを抑えるにはガラス粉末の熱膨張係数を制御すればよく、そのためには第2のガラス粉末の熱膨張係数を、基板の反りが生じない値に調整すれば基板の反りに対処できる。熱膨張係数はガラスの組成により定まる。しかし、第2のガラス粉末でそのような熱膨張係数の組成とすると、600℃以下の焼成温度で焼成できるガラスを設計することが困難である。 Usually, a dielectric material (in the present invention, the first glass powder and the second glass) from room temperature to the glass transition point (450 ° C. to 500 ° C. in the first glass powder and the second glass powder of the present invention, although depending on the glass) The thermal expansion coefficient of the powder is designed to follow the thermal expansion coefficient of a soda lime glass substrate (glass transition point 550 to 650 ° C., thermal expansion coefficient 85 × 10 −7 from room temperature to 400 ° C.). However, generally, at a temperature higher than the glass transition point, the coefficient of thermal expansion of glass shows a value that is almost an order of magnitude higher than that at a low temperature. Depending on the temperature, the thermal expansion coefficient of the first glass powder and the second glass powder is nearly one digit greater than that of the soda lime glass substrate. Furthermore, when the thermal expansion coefficients of the glass containing lead or the first glass powder containing bismuth and the second glass powder are higher than the glass transition point, the second glass powder has a larger value. is there. Therefore, if the second glass powder is included, warping of the substrate becomes a problem. Therefore, it is only necessary to control the thermal expansion coefficient of the glass powder in order to suppress the warpage of the substrate, and for that purpose, the thermal expansion coefficient of the second glass powder is adjusted to a value that does not cause the warpage of the substrate. I can deal with it. The coefficient of thermal expansion is determined by the glass composition. However, when the second glass powder has a composition having such a thermal expansion coefficient, it is difficult to design a glass that can be fired at a firing temperature of 600 ° C. or lower.

そこで本発明では、ガラスの組成を変化させずに基板の反りを制御する手段として、無機酸化物粉末Bを加えることとしたのである。これは、無機酸化物粉末Bが骨材となり、第2のガラス粉末が過度に熱膨張するのを抑制するため、結果的に収縮が最適化されて基板の反りが抑制されるからである。さらに、無機酸化物粉末Bを加えることで機械的強度も向上し、その結果耐電圧特性の向上にもつながる。その理由は、絶縁破壊の多くは、電位が印加された際に機械的破壊を契機に生じるからである。   Therefore, in the present invention, the inorganic oxide powder B is added as a means for controlling the warpage of the substrate without changing the glass composition. This is because the inorganic oxide powder B becomes an aggregate and the second glass powder is prevented from excessive thermal expansion, so that the shrinkage is optimized and the warpage of the substrate is suppressed as a result. Furthermore, the mechanical strength is improved by adding the inorganic oxide powder B, and as a result, the withstand voltage characteristic is improved. The reason is that most dielectric breakdowns are triggered by mechanical breakdown when a potential is applied.

ガラス粉末の焼成過程では、緻密な焼成膜が形成される温度よりも高い温度で焼成される(過剰に焼成される)と気泡(ボイド)が発生しやすくなる。ボイドの発生はガラスの溶融による粘性低下に起因すると考えられる。無機酸化物粉末Bの添加は焼成過程でガラス粉末の焼結を阻害することでガラス粉末の焼成が過剰になっても気泡などのボイドの発生を抑制する効果がある。しかしながら、ボイドを発生せずにガラス粉末の焼成ができる温度域は狭い。前記のとおり、PDPは多面取りをしており、その焼成炉は焼成される表示装置の幅からすれば幅広く、炉内の温度を均一にすることは困難で、温度分布が生じている。ピンポイントに過ぎない焼成温度の最適領域の材料を、かかる焼成炉で表示装置を焼成すると、部分的に焼成が過剰となる部位や焼成が不足する部位が生じ、その結果焼成膜には焼成過剰によるボイドの多い部位と焼成不足によるボイドの多い部位が発生し、全体として緻密な焼成膜は得られない。緻密に焼成可能で、ボイドが発生しない温度領域を広く取れる誘電体材料は、表示装置の生産性向上にも適う。   In the firing process of the glass powder, bubbles (voids) are likely to be generated when fired at a temperature higher than the temperature at which a dense fired film is formed (fired excessively). The generation of voids is thought to be due to a decrease in viscosity due to glass melting. The addition of the inorganic oxide powder B inhibits the sintering of the glass powder during the firing process, and has the effect of suppressing the generation of voids such as bubbles even when the glass powder is excessively fired. However, the temperature range in which the glass powder can be fired without generating voids is narrow. As described above, the PDP is multi-chamfered, and the firing furnace is wide as long as the width of the display device to be fired. It is difficult to make the temperature in the furnace uniform, and a temperature distribution occurs. When a display device is fired in such a firing furnace with a material in the optimum region of the firing temperature that is only a pinpoint, a part that is excessively fired or a part that is insufficiently fired is generated. As a result, the fired film is excessively fired. A part with many voids due to and a part with many voids due to insufficient firing occur, and a dense fired film as a whole cannot be obtained. A dielectric material that can be densely fired and can take a wide temperature range where no voids are generated is also suitable for improving the productivity of a display device.

ガラス粉末Aと無機酸化物粉末Bを組み合わせることで、室温から400℃付近までの熱膨張係数の制御も可能である。石英のうち石英ガラスはガラス粉末Aよりも低くなるので、誘電体の熱膨張係数を低くすることができる。
なお、基板の反りは、無機酸化物粉末Bの熱膨張係数の影響を受けない。その理由は、前記の通り基板の反りは第2のガラス粉末のガラス転移点より高温での熱膨張係数に依存し、この温度での熱膨張係数を無機酸化物粉末Bの熱膨張係数では補うことは困難だからである。具体的には、無機酸化物粉末Bに石英ガラス(55×10−7/℃)を選択した場合と、アルミナ(80×10−7/℃)を選択した場合では基板の反りは変わらない。
By combining the glass powder A and the inorganic oxide powder B, the thermal expansion coefficient from room temperature to around 400 ° C. can be controlled. Since quartz glass of quartz is lower than glass powder A, the thermal expansion coefficient of the dielectric can be lowered.
The warpage of the substrate is not affected by the thermal expansion coefficient of the inorganic oxide powder B. The reason is that, as described above, the warpage of the substrate depends on the thermal expansion coefficient at a temperature higher than the glass transition point of the second glass powder, and the thermal expansion coefficient at this temperature is supplemented by the thermal expansion coefficient of the inorganic oxide powder B. Because it is difficult. Specifically, when the quartz glass (55 × 10 −7 / ° C.) is selected for the inorganic oxide powder B and the alumina (80 × 10 −7 / ° C.) is selected, the warpage of the substrate does not change.

また、石英、フォルステライトは誘電率が低いことが知られ、これらを添加することでこれら特性の向上と誘電率を下げる効果も有する。石英は相転位することが知られ、クリストバライト等に相転位すると熱膨張係数は急激に変化する。熱膨張係数の変化により誘電体にクラックが生じることもある。かかる事態を防ぐために石英ガラス粉末を用いることができる。石英ガラス粉末を用いても本発明の無機酸化物粉末Bと同様の効果を有する。   Quartz and forsterite are known to have a low dielectric constant, and the addition of these has the effect of improving these characteristics and lowering the dielectric constant. Quartz is known to undergo phase transition, and when it undergoes phase transition to cristobalite or the like, the thermal expansion coefficient changes abruptly. A change in the thermal expansion coefficient may cause cracks in the dielectric. In order to prevent such a situation, quartz glass powder can be used. Even if quartz glass powder is used, it has the same effect as the inorganic oxide powder B of the present invention.

無機酸化物粉末Bは1種類のみの選択に限定されるのではなく、複数種類組み合わせることができる。誘電体を白色にしたい場合は、酸化チタンのみを添加し、また、他の無機酸化物と酸化チタンを組み合わせて添加することができる。酸化チタンにはアナターゼ、ルチル等の結晶系が知られているが、いずれも使用できる。   The inorganic oxide powder B is not limited to selection of only one type, and a plurality of types can be combined. When it is desired to make the dielectric white, only titanium oxide can be added, or other inorganic oxides and titanium oxide can be added in combination. As the titanium oxide, crystal systems such as anatase and rutile are known, and any of them can be used.

耐熱顔料はFe−Co−Cr、Cu−Cr−Mn複合酸化物、Ni−Mn−Fe−Co複合酸化物、Fe−Mn複合酸化物等の黒色顔料等を用いることができる。   As the heat-resistant pigment, black pigments such as Fe—Co—Cr, Cu—Cr—Mn composite oxide, Ni—Mn—Fe—Co composite oxide, and Fe—Mn composite oxide can be used.

無機酸化物粉末Bの粒度D50は10μmが望ましく、さらに望ましくは5μm以下である。粒度が10μmを超えると緻密な誘電体を得られなくなる。粒度の確認は公知の粒度解析計(例えば「マイクロトラック」登録商標)を用いることができる。なお、D50は累積粒度分布における粒径のメジアン値である。 The particle size D 50 of the inorganic oxide powder B is desirably 10 μm, and more desirably 5 μm or less. When the particle size exceeds 10 μm, a dense dielectric cannot be obtained. For confirmation of the particle size, a known particle size analyzer (for example, “Microtrack” registered trademark) can be used. D 50 is the median value of the particle size in the cumulative particle size distribution.

次に、本発明のガラス粉末の成分およびその含有量の限定理由について説明する。
第1のガラス粉末は鉛とアルカリを含まず酸化物換算でBi 60〜95質量%、SiO 1〜15質量%、B 2〜15質量%、Al 1〜15質量%からなるが、この第1のガラス粉末がアルカリを含むと、焼成で銀電極により黄色く変色するためアルカリを含まないものとした。
Next, the components of the glass powder of the present invention and the reasons for limiting the content thereof will be described.
The first glass powder does not contain lead and alkali, and Bi 2 O 3 60 to 95% by mass, SiO 2 1 to 15% by mass, B 2 O 3 2 to 15% by mass, Al 2 O 3 1 to 1% in terms of oxides. Although it consists of 15 mass%, when this 1st glass powder contains an alkali, since it discolors yellow with a silver electrode by baking, it shall be the thing which does not contain an alkali.

第1のガラス粉末でBiは、ガラスの軟化点を低下させる成分であるが、60質量%未満ではガラスの軟化点を600℃以下にすることができず、またガラスの比誘電率を上昇させ、他方、90質量%を超えると比誘電離が高くなり、第2のガラス粉末をもってしても制御できないため、60〜90質量%に限定した。より望ましくは60〜85質量%である。 Bi 2 O 3 in the first glass powder is a component that lowers the softening point of glass, but if it is less than 60% by mass, the softening point of glass cannot be made 600 ° C. or lower, and the relative dielectric constant of glass. On the other hand, when it exceeds 90% by mass, the relative dielectric separation becomes high, and even if it has the second glass powder, it cannot be controlled, so it is limited to 60 to 90% by mass. More desirably, it is 60 to 85% by mass.

SiOは、ガラスの必須のネットワークフォーマーであるが、第1のガラス粉末で15質量%を超えて含有すると、ガラスが結晶化しやすくなり、また前記の温度分布が生じている焼成炉を用いると、結晶の析出に偏りが生じ均質な誘電体を形成することはできず、他方、1質量%未満では、ガラスの耐水性や耐薬品性を確保することができないため、1〜15質量%と限定した。より望ましくは1〜12質量%である。 SiO 2 is an essential network former of glass, but if it contains more than 15% by mass of the first glass powder, the glass is easily crystallized, and a firing furnace in which the above temperature distribution is generated is used. In addition, the crystal precipitation is biased and a homogeneous dielectric cannot be formed. On the other hand, if it is less than 1% by mass, the water resistance and chemical resistance of the glass cannot be ensured. And limited. More desirably, the content is 1 to 12% by mass.

Alはガラスの分相を防ぐ効果があるが、第1のガラス粉末において1質量%未満ではその効果が期待できず、他方、15質量%を超えるとガラスの軟化点を上昇させ、実用に耐えないため、1〜15質量%と限定した。 Al 2 O 3 has an effect of preventing phase separation of the glass, but the effect cannot be expected if it is less than 1% by mass in the first glass powder. On the other hand, if it exceeds 15% by mass, the softening point of the glass is increased, Since it cannot endure practical use, it was limited to 1 to 15% by mass.

ガラス中のBは必須の構成要素で、軟化点を下げ流動性を増加しガラスを安定させる効果があるが、第1のガラス粉末において2質量%未満では、ガラスの流動性が確保できず、他方、15質量%を超えるとガラス転移点が440℃未満となり、表示装置の封止工程で問題を生じるおそれがあるため、2〜15質量%と限定した。 B 2 O 3 in the glass is an essential component, and has the effect of lowering the softening point and increasing the fluidity to stabilize the glass, but if the first glass powder is less than 2% by mass, the fluidity of the glass is ensured. On the other hand, if it exceeds 15% by mass, the glass transition point becomes less than 440 ° C., which may cause a problem in the sealing process of the display device.

なお、第1のガラス粉末には適宜ZrO、ZnO、アルカリ土類酸化物(BaO,CaO,SrO等)を加えることができる。ZrOはガラスの耐水性や耐薬品性の向上につながる。特に、PDPは隔壁を形成するのにフォトリソグラフ工程を経るので、フォトレジストの現像液、剥離液や洗浄に用いる水に耐える必要があり、ZrOの添加は有益であるが、その添加量はガラス化を考慮すると10質量%以下が好ましい。なお、ZnOは軟化点を下げ、熱膨張係数を適宜に調整する効果があるが、その含有量はガラス化を考慮すると30質量%以下が好ましい。 Note that ZrO 2 , ZnO, or an alkaline earth oxide (BaO, CaO, SrO, or the like) can be appropriately added to the first glass powder. ZrO 2 leads to improvement of water resistance and chemical resistance of glass. In particular, since the PDP undergoes a photolithography process to form the barrier ribs, it is necessary to withstand the photoresist developer, the stripping solution and the water used for cleaning, and the addition of ZrO 2 is beneficial, but the addition amount is Considering vitrification, it is preferably 10% by mass or less. ZnO has the effect of lowering the softening point and appropriately adjusting the thermal expansion coefficient, but its content is preferably 30% by mass or less in view of vitrification.

また、第2のガラス粉末はSiO 5〜35質量%、Al 1〜7質量%、B 15〜45質量%、ZnO 20〜45質量%、LiO、NaO、KOより1種類以上選択されるアルカリ金属酸化物1〜15質量%からなるが、この第2のガラス粉末にビスマスを含ませないのは第2のガラス粉末の比誘電率を低く抑えるためである。 The second glass powder SiO 2 5 to 35 wt%, Al 2 O 3 1 to 7 wt%, B 2 O 3 15 to 45 wt%, ZnO 20 to 45 wt%, Li 2 O, Na 2 O 1 to 15% by mass of an alkali metal oxide selected from one or more kinds of K 2 O, but the second glass powder does not contain bismuth to keep the relative dielectric constant of the second glass powder low. Because.

SiOは、ガラスの必須のネットワークフォーマーであるが、第2のガラス粉末において35質量%を超えて含有すると、ガラスの軟化点か高くなり、他方、5質量%未満では、ガラスの耐水性や耐薬品性を確保することができないため、5〜35質量%と限定した。 SiO 2 is an essential network former of glass. However, when the content of the second glass powder exceeds 35% by mass, the softening point of the glass is increased, whereas when it is less than 5% by mass, the water resistance of the glass is increased. And chemical resistance cannot be ensured, so it is limited to 5 to 35% by mass.

Alは第1のガラス粉末の場合と同様、ガラスの分相を防ぐ効果があるが、第2のガラス粉末において1質量%未満ではその効果が期待できず、他方、7質量%を超えるとガラスの軟化点を上昇させ、実用に耐えないため、1〜7質量%と限定した。 Al 2 O 3 has the effect of preventing the phase separation of the glass as in the case of the first glass powder, but the effect cannot be expected if it is less than 1% by mass in the second glass powder, and on the other hand, 7% by mass When it exceeds, the softening point of glass will be raised and it will not endure practical use, Therefore It limited to 1-7 mass%.

ガラス中のBは必須の構成要素で、軟化点を下げ流動性を増加しガラスを安定させる効果があるが、第2のガラス粉末においてBが15質量%未満では、ガラスの流動性を確保できず、他方、45質量%を超えるとガラス転移点が440℃未満となり、表示装置の封止工程で誘電体の軟化が生じ寸法精度を確保できない等の問題を生じるおそれがあるため、15〜45質量%に限定した。 B 2 O 3 in the glass is an essential component and has the effect of lowering the softening point and increasing the fluidity to stabilize the glass. However, if the B 2 O 3 is less than 15% by mass in the second glass powder, the glass On the other hand, if it exceeds 45% by mass, the glass transition point will be less than 440 ° C., and the dielectric may be softened in the sealing process of the display device, resulting in problems such as inability to ensure dimensional accuracy. Therefore, it is limited to 15 to 45% by mass.

ZnOは軟化点を下げ、熱膨張係数を適宜に調整する効果があるが、第2のガラス粉末においてZnOが20質量%未満では所望の軟化点を実現できず、他方、45質量%を超えると本発明のガラス組成ではガラス化を困難とし、焼成膜を緻密化することができないため、20〜45質量%と限定した。より望ましくは、28〜40質量%である。   ZnO has the effect of lowering the softening point and appropriately adjusting the thermal expansion coefficient, but if the ZnO content in the second glass powder is less than 20% by mass, the desired softening point cannot be achieved, while if it exceeds 45% by mass. In the glass composition of the present invention, vitrification is difficult, and the fired film cannot be densified, so it is limited to 20 to 45% by mass. More desirably, it is 28 to 40% by mass.

アルカリ金属酸化物RO(KO、NaO、LiOのうち少なくとも1種類以上から選択される酸化物)は、軟化点を下げ、流動性を増す効果を有するとともに、熱膨張係数を上昇させる作用があるが、前記第2のガラス粉末に占めるこれらアルカリ金属酸化物の合計含有割合が1質量%未満では軟化点が高くなりすぎ所望の値を得ることができず、他方、15質量%を超えると熱膨張係数が大きくなりソーダライムガラス等を基板とするには不適切となる上、熱膨張係数が大きくなった場合は隔壁や誘電体のクラックにつながるため、1〜15質量%と限定した。より望ましくは2〜15質量%である。 Alkali metal oxide R 2 O (an oxide selected from at least one of K 2 O, Na 2 O, and Li 2 O) has the effect of lowering the softening point and increasing the fluidity, and thermal expansion. Although there is an effect of increasing the coefficient, if the total content of these alkali metal oxides in the second glass powder is less than 1% by mass, the softening point becomes too high to obtain a desired value, If it exceeds 15% by mass, the coefficient of thermal expansion increases, making it unsuitable for using soda lime glass or the like as a substrate, and if the coefficient of thermal expansion increases, it leads to cracks in the partition walls and dielectrics. It was limited to mass%. More desirably, it is 2 to 15% by mass.

なお、ZrOは、前記したようにガラスの組成物として必須とする成分ではないが、耐水性や耐薬品性を高める効果があるため、第2のガラス粉末においても適宜加えることができる。しかし、その添加量が10質量%を超えるとガラスの軟化点を上昇させ、所望の値を実現できない上、ガラス化を困難とするため10質量%以下が好ましい。 ZrO 2 is not an essential component of the glass composition as described above, but can be added as appropriate to the second glass powder because it has the effect of improving water resistance and chemical resistance. However, when the addition amount exceeds 10% by mass, the softening point of the glass is raised, and a desired value cannot be realized.

一方、ガラスのアルカリ土類酸化物RO(BaO、SrO、CaO)は、ガラスの軟化点を下げ流動性を増加し熱膨張係数を適宜に調整する効果を有するが、40質量%を超えると熱膨張係数が大きくなりソーダライムガラスを基板に用いるには不適切となる。   On the other hand, glass alkaline earth oxides RO (BaO, SrO, CaO) have the effect of lowering the softening point of the glass and increasing the fluidity and appropriately adjusting the thermal expansion coefficient. An expansion coefficient becomes large and it becomes unsuitable for using soda-lime glass for a board | substrate.

前記した第1、第2のガラス粉末の粒度は前記した無機酸化物粉末Bと同じく、D50で10μm以下が望ましくさらに望ましくは5μm以下である。これより大きいと緻密な隔壁および誘電体を得られなくなる。所望の粒度の粉末は、ボールミル、ジェットミル等の公知の粉砕方法により得ることができる。ガラス粉末の粒度の確認は前記と同じ公知の粒度解析計(例えば「マイクロトラック」登録商標)を用いることができる。 Similar to the inorganic oxide powder B described above, the particle size of the first and second glass powders described above is preferably 10 μm or less at D 50 and more preferably 5 μm or less. If it is larger than this, it will not be possible to obtain dense barrier ribs and dielectrics. A powder having a desired particle size can be obtained by a known pulverization method such as a ball mill or a jet mill. The particle size of the glass powder can be confirmed using the same known particle size analyzer as described above (for example, “Microtrack” registered trademark).

本発明に係る誘電体組成物は、ガラス粉末A70〜95質量%と、石英、アルミナ、ジルコニア、ジルコン、フォルステライト、酸化チタン、耐熱黒色顔料のうち少なくとも1種類以上の無機酸化物粉末B5〜30質量%を含有する誘電体組成物であって、ガラス粉末Aが、鉛とアルカリを含まないでビスマスを含む第1のガラス粉末70〜95質量%および鉛とビスマスを含まない第2のガラス粉末5〜30質量%を混合してなる誘電体組成物、またはこの誘電体組成物における前記第1のガラス粉末が鉛とアルカリを含まず酸化物換算でBi 60〜90質量%、SiO 1〜15質量%、Al 1〜15質量%、B 2〜15質量%を含有し、前記第2のガラス粉末がSiO 5〜35質量%、Al 1〜7質量%、B 15〜45質量%、ZnO 20〜45質量%、LiO、NaO、KOのうち少なくとも1種類以上から選択されるアルカリ金属酸化物を合計で1〜15質量%を含有する誘電体組成物を用いて形成されるが、その形成方法としては、例えば本発明の誘電体ペーストをスクリーン印刷等で基板に塗布印刷し、塗布印刷したペーストの溶剤を除去する乾燥工程、誘電体組成物を焼結させる焼成工程を経て形成する方法、あるいは誘電体ペーストを使用しないで、前記誘電体組成物粉末を基板上に配して焼成する方法を用いることができる。 The dielectric composition according to the present invention comprises 70 to 95% by mass of glass powder A and at least one inorganic oxide powder B5 to 30 among quartz, alumina, zirconia, zircon, forsterite, titanium oxide, and heat-resistant black pigment. A dielectric composition containing mass%, wherein the glass powder A contains 70 to 95 mass% of the first glass powder containing bismuth without containing lead and alkali, and the second glass powder containing no bismuth and lead. A dielectric composition obtained by mixing 5 to 30% by mass, or the first glass powder in this dielectric composition does not contain lead and alkali, and Bi 2 O 3 60 to 90% by mass in terms of oxide, SiO 2 15 wt%, Al 2 O 3 1 to 15 wt%, B 2 O 3 containing 2 to 15 wt%, the second glass powder SiO 2 5 to 35 wt%, Al 2 O 3 To 7 wt%, B 2 O 3 15~45 wt%, ZnO 20 to 45 wt%, Li 2 O, Na 2 O, in a total amount of alkali metal oxide selected from at least one or more of K 2 O The dielectric composition containing 1 to 15% by mass is formed using a dielectric paste of the present invention by applying the dielectric paste of the present invention to a substrate by screen printing or the like, and applying and printing the paste solvent A method of forming through a drying step of removing the dielectric, a baking step of sintering the dielectric composition, or a method of firing the dielectric composition powder on a substrate without using a dielectric paste Can do.

ここで、前記誘電体組成物の粉末と樹脂および有機溶剤で構成される本発明の誘電体ペーストにおいて、その構成要素の一つである樹脂は、ペーストの粘性を保持し、また塗布・乾燥後の形状維持、乾燥膜の機械的強度向上に必要であるが、誘電体組成物の粉末(ガラスペースト無機成分)100質量部に対し0.5質量部未満では乾燥膜の機械的強度が不足し、誘電体ペーストの粘性の保持が確保できず保存中の無機成分が沈降しペーストの態をなさない問題点があり、一方、10質量部を超えると誘電体ペーストの粘度がスクリーン印刷には不適切な高粘度となるため、0.5〜10質量部と限定した。より望ましくは1質量%〜8質量%である。この樹脂としては、公知の厚膜技術で用いられるエチルセルロース樹脂、アクリル樹脂、ポリビニルブチラール樹脂を用いることができる。なお、アクリル樹脂にはメタクリレート樹脂を含むものとする。樹脂の分子量は後述する有機溶剤に溶解しガラスペーストの粘性を確保できる範囲であれば問題は無い。例えば、樹脂の分子量が5000〜200000の範囲であれば問題な無い。   Here, in the dielectric paste of the present invention composed of the dielectric composition powder, a resin and an organic solvent, the resin which is one of the components retains the viscosity of the paste, and after coating and drying. Is necessary for maintaining the shape of the film and improving the mechanical strength of the dry film, but the mechanical strength of the dry film is insufficient if it is less than 0.5 parts by mass with respect to 100 parts by mass of the dielectric composition powder (glass paste inorganic component). On the other hand, there is a problem that the viscosity of the dielectric paste cannot be ensured and the inorganic component during storage settles and does not form a paste. On the other hand, when the amount exceeds 10 parts by mass, the viscosity of the dielectric paste is not suitable for screen printing. In order to become a suitable high viscosity, it limited to 0.5-10 mass parts. More desirably, the content is 1% by mass to 8% by mass. As this resin, an ethyl cellulose resin, an acrylic resin, or a polyvinyl butyral resin used in a known thick film technique can be used. The acrylic resin includes a methacrylate resin. There is no problem as long as the molecular weight of the resin is within a range in which the viscosity of the glass paste can be secured by dissolving in an organic solvent described later. For example, there is no problem if the molecular weight of the resin is in the range of 5000 to 200000.

また、有機溶剤はペーストの流動性の向上には欠かせない構成要素であるが、誘電体組成物の粉末(ガラスペースト無機成分)100質量%に対し溶剤量20質量%未満ではペースト化することが困難であり、他方、45質量%を超えると乾燥時の膜の収縮が大きくなり乾燥膜のクラックの発生が起こりやすいため、20〜45質量%と限定した。なお、有機溶剤は、公知の厚膜技術で用いられるテルピノール、ジヒドロテルピノール、ブチルカルビトールアセテート、ブチルカルビトール、2,2,4−トリメチル−1,3−ペンタンジオールモノブチレート、オクチルアルコールのうちから選択することができる。勿論、これら溶剤は単独もしくは混合して用いることができることはいうまでもない。   In addition, the organic solvent is an essential component for improving the fluidity of the paste. However, when the amount of the solvent is less than 20% by mass with respect to 100% by mass of the dielectric composition powder (glass paste inorganic component), the paste should be made into a paste. On the other hand, if it exceeds 45% by mass, the shrinkage of the film during drying becomes large and cracks of the dry film are likely to occur, so it is limited to 20 to 45% by mass. The organic solvents are terpinol, dihydroterpinol, butyl carbitol acetate, butyl carbitol, 2,2,4-trimethyl-1,3-pentanediol monobutyrate, octyl alcohol used in known thick film technology. You can choose from. Of course, it goes without saying that these solvents can be used alone or in combination.

ペースト印刷(塗布)は、スクリーン印刷はもちろんダイコーター、ロールコーターで行うことができる。ガラスペーストには消泡剤、分散剤、感光性材料など厚膜ガラスペーストで公知の添加物を加えることができる。ガラスペーストの製造はロールミル、ボールミルなど公知の方法を用いることができる。   Paste printing (coating) can be performed with a die coater or a roll coater as well as screen printing. Known additives can be added to the glass paste as thick film glass pastes such as antifoaming agents, dispersants, and photosensitive materials. The glass paste can be produced by a known method such as a roll mill or a ball mill.

以下に、本発明の実施例および比較例を示すが、本発明はこれらの実施例によって何ら限定されるものではない。   Examples of the present invention and comparative examples are shown below, but the present invention is not limited to these examples.

本実施例におけるガラスは、表1に示す組成のものを1300℃で溶融、急冷し、ボールミルで粉砕して得た。得られたガラス粉末の粒度はマイクロトラックで測定し、ガラス転位点及び軟化点はTG−DTA(セイコー電子社製TG/DTA320型)で測定した。また、熱膨張係数は棒状にしたガラスをTMA(セイコー電子社製TMA320)で測定した。
次に、ガラス粉末、無機酸化物を表2の組成に配合したガラスペースト無機成分100質量部にビヒクル35質量部を加えロールミルで混合してガラスペーストを得た。なお、アルミナは粒度D50(0.5μm)のものを、石英ガラスは粒度D50(2μm)のものを、酸化チタンはルチル型で粒度D50(0.5μm)のものを用いた。ビヒクルは、樹脂にエチルセルロース(分子量160000)10質量%、溶剤にテルピノール50質量%、ブチルカルビトールアセテート40質量%を混合し60℃に加熱して得たものを用いた。
The glass in this example was obtained by melting, quenching at 1300 ° C., and pulverizing with a ball mill. The particle size of the obtained glass powder was measured with a microtrack, and the glass transition point and the softening point were measured with TG-DTA (TG / DTA320 type manufactured by Seiko Denshi). The coefficient of thermal expansion was measured with TMA (TMA320 manufactured by Seiko Electronics Co., Ltd.) for glass in a rod shape.
Next, 35 parts by mass of a vehicle was added to 100 parts by mass of an inorganic component of glass paste in which glass powder and inorganic oxide were blended in the composition shown in Table 2, and the mixture was mixed by a roll mill to obtain a glass paste. Alumina having a particle size D 50 (0.5 μm), quartz glass having a particle size D 50 (2 μm), and titanium oxide having a rutile type and a particle size D 50 (0.5 μm) were used. As the vehicle, a resin obtained by mixing 10% by mass of ethyl cellulose (molecular weight 160000) with a resin, 50% by mass of terpinol and 40% by mass of butyl carbitol acetate and heating to 60 ° C. was used.

このようにして得られた表2に示す誘電体ペーストをそれぞれソーダライムガラス基板に塗布印刷し、塗布印刷したペーストの溶剤を乾燥工程で除去した後、ベルト型焼成炉で所定の温度で焼成(ピーク温度保持時間30分)した。   Each of the dielectric pastes shown in Table 2 thus obtained was applied and printed on a soda lime glass substrate, and the solvent of the applied and printed paste was removed in a drying step, followed by firing at a predetermined temperature in a belt-type firing furnace ( Peak temperature holding time 30 minutes).

本実施例における焼成膜の状態(緻密性)、銀電極の変色、基板の反り、比誘電率を表3に示す。
ここで、焼成膜の状態は、得られたペーストをソーダライムガラス基板に印刷し、塗布印刷したペーストの溶剤を乾燥工程で除去した後、ピーク温度保持時間30分のベルト型焼成炉で焼成し、焼成後の誘電体の焼成断面をSEMで観察しボイドの有無を確認した結果を示す。また、銀電極の変色は、厚膜法で銀電極を形成したソーダライムガラス基板にペーストを印刷し、ピーク温度580℃、保持時間30分のベルト型焼成炉で焼成したときの銀電極の変色を目視で確認した結果を示す。基板の反りは、得られたペーストのうち焼成膜の緻密性に問題がないペーストを厚み0.7mmの5cm四方のソーダライムガラス基板に印刷し、ピーク温度580℃、保持時間30分のベルト型焼成炉で焼成したときの基板の裏面を表面粗さ計(東京精密製 E−MD−S39A型)にてトレースして確認した結果を示す。基板の反りが50μm以下であれば実用に耐える。さらに、比誘電率は、表2に記載のペースト無機成分のうち、銀電極の変色、焼成膜の緻密性に問題のない組成の粉末を乳鉢で混合して得た誘電体組成物粉末を直径7mm、高さ2mmの錠剤状に形成し、ボックス式焼成炉にて温度580℃、保持時間30分の条件で焼成し、室温まで冷却して得られた直径6mm、高さ約1.5mmの錠剤状の試料の表面を研磨し、その両底面(錠剤を円柱にたとえた場合)に金を蒸着し、金を蒸着した両底面を電極として円柱状のコンデンサとしてQメータ法により測定した容量より算出した値を示す。前記容量の測定にはキャパシタンスメータ(横河ヒューレットパッカード製 4278A型)を用いた。比誘電率が15以下ならば実用的に低い値である。
Table 3 shows the state (denseness) of the fired film, the discoloration of the silver electrode, the warpage of the substrate, and the relative dielectric constant in this example.
Here, the state of the fired film is that the obtained paste is printed on a soda lime glass substrate, the solvent of the coated and printed paste is removed in the drying step, and then fired in a belt-type firing furnace having a peak temperature holding time of 30 minutes. The result of having confirmed the presence or absence of a void by observing the baking cross section of the dielectric after baking by SEM is shown. In addition, the discoloration of the silver electrode is obtained by printing the paste on a soda lime glass substrate on which the silver electrode is formed by the thick film method and firing it in a belt-type firing furnace having a peak temperature of 580 ° C. and a holding time of 30 minutes. The result of having confirmed visually is shown. The warp of the substrate is a belt type printed on a 5 cm square soda lime glass substrate having a thickness of 0.7 mm, and having a peak temperature of 580 ° C. and a holding time of 30 minutes. The result of having traced and confirmed the back surface of the board | substrate when baking with a baking furnace with the surface roughness meter (Tokyo Seimitsu E-MD-S39A type | mold) is shown. If the substrate warpage is 50 μm or less, it is practically usable. Further, the relative dielectric constant is the diameter of the dielectric composition powder obtained by mixing, in a mortar, a powder having a composition with no problem in discoloration of the silver electrode and denseness of the fired film among the paste inorganic components listed in Table 2. It is formed into a tablet with a height of 7 mm and a height of 2 mm, fired in a box-type firing furnace at a temperature of 580 ° C. and a holding time of 30 minutes, and cooled to room temperature, having a diameter of 6 mm and a height of about 1.5 mm. The surface of a tablet-like sample is polished, gold is vapor-deposited on both bottom surfaces (when the tablet is compared to a cylinder), and the capacitance measured by the Q meter method using a cylindrical capacitor with both gold-deposited bottom surfaces as electrodes. Indicates the calculated value. The capacitance was measured using a capacitance meter (Yokogawa Hewlett Packard model 4278A). A relative dielectric constant of 15 or less is a practically low value.

表3の結果より明らかなごとく、本発明のペースト1〜8には緻密に焼成できる温度領域があり、また銀電極による変色はなく、基板の反りはすべて実用に耐える50μm以下であり、さらに比誘電率はすべて15以下と低い値を示している。一方、比較例のペースト9、10、13は、第2のガラス粉末の含有量がペースト9は4質量%、ペースト10および13はゼロと、本発明の範囲(5〜30質量%)を満たさないため比誘電率が実用的値である15を超えてしまい低い比誘電率を実現できない。また、比較例のペースト11は、第1のガラス粉末の含有量が本発明の範囲(70〜95質量%)を外れているため銀電極に変色が生じている。さらに、比較例のペースト12は、無機酸化物粉末Bが本発明の範囲(5〜30質量%)を超えて添加されており、緻密に焼成できる温度領域が存在しない。さらにまた、比較例のペースト14、15は、無機酸化物粉末Bが含有されていないため基板の反りが50μmを大きく超えてしまい実用に耐えない。   As is apparent from the results in Table 3, the pastes 1 to 8 of the present invention have a temperature region that can be densely fired, are not discolored by the silver electrode, and all the warpage of the substrate is 50 μm or less that can withstand practical use. The dielectric constants are all as low as 15 or less. On the other hand, in the pastes 9, 10, and 13 of the comparative example, the content of the second glass powder satisfies the range of the present invention (5 to 30% by mass) with the paste 9 being 4% by mass and the pastes 10 and 13 being zero. Therefore, the relative dielectric constant exceeds the practical value of 15, and a low relative dielectric constant cannot be realized. Moreover, since the content of the 1st glass powder has remove | deviated from the range (70-95 mass%) of this invention, discoloration has arisen in the silver electrode of the paste 11 of a comparative example. Furthermore, in the paste 12 of the comparative example, the inorganic oxide powder B is added beyond the range of the present invention (5 to 30% by mass), and there is no temperature range in which the paste can be densely fired. Furthermore, since the pastes 14 and 15 of the comparative examples do not contain the inorganic oxide powder B, the warp of the substrate greatly exceeds 50 μm and is not practical.

Figure 2008214144
Figure 2008214144

Figure 2008214144
Figure 2008214144

Figure 2008214144
Figure 2008214144

本発明の誘電体組成物、誘電体および誘電体ペーストは、ガラスに鉛を含まないため、表示装置の製造工程や廃棄の際に鉛が放出されることがない。このため土壌、地下水、河川等の汚染、公害などの環境問題を引き起こすことがない。また、本発明は、ビスマスを含むガラスと、鉛とビスマスを含まないガラスを混合してなるガラス粉末により、低い誘電率を実現でき、銀電極との発色を抑えることが可能となる。さらに混合ガラス粉末と無機酸化物粉末を組み合わせることで焼成による基板の反りを抑制し、表示装置の寸法精度を確保することが可能となり、表示装置の精度向上に多大な効果を奏する。なお、本発明の隔壁ガラスペーストは、PDPの隔壁ガラスペーストに限らず、蛍光表示管やフィールドエミッションディスプレイ等の表示装置の隔壁形成にも適用できることはいうまでもない。   Since the dielectric composition, the dielectric, and the dielectric paste of the present invention do not contain lead in glass, lead is not released during the manufacturing process or disposal of the display device. For this reason, it does not cause environmental problems such as pollution of soil, groundwater, rivers, and pollution. In addition, the present invention can realize a low dielectric constant and suppress color development with a silver electrode by using glass powder obtained by mixing glass containing bismuth and glass not containing lead and bismuth. Further, by combining the mixed glass powder and the inorganic oxide powder, it is possible to suppress warping of the substrate due to baking, and to ensure the dimensional accuracy of the display device, which has a great effect on improving the accuracy of the display device. Needless to say, the barrier rib glass paste of the present invention is not limited to the barrier rib glass paste of PDP, but can be applied to barrier rib formation of display devices such as fluorescent display tubes and field emission displays.

本発明に係る一般的なAC型PDPの一例を示す図で、図(a)はAC型PDPの前面板の構造を一部破断して示す斜視図、図(b)は同じくAC型PDPの背面板の構造を一部破断して示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the general AC type PDP which concerns on this invention, A figure (a) is a perspective view which partially fractures | ruptures and shows the structure of the front plate of AC type PDP, A figure (b) is also AC type PDP. It is a perspective view which shows a partially broken structure of the back plate. 本発明に係る一般的なVFDの一例を一部破断して示す斜視図である。It is a perspective view which shows an example of general VFD concerning the present invention partially fractured.

符号の説明Explanation of symbols

1 前面板
2 背面板
10 ガラス基板
11 透明電極
12 バス電極
13 アドレス電極
14 MgO膜
15 誘電体層
16 隔壁
17 蛍光体
21 フェイスガラス
22 ガラス基板
23 格子電極
24 セグメント電極
25 絶縁層
26 フィラメント
27 配線
28 端子
DESCRIPTION OF SYMBOLS 1 Front plate 2 Back plate 10 Glass substrate 11 Transparent electrode 12 Bus electrode 13 Address electrode 14 MgO film 15 Dielectric layer 16 Partition 17 Phosphor 21 Face glass 22 Glass substrate 23 Grid electrode 24 Segment electrode 25 Insulating layer 26 Filament 27 Wiring 28 Terminal

Claims (4)

ガラス粉末A70〜95質量%と、石英、アルミナ、ジルコニア、ジルコン、フォルステライト、酸化チタン、耐熱黒色顔料のうち少なくとも1種類以上の無機酸化物粉末B5〜30質量%を含有する誘電体組成物であって、ガラス粉末Aが、鉛とアルカリを含まないでビスマスを含む第1のガラス粉末70〜95質量%および鉛とビスマスを含まない第2のガラス粉末5〜30質量%を混合してなることを特徴とする誘電体組成物。   A dielectric composition containing 70 to 95% by mass of glass powder A and 5 to 30% by mass of inorganic oxide powder B of at least one of quartz, alumina, zirconia, zircon, forsterite, titanium oxide and heat-resistant black pigment. The glass powder A is obtained by mixing 70 to 95% by mass of the first glass powder containing bismuth without containing lead and alkali and 5 to 30% by mass of the second glass powder not containing lead and bismuth. A dielectric composition characterized by the above. 前記第1のガラス粉末が鉛とアルカリを含まず酸化物換算でBi 60〜90質量%、SiO 1〜15質量%、Al 1〜15質量%、B 2〜15質量%を含有し、前記第2のガラス粉末がSiO 5〜35質量%、Al 1〜7質量%、B 15〜45質量%、ZnO 20〜45質量%、LiO、NaO、KOのうち少なくとも1種類以上から選択されるアルカリ金属酸化物を合計で1〜15質量%を含有することを特徴とする請求項1に記載の誘電体組成物。 Bi 2 O 3 60 to 90% by mass in terms of oxide of the first glass powder is free of lead and alkali, SiO 2 1 to 15 wt%, Al 2 O 3 1~15 wt%, B 2 O 3 2 containing 15 wt%, the second glass powder SiO 2 5 to 35 wt%, Al 2 O 3 1 to 7 wt%, B 2 O 3 15 to 45 wt%, ZnO 20 to 45 wt%, 2. The dielectric composition according to claim 1, comprising a total of 1 to 15% by mass of an alkali metal oxide selected from at least one of Li 2 O, Na 2 O, and K 2 O. object. 請求項1または請求項2に記載の誘電体組成物で形成されることを特徴とする誘電体。   A dielectric comprising the dielectric composition according to claim 1 or 2. 請求項1または請求項2に記載の誘電体組成物の粉末100質量部に対し樹脂0.5〜10質量部、有機溶剤20〜45質量部で形成されることを特徴とする誘電体ペースト。   A dielectric paste formed of 0.5 to 10 parts by mass of a resin and 20 to 45 parts by mass of an organic solvent with respect to 100 parts by mass of the powder of the dielectric composition according to claim 1 or 2.
JP2007055283A 2007-03-06 2007-03-06 Dielectric composition, dielectric using the dielectric composition and dielectric paste Pending JP2008214144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055283A JP2008214144A (en) 2007-03-06 2007-03-06 Dielectric composition, dielectric using the dielectric composition and dielectric paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055283A JP2008214144A (en) 2007-03-06 2007-03-06 Dielectric composition, dielectric using the dielectric composition and dielectric paste

Publications (1)

Publication Number Publication Date
JP2008214144A true JP2008214144A (en) 2008-09-18

Family

ID=39834636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055283A Pending JP2008214144A (en) 2007-03-06 2007-03-06 Dielectric composition, dielectric using the dielectric composition and dielectric paste

Country Status (1)

Country Link
JP (1) JP2008214144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113580A1 (en) * 2009-03-31 2010-10-07 東レ株式会社 Flat-panel display member, and paste for the uppermost layer of partition wall of flat-panel display member
JP2018111634A (en) * 2017-01-12 2018-07-19 株式会社オハラ Glass, and glass ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113580A1 (en) * 2009-03-31 2010-10-07 東レ株式会社 Flat-panel display member, and paste for the uppermost layer of partition wall of flat-panel display member
JP5516399B2 (en) * 2009-03-31 2014-06-11 東レ株式会社 Flat panel display material and partition wall uppermost layer paste for flat panel display material
JP2018111634A (en) * 2017-01-12 2018-07-19 株式会社オハラ Glass, and glass ceramics
JP7009064B2 (en) 2017-01-12 2022-01-25 株式会社オハラ Glass and glass ceramics

Similar Documents

Publication Publication Date Title
JP2006282467A (en) Glass composition and glass paste composition
KR100301661B1 (en) Dielectric composite for plasma display panel
US7326666B2 (en) Glass for forming barrier ribs, and plasma display panel
JP2009221027A (en) Lead-free low-melting-point glass composition having acid resistance
JP2007176726A (en) Bismuth-based lead-free glass
KR100565194B1 (en) Glass compositions for plasma display panel and preparing method therefor
KR100326558B1 (en) Composition of Barrier Rib for Plasma Display Panel
KR100554248B1 (en) Glass ceramic composition and thick-film glass paste composition
KR100730042B1 (en) Composition of paste, green sheet for barrier ribs of plasma display panel, and plasma display panel using the same
JP2005194120A (en) Glass ceramic powder composition and glass paste
JP2007302510A (en) Glass paste composition and barrier rib for display using the same
JP2008214144A (en) Dielectric composition, dielectric using the dielectric composition and dielectric paste
KR100978430B1 (en) Plasma display panel
JP2004172250A (en) Thick-film resistor composition and thick-film resistor using the same, and method for manufacturing the same
JP2006143479A (en) Glass for forming barrier rib, and plasma display panel
JP2008050252A (en) Method for manufacturing glass substrate with partition wall
KR100268587B1 (en) Dielectric composition for plasma display panel
JP2006290683A (en) Dielectric film and method for manufacturing the same
JP2007308320A (en) Dielectric composition, dielectric paste composition, and dielectric obtained by using the paste composition
JP5286777B2 (en) Photosensitive conductive paste
KR20090059710A (en) Frit of pdp filter and method for manufacturing the same
JP2009037890A (en) Method for manufacturing plasma display member
JP2010135084A (en) Plasma display panel, and manufacturing method thereof
JP2009167025A (en) Insulation layer-forming glass composition and insulation layer-forming material
KR100769451B1 (en) Plasma Display Panel