WO2009156531A1 - Dispositivo multifunción y procedimiento de remachado automático por control numérico - Google Patents

Dispositivo multifunción y procedimiento de remachado automático por control numérico Download PDF

Info

Publication number
WO2009156531A1
WO2009156531A1 PCT/ES2009/070183 ES2009070183W WO2009156531A1 WO 2009156531 A1 WO2009156531 A1 WO 2009156531A1 ES 2009070183 W ES2009070183 W ES 2009070183W WO 2009156531 A1 WO2009156531 A1 WO 2009156531A1
Authority
WO
WIPO (PCT)
Prior art keywords
numerical control
riveting
robot
positioning system
modules
Prior art date
Application number
PCT/ES2009/070183
Other languages
English (en)
French (fr)
Inventor
Diego PÉREZ MARÍN
Juan Ramón Astorga Ramírez
Original Assignee
Airbus España, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus España, S.L. filed Critical Airbus España, S.L.
Priority to CA2726494A priority Critical patent/CA2726494A1/en
Priority to BRPI0914729A priority patent/BRPI0914729A2/pt
Priority to EP09769377.4A priority patent/EP2332669A4/en
Priority to CN2009801243722A priority patent/CN102083567A/zh
Publication of WO2009156531A1 publication Critical patent/WO2009156531A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/14Riveting machines specially adapted for riveting specific articles, e.g. brake lining machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body
    • Y10T29/49943Riveting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53709Overedge assembling means
    • Y10T29/53717Annular work
    • Y10T29/53726Annular work with second workpiece inside annular work one workpiece moved to shape the other
    • Y10T29/5373Annular work with second workpiece inside annular work one workpiece moved to shape the other comprising driver for snap-off-mandrel fastener; e.g., Pop [TM] riveter
    • Y10T29/53761Annular work with second workpiece inside annular work one workpiece moved to shape the other comprising driver for snap-off-mandrel fastener; e.g., Pop [TM] riveter having repositionable annulus engaging tool

Definitions

  • the present invention refers to a multifunction device and automatic riveting method by numerical control, whose essential purpose is to facilitate the joining by rivets of metal parts, of carbon fiber, of glass or others with very strict manufacturing tolerances such as those required in the aerospace industry, without discarding other applications.
  • the inclusion of operations governed by numerical control systems allows to obtain highly profitable manufacturing processes. Due to the large number of points on which to program the tasks to be performed by the system, the optimal method of programming is the so-called "off-line", in which it is programmed through a workstation and according to the three-dimensional graphic model of the computer-assisted part without having to have a real specimen piece.
  • riveting requires very sophisticated techniques, or the manufacture of very high precision tools for performing drilling and riveting tasks manually or semi-automatically (with the consequent increase in the time of completion of the pieces) or through automatic systems that require a very high precision (with the consequent increase in the cost of the installations).
  • the amount of micro-operations to perform for a correct riveting such as drilling at a very strict tolerance (in diameter, perpendicular to the surface, in positioning, etc.)
  • the application of sealant the verification of thickness to join, as well as the diversity within a single piece of diameters, thicknesses and types of rivets
  • make automation require multifunction systems, capable of performing all these micro-operations once positioned on a point.
  • Patent ES 2155330 (Application number 009800941) and referring to a "Process and installation of riveting for the construction of wings and stabilizers of airplanes" has drawbacks related to the fact that it is only valid for gantry or gantry type machines. ".
  • An intermediate situation with respect to the systems described is determined by parallel kinematics machines, which allow, due to their accuracy of the hundredths order (greater than that of articulated robots and even that of improved articulated robots), to perform operations precise with heavier heads than those described for anthropomorphic robots, but being less expensive than those of a Cartesian kinematics machine.
  • the fundamental problem of the current automatic riveting systems using multi-function heads governed by numerical control is the excessive weight necessary for its construction.
  • riveting is carried out after drilling and after performing a completely manual phase, in which parts that have been drilled are separated to perform cleaning operations, burrs removal, application of different types of sealant (by interposition example) and supplements (to eliminate gaps between the pieces to be riveted).
  • Heads of this type with multifunction mechanisms and rotary mechanisms are for example those described in US patents 2002173226 "Multispindle end effector", US 2003232579 “Multi-spindle end effector”, WO 02094505 “Multi-spindle end effector” and EP 0292056 " Driving mechanism and manipulator comprising a such a driving mechanism ".
  • This type of head requires linear, rotary or combination of both drive systems, high-precision monitoring and control, with high quality materials and little or no wear within the life of the head, in addition to assuming a significant increase in the weight and complexity of the system, so that maintainability and reliability tend to suffer significantly. Due to all this, the multifunction head can come to cost more than the positioning system itself. On the other hand, this complexity in the heads causes that since these are of great weight, sometimes close to half a ton, the performance in terms of precision and repeatability of the positioning system are greatly diminished.
  • the The invention consists of a multifunction device and automatic riveting process by numerical control, where the device is applicable to the union by rivets of metal, carbon fiber, glass or other parts with very strict manufacturing tolerances such as those required in the aerospace industry; presenting the device a machine or robot with high precision positioning system, moved by numerical control and equipped with a head that is applied to the pieces to be treated.
  • the device thereof has in the said head a plurality of single-function modules that carry out several consecutive operations on the same work point, so that said single-function modules are presented to said working point by said system.
  • positioner the positioning system being constituted by a Cartesian numerical control machine (gantry, gantry, C, or other), by a parallel kinematics machine or robot, by a precise articulated robot, or by a machine or robot with sufficient accuracy and repeatability to apply to large structures of strict tolerances; while the different single-function modules are arranged on a chassis that is rigidly and precisely attached to the joint flange of the positioning system, said modules being placed on the chassis transversely, longitudinally, in a matrix way or adapting to the accessibility limitations imposed by the piece to join or the mooring tool of this.
  • the different single-function modules have their own mechanism that moves them away or closer to the part to be treated and that can, in some cases, be replaced by the advance itself provided by the positioning system. by numerical control; said mechanism being independent for each module, joint action for all modules or independent for various module groupings.
  • the device thereof has a routine work schedule that is carried out by means of "off-line" programming techniques, which avoid programming the system by teaching them on a real specimen piece the tasks to be performed, and so that all the movements defined during the riveting process (including those of the positioner system and those of each single function module) are governed by the same numerical control.
  • the method of the present invention employs the device of the invention described above, and among the consecutive operations referred to above facilitates the following:
  • drilling, reaming, countersinking, operations are carried out on the same work point. sealed and riveted before moving on to the next work point.
  • the correct flange of parts to be joined is ensured by means of a fixation installed in an adjacent or close enough position, said fixation being installed either during a pre-assembly phase prior to the procedure or automatically by the device corresponding to the procedure.
  • the invention eliminates the need for linear movements or the combination of these with rotary movements in the corresponding head, thus affecting the weight reduction of the riveting head.
  • each single-function module can be dispensed with, either by means of rotary, linear or combination drives.
  • the main advantages provided by the present invention are to eliminate the need for a robotic architecture of very high precision, reduce the weight of the head and therefore allow its use with traditional numerical control machines, such as the "gantry”, “gantry”, in “C”, or others but not limited to them, so that parallel kinematics machines and precise articulated robots can also be used. Furthermore, by means of the invention, the need for own drives in each module and mechanisms for changing the module, increasing reliability and maintainability, reducing the costs of the device is eliminated.
  • the need to separate the pieces after drilling is eliminated, since the correct and firm fastening between parts is ensured and therefore the burrs and chips produced during drilling are minimized by means of the rivet previously installed by The device of the invention.
  • By allowing said device to install rivets of different diameters and lengths it will always be certain that in a working position there will always be a sufficiently close position either a rivet or temporary fixation coming from a pre-assembly phase, or an installed rivet automatically by the device, which ensures the firm hold between the plates to be riveted.
  • FIGS 1 to 4.- They represent respective schematic and perspective views of four devices made according to the present invention and employing the method thereof.
  • Figures 5 to 7. They represent respective plan and schematic views of three possibilities for an existing head in any of the previous figures 1 to 4.
  • DESCRIPTION OF AN EXAMPLE OF EMBODIMENT OF THE INVENTION Next, a description of an example of the invention is made. referring to the numbering adopted in the figures.
  • the device and method of the present example are applied to the joining of parts 4 by rivets in the aerospace industry, the device presenting a machine or robot 1, 5, 6, 7 moved by numerical control, which can be moved in about rails 2 and which has a head 3 equipped with a plurality of single-function modules 8 that perform on the same point Several consecutive operations work, so that the modules 8 are presented to the referred work point by the corresponding positioning system.
  • the said machine or robot consists of a gantry machine 1 in Figure 1, a column machine 5 in Figure 2, a parallel kinematic machine 6 in Figure 3 and an anthropomorphic robot 7 in Figure 4.
  • the head 3 has a chassis 9 that is connected by a wrist 10 to the support system, as shown in Figures 5 to 7.
  • the single-function modules 8 of the head 3 can be arranged there transversely, longitudinally, or in a matrix manner, as shown respectively in Figures 5, 6 and 7.
  • the device of the present example can perform several micro-operations on the same working position such as drilling, reaming and countersinking operations of different diameters, verification of the quality of the drill, checking the thickness of the parts, application of sealant in the hole and / or in the rivet to be installed, selection and supply of the rivet or bolt to be installed, insertion of the rivet or bolt, riveting, verification of the correct installation of the rivet, cleaning, tolerance adjustment operations aerodynamics, aerodynamic tolerance verification operations, or others.
  • the referred micro-operations are carried out by means of the head 3 which is governed by multifunctional numerical control, presenting the ability to install rivets of different lengths and diameters without the need to make changes of any part and / or adapter in the system , and in which the different modules 8 responsible for performing Each micro-operation does not need its own drives to be presented to the work point, but it is the conventional numerical control machine tool, parallel kinematic machine or in general any robotic system or controlled by numerical control with sufficient accuracy and repeatability which Performs the presentation movements of each module 8 to the work point, machines such as those illustrated in Figures 1 to 4 and referenced as 1, 5, 6 and 7.
  • the procedure of the present example allows automatic riveting of typical parts.
  • blind rivets of one or several pieces and operation and installation on a single side of the structure, such as - but not limited to - those covered by US5816761, US4457652, US4967463, US4747202, and standard EN6122 and family
  • rivets of two pieces of bolts and collars as are po r example - but not limited to - frangible collars type Hi-LOK or Hi-LITE or of drawing type LOCKBOLT or those covered by US Pat.
  • the device and procedure of the present example allow very strict tolerances and enable the joining of pieces by rivets, being the metal, composite, carbon fiber, "kevlar", glass, “glare”, other, or combinations of the above materials.
  • a mechanism for approaching or distancing the modules 8 is provided to avoid that during the operation of a module 8 another that is not being used collides with the part 4 or the mooring tooling of the latter.
  • This mechanism can be pneumatic, electric or of any kind commonly used, and as the case may not need to be of great precision in the feed, for example in the case of application to a sealant applicator module.
  • said mechanism can be replaced by the advance itself provided by the positioning system by numerical control, thus obtaining in the advancement the same characteristics of precision and repeatability as those of the positioning system. This may be the case, for example, with the advance of a drilling spindle.
  • the same advancement mechanism can be used for one or more modules 8 alternatively, thus affecting the reduction of elements, weight, complexity, cost, maintainability, etc.
  • the advance of the modules 8 will always be governed by means of the numerical control that governs both the movements of the positioning system and those of the modules 8.
  • Each module 8 can be monofunctional, in the sense that it performs a micro-operation within the work cycle, but it does not have to be limited to a specific type of rivet.
  • the sealant application module on the rivet shaft or on the corresponding hole will be limited to performing the micro-operation of applying the sealant, but does not need any external, manual or automatic change, to apply sealant on drills of different types. diameters
  • the positioning system on which the head 3 of the present example is arranged will position said head 3 on the point to perform the complete cycle, and also within each micro-operation will present each module 8 to the work point.
  • the corresponding positioning system does not need to be massive, thus allowing, being lighter, to incorporate more modules 8 that perform more operations on the work point, improving riveting performance based on massive positioner architectures.
  • the device of the invention can perform the procedure in the following manner:
  • the positioning system will be presenting the different modules of the multifunction head system consecutively on the same point, each of the different modules 8 performing their function.
  • the positioner will move the automatic riveting system to the next working position.
  • the correct flange of the pieces to be joined will be ensured by means of a fastener installed in an adjacent position. Said fixation will be installed either during the previous phase of the process or automatically by the device of the present invention.
  • the work routine schedules that are used use "off-line" programming techniques that do not require to program the systems by teaching them about a real specimen piece of the tasks to be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Insertion Pins And Rivets (AREA)
  • Automatic Assembly (AREA)

Abstract

El dispositivo cuenta con un robot (1) dotado de un cabezal (3) provisto de una pluralidad de módulos monofunción que efectúan sobre un punto de trabajo varias operaciones consecutivas. El robot puede ser un robot articulado preciso, una máquina cartesiana, un robot de cinemática paralela u otro, mientras que los referidos módulos pueden situarse en el cabezal transversalmente, longitudinalmente o matricialmente. El procedimiento proporciona operaciones de taladrado, escariado y avellanado de diferentes diámetros, verificación de calidad de taladros, comprobación de espesor de piezas, aplicación de sellante, selección y suministro de remache o bulón a instalar, inserción del remache o bulón, remachado, verificación de instalación del remache, limpieza, ajuste de tolerancia aerodinámica y verificación de tolerancia aerodinámica.

Description

DISPOSITIVO MULTIFUNCION Y PROCEDIMIENTO DE REMACHADO
AUTOMÁTICO POR CONTROL NUMÉRICO
OBJETO DE LA INVENCIÓN
La presente invención, tal y como se expresa en el enunciado de esta memoria descriptiva, se refiere a un dispositivo multifunción y procedimiento de remachado automático por control numérico, cuya finalidad esencial es facilitar la unión mediante remaches de piezas metálicas, de fibra de carbono, de vidrio u otras con tolerancias de fabricación muy estrictas tales como las que se requieren en la industria aeroespacial, sin descartarse no obstante otras aplicaciones.
Otros objetivos de la invención consisten en superar limitaciones del estado de la técnica, de manera que la invención sea posible en máquinas de cinemática paralela y en sistemas de cinemática cartesiana eliminando la necesidad de cabezales multifunción de gran peso, para obtener dispositivos más sencillos y de menor coste. ANTECEDENTES DE LA INVENCIÓN En la fabricación de estructuras, la manera de unir dos piezas para conseguir una única a efectos estructurales puede conseguirse por diversos métodos, como son la soldadura, el pegado, el remachado, etc. En el caso de la industria aeroespacial, históricamente la mayor parte de las estructuras se han unido por medio de remachado. En materiales metálicos esto es debido a la necesidad de utilizar materiales ligeros como son las aleaciones de aluminio de difícil soldabilidad. En el caso de materiales compuestos (como por ejemplo fibra de carbono, de "kevlar" de vidrio, "glare", etc.) en la creación de las primeras subestructuras (como por ejemplo la unión de larguerillos a revestimientos de alas o estabilizadores) esto puede conseguirse por medio de métodos de pegado (como por ejemplo cocurado, copegado, etc.) Sin embargo, estos métodos no son posibles en otro tipo de estructuras, ya sea por imposibilidad de disponer de métodos de fabricación adecuados a mayores dimensiones (como por ejemplo en unión de revestimiento a larguero) o por ser los materiales a unir de características disimilares (como por ejemplo la unión de revestimiento de material composite o costilla metálica) .
Por ello, el remachado de piezas para la formación de subestructuras y de estructuras permanece actualmente como un método típico de la industria aeroespacial . Además, en dicha industria aeroespacial se emplean cada vez más estructuras de mayor tamaño determinando piezas con miles o decenas de miles de posiciones de remachado, por lo que la automatización de las operaciones de remachado disminuye grandemente los costes de producción.
En este sentido, la inclusión de operaciones gobernadas por sistemas de control numérico permite obtener procesos de fabricación altamente rentables. Debido a la gran cantidad de puntos sobre los que programar las tareas a realizar por el sistema, el método óptimo de programación es el llamado "off-line", en el que se programa mediante una estación de trabajo y de acuerdo al modelo gráfico tridimensional de la pieza asistido por ordenador sin necesidad de tener una pieza espécimen real.
Debido a las estrictas tolerancias de fabricación típicas de la industria aeroespacial, el remachado requiere de técnicas muy sofisticadas, o bien la fabricación de útiles de muy alta precisión para la realización de las tareas de taladrado y remachado de manera manual o semiautomática (con el consiguiente incremento en tiempo de terminación de las piezas) o mediante sistemas automáticos que requieren una altísima precisión (con el consiguiente incremento en el coste de las instalaciones). Asimismo, la cantidad de micro-operaciones a realizar para un correcto remachado, como son el taladrado a una muy estricta tolerancia (en diámetro, en perpendicularidad a la superficie, en posicionado, etc.), la aplicación de sellante, la verificación del espesor a unir, asi como la diversidad dentro de una misma pieza de diámetros, espesores y tipos de remaches, hacen que la automatización requiera de sistemas multifunción, capaces de realizar todas estas micro-operaciones una vez posicionado sobre un punto. La solución más frecuente a este problema pasa por la creación de sistemas con cabezales multifunción muy complejos, con multitud de movimientos propios dentro del mismo cabezal y por tanto de gran peso. Típicamente, los sistemas automáticos utilizados actualmente consisten en sistemas masivos de alta precisión (del orden de mieras) y muy alto coste. Ejemplos de este tipo de sistemas son máquinas herramienta de 5, 6 o más ejes de cinemática cartesiana (como por ejemplo máquinas tipo "pórtico", "gantry", "columna", etc.) sobre las que se dispone un cabezal multifunción con movimientos propios y de gran peso. Para poder mover con suficiente precisión y repetitividad estos cabezales de gran peso se hacen necesarias máquinas de gran peso y rigidez. Así, la Patente ES 2155330 (Número de solicitud 009800941) y referida a un "Proceso e instalación de remachado para la construcción de alas y estabilizadores de aviones" presenta inconvenientes relativos a que solo es válida para máquinas de tipo "gantry" o "pórtico".
Los sistemas automatizados característicos de otras industrias, como son por ejemplo los robots antropomórficos en la industria de la automoción, no son aplicables por sus limitadas características de precisión (del orden de milímetros) y repetitividad, así como por - A -
Ia escasa carga de pago (payload) , lo que los hace incapaces de posicionar precisa y repetitivamente cabezales multifunción de gran o incluso de mediano peso. Además, este tipo de robots no admiten una programación lo suficientemente precisa por metodología "off-line", por lo que se programan generalmente mediante "teaching" o enseñando sobre un espécimen las posiciones de trabajo. En el caso de una pieza aeroespacial, debido a la gran cantidad de posiciones a programar esto se hace inviable tanto técnica como económicamente.
Solo muy recientemente se están empezando a utilizar robots antropomórficos, a los que para suplir su falta de precisión intrínseca se les añaden sistemas de medida, de compensación de temperatura, etc., pero siempre consiguiendo unas precisiones (del orden de décimas de milímetro) que son menores que las conseguidas por máquinas tradicionales del tipo de las máquinas- herramienta por control numérico. Estos sistemas, debido a su alta complicación, dificultad de calibración y puesta a punto, así como por el alto coste asociado a todos los sistemas periféricos necesarios para conseguir las precisiones requeridas, quedan por el momento restringidos a aplicaciones muy concretas, siendo la solución que aportan no extrapolable a la mayoría de aplicaciones de taladrado y remachado automáticos en la industria aeronáutica o aeroespacial.
Una situación intermedia respecto de los sistemas descritos se encuentra determinada por las máquinas de cinemática paralela, que permiten, debido a su precisión del orden de centésimas (mayor que la de los robots articulados e incluso que la de los robots articulados mejorados), realizar operaciones precisas con cabezales de mayor peso que los descritos para los robots antropomórficos, pero siendo de menor coste que los de una máquina de cinemática cartesiana. El problema fundamental de los sistemas actuales de remachado automático mediante cabezales multifunción gobernados por control numérico consiste en el excesivo peso necesario para su construcción. Mediante la patente con número de solicitud P 200401154 se superan ciertas limitaciones en los movimientos necesarios a realizar por la correspondiente máquina de remachado, pero se dan inconvenientes relativos a que elimina la necesidad de accionamientos tipo revolver, pero no accionamientos lineales (mediante cilindros neumáticos o servoaccionados) , ni de la combinación de dichos accionamientos lineales.
Por otra parte, cuando se intenta realizar un proceso de remachado automático se plantean problemas relativos a conseguir de manera rentable aunar en un mismo proceso el remachado automático de piezas que incluyen una gran variedad de diámetros y largos de un mismo tipo de remaches, asi como diversidad de tipos de remaches, y mayormente cuando las tolerancias son muy estrictas, como es el caso de la industria aeroespacial . Históricamente, el remachado se lleva a cabo después de realizar el taladrado y tras realizar una fase completamente manual, en la que se separan las piezas que han sido taladradas para realizar operaciones de limpieza, eliminación de rebabas, aplicación de diferentes tipos de sellante (por ejemplo de interposición) y de suplementos (para eliminar holguras entre las piezas a remachar) .
Los sistemas de remachado automático actuales suelen caracterizarse por basarse en un sistema portante (de altas o muy altas precisiones y repetitividades o basado en un robot antropomórfico con precisiones y repetitividades mejoradas mediante sistemas auxiliares) sobre el que se coloca un cabezal multifunción con movimientos (rotatorios, tipo revolver, lineales o combinaciones de estos) propios, de tal modo que el sistema posicionador coloca el cabezal en una posición cercana al punto de trabajo y permanece fijo durante la realización de todas las micro-operaciones del ciclo de remachado, siendo el propio cabezal el que mediante los accionamientos presenta los diferentes módulos al punto de trabajo. Cabezales de este tipo, con mecanismos multifunción y mecanismos rotatorios son por ejemplo los descritos en las patentes US 2002173226 "Multispindle end effector", US 2003232579 "Multi-spindle end effector", WO 02094505 "Multi-spindle end effector" y EP 0292056 "Driving mechanism and manipulator comprising a such a driving mechanism" . Este tipo de cabezales necesita de sistemas de accionamiento lineales, rotatorios o combinación de ambos, de monitorización y control de gran precisión, con materiales de gran calidad y poco o nulo desgaste dentro de la vida útil del cabezal, además de suponer un incremento importante en el peso y la complejidad del sistema, por lo que la mantenibilidad y fiabilidad suele resentirse notablemente. Debido a todo esto, el cabezal multifunción puede llegar a suponer un coste mayor que el del propio sistema de posicionado. Por otra parte, esta complejidad en los cabezales provoca que al ser estos de gran peso, a veces cercanos a la media tonelada, las prestaciones en cuanto a precisión y repetitividad del sistema posicionador se vean mermadas de manera muy importante.
Por otra parte, hay Patentes de diferentes máquinas/cabezales de CNC de empresas tales como Brotje, Gemcor, Electroimpact , Alema, HydroControl y otras de las que entendemos que no presentan los rasgos característicos de la presente invención.
DESCRIPCIÓN DE LA INVENCIÓN Para lograr los objetivos y evitar los inconvenientes que se indican en anteriores apartados, la invención consiste en un dispositivo multifunción y procedimiento de remachado automático por control numérico, donde el dispositivo es aplicable a la unión mediante remaches de piezas metálicas, de fibra de carbono, de vidrio u otras con tolerancias de fabricación muy estrictas tales como las que se requieren en la industria aeroespacial; presentando el dispositivo una máquina o robot con sistema posicionador de alta precisión, movida por control numérico y dotada de un cabezal que se aplica a las piezas a tratar.
Novedosamente, según la invención, el dispositivo de la misma presenta en el referido cabezal una pluralidad de módulos monofunción que efectúan sobre un mismo punto de trabajo varias operaciones consecutivas, de manera que dichos módulos monofunción son presentados al referido punto de trabajo por el aludido sistema posicionador; estando constituido el sistema posicionador por una máquina cartesiana de control numérico (gantry, pórtico, en C, u otra) , por una máquina o robot de cinemática paralela, por un robot articulado preciso, o por una máquina o robot con precisión y repetitividad suficientes para aplicarse a grandes estructuras de estrictas tolerancias; en tanto que los diferentes módulos monofunción se disponen sobre un chasis que va unido de manera rígida y precisa a la brida de unión del sistema posicionador, colocándose dichos módulos sobre el chasis transversalmente, longitudinalmente, de manera matricial o adaptándose a las limitaciones de accesibilidad impuestas por la pieza a unir o el utillaje de amarre de ésta.
Según una realización preferente de la invención, los distintos módulos monofunción disponen de un mecanismo propio que los aleja o acerca a la pieza a tratar y que puede, en algún caso, ser sustituido por el propio avance proporcionado por el sistema posicionador por control numérico; siendo dicho mecanismo independiente para cada módulo, de actuación conjunta para todos los módulos o independiente para diversas agrupaciones de módulos. Según la realización preferente de la invención, el dispositivo de la misma cuenta con una programación de rutina de trabajo que se realiza mediante técnicas de programación "off line", que evitan programar el sistema enseñándoles sobre una pieza espécimen real las tareas a realizar, y de manera que la totalidad de los movimientos definidos durante el proceso de remachado (incluyendo los del sistema posiconador y los de cada módulo monofunción) son gobernados por un mismo control numérico.
El procedimiento de la presente invención emplea el dispositivo de la invención descrito anteriormente, y entre las operaciones consecutivas que se aludieron anteriormente facilita las siguientes:
- Operaciones de taladrado escariado y avellanado de diferentes diámetros; - verificación de la calidad del taladrado;
- comprobación de espesor de pieza; aplicación de sellante en el taladro y/o el remache a instalar; selección y suministro del remache o bulón a instalar;
- inserción del remacho o bulón;
- remachado; verificación de la correcta instalación del remache; - limpieza;
- operaciones de ajuste de tolerancia aerodinámica;
- verificación de tolerancia aerodinámica.
Según el procedimiento de la invención, se ha previsto que se realicen sobre un mismo punto de trabajo las operaciones de taladrado, escariado, avellanado, sellado y remachado antes de pasar al siguiente punto de trabajo .
Según el procedimiento de la invención, en un punto de trabajo dado se asegura el correcto embridado de piezas a unir mediante una fijación instalada en una posición adyacente o lo suficientemente cercana, siendo dicha fijación instalada bien durante una fase de premontaje previa al procedimiento o bien de manera automática por el dispositivo correspondiente al procedimiento.
Con la estructura que se ha descrito, la invención presenta las ventajas que se describen a continuación:
La invención elimina la necesidad de movimientos lineales o la combinación de estos con movimientos rotatorios en el correspondiente cabezal, incidiendo asi en la disminución de peso del cabezal de remachado.
Mediante la invención se puede prescindir de la necesidad de actuar, motorizar y controlar los movimientos de presentación de cada módulo monofunción, ya sea mediante accionamientos giratorios, lineales o combinación de estos.
Con ello se reduce el peso necesario para la construcción del cabezal, de manera que no son necesarias máquinas de muy alto payload, ni tampoco son necesarios en máquinas tales como las máquinas de cinemática paralela los sistemas de mejora de precisión, de manera que la invención permite el remachado automático sobre plataformas robotizadas mediante máquina-herramienta de control numérico convencional de muy alta precisión, máquina-herramienta de control numérico convencional de precisión standard, máquina cinemática paralela o en general cualquier sistema robotizado o controlado por control numérico con precisión y repetitividad suficiente . Mediante la simplificación de requerimientos que aporta la presente invención, se permite asimismo reducir el número de accionamientos necesarios, reducir los costes unitarios del sistema de remachado automático, haciéndolo más eficiente en términos económicos que los sistemas tradicionales de remachado automático, y mejorando altamente la fiabilidad y mantenibilidad al reducirse el número de accionamientos y por tanto el número de elementos susceptibles de sufrir fallo o mal función a lo largo de la vida útil del dispositivo.
Por tanto, las principales ventajas que aporta la presente invención consisten en eliminar la necesidad de una arquitectura robótica de muy altas precisiones, disminuir el peso del cabezal y por tanto permitir su uso con máquinas de control numérico tradicionales, tales como las "gantry", "pórtico", en "C", u otras pero sin limitarse a ellas, de manera que también se pueden utilizar máquinas de cinemática paralela y robots articulados precisos. Además, mediante la invención se elimina la necesidad de accionamientos propios en cada módulo y de mecanismos de cambio de módulo, aumento de fiabilidad y mantenibilidad, disminuyendo los costes del dispositivo .
Por otra parte, mediante la invención, se elimina la necesidad de separar las piezas tras el taladro, ya que se asegura la correcta y firme sujeción entre piezas y por tanto se minimizan las rebabas y virutas producidas durante el taladrado mediante el remache instalado anteriormente por el dispositivo de la invención. Al permitir dicho dispositivo instalar remaches de diferentes diámetros y largos, siempre se tendrá la certeza de que en una posición de trabajo habrá siempre una posición lo suficientemente cercana o bien un remache o fijación temporal proveniente de una fase de premontaje, o bien un remache instalado automáticamente por el dispositivo, lo cual asegura la firme sujeción entre las placas a remachar.
Asi, se pueden emplear diferentes tipos de remaches y se puede conseguir un proceso en el que se realice el remachado automático de piezas en las que la variedad de tipos, diámetros y largos de remache sea importante, y todo ello sin necesidad de realizar paradas para efectuar cambios de herramientas, de módulos, etc. que incrementarían los tiempos de ciclos y por tanto mermarían la rentabilidad económica del procedimiento.
A continuación, para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma, se acompañan unas figuras en las que con carácter ilustrativo y no limitativo se ha representado el objeto de la invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figuras 1 a 4.- Representan respectivas vistas esquemáticas y en perspectiva de cuatro dispositivos realizados según la presente invención y que emplean el procedimiento de la misma.
Figuras 5 a 7.- Representan respectivas vistas en planta y esquemáticas de tres posibilidades para un cabezal existente en cualquiera de las anteriores figuras 1 a 4. DESCRIPCIÓN DE UN EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN Seguidamente se realiza una descripción de un ejemplo de la invención haciendo referencia a la numeración adoptada en las figuras.
Asi, el dispositivo y procedimiento del presente ejemplo, se aplican a la unión de piezas 4 mediante remaches en la industria aeroespacial, presentando el dispositivo una máquina o robot 1, 5, 6, 7 movida por control numérico, que se puede desplazar en unos railes 2 y que cuenta con un cabezal 3 dotado de una pluralidad de módulos monofunción 8 que efectúan sobre un mismo punto de trabajo varias operaciones consecutivas, de manera que los módulos 8 son presentados al referido punto de trabajo por el correspondiente sistema posicionador .
La referida máquina o robot consiste en una máquina gantry 1 en la figura 1, en una máquina de columna 5 en la figura 2, en una máquina cinemática paralela 6 en la figura 3 y en un robot antropomórfico 7 en la figura 4.
En cualquiera de esos cuatro casos, el cabezal 3 presenta un chasis 9 que se une mediante una muñeca 10 al sistema portante, tal y como se representa en las figuras 5 a 7.
Los módulos monofunción 8 del cabezal 3 pueden disponerse en este de manera transversal, de manera longitudinal, o de manera matricial, según muestran respectivamente los figuras 5, 6 y 7.
El dispositivo del presente ejemplo, según el procedimiento del mismo, puede realizar varias micro- operaciones sobre una misma posición de trabajo como por ejemplo operaciones de taladrado, escariado y avellanado de diferentes diámetros, verificación de la calidad del taladro, comprobación del espesor de las piezas, aplicación de sellante en el taladro y/o en el remache a instalar, selección y suministro del remache o bulón a instalar, inserción del remache o bulón, remachado, verificación de la correcta instalación del remache, limpieza, operaciones de ajuste de tolerancia aerodinámica, operaciones de verificación de tolerancia aerodinámica, u otras.
Según el presente ejemplo, las referidas micro- operaciones se realizan mediante el cabezal 3 que se encuentra gobernado por control numérico multifuncional, presentando capacidad para instalar remaches de diferentes largos y diámetros sin necesidad de realizar cambios de ninguna pieza y/o adaptador en el sistema, y en el que los diferentes módulos 8 encargados de realizar cada micro-operación no necesitan accionamientos propios para ser presentados al punto de trabajo, sino que es la propia máquina-herramienta de control numérico convencional, máquina cinemática paralela o en general cualquier sistema robotizado o controlado por control numérico con precisión y repetitividad suficiente la que realiza los movimientos de presentación de cada módulo 8 al punto de trabajo, máquinas tales como las ilustradas en las figuras 1 a 4 y referenciadas como 1, 5, 6 y 7. El procedimiento del presente ejemplo permite la realización de remachados automáticos en piezas típicas de la industria aeroespacial mediante la instalación de remaches ciegos (de una sola o varias piezas y accionamiento e instalación por un único lado de la estructura, como son por ejemplo -pero no limitándose a- los cubiertos por las Patentes US5816761, US4457652, US4967463, US4747202, y norma EN6122 y familia), o remaches de dos piezas de bulones y collares de cierre (como son por ejemplo -pero no limitándose a- collares frangibles tipo Hi-LOK o Hi-LITE o de embutición tipo LOCKBOLT o los cubiertos por las Patentes US4221152, US4198895, US4325418, US4472096, US3915053, US2882773, US2927491, US2940495, US3027789, US3138987, US3390906).
El dispositivo y procedimiento del presente ejemplo permiten tolerancias muy estrictas y posibilitan la unión de piezas mediante remaches, pudiendo ser las piezas metálicas, de composite, de fibra de carbono, de "kevlar", de vidrio, "glare", otras, o combinaciones de los anteriores materiales. En el presente ejemplo se ha previsto un mecanismo de acercamiento o alejamiento de los módulos 8 para evitar que durante la operación de un módulo 8 otro que no se esté utilizando colisione con la pieza 4 o el utillaje de amarre de ésta. Este mecanismo puede ser neumático, eléctrico o de cualquier tipo comunmente utilizado, y según el caso no necesitará ser de gran precisión en el avance, por ejemplo en el caso de aplicación a un módulo de aplicador de sellante. En otros casos, dicho mecanismo puede ser sustituido por el propio avance proporcionado por el sistema posicionador por control numérico, obteniendo asi en el avance las mismas características de precisión y repetitividad que las propias del sistema posicionador. Este puede ser el caso de, por ejemplo, el avance de un electrohusillo de taladrado. Por otra parte, un mismo mecanismo de avance puede ser utilizado para uno o más módulos 8 alternativamente, incidiendo asi en la reducción de elementos, peso, complejidad, coste, mantenibilidad, etc. El avance de los módulos 8 será en cualquier caso gobernado siempre por medio del control numérico que rige tanto los movimientos del sistema posicionador como los de los módulos 8.
Cada módulo 8 puede ser monofunción, en el sentido de que realiza una micro-operación dentro del ciclo de trabajo, pero no tiene porque estar limitado a un tipo concreto de remache. Por ejemplo, el módulo de aplicación de sellante sobre la caña del remache o sobre el agujero correspondiente se limitará a realizar la micro-operación de aplicar el sellante, pero no necesita ningún cambio externo, manual o automático, para aplicar sellante sobre taladros de diferentes diámetros.
El sistema posicionador sobre el que se dispone el cabezal 3 del presente ejemplo, posicionará a dicho cabezal 3 sobre el punto a realizar el ciclo completo, y además dentro de cada micro-operación presentará a cada módulo 8 al punto de trabajo.
Por ser el dispositivo de la presente invención de bajo peso, el correspondiente sistema posicionador no necesita ser masivo, permitiendo asi, al ser más ligero, incorporar más módulos 8 que realicen más operaciones sobre el punto de trabajo, mejorando las prestaciones de remachado basadas en arquitecturas de posicionadores masivos .
Según el presente ejemplo, el dispositivo de la invención puede efectuar el procedimiento de la misma de la siguiente manera:
Fase previa en la que de manera manual o automática se preparan las piezas a remachar, aplicando sellante de interposición y suplemento si fueran necesarios, uniéndose mediante fijaciones temporales o definitivas en un tanto por ciento tal que se asegure un correcto embridado inicial de las piezas a remachar, y posterior colocación de la pieza sobre un utillaje.
El sistema posicionador irá presentando consecutivamente sobre un mismo punto los diferentes módulos del sistema de cabezal multifunción, realizando cada uno de los diferentes módulos 8 su función.
- Una vez finalizadas las operaciones sobre un mismo punto de trabajo, el posicionador desplazará el sistema de remachado automático a la siguiente posición de trabajo. En esta se asegurará el correcto embridado de las piezas a unir mediante una fijación instalada en una posición adyacente. Dicha fijación será instalada o bien durante la fase previa del proceso o bien de manera automática por el dispositivo de la presente invención.
- El procedimiento será posible en la medida en que el dispositivo sea capaz de admitir una variedad de remaches a instalar (tipo, diámetro, largo, etc.), y esto será posible ya que el cabezal 3 al ser de menor peso puede incluir nuevos módulos 8 que permitan ampliar los tipos de remaches que instala. Al poder instalar una mayor variedad de remaches, durante el proceso se asegura que el sistema siempre pueda remachar, por lo que siempre se tendrá la certeza de que en una posición de trabajo habrá siempre en una posición lo suficientemente cercana o bien un remache o fijación temporal proveniente de una fase de premontaje o bien un remache instalado automáticamente por el dispositivo, lo cual asegura la firme sujeción entre las placas a remachar. - Una vez realizada la instalación automática de los remaches, se podrá realizar una inspección de los remaches instalados, mediante un módulo de verificación instalado en el cabezal 3. Esta función también podrá realizarse tras la instalación de cada remache y previamente a la instalación del remache siguiente.
Asi, se obtiene un procedimiento cuya realización es sencilla y que no depende de si la variedad de remaches a instalar es pequeña o grande, facilitando el montaje de estructuras de gran tamaño y estrictas tolerancias como las típicas de la industria aeroespacial . Al asegurarse el correcto embridado durante el taladrado, se asegura que en el interfaz de las distintas piezas a unir no se generen virutas o polvo de material composite, eliminando la necesidad de separar las piezas para limpiarlas. Se evita pues tener que añadir un paso extra al proceso, lo que redunda en una importante reducción del coste de fabricación .
Además, según el presente ejemplo, las programaciones de rutinas de trabajo que se emplean utilizan técnicas de programación "off-line" que no requieren programar a los sistemas enseñándoles sobre una pieza espécimen real las tareas a realizar.

Claims

REIVINDICACIONES
1.- DISPOSITIVO MULTIFUCIÓN DE REMACHADO AUTOMÁTICO POR CONTROL NUMÉRICO, aplicable a la unión mediante remaches de piezas metálicas, de fibra de carbono, de vidrio u otras con tolerancias de fabricación muy estrictas tales como las que se requieren en la industria aeroespacial; presentando el dispositivo una máquina o robot (1, 5, 6,7) con sistema posicionador de alta precisión, movida por control numérico y dotada de un cabezal (3) que se aplica a las piezas a tratar (4); caracterizado porque dicho cabezal (3) presenta una pluralidad de módulos monofunción (8) que efectúan sobre un mismo punto de trabajo varias operaciones consecutivas de manera que dichos módulos monofunción (8) son presentados al referido punto de trabajo por el aludido sistema posicionador; estando constituido el sistema posicionador por una máquina cartesiana de control numérico (gantry, pórtico, en "C" u otra) , por una máquina o robot de cinemática paralela, por un robot articulado preciso, o por una máquina o robot con precisión y repetitividad suficientes para aplicarse a grandes estructuras de estrictas tolerancias; en tanto que los diferentes módulos monofunción (8) se disponen sobre un chasis (9) que va unido de manera rígida y precisa a la brida de unión del sistema posicionador, colocándose dichos módulos (8) sobre el chasis (9) transversalmente, longitudinalmente, de manera matricial, o adaptándose a las limitaciones de accesibilidad impuestas por la pieza a unir o el utillaje de amarre de ésta.
2.- DISPOSITIVO MULTIFUCIÓN DE REMACHADO AUTOMÁTICO POR CONTROL NUMÉRICO, según reivindicación 1, caracterizado porque los diferentes módulos (8) disponen de un mecanismo propio que los aleja o acerca a la pieza a tratar (4) y que puede, en algún caso, ser sustituido por el propio avance proporcionado por el sistema posicionador por control numérico; siendo dicho mecanismo independiente para cada módulo (8), de actuación conjunta para todos los módulos (8), o independiente para diversas agrupaciones de módulos (8).
3.- DISPOSITIVO MULTIFUCIÓN DE REMACHADO AUTOMÁTICO POR CONTROL NUMÉRICO, según reivindicación 1 ó 2, caracterizado porque cuenta con una programación de rutina de trabajo que se realiza mediante técnicas de programación "off-line", que evitan programar al sistema enseñándole sobre una pieza espécimen real las tareas a realizar, de manera que la totalidad de los movimientos definidos durante el proceso de remachado (incluyendo los del sistema posicionador y los de cada módulo monofunción) son gobernados por un mismo control numérico .
4.- PROCEDIMIENTO, que emplea el dispositivo reivindicado anteriormente, caracterizado porque entre las referidas operaciones consecutivas se encuentran: - Operaciones de taladrado, escariado y avellanado de diferentes diámetros;
- verificación de la calidad del taladrado;
- comprobación de espesor de pieza; aplicación de sellante en el taladro y/o el remache a instalar;
- selección y suministro del remache o bulón a instalar;
- inserción del remacho o bulón;
- remachado; - verificación de la correcta instalación del remache;
- limpieza;
- operaciones de ajuste de tolerancia aerodinámica;
- verificación de tolerancia aerodinámica.
5.- PROCEDIMIENTO, según la reivindicación 4, caracterizado porque se realizan sobre un mismo punto de trabajo las operaciones de taladrado, escariado, avellanado, sellado y remachado antes de pasar al siguiente punto de trabajo.
6.- PROCEDIMIENTO, según reivindicación 4, caracterizado porque en un punto de trabajo dado se asegura el correcto embridado de piezas a unir mediante una fijación instalada en una posición adyacente o lo suficientemente cercana, siendo dicha fijación instalada bien durante una fase de premontaje previa al procedimiento o bien de manera automática por el dispositivo correspondiente al procedimiento.
PCT/ES2009/070183 2008-06-27 2009-05-25 Dispositivo multifunción y procedimiento de remachado automático por control numérico WO2009156531A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2726494A CA2726494A1 (en) 2008-06-27 2009-05-25 Multifunctional device for carrying out automatic riveting process by numerical control and method thereof
BRPI0914729A BRPI0914729A2 (pt) 2008-06-27 2009-05-25 dispositivo multifuncional e método para executar rebite automático por controle numérico
EP09769377.4A EP2332669A4 (en) 2008-06-27 2009-05-25 MULTIFUNCTIONAL DEVICE AND DIGITAL CONTROL AUTOMATIC RIVETING METHOD
CN2009801243722A CN102083567A (zh) 2008-06-27 2009-05-25 通过数字控制执行自动铆接过程的多功能装置及其方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200801941A ES2331290B1 (es) 2008-06-27 2008-06-27 Dispositivo multifuncion y procedimiento de remachado automatico por control numerico.
ESP200801941 2008-06-27

Publications (1)

Publication Number Publication Date
WO2009156531A1 true WO2009156531A1 (es) 2009-12-30

Family

ID=41404679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070183 WO2009156531A1 (es) 2008-06-27 2009-05-25 Dispositivo multifunción y procedimiento de remachado automático por control numérico

Country Status (7)

Country Link
US (1) US20090320271A1 (es)
EP (1) EP2332669A4 (es)
CN (1) CN102083567A (es)
BR (1) BRPI0914729A2 (es)
CA (1) CA2726494A1 (es)
ES (1) ES2331290B1 (es)
WO (1) WO2009156531A1 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2255386B1 (es) * 2004-05-13 2007-10-01 Loxin 2002, S.L. Sistema mejorado de remachado automatico.
EP2641672A1 (en) * 2012-03-23 2013-09-25 Airbus Operations, S.L. Method for evaluating the installation of blind rivets, method and system for installing blind rivets, method and system for obtaining a pattern, and aircraft
CN107344222B (zh) * 2016-05-06 2019-11-08 深南电路股份有限公司 一种数控铆钉机
CN106925713B (zh) * 2017-05-09 2018-12-18 苏州宝成汽车冲压有限公司 一种铆压自动检测防错与机械杠杠式自动脱料机构
EP3988255A1 (en) * 2020-10-26 2022-04-27 Siemens Aktiengesellschaft Method and assembly unit for assembling non-electric components onto a component-carrier
CN113245853A (zh) * 2021-06-10 2021-08-13 黄乃亨 一种传动轴的羊角叉和异形三角管钻孔铆固一体机
CN114011978A (zh) * 2021-10-28 2022-02-08 天键电声股份有限公司 一种头戴耳机钢网自动铆压机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955119A (en) * 1989-07-11 1990-09-11 Imta Multi-task end effector for robotic machining center
ES2255386A1 (es) * 2004-05-13 2006-06-16 Loxin 2002, S.L. Sistema mejorado de remachado automatico.
WO2007110406A1 (fr) * 2006-03-27 2007-10-04 Sonaca S.A. Dispositif et procede pour l'assemblage par rivetage de toles
WO2008068595A1 (en) * 2006-12-07 2008-06-12 Latecs Machine for fitting fasteners of rivet type, particularly for aircraft fuselage or subassembly components

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356526A (en) * 1939-12-19 1944-08-22 Mayer Friedrich Riveting machine
US4885836A (en) * 1988-04-19 1989-12-12 Imta Riveting process and apparatus
US5154643A (en) * 1990-10-29 1992-10-13 Gemcor Engineering Corporation Method and apparatus for positioning tooling
FR2696664B1 (fr) * 1992-10-09 1994-12-23 Recoules Automation Cellule de rivetage automatique.
US5836068A (en) * 1997-04-14 1998-11-17 Northrop Grumman Corporation Mobile gantry tool and method
US5848458A (en) * 1997-05-15 1998-12-15 Northrop Grumman Corporation Reconfigurable gantry tool
US6141848A (en) * 1997-06-28 2000-11-07 The Boeing Company Contoured stringer/clip drilling
JPH11221707A (ja) * 1998-02-05 1999-08-17 Meidensha Corp 穴あけロボット
US6478722B1 (en) * 2000-02-18 2002-11-12 The Boeing Company C-frame assembly apparatus and method for large panel-shaped workpieces
US6550118B2 (en) * 2001-02-02 2003-04-22 Electroimpact, Inc. Apparatus and method for accurate countersinking and rivet shaving for mechanical assembly operations
DE102005058493A1 (de) * 2005-12-02 2007-06-06 Dürr Special Material Handling GmbH Bearbeitungsvorrichtung
ITTO20060581A1 (it) * 2006-08-04 2008-02-05 Bruno Bisiach Dispositivo e metodo di lavorazione di un pezzo da lavorare, quale per esempio una struttura a guscio di un velivolo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955119A (en) * 1989-07-11 1990-09-11 Imta Multi-task end effector for robotic machining center
ES2255386A1 (es) * 2004-05-13 2006-06-16 Loxin 2002, S.L. Sistema mejorado de remachado automatico.
WO2007110406A1 (fr) * 2006-03-27 2007-10-04 Sonaca S.A. Dispositif et procede pour l'assemblage par rivetage de toles
WO2008068595A1 (en) * 2006-12-07 2008-06-12 Latecs Machine for fitting fasteners of rivet type, particularly for aircraft fuselage or subassembly components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2332669A4 *

Also Published As

Publication number Publication date
EP2332669A1 (en) 2011-06-15
CN102083567A (zh) 2011-06-01
CA2726494A1 (en) 2009-12-30
EP2332669A4 (en) 2016-08-03
ES2331290A1 (es) 2009-12-28
BRPI0914729A2 (pt) 2018-02-06
ES2331290B1 (es) 2010-09-29
US20090320271A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
ES2331290B1 (es) Dispositivo multifuncion y procedimiento de remachado automatico por control numerico.
US6170157B1 (en) Determinant spar assembly
US6073326A (en) Lap splice mini-riveter system
CA2254508C (en) Lap splice mini-riveter system
US6314630B1 (en) Determinant wing assembly
US6088897A (en) Bucking bar end-effector for upsetting a rivet
US7509740B2 (en) Method of manufacturing a wing
US6158666A (en) Vacuum fastened guide and method for supporting tooling on a component
EP2939795B1 (en) Mobile automated assembly tool for aircraft structures
US6172374B1 (en) Dual laser homing sensor
US6011482A (en) Fastener protrusion sensor
US6134940A (en) Angular bucking bar
US6269527B1 (en) Wing panel assembly
JP2008110438A (ja) 穿孔装置
US5044064A (en) Machine tool with end effector replacement
US20120282052A1 (en) Device for drilling a complex panel
Mir et al. 777X control surface assembly using advanced robotic automation
CA2554189C (en) Determinant wing assembly
Hartman et al. Wing manufacturing-Next generation
CA2242868C (en) Determinant wing assembly
ES2843739B2 (es) Procedimiento de montaje basado en un sistema robotico colaborativo con aplicaciones intercambiables para operaciones automatizadas de taladrado, avellanado y remachado
CA2583586C (en) Determinant spar assembly
CA2522914C (en) Determinant spar assembly
CA2543769C (en) Wing panel assembly
JP2022081435A (ja) 航空機の翼の左右反転式製造及び組立

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124372.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2726494

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009769377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009769377

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0914729

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101227