WO2009156975A1 - Materiales nanocompuestos activos y el procedimiento para su obtención. - Google Patents

Materiales nanocompuestos activos y el procedimiento para su obtención. Download PDF

Info

Publication number
WO2009156975A1
WO2009156975A1 PCT/IB2009/053929 IB2009053929W WO2009156975A1 WO 2009156975 A1 WO2009156975 A1 WO 2009156975A1 IB 2009053929 W IB2009053929 W IB 2009053929W WO 2009156975 A1 WO2009156975 A1 WO 2009156975A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocomposite materials
compounds
materials according
clay
active
Prior art date
Application number
PCT/IB2009/053929
Other languages
English (en)
French (fr)
Other versions
WO2009156975A9 (es
Inventor
José María LAGARON CABELLO
María Antonieta BUSOLO PONS
María Eugenia NUÑEZ CALZADO
Original Assignee
Nanobiomatters, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200801902A external-priority patent/ES2331284B1/es
Priority claimed from ES200930353A external-priority patent/ES2352626B1/es
Priority to EP09769783A priority Critical patent/EP2319881A4/en
Priority to US13/000,797 priority patent/US8834907B2/en
Priority to MX2010014346A priority patent/MX2010014346A/es
Priority to KR1020117001865A priority patent/KR20110044981A/ko
Application filed by Nanobiomatters, S. L. filed Critical Nanobiomatters, S. L.
Priority to JP2011515723A priority patent/JP2011526939A/ja
Priority to CN200980128502XA priority patent/CN102124049A/zh
Priority to CA2728884A priority patent/CA2728884A1/en
Priority to AU2009263774A priority patent/AU2009263774A1/en
Publication of WO2009156975A1 publication Critical patent/WO2009156975A1/es
Priority to IL210187A priority patent/IL210187A0/en
Publication of WO2009156975A9 publication Critical patent/WO2009156975A9/es
Priority to US14/454,253 priority patent/US20140348891A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/16Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers

Definitions

  • the present invention relates to active and / or bioactive nanocomposite materials generically based on the use of nano-clays as a support for the active substances.
  • Said activity is obtained through the formulation of a specific type of additives based on sheets of natural and / or synthetic clays that are intercalated with metals and / or salts thereof with antimicrobial and / or oxygen sequestration capacity and / or with other organic, inorganic compounds or combination thereof that also have antimicrobial and / or antioxidant properties.
  • the formulation of nanocomposite materials based on the incorporation of the aforementioned additives in a plastic matrix, or ceramic, by any method of manufacturing or processing of plastics or of preparation and processing of ceramic powders is described.
  • the additives are incorporated into plastic matrices by methods of deposition and evaporation of the solvent (eg coatings and lamination), application of the mon-American solution followed by polymerization and curing or cross-linking or vulcanication, operations typically used during the formulation of thermosets and elastomers, by melt mixing processes (eg extrusion, injection, blowing) and / or in-situ polymerization methods.
  • the nanocomposite materials with plastic matrix can be prepared by different procedures typically used in the processing and manufacturing of plastics, such as casting and / or rolling techniques (solvent dissolution and evaporation), melt mixing, thermosetting and elastomer formulation and of in-situ polymerization, for its advantageous application in both active packaging (as defined in national and international legislation on active and intelligent food packaging) of products of interest for food and antimicrobial plastics, antioxidants and oxygen sequestrants, in surgical equipment, as well as for applications in other sectors.
  • casting and / or rolling techniques solvent dissolution and evaporation
  • melt mixing thermosetting and elastomer formulation and of in-situ polymerization
  • thermosetting and elastomer formulation and of in-situ polymerization for its advantageous application in both active packaging (as defined in national and international legislation on active and intelligent food packaging) of products of interest for food and antimicrobial plastics, antioxidants and oxygen sequestrants, in surgical equipment, as well as for applications in other sectors.
  • nanocomposite materials with ceramic matrix these are incorporated during the preparation of powders typically used in the manufacture of ceramic products that involve grinding, atomization, pressing or extrusion, enamelling in the case of enameled, and cooked products.
  • the present invention relates to the use of said materials for multisectoral applications.
  • nanocomposites and their processing techniques are described in, for example, US Patent No. US 4739007; and more specifically in what concerns the present invention in WO2007074184A1.
  • a new route for manufacturing nanocomposites that may or may not be biodegradable, with antimicrobial properties based on natural products and / or with the ability to fix or release controlled other active or bioactive substances is described.
  • These nanocomposites based on phyllosilicates and / or synthetic double laminar hydroxides are interspersed with different organic modifiers, and once incorporated into thermoplastic and / or thermostable matrices, they are able to improve them. barrier properties to gases and vapors.
  • the aforementioned documents are some examples of patents and literature on polymer clay nanocomposites prepared from modified clays. These documents describe a nanocomposite material such as an exfoliated or interleaved plate, with a touch structure of nanometric dimensions, comprising intercalated clay dispersed in a polymer matrix, such as an oligomer, a polymer, or a mixture thereof.
  • a nanocomposite material such as an exfoliated or interleaved plate, with a touch structure of nanometric dimensions, comprising intercalated clay dispersed in a polymer matrix, such as an oligomer, a polymer, or a mixture thereof.
  • US 4739007 describes the preparation of Nylon-6-clay nanocomposites from montmorillonites treated with alkylammonium salts by the melt mixing method.
  • Microorganisms and in particular bacteria, are the main cause of diseases caused by the consumption of contaminated food. These can survive the heat treatment required for canning or contaminate the food after such treatment due to sutures or leaks from the container. In addition to its potential danger to health, the proliferation of microorganisms can cause alterations in food that in turn give rise to changes in the physical, chemical and organoleptic properties thereof. Some of the traditional preservation methods such as heat treatments, irradiation, modified atmosphere packaging or addition of salts, can not be applied to certain types of food such as vegetables, fruits and fresh meats or ready-to-eat products. On the other hand, the direct application of antibacterial substances on food has limited effects since they are neutralized and spread rapidly into the food.
  • active packaging is a viable and advantageous way to limit and control bacterial growth in food, since antimicrobial agents migrate slowly from the material to the surface of the product.
  • the migration can be as extensive as required, so that it covers the time of transport, storage and is guaranteed until consumption.
  • the silver antimicrobial nanoadditives described in the present invention once incorporated into the containers, they can control the microbial contamination by inactivation of the enzymatic metabolism of the microorganisms.
  • microorganisms are also undesirable in other sectors.
  • it is essential to eliminate the risks of infection in invasive treatments, of open wounds, as well as in routine treatments.
  • coatings with antimicrobial films of catheters and stethoscopes, and the elaboration of fabrics in fibers pretreated with silver nitrate or with broad-spectrum antibiotics for wound and burn treatments can be cited.
  • the use of fibers pretreated with antibacterial agents limits the proliferation of microorganisms in the face of sweat, humidity and high temperatures, reducing bad body odors and risks of contagion.
  • Fouling is the accumulation and deposition of biological material on surfaces exposed to various environmental conditions, such as boats, objects or painted systems exposed to high humidity conditions or other surfaces exposed to active, aggressive or environmentally adverse media.
  • fuel consumption can increase up to 50% due to the hydrodynamic resistance offered by the accumulation of biological material in the hull.
  • Antimicrobial systems can act as antifouling if they are applied in the form of layers on the surface of the boat, making fuel consumption optimal, and cleaning and maintenance operations less frequent.
  • coating the interior with a film of antimicrobial compounds significantly reduces the growth of algae and the generation of bad odors, so that the quality of the water contained is guaranteed for longer.
  • Plastic materials with antimicrobial properties can also be used in the manufacture of cranks, handlebars, handles and armrests of public transport elements, in railings and support points of places of high concurrence, in the manufacture of sanitary parts for public and mass use, as well as in headphones and microphones of telephones and audio systems of public places; kitchen tools and food transport, all this in order to reduce the risk of spreading infections and diseases. It is also of emerging interest to manufacture ceramic pieces that inhibit the proliferation of microorganisms on ceramic products, for example, the proliferation of fungi and molds on surfaces covered with ceramic tiles or on the junction points of these.
  • the active properties are generically conferred or reinforced by the incorporation of substances based on silver, iron or other metals and / or organic natural or synthetic substances with for example biocidal capacity, antioxidant and sequestrant oxygen scavengers in The structure of the nanoarcillas.
  • the incorporation of metallic biocides in clays is not only interesting for the manufacture of nanocomposites based on the addition of such additives to plastics, but, because biocides based on metallic metallics resist heat treatments, which may also be necessary for To favor the reduction of the salts of biocidal metals to their corresponding metals, they can also be used in the ceramic industry for the manufacture of ceramic and porcelain products with antimicrobial properties.
  • Some metals such as iron, oxidize easily and therefore can be used to sequester oxygen in applications where this gas is a problem for product conservation.
  • Some natural substances such as resveratrol have antioxidant and bioactive properties, that is, in addition to their antioxidant nature due to their ability to fix free radicals, they provide a health benefit when ingested if there is a migration from the plastic.
  • nano-clay based antimicrobial nanoadditives allows to increase the efficacy of these products, due to the large dispersion exhibited by the nanoparticles in these matrices. Excellent results are thus obtained with lower proportions of nanoadditives, and the ceramic products can be formulated in a more efficient and versatile way since the antimicrobial is supported on the clays that are natural components of the ceramic matrix itself and therefore also result in a significant reduction in costs.
  • the aforementioned examples also allow to define the field of application of the new nanocomposite materials with active properties based on metals and natural or synthetic substances, whose procedures for obtaining are detailed in this patent.
  • the nanocomposite materials antimicrobial metals and some ammonium salts eg the hexadecyltrimethylammonium bromide allowed for food contact
  • the present invention relates to active nanocomposite materials, obtained by the introduction of laminar nanoadditives with or without prior modification of antimicrobial and / or chitosan quaternary ammonium salts and / or derivatives of this antimicrobial which also include intercalated metal nanocomposite materials
  • a first essential aspect of the present invention refers to nanocomposite materials that have a plastic matrix, or ceramic and are constituted from the incorporation of nanoadditives of clays of the laminar type.
  • the plastic matrices are selected without limitation from the group consisting of thermoplastics, thermosets and elastomers such as polyolefins, polyesters, polyamides, polyimides, polyketones, polyisocyanates, polysulfones, styrenic plastics, phenolic resins, amidic resins, ureic resins, melamine resins, resins Polyester, epoxy resins, polycarbonates, polyvinyl pyrrolidones, epoxy resins, polyacrylates, rubbers and rubbers, polyurethanes, silicones, aramids, polybutadiene, polyisoprenes, polyacrylonitriles, PVDF, PVA, PVOH, EVOH, PVC, PVDC or biodegradable biomass materials as proteins, polysaccharides, lipids and biopolyesters or mixtures of all these and may contain all types of additives typically added to plastics to improve their manufacture and / or processing or their properties. Furthermore, said type of matrix is in a
  • the ceramic matrices comprise and without limitation, water, clays (preferably kaolinites and occasionally montmorillonites), deflocculants, feldspar, feldspathic and occasionally sands, kaolin, carbonates and zirconium.
  • the ceramic matrices of the enamel type and other type of ceramic coatings include and without limitation kaolin or a kaolinitic clay (5%) or montmorillonite (1%), feldspars, frits, silica and silica sands.
  • said type of matrix is in a proportion from 5% to 99.99%; preferably from 20% to 99.99%, and more preferably from 65% to 99.99%.
  • the matrices of plastic or ceramic type may contain agents with properties of barrier to electromagnetic radiation and fire resistance and other active or bioactive substances additional to the nano-clays, selected from the group consisting of metals and / or their salts organic and inorganic antimicrobial metals (preferably silver, copper, nickel or cobalt), oxygen sequestrants such as iron and its salts, low molecular weight substances that have an active or bioactive character selected from ethanol, or ethylene, or of the essential oils type (preferably thymol, carvacrol, linalool and mixtures), or small-sized antimicrobial peptides (preferably bacteriocins) natural or obtained by genetic modification (preferably nisins, enterokines, lacticines and lysozyme), quaternary ammonium salts, preferably those allowed for food contact, or natural or synthetic antioxidants (pref errably polyphenols such as, but not limited to, resveratrol or flavonoids, plant extracts such as, but
  • an antioxidant such as resveratrol
  • an oxygen sequestrant such as iron and iron salts
  • the nano-clays are selected from the group consisting of laminar silicates and / or double laminar hydroxides. These above are selected without limitation from the group consisting of montmorillonite, kaolinite, bentonite, smectite, hectorite, sepiolite, gibsite, dicktite, nacritite, saponite, halloisite, vermiculite, mica, and / or mixtures thereof or with other phyllosilicates, mainly, with or without previous organic and / or inorganic surface modification. These materials are characterized in that they are introduced as laminar type charges with sizes in the range of nanometers in at least the thickness of the particle, in plastic matrices and in ceramic matrices to form the new active nanocomposites.
  • the active additives are in a proportion from 0.01% to 95%, preferably from 0.01% to 80% and more preferably from 0.01 to 10%.
  • the active additives are in a proportion from 0.01 to 95%, by weight, preferably between 0.01% and 80% and more preferably from 0.01 to 35%.
  • the active additives are in a proportion from 0.01% to 50%, preferably from 0.01% to 20% and more preferably from 0.01 to 15%.
  • the superficial modification of the clay nanoadditives when applied allows, in addition to introducing or accentuating the active activity by incorporating compatibilizers with biocidal properties, increasing the compatibility between the clay and the matrix to achieve better exfoliation of the clay.
  • a good morphology is achieved to improve the dispersion and surface exposure of the active antimicrobial substance and / or oxygen sequestrant, which are substances based on metals such as silver, copper, nickel, cobalt, iron, zinc and / or combinations of the same and / or their inorganic or organic salts, organic compounds, preferably salts allowed for food contact (that is that they are included in the lists of monomers and other starting substances authorized by the legislation to be used in the manufacture of materials and objects plastics) such as and without limitation the hexadecyltrimethylammonium bromide (who this invention has proven to be antimicrobial in itself), polyethylene glycol esters with aliphatic monocarboxylic acids (C6-C22) and their sodium and ammonium sulfates
  • plastic materials In the case of plastic materials, they have active activity and improvements in their barrier properties and other physical properties, resistance to fire and allow blocking electromagnetic radiation, in addition to allowing controlled release of the same or other substances with active properties and / or bioactive with respect to the pure material. In the case of materials ceramic, more effective antimicrobial properties are obtained due to the nanoparticulation of the biocidal metal.
  • nanocomposite materials are prepared in the case of plastics by means of lamination or coating techniques (casting of the solution), by application of the mon-American solution followed by polymerization and curing, operations typically used during the formulation of thermosets, by the above procedure but followed by crosslinking or vulcanizing, operations typically employed in the manufacture of elastomers, by melt mixing using conventional techniques for processing plastics from pellets and / or powder of the polymer or plastic or by in-situ polymerization.
  • plastic nanocomposite materials are of particular interest in the food packaging industry, since these active packages allow to protect the product from the action of the microorganisms, protect the container itself and its oxidation content either by using antioxidants that sequester free radicals or oxygen scavengers that eliminate oxygen and / or the fixation and / or the controlled release of the same or other active substances and additionally, significantly improve the gas and vapor barrier properties, mechanical properties of UV barrier and others typically associated with the use of nano-clays.
  • plastic and ceramic nanocomposite materials reinforced with nano-clays with active properties are useful in the medical-surgical, biomedical and pharmaceutical areas, for the manufacture and coating of equipment and materials used in routine and invasive treatments and in construction .
  • a second essential aspect of the present invention refers to the process for manufacturing the nanocomposite materials described in the present invention, which may be based on structures such as lamellar phyllosilicates, including clays (eg montmorillonite, kaolinite, bentonite, smectite , hectorite, sepiolite, saponite, halloisite, vermiculite, mica) or synthetic or natural laminar double hydroxides of laminar structure and comprising the following steps:
  • clays eg montmorillonite, kaolinite, bentonite, smectite , hectorite, sepiolite, saponite, halloisite, vermiculite, mica
  • synthetic or natural laminar double hydroxides of laminar structure comprising the following steps:
  • step 5) Obtaining fine laminar either in liquid suspension or by subsequent drying by the methods described in step 4) powder. These systems in both liquid and powder suspension are considered as the starting product of the present invention.
  • the expanders are selected from the group consisting of DMSO, alcohols, acetates, or water and mixtures thereof, and metal salts of silver, copper, iron, nickel or cobalt, which activate the fines by an initial increase in the basal spacing of the sheets and modify the surface characteristics of the clay.
  • the penetration of the precursors will be accelerated without limitation by the use of temperature, a homogenizer of turbulent regime, ultrasound, supercritical fluids, deflocculating agents such as acrylates and / or phosphates, pressure or mixture of the above.
  • the drying of these, previously washed or not with water or alcohols can be carried out by evaporation in an oven, lyophilization, centrifugation and / or gravimetric processes in solution or turbo-dryers or by atomization.
  • the solution of the interleaved precursor can be used, without a previous washing and / or drying process, as a starting means for the next stage of incorporation of the modifier.
  • the compounds to be inserted are selected and without limitation from the group formed by PVOH, EVOH and derivatives of the same family, and / or biopolymers such as peptides and natural or synthetic proteins via chemical or genetic modification of microorganisms or plants and natural or synthetic polysaccharides via chemical or genetic modification of microorganisms or plants and polypeptides, lipids, nucleic acids and polymers of synthetic nucleic acids obtained chemically or by genetic modification of microorganisms or plants, and biodegradable polyesters such as polylactic, polylactic acid- glycolic, polycaprolactone, adipic acid and derivatives and polydroxyalkanoates, preferably polydroxybutyrate and their copolymers with valeriates, biomedical materials such as hydroxyapatites and phosphates of organic salts,
  • Quaternary ammonium salts can also be intercalated - preferably salts allowed for food contact (that is, they are included in the lists of monomers and other starting substances authorized by the legislation to be used in the manufacture of plastic materials and objects) such as and without limiting sense hexadecyltrimethylammonium bromide, polyethylene glycol esters with aliphatic monocarboxylic acids (C6-C22) and their ammonium and sodium sulfates, perfluorooctanoic acid and its ammonium salt, copolymers of N-methacryloxyethyl-N chloride, N-dimethyl-N -carboxymethylammonium, bis (2-hydroxyethyl) -2-hydroxypropyl-3- (dodecyloxy) methylammonium chloride; and chitosan and its derivatives, silver, iron, copper, nickel and / or its organic or inorganic salts, and other particles or nanoparticles with antimicrobial properties,
  • the inorganic material that is intercalated is based on metals such as silver or organic and / or inorganic salts of silver, copper, cobalt iron, nickel or other metals with antimicrobial power and / or oxygen sequestrant
  • a physical treatment can be applied subsequently or chemical to change the oxidation state of the intercalated metal center, totally or partially.
  • These treatments include non-limiting sense: annealing at high temperatures (250-1200 0 C), UV radiation, infrared radiation, microwave radiation, chemical reduction by ethanol and / or NaBH 4 and / or other chemical reducing agents.
  • the degree of oxidation of the metal center will have been modified, totally or partially, (silver, copper, iron, nickel, zinc, cobalt, or other metal used), giving the material antimicrobial properties and / or more or less intense oxygen sequestrants.
  • the organic material that is intercalated is the EVOH or any material of the family thereof with molar contents of ethylene preferably less than 48%, and more preferably less than 29%, these are taken to saturation in aqueous medium or in solvents specific alcoholic and mixtures of alcohols and water, more preferably water and isopropanol in proportions in volume of water greater than 50%.
  • biopolymers with or without plasticizers, with or without crosslinkers and with or without emulsifiers or surfactants or other nanoadditives are from the group consisting of synthetic and natural polysaccharides (vegetable or animal) such as cellulose and derivatives, carrageenans and derivatives, alginates, dextran, gum arabic and preferably chitosan or any of its natural and synthetic derivatives, more preferably chitosan salts and even more preferably chitosan acetate, and both plant and animal derived proteins and corn proteins (zein), gluten derivatives, such as gluten or its gliadin and glutenin fractions and more preferably gelatin, casein and soy proteins and derivatives thereof, as well as natural or synthetic polypeptides preferably of the elastin type obtained by chemical or modification genetics of microorganisms or plants, lipids such as beeswax, car wax nauba, candelilla wax, shellac and fatty acids and monog
  • the degree of deacetylation will preferably be greater than 80% and more preferably greater than 87%.
  • the penetration of the precursors will be accelerated by the use of temperature, a homogenizer of turbulent regime, ultrasound, pressure or mixture of the above.
  • the active substances will be ethanol, or ethylene, or of the essential oils type (preferably thymol, carvacrol, linalool and mixtures), or natural antimicrobial peptides (preferably bacteriocins) or obtained by genetic modification (preferably nisins, enterokines, lacticins and lysozyme ), or natural or synthetic antioxidants (preferably polyphenols, such as, but not limited to, resveratrol or flavonoids, plant extracts such as, but not limited to, eugenol or rosemary extracts and vitamins, preferably tocopherols and tocotrienols or ascorbic acid / vitamin C) or drugs, or bioavailable enzymes or calcium compounds, marine, probiotic, symbiotic or prebiotic oils (non-digestible fiber), or organic and inorganic metal salts (preferably of silver, copper, iron, nickel or cobalt) or mixture of above.) - These elements are expected to be fixed and / or subsequently released from the nanocomposite towards the
  • the contents to be added are generally less than 80% by volume of the solution, preferably less than 12% and more preferably less than 8%.
  • the penetration of these substances will be accelerated and without limitation through the use of temperature, a homogenizer of turbulent regime, ultrasound, pressure or mixture of the above.
  • deflocculating agents can be contemplated to facilitate the processing, such as and without limitation polyphosphates and / or acrylates.
  • both the nano-clays and the complementary compounds mentioned above can be added during their processing using any manufacturing method related to the plastics processing industry such as extrusion, application and curing processes typically used to manufacture and forming thermosetting and elastomers, injection, blowing, compression molding, resin transfer molding, calendering, thermal shock, ultrasonic internal mixing, co-extrusion, co-injection and mixing of these.
  • antioxidant substances may be processed by any plastics processing method to obtain a concentrate or to obtain pellets that can be processed by any plastics processing method to obtain plastic articles.
  • the polymeric or plastic matrix in this invention the term plastic and polymer is used interchangeably but it is intended to mention both, that is to polymers and plastics
  • the polymeric or plastic matrix can be of any thermoplastic, thermoset or elastomer or derivatives of biomass and biodegradable materials such as proteins, polysaccharides, lipids and biopolyesters or mixtures of all these and may contain all types of additives that improve the properties of the barrier to electromagnetic radiation and fire resistance and / or other nanoadditives other than described in this application and which are typically added to plastics to improve their processing or their properties.
  • precipitation by evaporation of the resulting nanoadditive and modifying set and, optionally, of the plastic matrix can also be carried out in dissolution, using drying methodologies such as heating and / or centrifugation and / or gravimetric processes in solution or turbo-dryers and / or atomization; by cooling or by adding a precipitating agent to form either a powder of the additive or a masterbatch or Io which is also a concentrate of the nanoadditive in a plastic matrix.
  • the organic and / or inorganic metal salts with active properties can be added together with other active or bioactive substances in any of the stages of the manufacture or processing of the ceramic materials, although they will preferably be added during The preparation of powders before atomization
  • the polymer matrix additive concentrates can be treated in the following ways: a) it is crushed to produce a particulate product by grinding. b) is processed using any plastics processing methodology to obtain solid state pellets. c) is processed by any manufacturing process related to the plastics processing industry such as extrusion, injection, blowing, compression molding, resin transfer molding, calendering, thermal shock, internal mixing, ultrasound, coextrusion, coinjection and mixing of these. d) it is used as an additive on any plastic matrix (including the biopolymers and biomedical materials mentioned) in a conventional plastics processing route such as those mentioned above.
  • the nanocomposite material when reinforced with nano-clays containing metals such as silver or organic and / or inorganic salts of silver, copper, cobalt, nickel or other metals with antimicrobial power, iron and / or its salts, it can be applied, both if it has been done before or not, a physical or chemical treatment to change the oxidation state, totally or partially, of the metallic center interspersed in the plastic or ceramic matrix either before, during or after forming.
  • These treatments include without limiting sense: annealing at high temperatures (250-1200 0 C), UV radiation, infrared radiation, microwave radiation, chemical reduction by ethanol and / or NaBH 4 and / or other chemical reducing agents.
  • the degree of oxidation of the metal center will have been modified, giving the material advantageous antimicrobial and / or oxygen sequestration properties.
  • a third essential aspect of the present invention refers to the use of nanocomposite materials obtained to reinforce the antimicrobial activity in multisectoral applications in which it is required to limit microbial proliferation through the use of plastic materials and ceramic compounds, particularly in applications of packaging and general packaging of food and food components (in the case of polymeric materials), in biomedical, medical-surgical and pharmaceutical applications, or in antifouling applications, in construction applications for enamels, tiles, thermosets and waxes, in applications for personal hygiene products and food containers, greenhouse films, in contact applications in busy places such as supermarkets, carts, stands, linear, countertops, kitchens, escalators or airports, in textile applications, such as gas barriers, vapors , solvents and org products anodes, such as aromas and components of aromas, oils, fats and hydrocarbons, and mixed products of an organic and inorganic nature, for applications that require biodegradable or compostable character, for active packages that require the fixation and / or controlled release of substances of low molecular weight, for applications that
  • nanocomposite materials will also serve as materials with electromagnetic radiation and fire resistance barrier properties. All the features and advantages set forth, as well as other features of the invention, can be better understood with the following examples. On the other hand, the examples shown below are not limited but illustrative so that the present invention can be better understood.
  • Figure 1 corresponds to the X-ray diffractograms (WAXS) obtained from a sample of montmorillonite-type clay modified with hexadecyltrimethylammonium bromide (organic antimicrobial, expanding and compatibilizing agent) and silver nitrate (temperature resistant antimicrobial), using ethanol as a reducing agent by the method described in Example 1, and a sample of the same type of unmodified clay.
  • WAXS X-ray diffractograms
  • Figure 2 is an image obtained by transmission electron microscope (TEM) in which the main morphologies that can be observed in the nanoloads obtained according to the present invention are presented.
  • the image corresponds to an aggregate of montmorillonite-type clay sheets modified with hexadecyltrimethylammonium bromide and silver nitrate, using ethanol as a reducing agent, by the method described in Example 1.
  • the nanoparticles of silver formed on the surface can be observed.
  • Figure 3 corresponds to X-ray diffractograms (WAXS) obtained from a sample of kaolinitic clay (pretreated with DMSO) modified with hexadecyltrimethylammonium bromide (organic antimicrobial, expanding and compatibilizing agent) and with silver nitrate (resistant antimicrobial at the temperature), using UV radiation as a reducing agent by the method described in Example 2, and a sample of the same type of unmodified clay (pretreated with DMSO).
  • WAXS X-ray diffractograms
  • Figure 4 is an image obtained by transmission electron microscope (TEM) in which the main and typical morphologies that can be observed in the nanoloads obtained according to the present invention are presented.
  • the image corresponds to an aggregate of kaolinitic clay sheets (pretreated with DMSO) modified with hexadecyltrimethylammonium bromide and silver nitrate, using UV radiation as a reducing agent, by the method described in Example 2.
  • Figure 5 is an image obtained by transmission electron microscope (TEM) of an aggregate of montmorillonite-type clay sheets interspersed with silver nitrate, using ethanol as the reducing agent, by the method described in Example 3.
  • TEM transmission electron microscope
  • Figure 6 is an image obtained by transmission electron microscope (TEM) of an aggregate of kaolinitic clay sheets (pretreated with DSMO) interspersed with silver nitrate, using UV radiation as a reducing agent, by the method described in Example 4.
  • TEM transmission electron microscope
  • Figure 7 corresponds to an image obtained by transmission electron microscope (TEM) of a film obtained by casting polylactic acid nanocomposite with 10% kaolinite-type clay (pre-treated with DSMO) interspersed with silver nitrate, by the method described in Example 5
  • TEM transmission electron microscope
  • Figure 8 shows the improvement in water vapor permeability obtained in a nanocomposite film of polylactic acid with 10% kaolinite clay (pretreated with DMSO) interspersed with silver nitrate with respect to a film of pure polylactic acid (Example 5)
  • Figure 9 corresponds to an X-ray diffraction spectrum (WAXS) obtained from a sample of montmorillonite-type clay modified with 10% w / w trans-resveratrol, by the method described in Example 8.
  • WAXS X-ray diffraction spectrum
  • Figure 10 corresponds to the graph of oxidation inhibition in head space of linoleic acid by action of montmorillonitic clays with 10% of antioxidants (trans-resveratrol or ⁇ -tocopherol), by the methods described in Examples 8 and 9.
  • Figure 11 corresponds to an X-ray diffraction spectrum (WAXS) obtained from a sample of montmorillonite-type clay modified with 10% w / w ⁇ -tocopherol, by the method described in Example 9.
  • WAXS X-ray diffraction spectrum
  • Figure 12 corresponds to an X-ray diffraction spectrum (WAXS) obtained from a sample of montmorillonite-type clay modified simultaneously with 20% w / w hexadecyltrimethylammonium bromide and 5% eugenol, by the method described in the Example 10.
  • WAXS X-ray diffraction spectrum
  • Figure 13 corresponds to the% DPPH inhibition in EVOH films with different trans-resveratrol contents prepared by the precipitation method, by the procedure described in Example 11.
  • Figure 14 corresponds to the% DPPH inhibition in EVOH films with %% kaolinite and different resveratrol contents prepared by the procedure described in example 12.
  • Figure 15 corresponds to the% inhibition of oxidation of linoleic acid in head space by effect of EVOH films + 1% of antioxidant, according to the procedure described in example 13.
  • Figure 16 corresponds to the percentages of DPPH radical inhibition at zero time and at 21 days of exposure of EVOH films. with and without kaolinite, with 1% antioxidant, exposed to direct artificial light, 24 0 C and 40% RH.
  • Figure 17 shows that the EVOH films added powder with 0.1 to 1% resveratro! they have AO capacity between 18.8 and 85.4% (with respect to DPPH turn) 1 and that e! EVOH added with 1% resveratro! they have antioxidant capacity superior to the film added with 1% BHT.
  • Figure 18 shows that e! LDPE film added with 1% t-resveratro! The liquid route has 88% antioxidant capacity (with respect to the DPPH turn), clearly superior to the unadditioned LDPE film.
  • Example 1 Synthesis and intercalation of metallic silver nanoparticles in montmorillonite-type clays modified with 33% by mass of hexadecyltrimethylammonium bromide, using ethanol as a reducing agent. Initially, the clay already modified was dispersed with 33% hexadecyltrimethylammonium bromide in ethanol, at ambient conditions, at a rate of 1g of clay per 100 g of solvent, and 0.05 g of AgN03 was added to the dispersion. The dispersion was refluxed at 7O 0 C for 6 hours; subsequently, the dispersion was allowed to decant, the excess solvent was removed and the clay was dried in a convection oven for 1 h at 7O 0 C. The clay obtained was characterized using X-ray diffraction (see Figure 1) and electron microscopy of transmission (see Figure 2). The diffractograms of Ia
  • Figure 1 demonstrate that the modifying agents (silver particles and hexadecyltrimethylammonium bromide) have been intercalated between the sheets, according to the displacement of the basal peak at lower angles (from 6.38 to 5.26). From the TEM images it was determined that in this case the silver nanoparticles reached between 3 and 23 nm, the average size being 16 nm; and that said nanoparticles are presumably located in the interlaminar spaces of the clay, on the surface and edges. In another study, the antimicrobial capacity of this clay with 5% silver nitrate compared to Salmonella spp. A pathogenic microorganism of food origin was used, such as Salmonella spp.
  • CECT 554 which was obtained from the Spanish Type Culture Collection (Valencia, Spain).
  • the conditions of the study were fixed in the use of the bacterium in the middle exponential phase and with an initial concentration of the microorganism of approximately 10 5 CFU / mL.
  • the experimental part was carried out using an adaptation of the macrodilution method established for the determination of the bactericidal activity of antimicrobial agents approved in 1999 by the National Committee for Clinical Laboratory Standards. According to this method, 100 mg of the clay was introduced, which had a final concentration of 5% silver and 33% of hexadecyltrimethylammonium bromide in a sterile tube containing 10 mL of Mueller Hinton Broth (MHB) broth.
  • MLB Mueller Hinton Broth
  • the tube was inoculated with 0.1 mL of a Salmonella spp. under the conditions described above.
  • two tubes containing sample without silver were inoculated (one with clay of the same type without any modification and another with clay of the same type modified with 33% hexadecyltrimethylammonium bromide), and another tube without sample that would serve as a control.
  • all the tubes were incubated at 37 0 C for 24 hours.
  • 0.1 mL of each sample were seeded in Triptona Soy Agar plates (TSA). After 24 hours of incubation at 37 0 C, were counted viable cells in the plate.
  • TSA Triptona Soy Agar plates
  • the clay pretreated with dimethylsulfoxide is dispersed in water, at a rate of 1g of clay per 100 g of solvent, and subsequently 0.05g of AgNO 3 and 0.33 g of hexadecyltrimethylammonium bromide were added.
  • the dispersion was maintained under vigorous and constant magnetic stirring under a source of UV radiation of 30 W and 235 nm wavelength.
  • the time of exposure to UV radiation was 24 hours, then the solid was filtered by suction and dried in a convection oven at 70 0 C for 1 h.
  • the clay obtained was characterized using X-ray diffraction (see Figure 3) and transmission electron microscopy (see Figure 4).
  • the clay was dispersed in ethanol, at ambient conditions, at a rate of 1g of clay per 100 g of solvent, and 0.1g of AgNO 3 was added to
  • the dispersion This was refluxed at 7O 0 C for 6 hours; subsequently the dispersion was allowed to decant, the excess solvent was removed and the clay was dried in a convection oven for 1 h at 7O 0 C.
  • the clay obtained was characterized using X-ray diffraction (see Figure 5). The diffractograms of Figure 5 indicate that there is no displacement of the signal from the basal peak (6.38; 2 ⁇ ) after the incorporation of silver nanoparticles to the clay.
  • the clay pretreated with dimethylsulfoxide is dispersed in water at ambient conditions, at a rate of 1g of clay per 100 g of solvent, and subsequently 0.05g of AgNO 3 was added.
  • the dispersion was kept under vigorous and constant magnetic stirring. under a source of UV radiation of 30 W and 235 nm wavelength.
  • the time of exposure to UV radiation was 24 hours, after which purpose the solid was filtered by suction and dried in a convection oven at 70 0 C for 1 h.
  • the TEM image of Figure 6 shows an average size of reduced silver particles of 15 nm, and that these are found on the surfaces and edges of the clay sheets.
  • a film of silver polylactic acid / nano-clay nanocomposite was obtained by evaporation of the solvent at ambient conditions, a process called "casting.” These nanocomposites were characterized by studying their morphology by transmission electron microscopy (TEM, see Figure 7), as well as their water vapor and antimicrobial barrier properties. Additionally, the water permeability (see Figure 8) of this film of polylactic acid and 10% by weight of clay with antimicrobial properties was studied, using ASTM E96, A 25 0 C and 75% relative humidity. The addition of antimicrobial clay to the polymer matrix causes a permeability reduction of 26.8%, so that the composite material presents a better water barrier than pure polylactic acid.
  • the films were weighed, both from the control without clay and from the sample with antimicrobial clay, and introduced into 1OmL of sterile culture medium. They were stored at 4 0 C for four weeks, prior to inoculation with Salmonella spp. Considering that the films contained 10% clay, and in turn that clay contained 5% silver nitrate, the final concentration of silver nitrate that has been used is 300 ppm, the minimum concentration being bactericidal (in this case, reduce the population to zero) of Salmonella around 100 ppm. The films contain an amount of silver 3 times higher than the bactericidal dose when used in suspension. After four weeks of storage and continuous release, the controls show an increase in the number of viable three orders of magnitude, while in the sample of PLA film with 10% clay interspersed with silver the viable three orders of reduction are reduced. magnitude (see Table 6).
  • chitosan films were weighed and stored at 4 0 C for 12 hours before inoculation with Salmonella spp.
  • the weights used were: 25, 50 and 75 mg of film, which were placed in 10 mL tubes with sterile culture medium.
  • Chitosan films contained 10% clay, which in turn contained 5% silver, so the final concentrations of silver nitrate used are as follows: 25 mg of chitosan film contained 0.125 mg of silver nitrate ; 50 mg of film contained 0.25 mg of silver; and 75 mg of film contained 0.375 mg of silver.
  • EVOH film samples with 10% clay interspersed with silver nitrate reduced 100 times the number of viable at the time of inoculation and then, 100 times more after 72 hours of incubation.
  • the samples of PVOH films with 10% silver clay showed a reduction of four orders of magnitude of the number of viable at the moment of the inoculation of the sample and total inhibition after 72 hours of incubation.
  • two bottles were prepared as controls: one that contained only the fatty acid, and another that in addition to the fatty acid contained a vial with unmodified clay.
  • the three bottles were stored for 48 hours in a room heated to 24 0 C, 75% RH, and under direct artificial light. After this time the bottles were opened, and in each one 10 mL of 10% w / w solution of trichloroacetic acid and 7 mL of 20 mM solution of 2-thiobarbituric acid were added. The bottles were shaken and incubated for 30 min at 97 0 C. Subsequently the samples were centrifuged, aliquots of the aqueous phase were taken and diluted 10 times.
  • the bottle was then sealed tightly with a plastic cap.
  • two bottles were prepared as controls: one that contained only the fatty acid, and another that in addition to the fatty acid contained a vial with unmodified clay.
  • the three bottles were stored for 48 hours in a room heated to 24 0 C, 75% RH, and under direct artificial light. After this time the bottles were opened, and in each one 10 ml_ of 10% w / w solution of trichloroacetic acid and 7 ml_ of 20 mM solution of 2-thiobarbituric acid were added. The bottles were shaken and incubated for 30 min at 97 0 C.
  • Example 10 Simultaneous modification of montmorillonite type clay with 20% w / w of hexadecyltrimethylammonium bromide and 5% w / w of euqenol. Initially 4 g of hexadecyltrimethylammonium bromide was dissolved in a solution 20% v / v ethanol at 40 0 C, using magnetic stirring. Then 1 g of eugenol and 20 g of clay were added. A homogenizer was used at high revolutions for 10 min to favor the dispersion of the clay in the solution. It was connected to reflux and maintained under vigorous stirring at 40 0 C for 24 h.
  • the resulting clay was filtered by suction and dried in convection oven at 60 0 C for 6 h.
  • the dried modified clay was characterized by X-ray diffraction (see Figure 12).
  • the displacement of the basal peak from 7.07 to 5.66 (2 ⁇ ) indicates an increase in the interlaminar spacing of the order of 0.31 nm, calculated from Bragg's law. This change in spacing is evidence of the entry of modifying agents in the clay galleries.
  • the EVOH-antioxidant compound was precipitated by slowly dropping the hot solution in a stream of fresh water. Excess water precipitated compound was removed, cut into small pieces and dried in Ia convection oven at 60 0 C for 14 hours. This procedure allowed to prepare EVOH compounds with 1%, 5% and 10% trans-resveratrol, using the proportions indicated in Table 9. Subsequently, the film was prepared using a press. The samples were transformed into plates of approx. 100 microns thick by compression molding in a hydraulic press, at 22O 0 C and 2MPa pressure for 4 minutes. The plates of the samples are cooled slowly inside the press by water flow.
  • the antioxidant effect was determined by contact of the EVOH films obtained, using the method of discoloration of the DPPH radical (2,2-diphenyl-1-pyrilhydracil). For this they were weighed, in duplicate. 3Gmg portions of each film and placed in 1.5 mL plastic tubes.
  • EVOH-32 compounds were prepared using the melt mixing method for the direct additivation of the polymer with antioxidant.
  • the three zones of the plastgraph were preheated to 220 0 C, and maintaining a shear of 5 rpm, a total of 16 g material was introduced into the mixing chamber by alternating polymer and antioxidant. Subsequently, the shear was increased to 100 rpms and mixed for 3 min. After this time, the hot material was recovered. Subsequently, once the material had cooled, the films were prepared using a press. The samples were transformed into plates of approx.
  • the EVOH-trans-resveratrol compound was precipitated by slowly dropping the hot solution in a stream of fresh water. Excess water precipitated compound was removed, cut into small pieces and allowed to dry in five Ia convection oven at 60 0 C for 14 hours.
  • the equivalent of 1% w / w trans-resveratrol was dissolved with respect to the total dry mass (polymer + transverave resveratrol) in a hot dispersion of kaolinite in 50% v / v isopropanol.
  • the dispersion with hot antioxidant was added to the EVOH solution, and the magnetic stirring and heating under reflux were maintained for 1 hour. The precipitation is executed in a manner similar to that already indicated.
  • the films of the 15 EVOH nanocomposites were prepared using a press. The samples were transformed into plates of approx. 100 microns thick by compression molding in a hydraulic press, at 22O 0 C and 2MPa pressure for 4 minutes. The plates of the samples are cooled slowly inside the press by water flow. Subsequently the antioxidant effect was determined
  • EVOH-32 (with 32 molar ethylene) was used as the base polymer, and the polymer additive method consisted in adding the antioxidant -resveratrol 97% - powder, previously dried, to the molten polymer.
  • the processing conditions are indicated in Table 11.
  • BHT butylhydroxytoluene
  • LDPE low density polyethylene
  • resveratrol 97% were used.
  • the polymer additivation method consisted of adding a supersaturated solution of t-resveratrol in isopropanol to the mass of molten polymer Extrusion conditions are presented in Table 13. This procedure allowed to prepare LDPE compounds with 1% of t-resveratrol. Subsequently, the films were prepared using the hot plate press. The samples were transformed into plates of approx. 100 microns thick by compression molding in the press at 200 ° C and 2 MPa of pressure for 4 minutes.
  • the sample plates were slowly cooled by means of a water flow to room temperature. Subsequently, the antioxidant effect was determined by contact of the LDPE films obtained, using the method of discoloration of the DPPH radical (2,2-diphenyl-1-pyrilhydracil). To do this, 30mg portions of each film were weighed in triplicate and placed in 1.5 mL plastic tubes. 1 mL of a 0.05g / L stock solution of DPPH in methane was added in each tube. The absorbance at 517 nm of this stock solution is 1, 2. approximately. In parallel, three control samples without film containing 1 mL of DPPH were prepared. The samples and controls were left to incubate in dark at to 24 0 C for 24h.
  • DPPH radical 2,2-diphenyl-1-pyrilhydracil
  • Figure 18 shows that the LDPE film added with 1% liquid t-resveratrol has an 88% antioxidant capacity (relative to DPPH turn). clearly superior to the LDPE film without guessing.
  • Example 17 Manufacture of LDPE compounds with a load of 5% modified montmorillonite with 40% hexadecyltrimethylammonium bromide and 5% ammonium-iron sulfate!), By extrusion via powder additive. Initially, ammonium iron (II) sulfate was dissolved in ethanol, under nitrogen bubbling. Subsequently, the modified clay was dispersed with 40% hexadecyltrimethylammonium bromide in the iron (II) solution using magnetic stirring, maintaining nitrogen bubbling. The proportion of iron (II) salt used was 5% by weight with respect to the mass of unmodified clay, at a rate of 20 g of clay per 100 ml of solvent.
  • ammonium iron (II) sulfate was dissolved in ethanol, under nitrogen bubbling.
  • the modified clay was dispersed with 40% hexadecyltrimethylammonium bromide in the iron (II) solution using magnetic stirring, maintaining nitrogen bubbl
  • the clay dispersion in metallic solution was refluxed at 7O 0 C for 6 hours under an inert atmosphere. Subsequently, the dispersion was allowed to decant, the excess solvent was removed and the clay was dried in a vacuum oven for 1 h at 7 ° C. The clay was stored under vacuum in the dark.
  • LDPE low density polyethylene
  • C16 hexadecyltrimethylammonium bromide
  • ll ammonium sulfate - iron
  • the films were prepared using a press.
  • the samples were transformed into plates of approx. 100 microns thickness by compression molding in a hydraulic press at 200 0 C and 2 MPa pressure for 4 minutes.
  • the plates of the samples are cooled slowly inside the press by water flow.
  • the oxygen sequestering effect of the LDPE films was determined.
  • pieces of 4cmx2cm films were introduced in 20 ml vials containing air at atmospheric conditions and containing a vial with water that generates an activity of one in the head space.
  • Films of LDPE + 5% clay modified with C16 and ammonium-iron sulfate (ll) and un-additive LDPE films were tested in triplicate. Three controls without film were also added.
  • the oxygen content is determined using an oximeter. Initially the oxygen content within the vials is 20.9% (Table 16). After two days, the percentage of oxygen remains at the same initial value in the control and in vials containing unadditioned LDPE film. Vials containing salt-modified clay and iron nanoparticles have reduced their oxygen content to 20.1% (3.8% reduction in oxygen content). The results indicate that the clay containing iron nanoparticles is active once incorporated into a polyolefin matrix due to the effect of moisture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Wrappers (AREA)
  • Cosmetics (AREA)

Abstract

Materiales nanocompuestos activos y el procedimiento para su obtención La presente invención se refiere a nuevos materiales nanocompuestos activos, que comprenden una matriz y aditivos. Además la presente invención describe un procedimiento para la obtención de dichos materiales nanocompuestos y el uso de los mismos en distintos sectores de la industria.

Description

MATERIALES NANOCOMPUESTOS ACTIVOS Y EL PROCEDIMIENTO
PARA SU OBTENCIÓN.
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se refiere a materiales nanocompuestos activos y/o bioactivos basados de forma genérica en el uso de nanoarcillas como soporte de las sustancias activas. Dicha actividad se obtiene a través de Ia formulación de un tipo específico de aditivos basados en láminas de arcillas naturales y/o sintéticas que están intercalados con metales y/o sales de los mismos con capacidad antimicrobiana y/o secuestradora de oxígeno y/o con otros compuestos orgánicos, inorgánicos o combinación de los mismos que también presentan propiedades antimicrobianas y/o antioxidantes.
Además se describe Ia formulación de materiales nanocompuestos basados en Ia incorporación de los citados aditivos en una matriz plástica, o cerámica, por cualquier método de fabricación o procesado de plásticos o de preparación y procesado de polvos cerámicos. Así, los aditivos se incorporan a matrices plásticas por métodos de deposición y evaporación del disolvente (e.g. recubrimientos y laminación), aplicación de Ia disolución monómerica seguida de polimerización y curado o entrecruzamiento o vulcanicación, operaciones típicamente utilizadas durante Ia formulación de termoestables y elastómeros, mediante procesos de mezclado en fundido (e.g. extrusión, inyección, soplado) y/o métodos de polimerización in-situ.
Los materiales nanocompuestos con matriz plástica se pueden preparar por diferentes procedimientos típicamente utilizados en el procesado y fabricación de plásticos, tales como técnicas de casting y/o laminado (disolución y evaporación del disolvente), de mezclado en fundido, formulación de termoestables y elastómeros y de polimerización in-situ, para su aplicación ventajosa tanto en el envasado activo (según se define en las legislaciones nacionales e internacionales de envases alimentarios activos e inteligentes) de productos de interés para Ia alimentación y plásticos antimicrobianos, antioxidantes y secuestradores de oxígeno, en equipamientos quirúrgicos, así como para aplicaciones en otros sectores.
En el caso de los materiales nanocompuestos con matriz cerámica, estas se incorporan durante Ia preparación de polvos típicamente empleadas en Ia fabricación de productos cerámicos que implican molienda, atomización, prensado o extrusión, esmaltación en el caso de productos esmaltados, y cocido.
Además, Ia presente invención se refiere al uso de dichos materiales para aplicaciones multisectoriales.
ANTECEDENTES DE LA INVENCIÓN
En el campo de los polímeros, una de las áreas que mayor interés está generando es el desarrollo de materiales compuestos, y más específicamente de nanocompuestos de base arcillas. Existen diferentes técnicas de preparación de nanocompuestos, tanto por el método de casting (Ogata N, Jiménez G, Kawai H, Ogihara T; J PoIy m Sci Part B: PoIy m Phys 1997), como por el método de mezclado en fundido (Sinha Ray S, Yamada K, Okamoto M, Ueda K. Nano Lett 2002; 2:1093-6) y por el método de polimerización in-situ (Messersmith PB, Giannelis EP. Chem Mater 1993; 5:1064-6). Además estos nuevos nanocompuestos y sus técnicas de procesado están descritas en, por ejemplo, Ia patente US Número US 4739007; y más específicamente en Io que respecta a Ia presente invención en WO2007074184A1. En esta solicitud de patente PCT, se describe una nueva ruta de fabricación de nanocompuestos que pueden o no ser biodegradables, con propiedades antimicrobianas basadas en productos naturales y/o con capacidad de fijación o liberación controlada de otras sustancias activas o bioactivas. Estos nanocompuestos basados en filosilicatos y/o hidróxidos dobles laminares sintéticos están intercalados con diferentes modificantes orgánicos, y una vez incorporados a matrices termoplásticos y/o termoestables, son capaces de mejorarles las propiedades barrera a gases y a vapores. Los documentos antes citados son algunos ejemplos de patentes y literatura sobre nanocompuestos de polímeros- arcilla preparados a partir de arcillas modificadas. Estos documentos describen un material nanocompuesto como una placa exfoliada o intercalada, con estructura tactoide de dimensiones nanométricas, que comprende arcilla intercalada dispersa en una matriz de polímero, tal como un oligómero, un polímero, o una mezcla de los mismos.
Por ejemplo, Ia patente US 4739007 describe Ia preparación de los nanocompuestos Nylon-6-arcilla a partir de montmorillonitas tratadas con sales de alquilamonio por el método de mezclado en fundido.
La protección frente a Ia acción de los microorganismos es un requisito básico para muchas aplicaciones actuales de los plásticos, como el preservar Ia calidad de los alimentos envasados, garantizar las condiciones asépticas en aplicaciones biomédicas, contribuir a limitar el crecimiento de microorganismos en superficies expuestas y de trabajo, entre otras aplicaciones. La patente US 7306777 describen el uso de materiales germicidas basados en nanopartículas de plata aplicados en envases y embalajes. Sin embargo, hasta ahora no se ha publicado ningún diseño específico en el que se describa el proceso de fabricación de nanocompuestos de base nanoarcillas para aplicaciones de protección ante Ia acción de los microorganismos y/o con propiedades antioxidantes y/o secuestradoras de oxígeno.
Los microorganismos, y en concreto las bacterias, son Ia principal causa de enfermedades causadas por el consumo de alimentos contaminados. Éstos pueden sobrevivir al tratamiento térmico requerido para el enlatado o bien contaminar el alimento después de dicho tratamiento debido a suturas o fugas del envase. Además de su potencial peligro para Ia salud, Ia proliferación de microorganismos puede provocar alteraciones en los alimentos que a su vez den lugar a cambios en las propiedades físicas, químicas y organolépticas de los mismos. Algunos de los métodos tradicionales de preservación como los tratamientos térmicos, irradiación, envasado en atmósfera modificada o adición de sales, no pueden ser aplicados a ciertos tipos de alimentos como vegetales, frutas y carnes frescas o productos listos para consumir. Por otra parte, Ia aplicación directa de sustancias antibacterianas sobre los alimentos tiene efectos limitados dado que éstas se neutralizan y difunden rápidamente hacia el interior del alimento. Considerando los aspectos anteriores, los envases activos constituyen una forma viable y ventajosa para limitar y controlar el crecimiento bacteriano en los alimentos, ya que los agentes antimicrobianos migran lentamente del material a Ia superficie del producto. La migración puede ser tan extensa como se requiera, de manera que cubra el tiempo de transporte, almacenaje y se garantice hasta el consumo. En el caso de los nanoaditivos antimicrobianos de plata descritos en Ia presente invención, una vez incorporados a los envases pueden controlar Ia contaminación microbiana por inactivación del metabolismo enzimático de los microorganismos.
El efecto de los microorganismos también es indeseable en otros sectores. En el campo de Ia medicina es indispensable eliminar los riesgos de contagios en tratamientos invasivos, de heridas abiertas, así como en tratamientos rutinarios. Como ejemplos de dichos tratamientos se pueden citar los recubrimientos con películas antimicrobianas de catéteres y estetoscopios, y Ia elaboración de tejidos en fibras pretratadas con nitrato de plata o con antibióticos de amplio espectro para tratamientos de heridas y quemaduras. En Ia industria textil en Io que respecta a vestuario de moda y laboral, por ejemplo, el uso de fibras pretratadas con agente antibacterianos limita Ia proliferación de microorganismos ante el sudor, humedad y temperaturas elevadas, reduciendo los malos olores corporales y riesgos de contagio. Se conoce como fouling Ia acumulación y depósito de material biológico en superficies expuestas a condiciones medioambientales diversas, como pueden ser embarcaciones, objetos o sistemas pintados expuestos a condiciones de alta humedad u otras superficies expuestas a medios activos, agresivos o medioambientalmente adversos. En el caso de embarcaciones, el consumo de combustible puede incrementar hasta en un 50% debido a Ia resistencia hidrodinámica que ofrece Ia acumulación de material biológico en el casco. Los sistemas antimicrobianos pueden actuar como antifouling si se aplican en forma de capas en Ia superficie de la embarcación, haciendo que el consumo de combustible sea óptimo, y que las operaciones de limpieza y mantenimiento sean menos frecuentes. En el caso de contenedores y tanques de agua, al recubrir el interior con una película de compuestos antimicrobianos se reduce significativamente el crecimiento de algas y generación de malos olores, por Io que Ia calidad del agua contenida se garantiza por más tiempo. El recubrir con films de compuestos antimicrobianos o fabricar con éstos las superficies de trabajo de laboratorios (clínicos, microbiológicos, de análisis de agua, de alimentos), de comercios en Io que se manipulan alimentos frescos (carnicerías, pescaderías, etc.), de pabellones de hospitales y centros de salud, por mencionar sólo algunos ejemplos, garantiza las condiciones de higiene adecuadas para el desarrollo del trabajo y elimina el riesgo de contaminación e infecciones. Los materiales plásticos con propiedades antimicrobianas también pueden emplearse en Ia fabricación de manivelas, manillares, agarraderas y apoyabrazos de elementos de transporte público, en barandillas y puntos de apoyo de lugares de alta concurrencia, en Ia fabricación de piezas sanitarias de uso público y masivo, así como en auriculares y micrófonos de teléfonos y sistemas de audio de sitios públicos; utillaje de cocina y de transporte de alimentos, todo esto con el fin de reducir riesgos de propagación de infecciones y enfermedades. Es también de interés emergente el fabricar piezas cerámicas que inhiban Ia proliferación de microorganismos sobre los productos cerámicos, por ejemplo, Ia proliferación de hongos y mohos sobre las superficies cubiertas con baldosas cerámicas o sobre los puntos de unión de estas.
En el campo de los materiales cerámicos, existen patentes que por ejemplo describen Ia producción de compuestos cerámicos antibacterianos con Ag2WO4 (wolframato de plata) para su uso en piezas sanitarias (CN101062786). Es por tanto de gran interés en); aplicaciones cerámicas, el desarrollo decerámicos antimicrobianos que eliminan o reduzcanreducen el riesgo de propagación de infecciones y contaminaciones en ambientes potencialmente infecciosos
(piezas sanitarias de servicios públicos, por ejemplo), en ambientes donde el control de crecimiento microbiano es indispensable para el buen desarrollo de actividades (azulejos para suelos y paredes de quirófanos, laboratorios clínicos y toxicológicos, centros de puericultura, por ejemplo); en formulaciones para preparación y/o reparación de piezas dentales de reemplazo móviles o fijas (odontología), entre otras aplicaciones potenciales.
Otras propiedades activas de gran interés son el carácter "antioxidante" que funciona por secuestro de radicales libres y que por tanto impiden los procesos de oxidación aun en presencia de oxígeno, y Ia capacidad de "secuestra de oxígeno", que impiden Ia oxidación por Ia captura de oxígeno.
DESCRIPCIÓN DE LA INVENCIÓN
Según se ha expuesto, hasta el momento no está descrita Ia fabricación de materiales nanocompuestos con propiedades tanto barrera a gases y vapores, retardo de llama, mecánicas y térmicas mejoradas con respecto al polímero puro, con Ia capacidad adicional de bloquear Ia radiación electromagnética (UV-Vis) y de permitir Ia fijación y/o Ia liberación controlada de sustancias activas y/o bioactivas, e.j. antimicrobiana y/o antioxidante y/o secuestradora de oxígeno por efecto de Ia intercalación de nanopartículas nanoparticulas y substancias activas en nanoarcillas y/o por adicción directa a plásticos y/o acompañando en Ia formulación a nanoarcillas que les confieren estas propiedades y que a su vez son suficientemente estables térmicamente como para permitir procesos de fabricación y procesado de plásticos e incluso de cocción en cerámica.
En Ia presente invención las propiedades activas vienen de forma genérica conferidas o reforzadas por Ia incorporación de sustancias basadas en plata, hierro o de otros metales y/o de sustancias orgánicas bien naturales o sintéticas con por ejemplo capacidad biocida, antioxidante y secuestradorasecuestradores de oxígeno en Ia estructura de las nanoarcillas. La incorporación de biocidas metálicos en arcillas no solo es interesante para Ia fabricación de nanocompuestos basados en Ia adición de tales aditivos a plásticos, sino que, debido a que los biocidas basados en metálesmetálicos resisten los tratamientos térmicos, que además pueden ser necesarios para favorecer la reducción de las sales de metales biocidas a sus metales correspondientes, también se pueden utilizar en Ia industria cerámica para Ia fabricación de productos cerámicos y porcelánicos con propiedades antimicrobianas. Algunos metales como el hierro, se oxidan fácilmente y por tanto se pueden utilizar para secuestrar oxigeno en aplicaciones donde éste gas sea un problema para Ia conservación del producto. Algunas sustancias naturales tales como el resveratrol presentan propiedades antixiodantes y bioactivas, o sea que adicionalmente a su carácter antioxidante por su capaciad de fijar radicales libres aportan un beneficio para Ia salud cuando se ingieren en el caso de que exista una migración desde el plástico.
La disponibilidad en Ia industria cerámica de nanoaditivos antimicrobianos basados en nanoarcillas permite incrementar Ia eficacia de estos productos, debido a Ia gran dispersión que exhiben las nanoparticulas en estas matrices. Se obtienen así excelentes resultados con menores proporciones de nanoaditivos, y los productos cerámicos se pueden formular de una manera más eficaz y versátil ya que el antimicrobiano esta soportado sobre las arcillas que son componentes naturales de Ia propia matriz cerámica y por tanto resultan además en una reducción importante en los costes.
Los ejemplos anteriormente expuestos también permiten definir el campo de aplicación de los nuevos materiales nanocompuestos con propiedades activas basados en metales y sustancias naturales o sintéticas, cuyos procedimientos de obtención se detallan en Ia presente patente. En Ia presente invención se ha encontrado que los materiales nanocompuestos antimicrobianos de metales y algunas sales de amonio, e.j. el bromuro de hexadeciltrimetilamonio permitido para contacto alimentario, son antimicrobianos muy potentes y por tanto impiden el desarrollo, crecimiento y proliferación de los microorganismos, así como Ia propagación de infecciones, en una amplia variedad de aplicaciones tales como envases (alimentarios, de drogas y medicamentos), en fibras y tejidos textiles, en materiales médico-quirúrgicos, en sistemas antifouling y en Ia fabricación de piezas plásticas para sitios públicos y para productos cerámicos. Por Io tanto, Ia presente invención se refiere a materiales nanocompuestos activos, obtenidos por Ia introducción de nanoaditivos laminares con o sin modificación previa de sales de amonio cuaternario antimicrobianas y/o quitosano y/o derivados de este antimicrobiano que llevan además intercalados nanopartículas de metales y/o sus sales orgánicas e inorgánicas y/o antioxidantes naturales con propiedades bioactivas y resistentes térmicamente como el resveratrol, en matrices plásticas o cerámicas, con aplicación ventajosa en los sectores de los recubrimientos, medicina, construcción, textiles antiolor y del envase y embalaje.
En consecuencia un primer aspecto esencial de Ia presente invención se refiere a materiales nanocompuestos que tienen matriz plástica, o cerámica y se constituyen a partir de Ia incorporación de nanoaditivos de arcillas del tipo laminar.
Las matrices plásticas se seleccionan sin sentido limitativo del grupo formado por termoplásticos, termoestables y elastómeros tales como poliolefinas, poliesteres, poliamidas, poliimidas, policetonas, poliisocianatos, polisulfonas, plásticos estirénicos, resinas fenólicas, resinas amidicas, resinas ureicas, resinas de melamina, resinas de poliéster, resinas epoxídicas, policarbonatos, polivinilpirrolidonas, resinas epoxi, poliacrilatos, cauchos y gomas, poliuretanos, siliconas, aramidas, polibutadieno, poliisoprenos, poliacrilonitrilos, PVDF, PVA, PVOH, EVOH, PVC, PVDC o derivados de biomasa y materiales biodegradables tales como proteínas, polisacáridos, lípidos y biopoliésteres o mezclas de todos estos y pueden contener todo tipo de aditivos típicamente añadidos a plásticos para mejorar su fabricación y/o procesado o sus propiedades. Además dicho tipo de matriz está en una proporción desde 5% hasta 99,99%; preferiblemente desde 20% hasta 99,99%, y más preferiblemente desde el 90% hasta el 99,99%.
Las matrices cerámicas comprenden y sin sentido limitativo, agua, arcillas (preferiblemente caolinitas y ocasionalmente montmorillonitas), desfloculantes, feldespatos, arenas feldespáticas y ocasionalmente, caolín, carbonatos y zirconio. Las matrices cerámicas del tipo esmalte y otro tipo de recubrimientos cerámicos, comprenden y sin sentido limitativo caolín o una arcilla caolinítica (5%) o montmorillonitica (1 %), feldespatos, fritas, sílice y arenas de sílice. Además dicho tipo de matriz está en una proporción desde 5% hasta 99,99%; preferiblemente desde 20% hasta 99,99%, y más preferiblemente desde 65% hasta el 99,99%.
Según una realización preferida, las matrices de tipo plástico o cerámico pueden contener agentes con propiedades de barrera a Ia radiación electromagnética y de resistencia al fuego y otras sustancias activas o bioactivas adicionales a las nanoarcillas, seleccionadas del grupo formado por metales y/o sus sales metálicas orgánicas e inorgánicas antimicrobianas (preferiblemente de plata, cobre, níquel o cobalto), secuestradores de oxigeno como hierro y sus sales, sustancias de bajo peso molecular que tienen carácter activo o bioactivo seleccionadas entre etanol, o etileno, o del tipo aceites esenciales (preferiblemente timol, carvacrol, linalol y mezclas), o péptidos antimicrobianos de reducido tamaño (preferiblemente bacteriocinas) naturales u obtenidos por modificación genética (preferiblemente nisinas, enterocinas, lacticinas y lisozima), sales de amonio cuaternario, preferiblemente las permitidas para contacto alimentario, o antioxidantes naturales o sintéticos (preferiblemente polifenoles tales como, pero sin limitarse a, resveratrol o flavonoides, extractos vegetales tales como, pero sin limitarse a, eugenol o extractosde romero y vitaminas, preferiblemente tocoferoles y tocotrienoles o ácido ascórbico/vitamina C), o fármacos, o enzimas o compuestos de calcio biodisponibles, probioticos, aceites marinos, simbióticos o prebióticos (fibra no digerible).
La ventaja del uso del resveratrol, aditivado directamente a plásticos, o soportado o intercalado en sustratos inorgánicos (arcillas o materiales amorfos), sobre descripciones genéricas anteriores es que este componente es único desde el punto de vista de que es estable térmicamente y permite su incorporación sin perdida de actividad por técnicas de procesado de plásticos, no afecta significativamente a Ia transparencia o a las propiedades ópticas de los plásticos, esto es no impacta de manera significativa las propiedades organolépticas ni de aspecto del producto, presenta propiedades antioxidantes muy intensas después de su incorporación en plásticos y tiene adicionalmente carácter bioactivo y por tanto exhibe propiedades funcionales sobre el organismo en el caso de su migración al alimento y/o su ingesta y se incorpora de una manera eficaz en substratos tipo arcilla. La diferencia principal entre un antioxidante como el resveratrol y un secuestrador de oxígeno como el hierro y las sales de hierro, es que el antioxidante captura radicales libres e impide Ia oxidación aun en presencia de oxígeno y el secuestrador de oxígeno captura oxígeno impidiendo así también Ia oxidación. En ambos casos se gana estabilidad y un incremento en Ia vida útil de Ia matriz plástica y cerámica o del producto contenido o en contacto con estos materiales activos.
Las nanoarcillas se seleccionan del grupo formado por silicatos laminares y/o hidróxidos dobles laminares. Estos anteriores se seleccionan sin sentido limitativo del grupo formado por, arcillas de tipo montmorillonita, caolinita, bentonita, esmectita, hectorita, sepiolita, gibsita, dicktita, nacritita, saponita, halloisita, vermiculita, mica, y/o mezclas de los mismos o con otros filosilicatos, principalmente, con o sin modificación superficial previa orgánica y/o inorgánica. Estos materiales están caracterizados por que se introducen como cargas de tipo laminar con tamaños en el rango de los nanómetros en al menos el espesor de Ia partícula, en matrices plásticas y en matrices cerámicas para formar los nuevos nanocompuestos activos.
En las matrices plásticas, los aditivos activos están en una proporción desde un 0,01 % hasta un 95%, preferiblemente desde un 0,01 % hasta un 80% y más preferiblemente desde 0,01 hasta un 10%.
En las matrices cerámicas, los aditivos activos están en una proporción desde un 0,01 hasta un 95%, en peso, preferiblemente entre un 0,01 % y un 80% y más preferiblemente desde un 0,01 a un 35%. En las matrices cerámicas del tipo esmalte, los aditivos activos están en una proporción desde un 0,01 % hasta un 50%, preferiblemente desde un 0,01 % hasta un 20% y más preferiblemente desde un 0,01 hasta un 15%.
La modificación superficial de los nanoaditivos de arcilla cuando se aplica permite, además de introducir o acentuar Ia actividad activa por incorporación de compatibilizantes con propiedades biocida, aumentar Ia compatibilidad entre Ia arcilla y Ia matriz para conseguir mejor exfoliación de Ia arcilla. Se logra así, conseguir una buena morfología para mejorar Ia dispersión y exposición superficial de Ia sustancia activa antimicrobiana y/o secuestradora de oxígeno, que son sustancias basadas en metales como plata, cobre, níquel, cobalto, hierro, zinc y/o combinaciones de los mismos y/o sus sales inorgánicas o orgánicas, compuestos orgánicos, preferiblemente sales permitidas para contacto alimentario (esto es que se encuentren recogidas en las listas de monómeros y otras sustancias de partida autorizadas por Ia legislación para usarse en Ia fabricación de materiales y objetos plásticos) tales como y sin sentido limitativo el bromuro de hexadeciltrimetilamonio (quien esta invención ha probado ser antimicrobiano en si mismo), esteres de polietilenglicol con ácidos alifáticos monocarboxílicos (C6-C22) y sus sulfatos de amonio y sodio, acido perfluorooctanoico y su sal de amonio, copolímeros cloruro de N- metacriloiloxietil-N,N-dimetil-N-carboximetilamonio, cloruro de bis(2-hidroxietil)- 2-hidroxipropil-3-(dodeciloxi) metilamonio; y quitosano y sus derivados, y/o combinaciones de las mismas. Las sales de los metales se seleccionan del grupo formado, y sin sentido limitativo, por sales simples tipo nitrato, acetato, cloruro, sulfato y complejos inorgánicos que incluyan agua y los grupos nitratos, acetato, amino y cloruro.
En el caso de los materiales plásticos, presentan actividad activa y mejoras en sus propiedades barrera y en otras propiedades físicas, resistencia al fuego y permiten bloquear Ia radiación electromagnética, además de permitir Ia liberación controlada de las mismas o otras sustancias con propiedades activas y/o bioactivas con respecto del material puro. En el caso de materiales cerámicos se obtienen propiedades antimicrobianas más eficaces debido a Ia nanoparticulación del metal biocida.
Estos materiales nanocompuestos se preparan para el caso de los plásticos mediante técnicas de laminación o recubrimiento (casting de Ia disolución), mediante aplicación de Ia disolución monómerica seguida de polimerización y curado, operaciones típicamente utilizadas durante Ia formulación de termoestables, por el procedimiento anterior pero seguido de un entrecruzamiento o vulcanizado, operaciones típicamente empleadas en Ia fabricación de elastómeros, por mezclado en fundido usando técnicas convencionales de procesado de plásticos a partir de granza y/o polvo del polímero o plástico o por polimerización in-situ.
En el caso de su aplicación en cerámicas, estos se incorporan y sin sentido limitativo durante Ia preparación de polvos típicamente empleados en Ia fabricación de productos cerámicos que implican molienda, atomización, prensado o extrusión, esmaltación en el caso de productos esmaltados y cocido.
Los materiales nanocompuestos plásticos son de particular interés en Ia industria del envasado de alimentos, ya que estos envases activos permiten proteger al producto de Ia acción de los microorganismos, proteger el propio envase y su contenido de Ia oxidación bien mediante el uso de antioxidantes que secuestran radicales libres o de secuestradores de oxígeno que eliminan oxígeno y/o Ia fijación y/o Ia liberación controlada de las mismas o de otras sustancias activas y adicionalmente, mejorar de forma notable las propiedades barrera a gases y vapores, propiedades mecánicas de barrera al UV y otras típicamente asociadas al uso de nanoarcillas. En otros campos de aplicación, los materiales nanocompuestos plásticos y cerámicos reforzados con nanoarcillas con propiedades activas son útiles en las área médico-quirúrgica, biomédica y farmacéutica, para Ia fabricación y recubrimiento de equipos y materiales usados en tratamientos de rutina e invasivos y en construcción. En aplicaciones "antifouling" para evitar Ia formación de biofilms en superficies sumergidas y expuestas al agua y humedad, y en general, para todas las aplicaciones en los que se requiera de una pieza, superficie, accesorio y/o recubrimiento de compuesto antimicrobiano y/o antioxidantes o secuestradores de oxígeno para evitar Ia proliferación de microbios y riesgos de infecciones y/o Ia oxidación de los propios materiales y/o del contenido o productos en contacto con éstos.
Un segundo aspecto esencial de Ia presente invención se refiere al procedimiento para Ia fabricación de los materiales nanocompuestos descritos en Ia presente invención, que pueden estar basados en estructuras tales como filosilicatos laminares, incluyendo arcillas (p.ej. montmorillonita, caolinita, bentonita, esmectita, hectorita, sepiolita, saponita, halloisita, vermiculita, mica) o hidróxidos dobles laminares sintéticos o naturales de estructura laminar y que comprende las siguientes etapas:
1) Disminución del tamaño de las partículas laminares mediante acción mecánica por ejemplo por medio de tecnologías de molienda. Este proceso se lleva a cabo hasta obtener un tamaño de partícula por debajo de las 30 mieras en el D90.
2) Clasificación en vibrotamiz, centrífuga, filtroprensa o cualquier otro sistema de filtración vía seca o húmeda hasta un intervalo comprendido entre 0.1 a 100 mieras, preferiblemente se consigue una disminución del tamaño de partícula por debajo de 25 mieras y más preferiblemente por debajo de 3 mieras en el denominado D90 (no más del 10% del material está por encima de ese valor).
3) Alternativamente, eliminación de Ia materia orgánica por y sin sentido limitativo mediante técnicas de decantación, recogida de sobrenadante o por reacción química con substancias oxidantes tales como peróxidos.
4) Alternativamente, eliminación de los óxidos cristalinos y partículas duras no sujetas a modificación bien mediante procesos de centrifugación y/o gravimétricos en disolución o por turbo-secadores, preferiblemente por un proceso de centrifugado bien vía húmeda o vía seca seguido o no de un proceso de atomización con depresión controlada o mediante cualquier otro proceso de secado industrial incluida Ia liofilización.
5) Obtención de finos laminares bien en suspensión líquida o bien mediante posterior secado por los métodos descritos en el paso 4) en polvo. Estos sistemas tanto en suspensión líquida como en polvo son considerados como el producto de partida de Ia presente invención.
6) Pre-tratamiento de las estructuras laminares en uno o en varios pasos, mediante el uso de precursores del tipo expansores como se muestra en Ia Tabla 1.
TABLA 1
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Preferiblemente los expansores se seleccionan del grupo formado por DMSO, alcoholes, acetatos, o agua y mezcla de los anteriores, y sales metálicas de plata, cobre, hierro, níquel o cobalto, que activan los finos mediante un incremento inicial del espaciado basal de las láminas y modifican las características superficiales de Ia arcilla. La penetración de los precursores se acelerará sin sentido limitativo mediante el uso de temperatura, un homogenizador de régimen turbulento, ultrasonidos, fluidos supercríticos, agentes desfloculantes tales como acrilatos y/o fosfatos, presión o mezcla de los anteriores. El secado de estos, previo lavado o no con agua o alcoholes, se puede realizar por evaporación en estufa, liofilización, procesos de centrifugación y/o gravimétricos en disolución o turbo-secadores o por atomización. Según otra realización preferida de Ia presente invención, Ia disolución del precursor intercalado se podrá utilizar, sin un proceso previo de lavado y/o secado, como medio de partida para Ia siguiente etapa de incorporación del modificador.
7) Adicionalmente, o opcionalmente, se pueden intercalar en base acuosa o con solventes polares, sustancias inorgánicas, orgánicas o híbridas en Ia estructura laminar. En este mismo sentido, los compuestos a intercalar se seleccionan y sin sentido limitativo del grupo formado por PVOH, EVOH y derivados de Ia misma familia, y/o biopolímeros tales como péptidos y proteínas naturales o sintéticas vía química o modificación genética de microorganismos o plantas y polisacáridos naturales o sintéticos vía química o modificación genética de microorganismos o plantas y polipéptidos, lípidos, ácidos nucleicos y polímeros de ácidos nucleicos sintéticos obtenidos vía química o por modificación genética de microorganismos o plantas, y poliésteres biodegradables tales como el ácido poliláctico, poliláctico-glicólico, policaprolactona, ácido adípico y derivados y los polidroxialcanoatos, preferiblemente polidroxibutirato y sus copolímeros con valeriatos, materiales biomédicos tales como las hidroxiapatitas y fosfatos de sales orgánicas, y o antioxidantes naturales o sintéticos (preferiblemente polifenoles, tales como, pero sin limitarse a, resveratrol o flavonoides, extractos vegetales tales como, pero sin limitarse a, eugenol o extractos de romero y vitaminas, preferiblemente tocoferoles y tocotrienoles o ácido ascórbico/vitamina C). También se pueden intercalar sales de amonio cuaternario - preferiblemente sales permitidas para contacto alimentario (esto es que se encuentren recogidas en las listas de monómeros y otras sustancias de partida autorizadas por Ia legislación para usarse en Ia fabricación de materiales y objetos plásticos) tales como y sin sentido limitativo el bromuro de hexadeciltrimetilamonio, esteres de polietilenglicol con ácidos alifáticos monocarboxílicos (C6-C22) y sus sulfatos de amonio y sodio, acido perfluorooctanoico y su sal de amonio, copolímeros cloruro de N-metacriloiloxietil-N,N-dimetil-N-carboximetilamonio, cloruro de bis(2-hidroxietil)-2-hidroxipropil-3-(dodeciloxi) metilamonio; y quitosano y sus derivados, plata, hierro, cobre, níquel y/o sus sales orgánicas o inorgánicas, y otras partículas o nanopartículas con propiedades antimicrobianas, antioxidantes o secuestradoras de oxígeno y/o combinaciones de todos los anteriores.
Cuando el material inorgánico que se intercala está basado en metales tales como plata o sales orgánicas y/o inorgánicas de plata, cobre, hierro cobalto, níquel u otros metales con poder antimicrobiano y/o secuestrador de oxígeno, se puede aplicar posteriormente un tratamiento físico o químico para cambiar el estado de oxidación del centro metálico intercalado, total o parcialmente. Estos tratamientos incluyen sin sentido limitativo: recocido a altas temperaturas (250- 12000C), radiación UV, radiación infrarroja, radiación microondas, reducción química por etanol y/o NaBH4 y/u otros agentes reductores químicos. Al concluir cualquiera de estos tratamientos se habrá modificado el grado de oxidación del centro metálico, de manera total o parcial, (plata, cobre, hierro, níquel, zinc, cobalto, u otro metal empleado), confiriendo al material propiedades antimicrobianas y/o secuestradoras de oxígeno más o menos intensas. Cuando el material orgánico que se intercala es el EVOH o cualquier material de Ia familia del mismo con contenidos molares de etileno preferiblemente menores de un 48%, y más preferiblemente menores de 29%, estos mismos se llevan hasta saturación en medio acuoso o en disolventes específicos de tipo alcohólico y mezclas de alcoholes y agua, más preferiblemente de agua e isopropanol en proporciones en volumen de agua mayores de un 50%.
Por otro lado, los biopolímeros con o sin plastificantes, con o sin entrecruzantes y con o sin emulsionantes o tensoactivos u otro tipo de nanoaditivos, son del grupo formado por los polisacáridos sintéticos y naturales (vegetal o animal) tales como celulosa y derivados, carragenatos y derivados, alginatos, dextrano, goma arábiga y preferiblemente el quitosano o cualquiera de sus derivados tanto naturales como sintéticos, más preferiblemente las sales de quitosano y aún más preferiblemente el acetato de quitosano, y proteínas tanto derivadas de plantas y animales como proteínas del maíz (zeína), los derivados del gluten, tales como gluten o sus fracciones gliadinas y gluteninas y más preferiblemente gelatina, caseína y las proteínas de soja y derivados de estos, así como polipéptidos naturales o sintéticos preferiblemente del tipo elastina obtenidos por vía química o modificación genética de microorganismos o plantas, lípidos tales como cera de abeja, cera de carnauba, cera de candelilla, shellac y ácidos grasos y monoglicéridos y/o mezclas de todos los anteriores.
En el caso del quitosano el grado de desacetilación será preferiblemente superior al 80% y más preferiblemente superior al 87%. La penetración de los precursores se acelerará mediante el uso de temperatura, un homogenizador de régimen turbulento, ultrasonidos, presión o mezcla de los anteriores.
En un paso posterior, o alternativo a Ia modificación de los finos pre-tratados con los precursores y modificantes previamente propuestos, que pueden haber sido lavados y/o secados usando los métodosmetodos citados con anterioridad o mantenerse en medio líquido, se añadirán substancias de bajo peso molecular que tienen carácter activo o bioactivo al objeto de que bien se intercalen y se queden fijados o bien se liberen de forma controlada dando lugar a compuestos con capacidad activa o bioactiva. Las substancias activas serán etanol, o etileno, o del tipo aceites esenciales (preferiblemente timol, carvacrol, linalol y mezclas), o péptidos antimicrobianos de reducido tamaño (preferiblemente bacteriocinas) naturales u obtenidos por modificación genética (preferiblemente nisinas, enterocinas, lacticinas y lisozima), o antioxidantes naturales o sintéticos (preferiblemente polifenoles, tales como, pero sin limitarse a, resveratrol o flavonoides, extractos vegetales tales como, pero sin limitarse a, eugenol o extractos de romero y vitaminas, preferiblemente tocoferoles y tocotrienoles o ácido ascórbico/vitamina C) o fármacos, o enzimas o compuestos de calcio biodisponibles, aceites marinos, probioticos, simbióticos o prebioticos (fibra no digerible), o sales metálicas orgánicas e inorgánicas (preferiblemente de plata, cobre, hierro, níquel o cobalto) o mezcla de los anteriores.)- Estos elementos se espera que se puedan quedar fijos y/o posteriormente liberarse desde el nanocompuesto hacia el producto de forma controlada (control de Ia matriz) y ejerzan su papel activo o bioactivo, y/o que se puedan liberar desde Ia matriz y que las nanoarcillas controlen Ia cinética (control del nanoaditivo). Los contenidos a añadir son en general inferiores a un 80% en volumen de Ia disolución, preferiblemente menores de un 12% y más preferiblemente menores de un 8%. La penetración de estas substancias se acelerará y sin sentido limitativo mediante el uso de temperatura, un homogenizador de régimen turbulento, ultrasonidos, presión o mezcla de los anteriores.
En cualquiera de las etapas anteriores en Ia preparación de las nanoarcillas que implique vía húmeda se puede contemplar el uso de agentes desfloculantes para facilitar el procesado, tales como y sin sentido limitativo polifosfatos y/o acrilatos.
8) Añadir el resultante de las etapas anteriores en estado sólido o líquido a una matriz plástica o cerámica. Alternativamente, también se pueden incluir sobre Ia matriz que contiene los nanoarcillas activas y de manera adicional, sales metálicas orgánicas e inorgánicas activas (preferiblemente de plata, hierro, cobre, níquel o cobalto) y/o cualquier otro tipo de sustancias activas y bioactivas sin sentido limitativo de las arriba mencionadas con el objetivo de reforzar o complementar el efecto activo o bioactivo del nanocompuesto. En el caso de las matrices plásticas tanto las nanoarcillas como los compuestos complementarios antes mencionados, se pueden añadir durante su procesado utilizando cualquier método de fabricación relacionado con Ia industria del procesado de plásticos como Ia extrusión, procesos de aplicación y curado típicamente usados para fabricar y conformar termoestables y elastómeros, inyección, soplado, moldeo por compresión, moldeo por transferencia de resina, calandrado, choque térmico, mezclado interno ultrasonidos, co- extrusión, co-inyección y mezcla de estos.
En otra realización preferida de Ia presente invención y alternativamente al uso como intercalante en las nanoarcillas, se pueden añadir directamente a los polímeros o plásticos bien por vía liquida dispersos en disolvente polares o apolares o en estado sólido, sustancias antioxidantes naturales o sintéticas tales como las descritas con anterioridad, y más preferiblemente el resveratrol. Estas sustancias antioxidantes podrán procesarse por cualquier método de procesado de plásticos para obtener un concentrado o para obtener granza que pueda ser procesada por cualquier método de procesado de plásticos para obtener artículos plásticos.
Según una realización también preferida, Ia matriz polimérica o plástica (en esta invención se utiliza el termino plástico y polímero indistintamente pero se quiere hacer mención a ambos, esto es a polímeros y plásticos) puede ser de cualquier termoplástico, termoestable o elastómero o de derivados de biomasa y materiales biodegradables tales como proteínas, polisacáridos, lípidos y biopoliésteres o mezclas de todos estos y pueden contener todo tipo de aditivos que mejoren las propiedades de barrera a Ia radiación electromagnética y de resistencia al fuego y/o de otros nanoaditivos diferentes de los descritos en esta solicitud y que son típicamente añadidos a plásticos para mejorar su procesado o sus propiedades. Alternativamente, se puede llevar a cabo una precipitación por evaporación del resultante del conjunto nanoaditivos y modificantes y, también, opcionalmente de Ia matriz plástica en disolución, utilizando metodologías de secado tales como calefacción y/o procesos de centrifugación y/o gravimétricos en disolución o turbo-secadores y/o atomización; por enfriamiento o por adición de un agente precipitante para formar bien un polvo del aditivo o un masterbatch o Io que es Io mismo un concentrado del nanoaditivo en una matriz plástica.
En el caso de Ia matriz cerámica, las sales metálicas orgánicas y/o inorgánicas con propiedades activas se pueden añadir junto con otras sustancias activas o bioactivas en cualquiera de las etapas de Ia fabricación o procesado de los materiales cerámicos, si bien preferencialmente se añadirán durante Ia preparación de polvos antes de Ia atomización
A los concentrados de aditivo en matriz polimérica se les puede tratar de las siguientes maneras: a) se tritura para dar lugar a un producto particulado por molienda. b) se procesa mediante cualquier metodología de procesado de plásticos para obtener granza en estado sólido. c) se procesa mediante cualquier proceso de fabricación relacionado con Ia industria del procesado de plásticos como Ia extrusión, inyección, soplado, moldeo por compresión, moldeo por transferencia de resina, calandrado, choque térmico, mezclado interno, ultrasonidos, coextrusión, coinyección y mezcla de estos. d) se utiliza como aditivo sobre cualquier matriz plástica (incluyendo los biopolímeros y materiales biomédicos citados) en una ruta convencional de procesado de plásticos tales como las mencionadas con anterioridad.
Finalmente, cuando el material nanocompuesto está reforzado con nanoarcillas que contienen metales tales como plata o sales orgánicas y/o inorgánicas de plata, cobre, cobalto, níquel u otros metales con poder antimicrobiano, hierro y/o sus sales, se puede aplicar, tanto si se ha hecho antes como si no, un tratamiento físico o químico para cambiar el estado de oxidación, total o parcialmente, del centro metálico intercalado en Ia matriz plástica o cerámica bien antes, durante o después de conformarse. Estos tratamientos incluyen sin sentido limitativo: recocido a altas temperaturas (250-12000C), radiación UV, radiación infrarroja, radiación microondas, reducción química por etanol y/o NaBH4 y/u otros agentes reductores químicos. Al concluir cualquiera de estos tratamientos se habrá modificado el grado de oxidación del centro metálico (plata, cobre, níquel, hierro, zinc, cobalto, u otro metal empleado), confiriendo al material propiedades antimicrobianas y/o secuestradoras de oxígeno ventajosas.
Por último un tercer aspecto esencial de Ia presente invención se refiere al uso de los materiales nanocompuestos obtenidos para reforzar Ia actividad antimicrobiana en aplicaciones multisectoriales en las que se requiera limitar Ia proliferación microbiana a través del uso de materiales plásticos y compuestos cerámicos, particularmente en aplicaciones de envasado y embalaje en general de alimentos y componentes alimentarios (en el caso de materiales poliméricos), en aplicaciones biomédicas, médico-quirúrgicas y farmacéuticas, o en aplicaciones antifouling, en aplicaciones de construcción para esmaltes, azulejos, termoestables y ceras, en aplicaciones para productos de aseo personal y contenedores de alimentos, films de invernadero, en aplicaciones de contacto en lugares transitados tales como supermercados, carritos, stands, lineales, encimeras, cocinas, escaleras mecánicas o aeropuertos, en aplicaciones textiles, como barrera a gases, vapores, disolventes y productos orgánicos, tales como aromas y componentes de aromas, aceites, grasas e hidrocarburos, y a productos mixtos de carácter orgánico e inorgánico, para aplicaciones que requieren carácter biodegradable o compostable, para envases activos que requieran de Ia fijación y/o Ia liberación controlada de substancias de bajo peso molecular, para aplicaciones que requieran de capacidad antimicrobiana, antioxidante o secuestradora de oxígeno y para el uso de biopolímeros bien sin Ia necesidad de uso de agentes plastificantes o necesitando cantidades más bajas de estos.
También estos materiales nanocompuestos servirán como materiales con propiedades de barrera a Ia radiación electromagnética y de resistencia al fuego. Todas las características y ventajas expuestas, así como otras propias de Ia invención, podrán comprenderse mejor con los siguientes ejemplos. Por otra parte los ejemplos que se muestran a continuación, no tienen carácter limitativo sino ilustrativo a modo de que se pueda entender mejor Ia presente invención.
DESCRIPCIÓN DE LAS FIGURAS
A continuación se describe Ia invención con referencia a las figuras adjuntas, en las cuales:
Figura 1 corresponde a los difractogramas de rayos-X (WAXS) obtenidos a partir de una muestra de arcilla tipo montmorillonítica modificada con bromuro de hexadeciltrimetilamonio (antimicrobiano orgánico, agente expansionante y compatibilizante) y nitrato de plata (antimicrobiano resistente a Ia temperatura), usando etanol como agente reductor mediante el método descrito en el Ejemplo 1 , y una muestra del mismo tipo de arcilla sin modificar. En esta gráfica se observa como el sistema antimicrobiano se intercala en Ia arcilla y desplaza el pico natural de Ia arcilla hacia ángulos más bajos.
Figura 2 es una imagen obtenida por microscopio electrónico de transmisión (TEM) en Ia cual se presentan las principales morfologías que pueden ser observadas en las nanocargas obtenidas según Ia presente invención. La imagen corresponde a un agregado de láminas de arcilla tipo montmorillonítica modificadas con bromuro de hexadeciltrimetilamonio y nitrato de plata, usando etanol como agente reductor, mediante el método descrito en el Ejemplo 1. Se pueden observar las nanopartículas de plata formadas en Ia superficie.
Figura 3 corresponde a los difractogramas de rayos-X (WAXS) obtenidos a partir de una muestra de arcilla tipo caolinítica (pretratada con DMSO) modificada con bromuro de hexadeciltrimetilamonio (antimicrobiano orgánico, agente expansionante y compatibilizante) y con nitrato de plata (antimicrobiano resistente a Ia temperatura), usando radiación UV como agente reductor mediante el método descrito en el Ejemplo 2, y una muestra del mismo tipo de arcilla sin modificar (pretratada con DMSO). En esta gráfica se observa como el sistema antimicrobiano se intercala en Ia arcilla y como resultado conduce a Ia desaparición del pico de Ia arcilla natural pretratada con DMSO.
Figura 4 es una imagen obtenida por microscopio electrónico de transmisión (TEM) en Ia cual se presentan las principales y típicas morfologías que pueden ser observadas en las nanocargas obtenidas según Ia presente invención. La imagen corresponde a un agregado de láminas de arcilla tipo caolinítica (pretratada con DMSO) modificadas con bromuro de hexadeciltrimetilamonio y nitrato de plata, usando radiación UV como agente reductor, mediante el método descrito en el Ejemplo 2.
Figura 5 es una imagen obtenida por microscopio electrónico de transmisión (TEM) de un agregado de láminas de arcilla tipo montmorillonítica intercaladas con nitrato de plata, usando etanol como agente reductor, mediante el método descrito en el Ejemplo 3.
Figura 6 es una imagen obtenida por microscopio electrónico de transmisión (TEM) de un agregado de láminas de arcilla tipo caolinítica (pretratadas con DSMO) intercaladas con nitrato de plata, usando radiación UV como agente reductor, mediante el método descrito en el Ejemplo 4.
Figura 7 corresponde a una imagen obtenida por microscopio electrónico de transmisión (TEM) de un film obtenido por cásting de nanocompuesto de ácido poliláctico con 10% de arcilla tipo caolinita (pretradada con DSMO) intercalada con nitrato de plata, mediante el método descrito en el Ejemplo 5.
Figura 8 muestra Ia mejora en permeabilidad al vapor de agua obtenido en un film de nanocompuesto de ácido poliláctico con 10% de arcilla tipo caolinita (pretratada con DMSO) intercalada con nitrato de plata respecto a un film de ácido poliláctico puro (Ejemplo 5) Figura 9 corresponde a un espectro de difracción de rayos-X (WAXS) obtenido a partir de una muestra de arcilla tipo montmorillonítica modificada con 10% p/p de trans-resveratrol, mediante el método descrito en el Ejemplo 8.
Figura 10 corresponde a Ia gráfica de inhibición de oxidación en espacio cabeza de ácido linoléico por acción de arcillas tipo montmorilloníticas con 10% de antioxidantes (trans-resveratrol o α-tocoferol), mediante los métodos descritos en los Ejemplos 8 y 9.
Figura 11 corresponde a un espectro de difracción de rayos-X (WAXS) obtenido a partir de una muestra de arcilla tipo montmorillonítica modificada con 10% p/p de α-tocoferol, mediante el método descrito en el Ejemplo 9.
Figura 12 corresponde a un espectro de difracción de rayos-X (WAXS) obtenido a partir de una muestra de arcilla tipo montmorillonítica modificada simultáneamente con 20% p/p de bromuro de hexadeciltrimetilamonio y 5% de eugenol, mediante el método descrito en el Ejemplo 10.
Figura 13 corresponde al % de inhibición de DPPH en films de EVOH con diferentes contenidos en trans-resveratrol preparados por el método de precipitación, mediante el procedimiento descrito en el Ejemplo 11.
Figura 14 corresponde al % de inhibición de DPPH en films de EVOH con %% de caolinita y distintos contenidos en resveratrol preparados mediante el procedimiento descrito en el ejemplo 12.
Figura 15 corresponde al % de inhibición de oxidación del ácido linoléico en espacio cabeza por efecto de films de EVOH + 1 % de antioxidante, según procedimiento descrito en el ejemplo 13.
Figura 16 corresponde a los porcentajes de inhibición de radical DPPH a tiempo cero y a los 21 días de exposición de films de EVOH. con y sin caolinita, con 1 % de antioxidante, expuestos a luz artificial directa, 24 0C y 40 % de HR. Figura 17 muestra que los films de EVOH adiíivados en polvo con 0.1 a 1 % de resveratro! tienen capacidad AO entre 18.8 y 85.4% (respecto a viraje de DPPH)1 y que e! EVOH aditivado con 1 % de resveratro! tienen capacidad antioxidante superior al film aditivado con 1 % de BHT.
Figura 18 muestra que e! film de LDPE aditivado con 1 % de t-resveratro! vía líquida tiene un 88% de capacidad antioxidante (respecto a viraje de DPPH), claramente superior al film de LDPE sin aditivar.
EJEMPLOS
Ejemplo 1 : Síntesis e intercalación de nanopartículas de plata metálica en arcillas de tipo montmorillonita modificadas con 33% en masa de bromuro de hexadeciltrimetilamonio, utilizando etanol como agente reductor. Inicialmente se dispersó Ia arcilla ya modificada con 33% de bromuro de hexadeciltrimetilamonio en etanol, a condiciones ambientales, a una razón de 1g de arcilla por 100 g de solvente, y se añadieron a Ia dispersión 0,05 g de AgN03. La dispersión se sometió a reflujo a 7O0C durante 6 horas; posteriormente se dejó decantar Ia dispersión, se eliminó el exceso de solvente y Ia arcilla se secó en un horno de convección durante 1 h a 7O0C. La arcilla obtenida se caracterizó utilizando difracción de rayos-X (ver Figura 1 ) y microscopía electrónica de transmisión (ver Figura 2). Los difractogramas de Ia
Figura 1 demuestran que los agentes modificantes (partículas de plata y bromuro de hexadeciltrimetilamonio) se han intercalado entre las láminas, según el desplazamiento del pico basal a ángulos más bajos (de 6,38 a 5,26). Por las imágenes de TEM se determinó que en este caso las nanopartículas de plata alcanzaron entre 3 y 23 nm, siendo el tamaño promedio de 16 nm; y que dichas nanopartículas se ubican presumiblemente en los espacios interlaminares de Ia arcilla, en Ia superficie y bordes. En otro estudio se determinó Ia capacidad antimicrobiana de esta arcilla con un 5% de nitrato de plata frente a Salmonella spp. Se utilizó un microorganismo patógeno de origen alimentario como es Salmonella spp. CECT 554, que se obtuvo de Ia Colección Española de Cultivos Tipo (Valencia, España). Las condiciones del estudio se fijaron en el uso de Ia bacteria en fase exponencial media y con una concentración inicial del microorganismo de aproximadamente 105 CFU/mL. La parte experimental se llevó a cabo empleando una adaptación del método de macrodilución establecido para Ia determinación de Ia actividad bactericida de agentes antimicrobianos aprobado en 1999 por el Comité Nacional para Estándares de Laboratorio Clínico. De acuerdo con este método, se introdujeron 100 mg de Ia arcilla que tenía una concentración final de plata del 5% y 33% de bromuro de hexadeciltrimetilamonio en un tubo estéril que contenía 10 mL de caldo de cultivo Mueller Hinton Broth (MHB). Posteriormente, y trascurridas 5h, el tubo se inoculó con 0,1 mL de un cultivo de Salmonella spp. en las condiciones descritas anteriormente. Paralelamente se inocularon dos tubos que contenían muestra sin plata (uno con arcilla del mismo tipo sin ninguna modificación y otro con arcilla del mismo tipo modificada con 33% de bromuro de hexadeciltrimetilamonio), y otro tubo sin muestra que servirían de control. Una vez las muestras fueron inoculadas, todos los tubos se incubaron a 370C durante 24 horas. Seguidamente 0,1 mL de cada muestra fueron sembrados en placas de Agar Triptona Soja (TSA). Tras 24 horas de incubación a 370C, se procedió al recuento de células viables en Ia placa. Exceptuando el control sin muestra y el control de arcilla sin modificación, se obtuvo una reducción significativa en el número de viables después de Ia incubación a 370C durante 24 h (ver Tabla 2). El control de arcilla modificada con 33% de bromuro de hexadeciltrimetilamonio muestra una reducción de tres órdenes de magnitud del número de viables luego del período de incubación, demostrando que este agente modificante tiene cierta actividad antibacteriana. La muestra de arcilla modificada con 5% de nitrato de plata y 33% de bromuro de hexadeciltrimetilamonio redujo en más de 99,9 % el número de viables, quedando demostrada Ia capacidad bactericida de esta arcilla. TABLA 2
Figure imgf000029_0001
Ejemplo 2:
Síntesis e intercalación de nanopartículas de plata metálica en arcillas de tipo caolinita pretratadas con dimetilsulfóxido (DMSO) y modificadas con 33% en masa de bromuro de hexadeciltrimetilamonio, usando radiación UV como agente reductor. Inicialmente se pretrató Ia arcilla tipo caolinita con dimetilsulfóxido para aumentar el espacio interlaminar. Para ello se dispersaron 60 g de arcilla en 300 mi de dimetilsulfóxido, y se mantuvo bajo agitación magnética y a 65 0C durante 24 h. Posteriormente se filtró Ia arcilla por succión, se lavó con metanol y se secó en un horno de convección a 80 0C durante 6 horas.
Una vez seca, se dispersa en agua Ia arcilla pretratada con dimetilsulfóxido, a una razón de 1g de arcilla por 100 g de solvente, y posteriormente se añadieron 0,05g de AgNO3 y 0,33 g de bromuro de hexadeciltrimetilamonio. La dispersión se mantuvo bajo agitación magnética vigorosa y constante bajo una fuente de radiación UV de 30 W y 235 nm de longitud de onda. El tiempo de exposición a Ia radiación UV fue de 24 h, después se filtró el sólido por succión y se secó en un horno de convección a 70 0C durante 1 h. La arcilla obtenida se caracterizó utilizando difracción de rayos X (ver Figura 3) y microscopía electrónica de transmisión (ver Figura 4). La desaparición de Ia señal del pico basal de la caolinita pretratada con dimetilsulfóxido y sin modificar con bromuro de hexadeciltrimetilamonio en los difractogramas de Ia Figura 3 (2Θ= 8,06), indica que tras Ia intercalación simultánea de bromuro de hexadeciltrimetilamonio y partículas de plata las láminas de arcillas encuentran impedimentos estéricos para poderse mantener juntas entre sí. Por las imágenes de TEM se determinó que en este caso las nanopartículas de plata alcanzaron entre 3 y 24 nm, siendo el tamaño promedio de 10 nm; y que dichas nanopartículas se ubican en Ia superficie, bordes, y presumiblemente, en los espacios interlaminares de Ia arcilla. En otro estudio se determinó Ia capacidad antimicrobiana de esta arcilla con un 5% de nitrato de plata frente a Salmonella spp. Se utilizó un microorganismo patógeno de origen alimentario como es Salmonella spp. CECT 554, que se obtuvo de Ia Colección Española de Cultivos Tipo (Valencia, España). Las condiciones del estudio se fijaron en el uso de Ia bacteria en fase exponencial media y con una concentración inicial del microorganismo de aproximadamente 105 CFU/mL. La parte experimental se llevó a cabo empleando una adaptación del método de macrodilución establecido para Ia determinación de Ia actividad bactericida de agentes antimicrobianos aprobado en 1999 por el Comité Nacional para Estándares de Laboratorio Clínico. De acuerdo con este método, se introdujeron 100 mg de Ia arcilla que tenía una concentración final de nitrato de plata del 5% y 33% de bromuro de hexadeciltrimetilamonio en un tubo estéril que contenía 10 mL de caldo de cultivo Mueller Hinton Broth (MHB). Posteriormente, y trascurridas 5h, el tubo se inoculó con 0,1 mL de un cultivo de Salmonella spp. en las condiciones descritas anteriormente. Paralelamente se inocularon dos tubos que contenían muestra sin plata (uno con arcilla del mismo tipo sin ninguna modificación pero pretratada con DSMO y otro con arcilla del mismo tipo pretratada con DMSO y modificada con 33% de bromuro de hexadeciltrimetilamonio), y otro tubo sin muestra que servirían de control. Una vez las muestras fueron inoculadas, todos los tubos se incubaron a 370C durante 24 horas. Seguidamente 0,1 mL de cada muestra fueron sembrados en placas de Agar Triptona Soja (TSA). Tras 24 horas de incubación a 370C, se procedió al recuento de células viables en Ia placa. Exceptuando el control sin muestra y el control de arcilla pretratada con dimetilsulfóxido pero sin modificación, se obtuvo una reducción significativa en el número de viables (> 99,9 %), tanto en el control de arcilla pretratada con DMSO y modificada con bromuro de hexadeciltrimetilamonio como en Ia muestra de arcilla pretratada con DMSO y modificadas con bromuro de hexadeciltrimetilamonio y nitrato de plata después de Ia incubación a 37 0C durante 24 h (ver Tabla 3). Estos resultados demuestran que tanto el bromuro de hexadeciltrimetilamonio como las nanopartículoas de plata intercaladas en Ia caolinita tienen fuerte efecto antimicrobiano.
TABLA 3
Figure imgf000031_0001
Ejemplo 3:
Síntesis e intercalación de nanopartículas de plata metálica en arcillas de tipo montmorillonita sin modificar utilizando etanol como agente reductor.
Inicialmente se dispersó Ia arcilla en etanol, a condiciones ambientales, a una razón de 1g de arcilla por 100 g de solvente, y se añadieron 0,1g de AgNO3 a
Ia dispersión. Ésta se sometió a reflujo a 7O0C durante 6 horas; posteriormente se dejó decantar Ia dispersión, se eliminó el exceso de solvente y Ia arcilla se secó en un horno de convección durante 1 h a 7O0C. La arcilla obtenida se caracterizó utilizando difracción de rayos X (ver Figura 5). Los difractogramas de Ia Figura 5 indican que no hay desplazamiento de Ia señal del pico basal (6,38; 2Θ) tras Ia incorporación de nanopartículas de plata a Ia arcilla.
En otro estudio se determinó Ia capacidad antimicrobiana de esta arcilla con un 5% de nitrato de plata frente a Salmonella spp. Se utilizó un microorganismo patógeno de origen alimentario como es Salmonella spp. CECT 554, que se obtuvo de Ia Colección Española de Cultivos Tipo (Valencia, España). Las condiciones del estudio se fijaron en el uso de Ia bacteria en fase exponencial media y con una concentración inicial del microorganismo de aproximadamente 105 CFU/mL. La parte experimental se llevó a cabo empleando una adaptación del método de macrodilución establecido para Ia determinación de Ia actividad bactericida de agentes antimicrobianos aprobado en 1999 por el Comité Nacional para Estándares de Laboratorio Clínico. De acuerdo con este método, se introdujeron 100 mg de Ia arcilla que tenía una concentración final de nitrato de plata del 5% en un tubo estéril que contenía 10 mL de caldo de cultivo Mueller Hinton Broth (MHB). Posteriormente, y trascurridas 5h, el tubo se inoculó con 0,1 mL de un cultivo de Salmonella spp. en las condiciones descritas anteriormente. Paralelamente se inoculó un tubo que contenía muestra sin plata y otro sin muestra, ambos servirían de control. Una vez las muestras fueron inoculadas, todos los tubos se incubaron a 37 0C durante 24 horas. Seguidamente 0,1 mL de cada muestra fueron sembrados en placas de Agar Triptona Soja (TSA). Tras 24 horas de incubación a 370C, se procedió al recuento de células viables en Ia placa. Exceptuando ambos controles, se obtuvo una reducción significativa en el número de viables (> 99,9 %) después de Ia incubación a 37 0C durante 24 h (ver Tabla 4).
TABLA 4
Figure imgf000032_0001
Figure imgf000033_0001
Ejemplo 4:
Síntesis e intercalación de nanopartículas de plata metálica en arcillas de tipo caolinita pretratadas con dimetilsulfóxido, usando radiación UV como agente reductor. Inicialmente se pretrató Ia arcilla tipo caolinita con dimetilsulfóxido para aumentar el espacio interlaminar. Para ello se dispersaron 60 g de arcilla en 300 mi de dimetilsulfóxido, y se mantuvo bajo agitación magnética y a 65 0C durante 24 h. Posteriormente se filtró Ia arcilla por succión, se lavó con metanol y se secó en un horno de convección a 80 0C durante 6 horas.
Una vez seca, se dispersa Ia arcilla pretratada con dimetilsulfóxido en agua a condiciones ambientales, a una razón de 1g de arcilla por 100 g de solvente, y posteriormente se añadieron 0,05g de AgNO3 La dispersión se mantuvo bajo agitación magnética vigorosa y constante bajo una fuente de radiación UV de 30 W y 235 nm de longitud de onda. El tiempo de exposición a Ia radiación UV fue de 24 h, luego de Io cual se filtró el sólido por succión y se secó en un horno de convección a 70 0C durante 1 h. La imagen TEM de Ia Figura 6 muestra un tamaño promedio de partículas de plata reducidas de 15 nm, y que éstas se encuentran en las superficies y bordes de las láminas de arcilla. En otro estudio se determinó Ia capacidad antimicrobiana de esta arcilla pretratada con DMSO y modificada con un 5% de nitrato de plata frente a Salmonella spp. Se utilizó un microorganismo patógeno de origen alimentario como es Salmonella spp. CECT 554, que se obtuvo de Ia Colección Española de Cultivos Tipo (Valencia, España). Las condiciones del estudio se fijaron en el uso de Ia bacteria en fase exponencial media y con una concentración inicial del microorganismo de aproximadamente 105 CFU/mL. La parte experimental se llevó a cabo empleando una adaptación del método de macrodilución establecido para Ia determinación de Ia actividad bactericida de agentes antimicrobianos aprobado en 1999 por el Comité Nacional para Estándares de Laboratorio Clínico. De acuerdo con este método, se introdujeron 100 mg de Ia arcilla pretratada con DMSO que tenía una concentración final de plata del 5% en un tubo estéril que contenía 10 ml_ de caldo de cultivo Mueller Hinton Broth (MHB). Posteriormente, y trascurridas 5h, el tubo se inoculó con 0,1 ml_ de un cultivo de Salmonella spp. en las condiciones descritas anteriormente. Paralelamente se inoculó un tubo que contenía muestra de arcilla del mismo tipo pretratada con dimetilsulfóxido pero sin plata y otro sin muestra, ambos servirían de control. Una vez las muestras fueron inoculadas, todos los tubos se incubaron a 37 0C durante 24 horas. Seguidamente 0,1 ml_ de cada muestra fueron sembrados en placas de Agar Triptona Soja (TSA). Tras 24 horas de incubación a 370C, se procedió al recuento de células viables en Ia placa. Exceptuando los dos controles, se obtuvo una reducción significativa en el número de viables (>99,9 %) (ver Tabla 5).
TABLA 5
Figure imgf000034_0001
Ejemplo 5:
Preparación de películas de ácido poliláctico con 10% de arcilla del tipo caolinita pretratada con dimetilsulfóxido e intercalada con nanopartículas de plata. Inicialmente, se preparó una dispersión en cloroformo al 10% en peso (respecto al peso seco de polímero) de arcilla pretratada con dimetilsulfóxido y a Ia que se Ie había intercalado nanopartículas de plata bajo el método de reducción con radiación UV. Posteriormente se añadió el polímero (ácido poliláctico) al 5% en peso en Ia dispersión de arcilla en cloroformo. Se obtuvo una película de nanocompuesto de ácido poliláctico/nanoarcilla de plata por evaporación del disolvente a condiciones ambientales, proceso denominado "casting". Se caracterizaron estos nanocompuestos estudiando su morfología por microscopía electrónica de transmisión (TEM, ver Figura 7), así como sus propiedades barrera al vapor de agua y antimicrobianas. Adicionalmente se estudió Ia permeabilidad al agua (ver Figura 8) de esta película de ácido poliláctico y 10% en peso de arcilla con propiedades antimicrobianas, utilizando Ia norma ASTM E96, A 250C y 75% de humedad relativa. La adición de arcilla antimicrobiana a Ia matriz polimérica causa una reducción de permeabilidad de 26,8%, por Io que el material compuesto presenta mejor barrera al agua que el ácido poliláctico puro. Para evaluar Ia capacidad antimicrobiana de los films de PLA, se pesaron 600 mg de film, tanto del control sin arcilla como de Ia muestra con arcilla antimicrobiana, y se introdujeron en 1OmL de medio de cultivo estéril. Se almacenaron a 40C durante cuatro semanas, previamente a su inoculación con Salmonella spp. Considerando que los films contenían 10% de arcilla, y a su vez esa arcilla contenía un 5% de nitrato de plata, Ia concentración final de nitrato de plata que se ha empleado es de 300 ppm, siendo Ia concentración mínima bactericida (en este caso, reducir Ia población a cero) de Salmonella alrededor de 100 ppm. Los films contienen una cantidad de plata 3 veces superior a Ia dosis bactericida cuando se usa en suspensión. Después de cuatro semanas de almacenamiento y liberación continuada, los controles muestran un aumento en el número de viables del tres órdenes de magnitud, mientras que en Ia muestra de film de PLA con 10% de arcilla intercalada con plata los viables se reducen tres órdenes de magnitud (ver Tabla 6).
TABLA 6
Figure imgf000035_0001
Ejemplo 6:
Preparación de películas de quitosano con 10% de arcilla del tipo caolinita pretratada con dimetilsulfóxido e intercalada con nanopartículas de plata. Inicialmente se prepara una solución 0,9% de quitosano en ácido acético al 1%, a 7O0C. Esta solución se filtró y se Ie añadió, bajo agitación vigorosa, una dispersión en agua al 10% en peso (respecto al peso seco de polímero) de arcilla tipo caolinita pretratada con dimetilsulfóxido e intercalada con nanopartículas de plata. Se vierte en placas Petri y se deja evaporar el solvente a condiciones ambientales. Se obtuvo una película de nanocompuesto de quitosano/nanoarcilla de plata por el proceso denominado "casting". Para evaluar Ia capacidad antimicrobiana de los films de quitosano se pesaron diferentes porciones de films y se almacenaron a 40C durante 12 horas antes de su inoculación con Salmonella spp. Los pesos utilizados fueron: 25, 50 y 75 mg de film, que se colocaron en tubos de 10 mL con medio de cultivo estéril. Los films de quitosano contenían un 10% de arcilla, que a su vez contenía un 5% de plata, por Io que las concentraciones finales de nitrato de plata empleadas son las siguientes: 25 mg de film de quitosano contenían 0,125 mg de nitrato de plata; 50 mg de film contenían 0,25 mg de plata; y 75 mg de film contenían 0,375 mg de plata. Los resultados de Ia tabla 7 muestran que los films control de quitosano (sin arcilla) tienen cierta actividad antimicrobiana, ya que según se incrementa el peso de Ia película, disminuye el número de bacterias viables, siendo 75 mg de film cantidad suficiente para inhibir totalmente el crecimiento bacteriano en el medio a las condiciones dadas. Las muestras con 10% de arcilla poseen mayor capacidad para inhibir el crecimiento, con 25 mg de film el número de viables se reduce en tres órdenes de magnitud y a partir de 50 mg de film se obtiene inhibición total de crecimiento.
TABLA 7
Figure imgf000036_0001
Figure imgf000037_0001
Ejemplo 7:
Evaluación de Ia capacidad antimicrobiana de films de PVOH y EVOH con 10% de arcilla tipo caolinita pretratada con dimetilsulfóxido e intercalada con nanopartículas de plata. A soluciones 5% de PVOH y EVOH se les incorporó de forma uniforme un 10% (en base al peso de polímero) de arcilla tipo caolinita pretratada con dimetilsulfóxido e intercaladas con nanopartículas de plata. Posteriormente se obtuvieron los respectivos films por evaporación del solvente (proceso de casting) y se almacenaron en un desecador a 0% de humedad relativa y a temperatura ambiente.
Para Ia evaluación de Ia capacidad antimicrobiana, se introdujeron 100 mg de cada una de las películas obtenidas en 1OmL de caldo de cultivo estéril y se almacenaron a 40C durante 72 horas antes de su inoculación con Salmonella spp. Paralelamente se prepararon tubos de control sin muestra y de control de films de PVOH y EVOH sin arcillas. Se preparó adicionalmente un set de muestras y controles bajo iguales condiciones que se procesó inmediatamente, a fin de estudiar Ia liberación del agente antimicrobiano de las matrices respecto al tiempo. Los resultados de Ia tabla 8 muestran que los films de control sin arcillas permiten Ia multiplicación del número de viables hasta dos órdenes de magnitud, independientemente del tiempo de almacenamiento. Las muestras de film de EVOH con 10% de arcilla intercalada con nitrato de plata redujo 100 veces el número de viables al momento de Ia inoculación y luego, 100 veces más tras 72 horas de incubación. Por su parte, las muestras de films de PVOH con 10% de arcilla de plata mostraron reducción de cuatro órdenes de magnitud del número de viables al momento de Ia inoculación de Ia muestra e inhibición total luego de 72 horas de incubación. Estos resultados muestran Ia actividad bactericida de las arcillas intercaladas con plata incorporadas en matrices de EVOH y PVOH, siendo el efecto antimicrobiano más acusado en este último polímero.
TABLA 8
Figure imgf000038_0001
Ejemplo 8:
Modificación de arcilla tipo montmorillonítica con 10% p/p de trans-resveratrol 99%. Inicialmente se disolvieron 2 g de trans-resveratrol en una solución 70% v/v de etanol a 40 0C, usando agitación magnética. Seguidamente se agregaron 20 g de arcilla a Ia solución de trans-resveratrol. Se mantuvo en reflujo, bajo agitación vigorosa y 40 0C durante 24 h. Pasado este tiempo, Ia arcilla resultante se filtró por succión y se secó en estufa de convección a 60 0C durante 6 h. La arcilla modificada seca se caracterizó por difracción de rayos X (ver Figura 9). Se observó desplazamiento del pico basal de 6.38 (2Θ) de Ia arcilla sin modificar a 5.9 (2Θ) de Ia arcilla modificada. Esto, según Ia ley de Bragg, corresponde a un aumento de Ia distancia interlaminar de 0.09 nm. Posteriormente se determinó el efecto antioxidante en espacio cabeza de Ia arcilla modificada con 10% de trans-resveratrol sobre el ácido linoléico. Para ello se colocaron 1.6 mmoles de ácido linoléico en el fondo de un frasco de vidrio de boca ancha de 300 ml_ de capacidad, distribuyendo el ácido en Ia circunferencia del fondo. Se pesó Ia cantidad de arcilla modificada equivalente a 3.2 mmoles de trans-resveratrol, y se colocó en un vial de boca ancha en el fondo del frasco que contenía el ácido, evitando el contacto con él. A continuación se cerró herméticamente el frasco con un tapón plástico. Al mismo tiempo se prepararon dos frascos a manera de controles: uno que sólo contenía el ácido graso, y otro que además del ácido graso contenía un vial con arcilla sin modificar. Los tres frascos se almacenaron durante 48 h en un local climatizado a 24 0C, 75% HR, y bajo luz artificial directa. Pasado este tiempo se abrieron los frascos, y en cada uno se agregaron 10 mL de solución 10% p/p de ácido tricloroacético y 7 mL de solución 20 mM de ácido 2-tiobarbitúrico. Se agitaron los frascos y se incubaron durante 30 min a 97 0C. Posteriormente se centrifugaron las muestras, se tomaron alícuotas de Ia fase acuosa y se diluyeron 10 veces. Se mide absorbancia a 532 nm para determinar al concentración de malonaldehído, producto de oxidación del ácido linoléico. El porcentaje de inhibición de Ia oxidación del ácido linoléico se calculó respecto al control sin arcilla, obteniéndose una inhibición de 68.61 % (Figura 10).
Ejemplo 9:
Modificación de arcilla tipo montmorillonítica con 10% p/p de α-tocoferol. Inicialmente se disolvieron 2 g de α-tocoferol en una solución 70% v/v de etanol a 40 0C, usando agitación magnética. Seguidamente se agregaron 20 g de arcilla a Ia solución de α-tocoferol. Se mantuvo en reflujo, bajo agitación vigorosa y 40 0C durante 24 h. Pasado este tiempo, Ia arcilla resultante se filtró por succión y se secó en estufa de convección a 60 0C durante 6 h. La arcilla modificada seca se caracterizó por difracción de rayos X (ver Figura 3). Se determinó que el α-tocoferol se introdujo entre las láminas de arcilla, ya que Ia posición del pico basal cambió de 6.38 (2Θ) a 5.99 (2Θ), correspondiendo a una apertura de 0.09 nm. Posteriormente se determinó el efecto antioxidante en espacio cabeza de Ia arcilla modificada con 10% de α-tocoferol sobre el ácido linoléico. Para ello se colocaron 1.6 mmoles de ácido linoléico en el fondo de un frasco de vidrio de boca ancha de 300 ml_ de capacidad, distribuyendo el ácido en Ia circunferencia del fondo. Se pesó Ia cantidad de arcilla modificada equivalente a 3.2 mmoles de α-tocoferol, y se colocó en un vial de boca ancha en el fondo del frasco que contenía el ácido, evitando el contacto con él. A continuación se cerró herméticamente el frasco con un tapón plástico. Al mismo tiempo se prepararon dos frascos a manera de controles: uno que sólo contenía el ácido graso, y otro que además del ácido graso contenía un vial con arcilla sin modificar. Los tres frascos se almacenaron durante 48 h en un local climatizado a 24 0C, 75% HR, y bajo luz artificial directa. Pasado este tiempo se abrieron los frascos, y en cada uno se agregaron 10 ml_ de solución 10% p/p de ácido tricloroacético y 7 ml_ de solución 20 mM de ácido 2-tiobarbitúrico. Se agitaron los frascos y se incubaron durante 30 min a 97 0C. Posteriormente se centrifugaron las muestras, se tomaron alícuotas de Ia fase acuosa y se diluyeron 10 veces. Se mide absorbancia a 532 nm para determinar al concentración de malonaldehído, producto de oxidación del ácido linoléico. El porcentaje de inhibición de Ia oxidación del ácido linoléico se calculó respecto al control sin arcilla, obteniéndose una inhibición de 41.72% (Figura 10).
Ejemplo 10: Modificación simultánea de arcilla tipo montmorillonítica con 20% p/p de bromuro de hexadeciltrimetilamonio y 5% p/p de euqenol. Inicialmente se disolvieron 4 g de bromuro de hexadeciltrimetilamonio en una solución 20% v/v de etanol a 40 0C, usando agitación magnética. Seguidamente se agregaron 1 g de eugenol y 20 g de arcilla. Se utilizó un homogenizador a altas revoluciones durante 10 min para favorecer Ia dispersión de Ia arcilla en Ia solución. Se conectó a reflujo y se mantuvo bajo agitación vigorosa y a 40 0C durante 24 h. Pasado este tiempo, Ia arcilla resultante se filtró por succión y se secó en estufa de convección a 60 0C durante 6 h. La arcilla modificada seca se caracterizó por difracción de rayos X (ver Figura 12). El desplazamiento del pico basal de 7.07 a 5.66 (2Θ) indica un aumento en el espaciamiento interlaminar del orden de 0.31 nm, calculado a partir de Ia ley de Bragg. Este cambio en el espaciamiento es evidencia de Ia entrada de los agentes modificantes en las galerías de Ia arcilla.
Ejemplo 11
Fabricación de films de EVOH32 (32% etileno) con distinta carga de trans- resveratrol mediante el método de precipitación. Se disolvió EVOH con 32% de etileno, bajo reflujo, a 80 0C en 170 ml_ de una solución 50% de isopropanol. Aparte, se disolvió el equivalente de 1% p/p de t-resveratrol respecto a Ia masa seca total (polímero+ trans-resveratrol) en 80 ml_ de una solución 50% de isopropanol caliente a 8O0C. Una vez disuelto el polímero, se añade Ia solución caliente de antioxidante a Ia solución de EVOH, y se mantuvo Ia agitación magnética y calentamiento bajo reflujo durante 1 hora. Se precipitó el compuesto de EVOH-antioxidante dejando caer lentamente Ia solución caliente en un chorro de agua fresca. Se retira el exceso de agua del compuesto precipitado, se corta en trozos pequeños y se deja secar en Ia estufa de convección a 60 0C durante 14 horas. Este procedimiento permitió preparar compuestos de EVOH con 1 %, 5% y 10% de trans-resveratrol, utilizando las proporciones que se indican en Ia Tabla 9. Posteriormente se procedió a Ia preparación de películas utilizando una prensa. Las muestras se transformaron en planchas de aprox. 100 mieras de espesor por moldeado en compresión en una prensa hidráulica, a 22O0C y 2MPa de presión durante 4 minutos. Las planchas de las muestras se enfrían lentamente dentro de Ia prensa por flujo de agua. Posteriormente se determinó el efecto antioxidante por contacto de los films de EVOH obtenidos, utilizando el método de descoloramiento del radical DPPH (2,2-difenil-1 -picrilhidracilo). Para ello se pesaron, por duplicado. porciones de 3Gmg de cada film y se colocaron en tubos plásticos de 1.5 mL.
Se añadió en cada tubo 1 mL de una solución stock 0.05g/L de DPPH en metano!. La absorbancia a 517 nm de esta solución stock es de 1.4. Paralelamente se prepararon dos muestras controles sin film que contenían 1 mL de DPPH. Las muestras y los controles se dejaron incubar en ¡a oscuridad y a 240C durante 24h. Seguidamente, se midió Ia absorbencia a 517 nm. Los resultados se expresan en % de inhibición del DPPH: % Inhibición de! DPPH = (Abs control - Abs muestra )/Abs control. La Figura 13 muestra que los films que contienen irans-resveratrol tienen un efecto antioxidante de 74% en promedio.
Tabla 9.
Figure imgf000042_0001
Ejemplo 12:
Fabricación de compuestos de EVOH con 5% de caolinita y con distinta carga de agentes antioxidantes mediante extrusión en líquido. Se utilizó EVOH-32 y caolinita cuyo tamaño de partícula era 10 m (D90). Se utilizó agua cuya conductividad era de 150μS/cm. El método de aditivación del polímero consistió en añadir una suspensión de caolinita en agua al polímero fundido (extrusión en líquido). Se calculó el contenido de nanoarcilla en los compuestos producidos a través de Ia pérdida de peso en análisis termogravimétricos (aproximadamente 5% en peso). Este procedimiento permitió preparar compuestos de EVOH con 1 %, 5% y 10% de trans-resveratrol. Posteriormente se procedió a Ia preparación de películas utilizando una prensa. Las muestras se transformaron en planchas de aprox. 100 mieras de espesor por moldeado en compresión en una prensa hidráulica, a 22O0C y 2MPa de presión durante 4 minutos. Las planchas de las muestras se enfrían lentamente dentro de Ia prensa por flujo de agua. Posteriormente se determinó el efecto antioxidante por contacto de los films de EVOH obtenidos, utilizando el método de descoloramiento del radical DPPH (2,2-difenil-1-picrilhidracilo). Para ello se pesaron, por duplicado, porciones de 30mg de cada film y se colocaron en tubos plásticos de 1.5 mL. Se añadió en cada tubo 1 mL de una solución stock 0.05g/L de DPPH en metano!. La absorbancia a 517 nm de esta solución stock es de 1.4. Paralelamente se prepararon dos muestras controles sin film que contenían 1 rrsL de DPPH. Las muestras y los controles se dejaron incubar en Ia oscuridad y a 240C durante 24h. Seguidamente, se midió Ia absorbancia a 517 nm. Los resultados se expresan en % de inhibición del DPPH: % Inhibición del DPPH = (Abs control - Abs muestra)/Abs control. La figura 14 muestra que los films de EVOH que contienen 5% de caolinita y trans-resveratrol entre 1 y 10% tienen un marcado efecto antioxidante, ya que se obtiene un mínimo de 85% de inhibición de DPPH (83% en promedio). Este poder de inhibición, asociado a Ia capacidad antioxidante, se mantiene en en las tres concentraciones probadas. Los films de EVOH que contienen 5% de caolinita tienen aprox. 10% de capacidad de inhibición adicional con respecto a los films que no contienen arcilla (Figura 14).
Ejemplo 13:
Fabricación de compuestos de EVOH con y 1 % de trans-resveratrol ó 1 % de - tocoferol. Se prepararon compuestos de EVOH-32 utilizando el método de mezclado en fundido para Ia aditivación directa del polímero con antioxidante. Se precalentaron a 220 0C las tres zonas del plastógrafo, y manteniendo una cizalla de 5 rpm, se introdujo un total de 16 g material en Ia cámara de mezclando alternando polímero y antioxidante. Posteriormente se aumentó Ia cizalla a 100 rpms y se mezcló durante 3 min. Pasado este tiempo, se recuperó el material en caliente. Posteriormente, una vez se hubo enfriado el material, se procedió a Ia preparación de películas utilizando una prensa. Las muestras se transformaron en planchas de aprox. 100 mieras de espesor por moldeado en compresión en una prensa hidráulica, a 22O0C y 2MPa de presión durante 4 minutos. Las planchas de las muestras se enfrían lentamente dentro de Ia prensa por flujo de agua. Posteriormente se determinó el efecto antioxidante en espacio cabeza de los films de compuestos de EVOH + 1 % de trans-resveratrol ó 1 % de α-tocoferol sobre el ácido linoléico. Para ello se colocaron 1.6 mmoles de ácido linoléico en el fondo de un frasco de vidrio de boca ancha de 300 mL de capacidad, distribuyendo el ácido en Ia circunferencia del fondo. Se suspendieron en el espacio cabeza de los frascos films de aprox. 1.2 g de peso. A continuación se cerró herméticamente el frasco con un tapón plástico. Al mismo tiempo se prepararon dos frascos a manera de controles: uno que sólo contenía el ácido graso, y otro que además del ácido graso contenía un film de EVOH puro. Cada muestra se preparó por duplicado. Los frascos se almacenaron durante 10 días en un local climatizado a 24 0C, 75% HR, y bajo luz artificial directa. Pasado este tiempo se abrieron los frascos, y en cada uno se agregaron 10 mL de solución 10% p/p de ácido tricloroacético y 7 ml_ de solución 20 mM de ácido 2-tiobarbitúrico. Se agitaron para homogenizar y se incubaron durante 30 min a 97 0C. Posteriormente se centrifugaron las muestras, se tomaron alícuotas de Ia fase acuosa y se diluyeron 10 veces. Se midió absorbancia a 532 nm para determinar al concentración de malonaldehído, producto de oxidación del ácido linoléico. El porcentaje de inhibición de Ia oxidación del ácido linoléico se calculó respecto al control sin film. La Figura 15 muestra que después de 10 días de exposición a las condiciones indicadas, Ia oxidación del ácido linoléico se inhibe en un 10,98% respecto al blanco sin film cuando es expuesto a un film de EVOH que contiene 1% de resveratrol. Por su parte, el film que contenía 1 % de a-tocoferol inhibió Ia oxidación del ácido linoléico en un 4.71%. Esto evidencia Ia captación de radicales libres del espacio cabeza por parte del resveratrol contenido en el film, por Io que puede asegurarse que el film aditivado tiene propiedades activas, principalmente aquél que contenía trans-resveratrol. La muestra que contenía sólo film de EVOH sin aditivar se degradó en -25% respecto al blanco sin film.
Ejemplo 14:
Prueba de capacidad antioxidante en el tiempo de films de compuestos de EVOH32, con v sin caolinita, con trans-resveratrol, preparados por el método de precipitación. Se disolvió EVOH con 32% de etileno, bajo reflujo, a 80 0C en 170 mL de una solución 50% de isopropanol. Aparte, se disolvió el equivalente de 1 % p/p de trans-resveratrol respecto a Ia masa seca total (polímero+ trans-resveratrol) en 80 mL de una solución 50% de isopropanol caliente a 80 0C. Una vez disuelto el polímero, se añade Ia solución caliente de antioxidante a Ia solución de EVOH, y se mantuvo Ia agitación magnética y calentamiento bajo reflujo durante 1 hora. Se precipitó el compuesto de EVOH-trans-resveratrol dejando caer lentamente Ia solución caliente en un chorro de agua fresca. Se retira el exceso de agua del compuesto precipitado, se corta en trozos pequeños y se 5 deja secar en Ia estufa de convección a 60 0C durante 14 horas. Para Ia preparación de compuestos de EVOH con 5% caolinita y 1 % de trans- resveratrol se disolvió EVOH con 32% de etileno, bajo reflujo, a 80 0C en 170 ml_ de una solución 50% de isopropanol. Aparte, se disolvió el equivalente de 1 % p/p de trans-resveratrol respecto a Ia masa seca total (polímero+ transió resveratrol) en una dispersión caliente de caolinita en isopropanol al 50% v/v. Una vez disuelto el polímero, se añadió Ia dispersión con antioxidante caliente a Ia solución de EVOH, y se mantuvo Ia agitación magnética y calentamiento bajo reflujo durante 1 hora. La precipitación se ejecuta de manera similar a Ia ya indicada. Posteriormente se procedió a Ia preparación de películas de los 15 nanocompuestos de EVOH utilizando una prensa. Las muestras se transformaron en planchas de aprox. 100 mieras de espesor por moldeado en compresión en una prensa hidráulica, a 22O0C y 2MPa de presión durante 4 minutos. Las planchas de las muestras se enfrían lentamente dentro de Ia prensa por flujo de agua. Posteriormente se determinó el efecto antioxidante
20 por contacto de los films de EVOH obtenidos, utilizando el método de descoloramiento del radical DPPH (2,2-difenil-1-picrilhidracilo). Para ello se pesaron, por duplicado, porciones de 30mg de cada film y se colocaron en tubos plásticos de 1.5 mL. Se añadió en cada tubo 1 mL de una solución stock 0.05g/L de DPPH en metano!. La absorbancia a 517 nm de esta solución stock 25 es de 1.4. Paralelamente se prepararon dos muestras controles sin film que contenían 1 mL de DPPH. Las muestras y los controles se dejaron incubar en Ia oscuridad y a 240C durante 24h. Seguidamente, se midió Ia absorbancia a 517 nrrs. Los resultados se expresan en % de inhibición de! DPPH: % Inhibición del DPPH = (Abs control - Abs muestra}/Abs control. Los films se exponen a
30 luz artificia! directa, a 240C y 40% HR, y se evaluó el % de inhibición en el tiempo, en un p!azo de 21 d. La Figura 16 muestra los porcentajes de inhibición de radica! DPPH a tiempo cero y a los 21 días de exposición a condiciones de ensayo. La Tabla 10 muestra que luego de 21 días de exposición a las condiciones de ensayo Ia pérdida de capacidad antioxidaníe de los films es de un 7,7% (máximo). Por otra parte, los films de nanocompυesío que contienen caoiinita muestran menor reducción de capacidad antíoxídante con respecto a los films que no Ia contienen. Esto indica que Ia arcilla estabiliza al antioxidante incorporado en la matriz polimérica, Io que significa una ventaja adicional del uso de arcillas en los compuestos.
TABLA 10.
Figure imgf000046_0001
Ejemplo 15
Fabricación de compuestos de EVOH con 0.1-1% de resveratrol mediante extrusión, vía aditivación en polvo. Se utilizó EVOH-32 (con 32 molar de etileno) como polímero base, y el método de aditivación del polímero consistió en añadir el antioxidante -resveratrol 97%- en polvo, previamente secado, al polímero fundido. Las condiciones de procesado se indican en Ia Tabla 11. De Ia misma manera de extruyo EVOH-32 aditivándolo con 1 % de butilhidroxitolueno (BHT), para preparar un material control con un antioxidante comercial. Posteriormente se procedió a Ia preparación de películas utilizando una prensa de platos calientes. Las muestras se transformaron en planchas de aprox. 100 mieras de espesor por moldeado en compresión en Ia prensa a 22O0C y 2MPa de presión durante 4 minutos. Las planchas de las muestras se refrigeraron con agua hasta temperatura ambiente. Posteriormente se determinó el efecto antioxidante por contacto de los films de EVOH obtenidos, utilizando el método de descoloramiento del radical DPPH (2,2-difenil-1- picrilhidracilo). Para ello se pesaron, por triplicado, porciones de 30mg de cada film y se colocaron en tubos plásticos de 1.5 mL. Se añadió en cada tubo 1 mL de una solución stock 0.05g/L de DPPH en metanol. La absorbancia a 517 nm de esta solución stock es de 1.2, aproximadamente. Paralelamente se prepararon tres muestras controles sin film que contenían 1 mL de DPPH. Las muestras y los controles se dejaron incubar en Ia oscuridad y a 240C durante 24b, Seguidamente, se midió Ia absorbancia a 517 nm. Los resultados se expresan en % de inhibición de! DPPH: % Inhibición de! DPPH = (Abs control - Abs muestra )/Abs control. La Tabla 12 muestra las absorbancias obtenidas en cada caso y las desviaciones asociadas a !as medidas. La Figura 17 muestra que los films de EVOH adiüvados en polvo con 0.1 a 1% de resverairol tienen capacidad AO entre 18.8 y 85.4% (respecto a viraje de DPPH). y que el EVOH aditivado con 1 % de resveratrol tienen capaciodad antioxidante superior al film aditivado con 1 % de BHT.
TABLA 11
Figure imgf000047_0001
TABLA 12
Figure imgf000047_0002
Ejemplo 16
Fabricación de compuestos de LDPE con 1 % de t-resveratrol mediante extrusión, vía aditivación en líquido. Se utilizó polietileno de baja densidad (LDPE) y resveratrol 97%. El método de aditivación del polímero consistió en añadir una solución sobresaturada de t-resveratrol en isopropanol a Ia masa de polímero fundido. Las condiciones de extrusión se presentan en Ia Tabla 13. Este procedimiento permitió preparar compuestos de LDPE con 1 % de t- resveratrol. Posteriormente se procedió a Ia preparación de películas utilizando Ia prensa de platos calientes. Las muestras se transformaron en planchas de aprox. 100 mieras de espesor por moldeado en compresión en Ia prensa a 200 0C y 2 MPa de presión durante 4 minutos. Las planchas de las muestras se refrigeraron lentamente por medio de un flujo de agua hasta temperatura ambiente. Posteriormente se determinó el efecto antioxidante por contacto de los films de LDPE obtenidos, utilizando el método de descoloramiento del radical DPPH (2,2-difenil-1 -picrilhidracilo). Para ello se pesaron, por triplicado, porciones de 30mg de cada film y se colocaron en tubos plásticos de 1.5 mL. Se añadió en cada tubo 1 mL de una solución stock 0.05g/L de DPPH en metano!. La absorbancia a 517 nm de esta solución stock es de 1 ,2. aproximadamente. Paralelamente se prepararon tres muestras controles sin film que contenían 1 mL de DPPH. Las muestras y los controles se dejaron incubar en ¡a oscuridad y a 240C durante 24h. Seguidamente, se midió la absorbancia a 517 nm. Los resultados se expresan en % de inhibición del DPPH: % Inhibición de! DPPH = (Abs control - Abs muestra)/Abs control. La Tabla 714muestra las absorbancias obtenidas en cada caso y las desviaciones asociadas a las medidas.
La Figura 18 muestra que el film de LDPE aditivado con 1 % de t-resveratrol vía líquida tiene un 88% de capacidad antioxidante (respecto a viraje de DPPH). claramente superior al film de LDPE sin adiüvar.
TABLA 13
Figure imgf000048_0001
TABLA 14
Figure imgf000048_0002
Figure imgf000049_0001
Ejemplo 17: Fabricación de compuestos de LDPE con una carga de 5% de montmorillonita modificada con 40% de bromuro de hexadeciltrimetilamonio y 5% sulfato de amonio-hierrod!), mediante extrusión vía aditivación polvo. Inicialmente se disolvió sulfato de amonio y hierro (II) en etanol, bajo burbujeo de nitrógeno. Posteriormente se dispersó Ia arcilla modificada con 40% de bromuro de hexadeciltrimetilamonio en Ia solución de hierro (II) utilizando agitación magnética, manteniendo el burbujeo de nitrógeno. La proporción de sal de hierro (II) empleada fue de 5% en peso respecto a Ia masa de arcilla no modificada, a una razón de 20 g de arcilla por 100 mi de solvente. La dispersión de arcilla en solución metálica se sometió a reflujo a 7O0C durante 6 horas bajo atmósfera inerte. Posteriormente se dejó decantar Ia dispersión, se eliminó el exceso de solvente y Ia arcilla se secó en un horno de vacío durante 1 h a 7O0C. La arcilla se almaceno a vacío en oscuridad.
Para Ia preparación de Ia película se utilizó polietileno de baja densidad (LDPE) como polímero base, y el método de aditivación del polímero consistió en añadir Ia arcilla montmorillonítica modificada con 40% de bromuro de hexadeciltrimetilamonio (C16) y 5% de sulfato de amonio-hierro(ll), previamente desecada, al polímero fundido. Las condiciones de procesado se indican en Ia Tabla 15. También se extruyó bajo las mismas condiciones LDPE sin aditivar, para testarlo como referencia.
Posteriormente se procedió a Ia preparación de películas utilizando una prensa. Las muestras se transformaron en planchas de aprox. 100 mieras de espesor por moldeado en compresión en una prensa hidráulica, a 2000C y 2 MPa de presión durante 4 minutos. Las planchas de las muestras se enfrían lentamente dentro de Ia prensa por flujo de agua. Posteriormente se determinó el efecto secuestrante de oxígeno de los films de LDPE. Para ello se introdujeron piezas de films de 4cmx2cm en viales de 20 mi que contenían aire a condiciones atmosféricas y conteniendo un vial con agua que genera una actividad de uno en el espacio de cabeza. Se probaron films de LDPE+5% de arcilla modificada con C16 y sulfato de amonio-hierro(ll) y films de LDPE sin aditivar, por triplicado. También se añadieron tres controles sin film. El contenido de oxígeno se determina utilizando un oxímetro. Inicialmente el contenido de oxígeno dentro de los viales es de 20.9% (Tabla 16). Después de dos días, el porcentaje de oxígeno se mantiene en el mismo valor inicial en el control y en viales que contienen film LDPE sin aditivar. Los viales que contienen arcilla modificada con sal y nanopartículas de hierro han reducido su contenido de oxígeno a 20.1 % (3.8% de reducción de contenido de oxígeno). Los resultados indican que Ia arcilla que contiene nanopartículas de hierro es activa una vez incorporada a una matriz de poliolefina por efecto de Ia humedad.
TABLA 15
Figure imgf000050_0001
TABLA 16
Figure imgf000050_0002

Claims

REIVINDICACIQNES
1. Materiales nanocompuestos caracterizados porque comprenden los siguientes elementos: a. matriz; b. aditivos o nanoaditivos.
2. Materiales nanocompuestos según Ia reivindicación 1 , caracterizados porque Ia matriz es polimérica, plástica o cerámica.
3. Materiales nanocompuestos según Ia reivindicación 2, caracterizados porque Ia matriz plástica se selecciona sin sentido limitativo del grupo formado por las familias de termoplásticos, termoestables, elastómeros y materiales derivados de biomasa y/o biodegradables o mezclas de los mismos conteniendo aditivos típicos que se añaden durante Ia fabricación y procesado de plásticos y bioplásticos.
4. Materiales nanocompuestos según Ia reivindicación 2, caracterizados porque Ia matriz plástica está en una proporción desde el 5% hasta 99,99%
5. Materiales nanocompuestos según Ia reivindicación 2, caracterizados porque Ia matriz cerámica comprende al menos los siguientes elementos: a. agua; b. arcillas; c. desfloculantes; d. feldespatos; e. arenas feldespáticas; y f. caolín, carbonatos y zirconio.
6. Materiales nanocompuestos según Ia reivindicación 2, caracterizados porque Ia matriz cerámica cuando es de tipo esmlte comprende al menos los siguientes elementos: a. caolín o una arcilla caolinítica o montmorillonítica; b. feldespatos; c. fritas; d. sílice; y e. arenas de sílice.
7. Materiales nanocompuestos según cualquiera de las reivindicaciones 2,
5 ó 6 caracterizados porque Ia matriz cerámica está en una proporción desde 5 hasta el 99,99%,
8. Materiales nanocompuestos según cualquiera de las reivindicaciones 1 a 7, caracterizados porque Ia matriz contiene agentes que se seleccionan entre compuestos con propiedades de barrera a Ia radiación electromagnética, compuestos con resistencia al fuego, compuestos con actividad antimicrobiana, sustancias de bajo peso molecular con otro carácter activo o bioactivo tales como compuestos antioxidantes naturales o sintéticos, secuestradores de oxígeno, fármacos, enzimas, compuestos de calcio biodisponibles, probioticos, aceites marinos, simbióticos o prebióticos.
9. Materiales nanocompuestos según Ia reivindicación 8 donde el agente activo que contiene Ia matriz es resveratrol.
10. Materiales nanocompuestos según cualquiera de las reivindicaciones 1 a 7, caracterizados porque los aditivos o nanoaditivos son agentes activos que se seleccionan entre compuestos con propiedades de barrera a Ia radiación electromagnética, compuestos con resistencia al fuego, compuestos con actividad antimicrobiana, otras sustancias de bajo peso molecular con carácter activo o bioactivo, compuestos antioxidantes naturales o sintéticos, secuestradores de oxígeno, fármacos, enzimas, compuestos de calcio biodisponibles, probioticos, aceites marinos, simbióticos o prebióticos.
11. Materiales nanocompuestos según Ia reivindicación 10 donde el agente activo es resveratrol.
12. Materiales nanocompuestos según cualquiera de las reivindicaciiones 1 a 7, caracterizados porque los aditivos son de tipo laminar con o sin modificación previa que contienen al menos un agente activo que se selecciona entre compuestos con propiedades de barrera a Ia radiación electromagnética, compuestos con resistencia al fuego, compuestos con actividad antimicrobiana, sustancias de bajo peso molecular con otro carácter activo o bioactivo, compuestos antioxidantes naturales o sintéticos, secuestradores de oxígeno, fármacos, enzimas, compuestos de calcio biodisponibles, probioticos, aceites marinos, simbióticos o prebióticos.
13. Materiales nanocompuestos según Ia reivindicación 12, caracterizado porque los nanoaditivos de tipo laminar, se seleccionan entre filosilicatos o hidróxidos dobles sintéticos o laminares de estructura laminar.
14. Materiales nanocompuestos según Ia reivindicación 1 , caracterizados porque los aditivos están en una proporción desde 0,01 hasta el 95%
15.12. Materiales nanocompuestos según Ia reivindicación 1 , caracterizados porque los aditivos están en una proporción desde 0,01 hasta el 95%, si Ia matriz es tipo cerámica.
16. Materiales nanocompuestos según Ia reivindicación 1 , caracterizados porque los aditivos están en una proporción desde 0,01 hasta el 50%, si
Ia matriz cerámica es de tipo esmalte.
17. Materiales nanocompuestos según Ia reivindicación 12, caracterizados porque el agente activo es un compuesto con actividad antimicrobiana y/o absorbedora de oxigeno que se selecciona del grupo formado por sales orgánicas y/o inorgánicas de metales, compuestos orgánicos, y/o combinación de los mismos o porque los agentes activo son antioxidantes.
18. Materiales nanocompuestos según Ia reivindicación 17, caracterizados porque los metales se seleccionan del grupo formado por plata, cobre, níquel, cobalto, hierro, zinc o combinación de los mismos.
19. Materiales nanocompuestos según Ia reivindicación 17, caracterizados porque el antioxidante es resveratrol.
20. Materiales nanocompuestos según Ia reivindicación 17, caracterizados porque los compuestos orgánicos se seleccionan del grupo formado por sales de amonio cuaternario, preferiblemente bromuro de hexadeciltrimetilamonio por ser compatibilizador y antimicrobiano, esteres de polietilenglicol con ácidos alifáticos monocarboxílicos (C6- C22) y sus sulfatos de amonio y sodio, acido perfluorooctanoico y su sal de amonio, copolímeros cloruro de N-metacriloiloxietil-N,N-dimetil-N- carboximetilamonio, cloruro de bis(2-hidroxietil)-2-hidroxipropil-3- (dodeciloxi) metilamonio; y quitosano y sus derivados, y/o combinaciones de las mismas.
21. Materiales nanocompuestos según Ia reivindicación 17, caracterizados porque los compuestos inorgánicos se seleccionan del grupo formado por sales simples tipo nitrato, acetato, cloruro, sulfato y complejos inorgánicos que incluyan agua y los grupos nitrato, acetato, amino y cloruro
22. Procedimiento para Ia obtención de los materiales nanocompuestos según las reivindicaciones 1 a 21 , caracterizado porque comprende las siguientes etapas: a. disminución del tamaño de los aditivos laminares por acción mecánica; b. filtración mediante vía seca o húmeda de las partículas obtenidas en Ia etapa anterior; c. alternativamente, eliminación de Ia materia orgánica, óxidos cristalinos y partículas duras no sujetas a modificación hasta Ia obtención de estructuras laminares; d. pre-tratamiento de las estructuras laminares mediante precursores; e. adición a una matriz plástica o cerámica.
23. Procedimiento para Ia obtención de los materiales nanocompuestos según Ia reivindicación 22, caracterizado porque Ia disminución del tamaño de los aditivos laminares se lleva a cabo hasta tamaños de partícula por debajo de las 30 mieras en el D90
24. Procedimiento según Ia reivindicación 22, caracterizado porque Ia filtración se lleva a cabo hasta un tamaño de partícula desde 0,1 a 100 mieras, preferiblemente por debajo de 25 mieras y más preferiblemente por debajo de 3 mieras en el D90.
25. Procedimiento según Ia reivindicación 22, caracterizado porque Ia eliminación de Ia materia orgánica se hace mediante técnicas de decantación, recogida de sobrenadante o por reacción química con substancias oxidantes.
26. Procedimiento según Ia reivindicación 22, caracterizado porque Ia eliminación de óxidos cristalinos y partículas duras no sujetas a modificación se lleva a cabo mediante procesos de centrifugación y/o gravimétricos en disolución o por turbo-secadores.
27. Procedimiento según Ia reivindicación 22, caracterizado porque los precursores son del tipo expansor y/o compatibilizador y/o con carácter activo y/o bioactivo.
28. Procedimiento según Ia reivindicación 22, caracterizado porque tras Ia etapa de pre-tratamiento de las estructuras laminares mediante precursores, se lleva a cabo una etapa de secado.
29. Procedimiento según Ia reivindicación 22, caracterizado porque tras Ia etapa de pre-tratamiento de las estructuras laminares mediante precursores, se lleva a cabo una etapa de intercalación con modificantes poliméricos, biopoliméricos, sales de amonio, o activos o bioactivos o mezcla de los anteriores seguida, opcionalmente, de lavado y/o secado.
30. Procedimiento según Ia reivindicación 29, caracterizado porque tras intercalar se lleva a cabo una etapa de adición de las mismas u otras sustancias de bajo peso molecular con carácter activo y/o bioactivo (aquí van en una formulación típica los antimicrobianos, secuestradores y antioxidantes)
31 . Procedimiento según las reivindicaciones 22, 29 o 30, caracterizado porque tras Ia etapa de adición de los modificadores y/o de las sustancias de bajo peso molecular se lleva a cabo una etapa de precipitación por evaporación, centrifugado, enfriamiento o adición de agentes precipitantes.
32. Procedimiento según Ia reivindicación 22, caracterizado porque en Ia etapa de adición a una matriz plástica o cerámica se lleva a cabo una incorporación de sustancias activas y bioactivas tales como metales, sales metálicas o inorgánicas antimicrobianas, y/o productos orgánicos antimicrobianos y/o secuestradores de oxígeno y/o compuestos antioxidantes.
33. Procedimiento según las reivindicaciones Ia reivindicación 22, 29, 30 o 32, caracterizado porque se lleva a cabo un tratamiento físico o químico para cambiar el estado de oxidación, total o parcialmente del centro metálico intercalado en Ia matriz.
34. Procedimiento según Ia reivindicación 29, caracterizado porque los modificantes se seleccionan del grupo formado por sustancias inorgánicas, orgánicas, incluidos materiales derivados de biomasa y/o biodegradables y/o sales de amonio u otros compuestos activos.
35. Uso de los materiales nanocompuestos de las reivindicaciones 1 a 21 , para aplicaciones de envasado y embalaje de alimentos y componentes alimentarios, en aplicaciones biomédicas, médico-quirúrgicas y farmacéuticas, en aplicaciones antifouling, en aplicaciones de construcción para esmaltes y azulejos, en aplicaciones para productos de aseo personal y en aplicaciones de contacto en lugares transitados tales como supermercados, carritos, stands, lineales, escaleras mecánicas, o aeropuertos, en aplicaciones textiles, en aplicaciones que requieran de barrera a gases, vapores y disolventes y productos orgánicos, tales como aromas y componentes de aromas, aceites, grasas e hidrocarburos, y a productos mixtos de carácter orgánico e inorgánico, para aplicaciones que requieren carácter biodegradable o compostable, para envases activos que requieran carácter antimicrobiano, antioxidante o de otro tipo que requiera Ia liberación controlada de substancias de bajo peso molecular preferiblemente volátiles, para aplicaciones que requieran de capacidad antimicrobiana, antioxidantes y capacidad de secuestro de oxígeno para el uso de biopolímeros bien sin Ia necesidad de uso de agentes plastificantes o necesitando cantidades más bajas de estos y como materiales con propiedades de barrera a Ia radiación electromagnética y de resistencia al fuego.
PCT/IB2009/053929 2008-06-25 2009-06-25 Materiales nanocompuestos activos y el procedimiento para su obtención. WO2009156975A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2009263774A AU2009263774A1 (en) 2008-06-25 2009-06-25 Active nanocomposite materials and production method thereof
CA2728884A CA2728884A1 (en) 2008-06-25 2009-06-25 Active nanocomposite materials and the process for obtaining them
US13/000,797 US8834907B2 (en) 2008-06-25 2009-06-25 Active nanocomposite materials and production method thereof
MX2010014346A MX2010014346A (es) 2008-06-25 2009-06-25 Materiales nanocompuestos activos y el procedimiento para su obtencion.
KR1020117001865A KR20110044981A (ko) 2008-06-25 2009-06-25 활성 나노복합 재료 및 이의 제조 방법
EP09769783A EP2319881A4 (en) 2008-06-25 2009-06-25 ACTIVE NANOCOMPOSED MATERIALS AND PROCESS FOR OBTAINING THE SAME
JP2011515723A JP2011526939A (ja) 2008-06-25 2009-06-25 活性ナノ複合材料、及び活性ナノ複合材料を得るためのプロセス
CN200980128502XA CN102124049A (zh) 2008-06-25 2009-06-25 活性纳米复合物材料以及制备它们的方法
IL210187A IL210187A0 (en) 2008-06-25 2010-12-22 Active nanocomposite materials and production method thereof
US14/454,253 US20140348891A1 (en) 2008-06-25 2014-08-07 Active nanocomposite materials and production method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP200801902 2008-06-25
ES200801902A ES2331284B1 (es) 2008-06-25 2008-06-25 Materiales nanocompuestos con actividad antimicrobiana y el procedimiento para su obtencion.
ES200930353A ES2352626B1 (es) 2009-06-24 2009-06-24 Materiales compuestos con propiedades antioxidantes y procedimientos para su obtención.
ESP200930353 2009-06-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/000,797 A-371-Of-International US8834907B2 (en) 2008-06-25 2009-06-25 Active nanocomposite materials and production method thereof
US14/454,253 Continuation US20140348891A1 (en) 2008-06-25 2014-08-07 Active nanocomposite materials and production method thereof

Publications (2)

Publication Number Publication Date
WO2009156975A1 true WO2009156975A1 (es) 2009-12-30
WO2009156975A9 WO2009156975A9 (es) 2011-03-24

Family

ID=41444103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/053929 WO2009156975A1 (es) 2008-06-25 2009-06-25 Materiales nanocompuestos activos y el procedimiento para su obtención.

Country Status (12)

Country Link
US (2) US8834907B2 (es)
EP (1) EP2319881A4 (es)
JP (1) JP2011526939A (es)
KR (1) KR20110044981A (es)
CN (1) CN102124049A (es)
AU (1) AU2009263774A1 (es)
CA (1) CA2728884A1 (es)
CL (1) CL2010001513A1 (es)
IL (1) IL210187A0 (es)
MX (1) MX2010014346A (es)
RU (1) RU2011102696A (es)
WO (1) WO2009156975A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138569A (zh) * 2010-01-28 2011-08-03 广东炜林纳功能材料有限公司 一种稀土类复合抗菌剂及其应用
ES2364211A1 (es) * 2010-02-16 2011-08-29 Nanobiomatters Industries, S.L. Procedimiento de obtención de partículas de filosilicatos laminares con tamaño controlado y productos obtenidos por dicho proceso.
ES2395507A1 (es) * 2011-06-03 2013-02-13 Nanobiomatters Research & Development, S.L. Materiales nanocompuestos basados en óxidos de metales con propiedades multifuncionales
US9192625B1 (en) * 2011-07-01 2015-11-24 Mangala Joshi Antimicrobial nanocomposite compositions, fibers and films
EP3006014A1 (en) * 2010-09-14 2016-04-13 L'oreal Cosmetic composition comprising a dyestuff, said dyestuff and cosmetic treatment process
CN114829478B (zh) * 2019-12-31 2024-04-16 米其林集团总公司 通过研磨的生物炭增强的弹性体组合物

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035228A1 (en) * 2007-08-02 2009-02-05 Shanta Modak Skin and surface disinfectant compositions containing botanicals
US9511040B2 (en) * 2007-06-20 2016-12-06 The Trustees Of Columbia University In The City Of New York Skin and surface disinfectant compositions containing botanicals
US9981069B2 (en) 2007-06-20 2018-05-29 The Trustees Of Columbia University In The City Of New York Bio-film resistant surfaces
US8932624B2 (en) * 2007-06-20 2015-01-13 The Trustees Of Columbia University In The City Of New York Bio-film resistant surfaces
US9687429B2 (en) * 2007-06-20 2017-06-27 The Trustees Of Columbia University In The City Of New York Antimicrobial compositions containing low concentrations of botanicals
ES2331640B1 (es) * 2008-07-08 2010-10-21 Nanobiomatters, S.L Materiales nanocompuestos de matriz polimerica con propiedades mecanicas y barrera mejoradas y procedimiento para su obtencion.
ES2369811B1 (es) * 2010-05-04 2012-10-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos.
EP3124236A1 (en) * 2011-06-17 2017-02-01 Fiberweb, Inc. Vapor permeable, substantially water impermeable multilayer article
EP2750625A4 (en) * 2011-08-31 2015-08-19 Univ Columbia REDUCING BIOFILMS ON MEDICAL DEVICES
ES2762405T3 (es) 2011-11-03 2020-05-25 Univ Columbia Composición con actividad antimicrobiana sostenida
US9968101B2 (en) 2011-11-03 2018-05-15 The Trustees Of Columbia University In The City Of New York Botanical antimicrobial compositions
TW201330856A (zh) 2011-12-06 2013-08-01 Univ Columbia 廣效性的天然防腐組成物
WO2013185152A1 (en) * 2012-06-06 2013-12-12 Csir/Dst Centre For Nano-Structured Materials Synthesis of metal-clay mineral nanocomposites
ES2434825B1 (es) * 2012-06-11 2014-11-07 Nanobiomatters Research & Development, S.L. Materiales activos basados en cerio con capacidad catalítica y procedimiento para su obtención
ITPG20120030A1 (it) * 2012-06-27 2013-12-29 Bernard Fioretti Resveratrolo inorganico ibrido
CN104797363B (zh) 2012-09-27 2018-09-07 罗地亚经营管理公司 制造银纳米结构的方法和可用于此方法的共聚物
US20140154468A1 (en) * 2012-12-05 2014-06-05 National Taiwan University Composite of size-controllable metal nanoparticales and the method of making the same
RU2527218C9 (ru) * 2013-01-09 2014-11-27 Открытое акционерное общество "Ижевский электромеханический завод "Купол" Тонкодисперсная органическая суспензия металл/углеродного нанокомпозита и способ ее изготовления
EP2818540A1 (en) * 2013-06-26 2014-12-31 Barokes PTY Ltd. Beverage container coated with a resveratrol layer
GB2515553B (en) * 2013-06-28 2021-04-21 Intelligent Energy Ltd Coolant purification
TWI685524B (zh) * 2013-12-17 2020-02-21 美商畢克美國股份有限公司 預先脫層之層狀材料
CN104012573A (zh) * 2014-06-05 2014-09-03 朱岳 膨润土载纳米银抗菌剂及其制备工艺
CN104017409B (zh) * 2014-06-18 2017-02-15 杜一挺 抗菌涂料及其制备方法
CN104012574A (zh) * 2014-06-18 2014-09-03 杜一挺 载体纳米银抗菌材料及其制备方法、抗菌产品及其制备方法
CN104126576B (zh) * 2014-06-18 2016-03-30 南开大学 一种农药插层氢氧化物盐纳米杂化物及其制备方法
EP4212449A1 (en) * 2014-12-23 2023-07-19 Intelligent Packaging Pty Ltd. Container for a consumable good coated with a resveratrol containing layer
GB201505184D0 (en) * 2015-03-26 2015-05-13 Technion Res And Dev Company Ltd And Carmel Olefins Ltd Hollow mineral tubes comprising essential oils and uses thereof
WO2016168319A1 (en) 2015-04-13 2016-10-20 University Of South Florida Cutin-like materials with advanced functionalities and methods of manufacture
CN105638731B (zh) * 2016-01-30 2016-10-12 湘潭大学 一种海泡石抗菌粉的制备方法
CN105696195A (zh) * 2016-04-05 2016-06-22 东华大学 一种鼠尾草酚和壳聚糖复合纳米纤维毡的制备方法
CN105696194A (zh) * 2016-04-05 2016-06-22 东华大学 一种鼠尾草酚和壳聚糖自组装芯鞘纳米纤维毡的制备方法
RU2682598C2 (ru) * 2017-06-20 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Пленочный материал пищевого назначения на основе хитозана и способ его получения
EP3502056A1 (en) * 2017-12-22 2019-06-26 Imertech Sas Co-synthesis of phyllominerals with metallic particles and products obtained therefrom
CN108160991B (zh) * 2018-01-11 2019-08-23 中国矿业大学 抗菌复合粉体、抗菌功能化复合材料及制备方法
CN108949275B (zh) * 2018-06-25 2021-02-02 湖州红鑫生物质燃料有限公司 一种环保洁净型纯生物质烧烤炭
CN109294149A (zh) * 2018-09-16 2019-02-01 郑州成济堂生物科技有限公司 一种持久抗菌聚丙烯塑料杯的制备方法
JP7269158B2 (ja) * 2019-11-27 2023-05-08 インテリジェント パッケージング プロプライアタリー リミテッド レスベラトロール含有層で被覆された消耗品のための容器
US11337421B2 (en) * 2019-12-24 2022-05-24 Hamed Ahari Method for producing antimicrobial nanofilms packaging cover based on Titanium nano-dioxide through extrusion for extension of food shelf-life
US12023710B2 (en) 2020-06-09 2024-07-02 University Of North Texas Fluorinated polymers for corrosion protection of metal
CN111603605B (zh) * 2020-06-22 2022-06-21 湘潭大学 一种无机快速止血材料及其制备方法
DE102020122216A1 (de) 2020-08-25 2022-03-03 Schock Gmbh Wärmeaushärtbare Gießmasse, daraus hergestellter Formkörper, und Verfahren zur Herstellung des Formkörpers
US11485849B2 (en) 2021-03-04 2022-11-01 Balena Ltd. Composite biodegradable polymeric based material, a product and a method of making same
CN115286234B (zh) * 2021-09-24 2023-11-24 南昌大学 一种铜类耐高温抗菌剂、抗菌陶瓷及其制备方法
CN114835970B (zh) * 2022-05-12 2023-03-24 浙江元通线缆制造有限公司 一种陶瓷化聚烯烃电缆料及其制备方法及在电缆中的应用
CN115463564B (zh) * 2022-09-08 2023-08-15 哈尔滨工业大学水资源国家工程研究中心有限公司 一种基于金属多酚网络的超滤膜表面原位生长二氧化锰改性方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410633B1 (en) * 1997-08-20 2002-06-25 Nippon Electric Glass Co., Ltd. Antibacterial glass and resin composite comprising the same
ES2277563A1 (es) * 2005-12-29 2007-07-01 Nanobiomatters, S.L. Procedimiento de fabricacion de materiales nanocompuestos para aplicaciones multisectoriales.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605621A (en) * 1984-11-29 1986-08-12 Michigan State University Clay-enzyme complexes and method for preparing same
CA2088107A1 (en) * 1992-02-24 1993-08-25 Ronald Howard Baney Silicone infiltrated ceramic nanocomposite coatings
JPH10182142A (ja) * 1996-10-23 1998-07-07 Osaki Kogyo Kk 金属微粒子/固体担体組成物、その用途及び製造方法
TWI254063B (en) * 2000-05-09 2006-05-01 Ind Tech Res Inst sPS nanocomposites and processes for producing the same
KR101037996B1 (ko) * 2002-11-08 2011-05-31 어드밴스드 폴리머릭 프로프라이어터리. 리미티드 폴리올레핀 나노복합체의 제조 방법
JP2004217501A (ja) * 2002-11-18 2004-08-05 Toagosei Co Ltd 第四アンモニウム塩化合物を担持させた抗菌性層状珪酸塩
AU2004206141A1 (en) * 2003-01-24 2004-08-05 Niva Shapira Synergistic compositions and methods for potentiating anti-oxidative activity
JP2004262700A (ja) * 2003-02-28 2004-09-24 Toagosei Co Ltd 抗菌性層状珪酸塩
WO2005037296A1 (ja) * 2003-10-16 2005-04-28 Toagosei Co., Ltd. 抗コロナウイルス剤
BRPI0810386A2 (pt) * 2007-04-18 2014-11-25 Basf Se Polímeros ou revestimento antimicrobiano, método para fornecer um polímero ou revestimento com atividade antimicrobiana, e, uso de uma combinação de prata elementar e prata suportada
ES2320617B1 (es) * 2007-11-23 2010-02-26 Nanobiomatters S.L. Nuevos materiales nanocompuestos con propiedades de bloqueo de la radiacion electromagnetica infrarroja, ultravioleta y visible y procedimiento para su obtencion.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410633B1 (en) * 1997-08-20 2002-06-25 Nippon Electric Glass Co., Ltd. Antibacterial glass and resin composite comprising the same
ES2277563A1 (es) * 2005-12-29 2007-07-01 Nanobiomatters, S.L. Procedimiento de fabricacion de materiales nanocompuestos para aplicaciones multisectoriales.

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JONG-WHAN RHIM ET AL.: "Tensile, water vapor barrier and antimicrobial properties of PLA/ nanoclay composite films", LWT-FOOD SCIENCE AND TECHNOLOGY, vol. 42, March 2009 (2009-03-01), pages 612 - 617, XP025656563 *
NING-LIN ZHOU ET AL.: "A New nanocomposite biomedical material of polymer/Clay-Cts-Ag nanocomposites", CURRENT APPLIED PHYSICS, vol. 7 S1, April 2007 (2007-04-01), pages E58 - E62, XP005904347 *
See also references of EP2319881A4 *
XIAOYING WANG ET AL.: "Chitosan/organic rectorite nanocomposite films: Structure, characterisitic and drug delivery behaviour.", CARBOHYDRATE POLYMERS, vol. 69, 1 May 2007 (2007-05-01), pages 41 - 49, XP022009487 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138569A (zh) * 2010-01-28 2011-08-03 广东炜林纳功能材料有限公司 一种稀土类复合抗菌剂及其应用
ES2364211A1 (es) * 2010-02-16 2011-08-29 Nanobiomatters Industries, S.L. Procedimiento de obtención de partículas de filosilicatos laminares con tamaño controlado y productos obtenidos por dicho proceso.
EP3006014A1 (en) * 2010-09-14 2016-04-13 L'oreal Cosmetic composition comprising a dyestuff, said dyestuff and cosmetic treatment process
ES2395507A1 (es) * 2011-06-03 2013-02-13 Nanobiomatters Research & Development, S.L. Materiales nanocompuestos basados en óxidos de metales con propiedades multifuncionales
JP2014522368A (ja) * 2011-06-03 2014-09-04 ナノバイオマターズ リサーチ アンド デヴェロップメント,エス.エル. 多機能性の特性を備えた、金属酸化物に基づくナノ複合体材料
US9192625B1 (en) * 2011-07-01 2015-11-24 Mangala Joshi Antimicrobial nanocomposite compositions, fibers and films
CN114829478B (zh) * 2019-12-31 2024-04-16 米其林集团总公司 通过研磨的生物炭增强的弹性体组合物

Also Published As

Publication number Publication date
EP2319881A1 (en) 2011-05-11
CL2010001513A1 (es) 2011-07-15
US8834907B2 (en) 2014-09-16
WO2009156975A9 (es) 2011-03-24
AU2009263774A1 (en) 2009-12-30
KR20110044981A (ko) 2011-05-03
CN102124049A (zh) 2011-07-13
MX2010014346A (es) 2011-05-03
JP2011526939A (ja) 2011-10-20
US20110142899A1 (en) 2011-06-16
EP2319881A4 (en) 2013-01-23
RU2011102696A (ru) 2012-07-27
IL210187A0 (en) 2011-03-31
US20140348891A1 (en) 2014-11-27
CA2728884A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
WO2009156975A1 (es) Materiales nanocompuestos activos y el procedimiento para su obtención.
ES2395507B1 (es) Materiales nanocompuestos basados en óxidos de metales con propiedades multifuncionales
Marulasiddeshwara et al. Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: A promising therapeutic agent
Venkatasubbu et al. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens
Vasile et al. New PLA/ZnO: Cu/Ag bionanocomposites for food packaging.
Chowdhuri et al. A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation
Espitia et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications
Jafarzadeh et al. Metal nanoparticles as antimicrobial agents in food packaging
Martynková et al. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays
Awad et al. Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an anti-bacterial agent
Manna Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles
Varaprasad et al. Generation of engineered core–shell antibiotic nanoparticles
Cabedo et al. Inorganic-based nanostructures and their use in food packaging
ES2320617B1 (es) Nuevos materiales nanocompuestos con propiedades de bloqueo de la radiacion electromagnetica infrarroja, ultravioleta y visible y procedimiento para su obtencion.
ES2331284B1 (es) Materiales nanocompuestos con actividad antimicrobiana y el procedimiento para su obtencion.
Anandharamakrishnan et al. Bionanocomposites and their potential applications in food packaging
Sarangi et al. Tailoring of Polymer and Metal Nanobiocomposites Corroborated with Smart Food Packaging Systems—A Review
Shams et al. Nanocomposite: potential nanofiller for food packaging applications
ES2415242B1 (es) Materiales nanocompuestos activos basados en sales generadoras de so2 y edta y el procedimiento para su obtención
Oliveira et al. Nanocomposites of kaolin modified with oregano essential oil for application in antibacterial packaging
Holkar et al. Recent developments in synthesis of nanomaterials utilized in polymer based composites for food packaging applications
Ibrahim et al. Green synthesis, structural, in vitro and in vivo bioactivity properties of ZnO nanoparticles for biomedical applications
ES2352626B1 (es) Materiales compuestos con propiedades antioxidantes y procedimientos para su obtención.
Snigdha et al. Engineered phyllosilicate clay-based antimicrobial surfaces
Rhim Characterization of Biopolymer and Chitosan‐Based Nanocomposites with Antimicrobial Activity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128502.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/014346

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2728884

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010001513

Country of ref document: CL

Ref document number: 210187

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2751/MUMNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011515723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009263774

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117001865

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009769783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011102696

Country of ref document: RU

Ref document number: 2009769783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13000797

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009263774

Country of ref document: AU

Date of ref document: 20090625

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0909996

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0909996

Country of ref document: BR