WO2009156201A2 - Mikro-elektromechanisches sensorelement - Google Patents

Mikro-elektromechanisches sensorelement Download PDF

Info

Publication number
WO2009156201A2
WO2009156201A2 PCT/EP2009/054796 EP2009054796W WO2009156201A2 WO 2009156201 A2 WO2009156201 A2 WO 2009156201A2 EP 2009054796 W EP2009054796 W EP 2009054796W WO 2009156201 A2 WO2009156201 A2 WO 2009156201A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
temperature
membrane
sensor element
heating
Prior art date
Application number
PCT/EP2009/054796
Other languages
English (en)
French (fr)
Other versions
WO2009156201A3 (de
Inventor
Nils Rasmus Behnel
Andreas Krauss
Franz Laermer
Gottfried Flik
Tino Fuchs
Janpeter Wolff
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009156201A2 publication Critical patent/WO2009156201A2/de
Publication of WO2009156201A3 publication Critical patent/WO2009156201A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0069Thermal properties, e.g. improve thermal insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function

Definitions

  • the invention relates to a microelectromechanical sensor element with a membrane as a carrier of at least one sensor function, for use in a particle-containing environment.
  • a typical application for sensor elements of the type mentioned is the monitoring of fuel consumption and pollutant emissions of internal combustion engines.
  • pressure and flow measurements are carried out at different positions within the exhaust system.
  • the exhaust gases of internal combustion engines, in particular of diesel engines contain a considerable amount of soot particles, which are caused by incomplete combustion of the fuel in the combustion chamber, over time a build-up of the components built into the exhaust gas flow occurs.
  • the sensor membrane of a pressure sensor changes its deformation behavior as a result of deposition or deposition of particles, which can lead to drift in the sensor signal or even to total failure of the sensor function. Therefore, special measures to protect the sensor function, which is arranged on the membrane are required in such a particle-containing measurement environment.
  • the present invention proposes a structurally simple and cost-producible microelectromechanical sensor element which is particularly well suited for use in a particle-containing environment.
  • the sensor element according to the invention is equipped with heating means with which the membrane is heated to a temperature above the ambient temperature and maintained at this temperature level.
  • the sensor element is therefore equipped with heating means to actively heat at least the membrane to a corresponding temperature level and to maintain this temperature level. This prevents the accumulation and accumulation of particles and substances without mechanical protection of the membrane from the outset.
  • the sensor element according to the invention is not subject to any temperature drift due to this active temperature stabilization, which must be corrected consuming in conventional sensor elements.
  • the heating means are implemented as resistance heating with at least one heating resistor and at least one temperature sensor for controlling the heating power.
  • the membrane of the sensor element comprises at least one silicon carbide (SiC) layer.
  • SiC silicon carbide
  • the piezoresistivity of silicon carbide in these Temperatures are so high that even small membrane deformations can be detected piezoresistively, which allows pressure measurements with high sensitivity.
  • At least one heating resistor and / or the temperature sensor may be formed.
  • the temperature dependence of the conductivity of a silicon carbide resistor can be exploited.
  • Another possibility is to exploit the temperature dependence of the characteristic curve of a pn junction in silicon carbide or another suitable semiconductor material.
  • the at least one heating resistor and / or the temperature sensor can also be integrated into the membrane in thin-film technology.
  • the heating resistor and / or the temperature sensor are advantageously realized using a metal or a metal alloy, in particular with platinum or tungsten.
  • a particular advantage of the inventive concept is that it is not only applicable to a pressure sensor, but also in the realization of other sensor functions, which are arranged for thermal decoupling on a membrane.
  • the inventive concept also includes the integration of a plurality of different sensor functions on a sensor element, such as e.g. the combination of a pressure sensor with a temperature sensor or a chemical sensor.
  • a temperature sensor is usually also located in the exhaust gas line of an internal combustion engine in order to report readiness for operation or certain operating states of a catalytic converter or a filter.
  • chemical sensors are often arranged in the exhaust system, for example, for measuring the lambda or alpha value or for the specific measurement of gases, such as Nox.
  • temperature information can be obtained in addition to the pressure information, the required additional design effort being very low.
  • temperature information can already be determined simply with the aid of the temperature sensor, which is used to regulate the heating power and can be used on the heated membrane is arranged. Namely, it is possible to deduce the ambient temperature or the temperature of the exhaust gas via the heating power required for regulating the temperature. If a higher measurement accuracy is desired, then a further temperature sensor can be arranged on the non-heated substrate of the sensor element or in the housing. With the help of this reference temperature sensor and the heated temperature sensor on the membrane or the power requirement for temperature control of the membrane, for example, a flow sensor can be realized. Thus, changes in the sensor, such as a touch of the sensor element or the environment of the sensor element, or a change of the sensor housing or damage to the sensor housing can be detected. This information can be used as part of a self-diagnostic function.
  • chemically sensitive sensor elements can be arranged on the heated membrane, e.g. a conductivity sensor, a pellistor, a MOSFET sensor or electrochemical cells to get information about the gas composition.
  • reference elements can be integrated on the unheated substrate in order to achieve a higher measurement accuracy.
  • the aim is in each case the measurement, e.g. the partial pressure of one or more gases utilizing one or more chemical gas sensors in combination with the absolute pressure sensor. From the signal of a catalytically active gas sensor on the membrane and from the signals of the temperature sensors on the membrane and on the substrate, the concentration of certain gases can be determined. Due to the arrangement of the sensors on a common substrate, the energy requirement for the heating can be significantly reduced.
  • the aforementioned sensors usually provide only small signals that need to be consuming conditioned, amplified and evaluated outside the exhaust line.
  • the number of available lines is usually limited because, for example, suitable connectors are relatively expensive.
  • a silicon carbide substrate is used, then at least parts of a conditioning or evaluation electronics, such as amplifiers or multiplexers, can be arranged on the substrate. This reduces the number of required connection cables.
  • a part of the supply electronics such as a control electronics for a constant temperature or the acquisition of a reference chip tion, be arranged directly on the sensor substrate. Possibly. It is even possible to realize the entire evaluation electronics up to the digitized signal or a bus system in SiC.
  • Fig. Ia shows a schematic sectional view through a sensor element according to the invention.
  • FIG. 1b shows a schematic plan view of the sensor element shown in FIG. 1a.
  • the hatches are used here only for a better understanding of the circuit arrangement.
  • microelectromechanical sensor element 10 shown in FIGS. 1a and 1b is especially suitable for use in a particle-containing environment, such as e.g. in the exhaust system of an internal combustion engine.
  • the component structure comprises a membrane 11, which is realized in a layer structure on a substrate 1.
  • the substrate 1 was opened starting from the back.
  • a silicon carbide (SiC) layer 2 forms the uppermost layer of the layer structure and thus also of the membrane 11.
  • the membrane 11 serves as a pressure transducer.
  • an electrode 12 is disposed on the membrane 11, which is realized here in thin-film technology.
  • the movable with the membrane 11 electrode 12 forms together with a fixed counter-electrode, not shown here, a measuring capacitor, with the aid of which the pressure-induced membrane deflections can be detected.
  • FIG. 1b illustrates the layout of the electrode 12, which is realized here as a circular area, as well as its connecting line 13 and a further line structure 14, which are likewise realized using thin-layer technology.
  • FIG. 1 b shows not only the square shape of the membrane 11 but also the design and arrangement of the spring suspension of the membrane 11 formed by webs 15. This type of membrane suspension contributes to the pressure sensitivity of the membrane 11. On the other hand, this also achieves a very good thermal decoupling of the membrane 11 from the substrate 1. Regardless of their own sensor function, the membrane 11 is therefore also very well as a carrier for other sensor functions that require the greatest possible thermal decoupling.
  • the heating means are realized here in the form of a circular Schuwider- 16, which is at a distance from the edge of the electrode 12th runs and is connected via heating cables 17, so that the heating power is adjustable.
  • the heating resistor 16 and the heating lines 17 are also realized using thin-film technology.
  • metals or metal alloys are usually used, such as platinum or tungsten.
  • the aforementioned circuit elements 12, 13, 14, 16 and 17 can alternatively also be integrated directly into the silicon carbide layer 2 by means of a corresponding doping.
  • the entire component structure can also be realized in a silicon carbide substrate, which is particularly suitable for "harsh-environment” applications because of the high temperature stability of this material.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Fluid Pressure (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Es wird ein konstruktiv einfaches und kostengünstig herstellbares mikro-elektromechanisches Sensorelement vorgeschlagen, das besonders gut für den Einsatz in einer partikelhaltigen Umgebung geeignet ist. Dieses mikro-elektromechanische Sensorelement (10) umfasst eine Membran (11) als Träger mindestens einer Sensorfunktion. Erfindungsgemäß sind Heizmittel (16, 17) vorgesehen, mit denen die Membran (11) auf eine Temperatur oberhalb der Umgebungstemperatur aufgeheizt wird und auf diesem Temperaturniveau gehalten wird. Dadurch wird Anlagerung von Partikeln und die Abscheidung von Substanzen auf der Membran verhindert.

Description

Beschreibung
Titel
Mikro-elektromechanisches Sensorelement
Stand der Technik
Die Erfindung betrifft ein mikro-elektromechanisches Sensorelement mit einer Membran als Träger mindestens einer Sensorfunktion, zum Einsatz in einer partikelhaltigen Umgebung.
Eine typische Anwendung für Sensorelemente der eingangs genannten Art ist die Überwachung des Kraftstoffverbrauchs und der Schadstoffemission von Verbrennungsmotoren. Dazu werden Druck- und Flussmessungen an verschiedenen Positionen innerhalb des Abgasstrangs durchgeführt. Da die Abgase von Verbrennungsmotoren, insbesondere von Dieselmotoren, eine beträchtliche Menge an Rußpartikeln enthalten, die durch unvollständige Verbrennung des Kraftstoffs im Brennraum entstehen, kommt es im Laufe der Zeit zu einer Berußung der in den Abgasstrom eingebauten Bauelemente. Dies wirkt sich in aller Regel nachteilig auf die Sensorfunktionen aus. So ändert beispielsweise die Sensormembran eines Drucksensors durch Anlagerung oder Abscheidung von Partikeln ihr Deformationsverhalten, was zu einem Drift im Sensorsignal oder sogar zum Totalausfall der Sensorfunktion führen kann. Deshalb sind in einer solchen partikelhaltigen Messumgebung besondere Maßnahmen zum Schutz der Sensorfunktion erforderlich, die auf der Membran angeordnet ist.
Um die Membran eines Drucksensors gegen einen direkten Kontakt mit den Abgasen zu schützen, wird in der Praxis ein spezielles, relativ teures Gel auf die Membran aufgebracht. Es hat sich jedoch gezeigt, dass sich bei Druckschwankungen Blasen in diesem Gel bilden, die ebenfalls zu einem Sensordrift führen können. Offenbarung der Erfindung
Mit der vorliegenden Erfindung wird ein konstruktiv einfaches und kostengünstig herstell- bares mikro-elektromechanisches Sensorelement vorgeschlagen, das besonders gut für den Einsatz in einer partikelhaltigen Umgebung geeignet ist.
Dazu ist das erfindungsgemäße Sensorelement mit Heizmitteln ausgestattet, mit denen die Membran auf eine Temperatur oberhalb der Umgebungstemperatur aufgeheizt wird und auf diesem Temperaturniveau gehalten wird.
Erfindungsgemäß ist nämlich erkannt worden, dass es in einer partikelhaltigen Umgebung zwar vermehrt zur Abscheidung bzw. Anlagerung von Partikeln und Substanzen an Oberflächen kommt, dass dies aber bevorzugt an Oberflächen auftritt, die sich auf einem nied- rigeren oder auf gleichem Temperaturniveau wie die Umgebung befinden, während Oberflächen auf einem höheren Temperaturniveau frei von Ablagerungen bleiben. Erfindungsgemäß wird das Sensorelement deshalb mit Heizmitteln ausgestattet, um zumindest die Membran aktiv auf ein entsprechendes Temperaturniveau aufzuheizen und auf diesem Temperaturniveau zu halten. Dadurch wird die Ab- und Anlagerung von Partikeln und Substanzen ohne einen mechanischen Schutz der Membran von vornherein verhindert. Vorteilhafter Weise unterliegt das erfindungsgemäße Sensorelement aufgrund dieser aktiven Temperaturstabilisierung auch keinerlei Temperaturdriften, die bei herkömmlichen Sensorelementen aufwendig korrigiert werden müssen.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Sensorelements sind die Heizmittel als Widerstandsheizung realisiert mit mindestens einem Heizwiderstand und mindestens einem Temperatursensor zur Regelung der Heizleistung.
In einer Ausführungsform der Erfindung, die insbesondere für den Einsatz bei sehr hohen Umgebungstemperaturen geeignet ist, umfasst die Membran des Sensorelements mindestens eine Siliziumcarbid(SiC)-Schicht. Dabei handelt es sich um ein Halbleitermaterial, das - im Gegensatz zu Silizium - auch noch bei Temperaturen von 6000C und höher mechanisch und chemisch extrem stabil ist und deshalb dauerhaft diesen Temperaturen ausgesetzt werden kann. Außerdem ist die Piezoresistivität von Siliziumcarbid bei diesen Temperaturen noch so hoch, dass sich auch noch geringe Membrandeformationen piezo- resistiv erfassen lassen, was Druckmessungen mit hoher Empfindlichkeit ermöglicht.
In der Siliziumcarbidschicht der Membran kann außerdem in vorteilhafter Weise der min- destens eine Heizwiderstand und/oder der Temperatursensor ausgebildet sein. Bei der Realisierung des Temperatursensors kann beispielsweise die Temperaturabhängigkeit der Leitfähigkeit eines Siliziumcarbid-Widerstands ausgenutzt werden. Eine andere Möglichkeit besteht darin, die Temperaturabhängigkeit der Kennlinie eines pn-Übergangs in Siliziumcarbid oder auch eines anderen geeigneten Halbleitermaterials auszunutzen.
Der mindestens eine Heizwiderstand und/oder der Temperatursensor können aber auch in Dünnschichttechnik in die Membran integriert sein. In diesem Fall werden der Heizwiderstand und/oder der Temperatursensor vorteilhafter Weise unter Verwendung eines Metalls oder einer Metalllegierung realisiert, insbesondere mit Platin oder Wolfram.
Ein besonderer Vorteil des erfindungsgemäßen Konzepts besteht darin, dass es nicht nur bei einem Drucksensor anwendbar ist, sondern auch bei der Realisierung anderer Sensorfunktionen, die zur thermischen Entkopplung auf einer Membran angeordnet werden. Als Konsequenz umfasst das erfindungsgemäße Konzept auch die Integration von meh- reren unterschiedlichen Sensorfunktionen auf einem Sensorelement, wie z.B. die Kombination eines Drucksensors mit einem Temperatursensor oder einem chemischen Sensor. Damit können für unterschiedliche Anwendungen jeweils geeignete Sensorkombinationen realisiert werden. So befindet sich beispielsweise im Abgasstrang eines Verbrennungsmotors neben einem Drucksensor in der Regel auch ein Temperatursensor, um die Betriebs- bereitschaft oder auch bestimmte Betriebszustände eines Katalysators oder eines Filters zu melden. Ebenso sind im Abgasstrang oftmals chemische Sensoren angeordnet, beispielsweise zur Messung des Lambda- oder Alpha-Wertes oder zur spezifischen Messung von Gasen, wie Nox.
Durch Kombination von einem oder mehreren Temperatursensoren mit einem beheizten Drucksensor können zusätzlich zu den Druckinformationen Temperaturinformationen gewonnen werden, wobei der dafür erforderliche konstruktive Mehraufwand sehr gering ist. So können Temperaturinformationen beispielsweise bereits einfach mit Hilfe des Temperatursensors ermittelt werden, der zur Regelung der Heizleistung dient und auf der be- heizten Membran angeordnet ist. Über die zur Regelung der Temperatur erforderliche Heizleistung kann nämlich auf die Umgebungstemperatur bzw. die Temperatur des Abgases geschlossen werden. Wird eine höhere Messgenauigkeit angestrebt, so kann ein weiterer Temperatursensor auf dem nicht beheizten Substrat des Sensorelements oder im Gehäuse angeordnet werden. Mit Hilfe dieses Referenztemperatursensors und dem beheizten Temperatursensor auf der Membran bzw. dem Leistungsbedarf zur Temperaturregelung der Membran kann beispielsweise auch ein Strömungssensor realisiert werden. Damit können Veränderungen des Sensors, wie z.B. eine Berußung des Sensorelements oder der Umgebung des Sensorelements, oder eine Veränderung des Sensorgehäuses bzw. Schäden am Sensorgehäuse detektiert werden. Diese Informationen können im Rahmen einer Selbstdiagnosefunktion genutzt werden.
Des Weitern können auf der beheizten Membran chemisch sensitive Sensorelemente angeordnet werden, wie z.B. ein Leitfähigkeitssensor, ein Pellistor, ein MOSFET Sensor oder auch elektrochemische Zellen, um Informationen über die Gaszusammensetzung zu gewinnen. Auch bei dieser Variante können auf dem ungeheizten Substrat Referenzelemente integriert werden, um eine höhere Messgenauigkeit zu erzielen. Ziel ist jeweils die Messung z.B. des Partialdrucks eines oder mehrerer Gase unter Ausnutzung eines oder mehrerer chemischer Gassensoren in Kombination mit dem Absolutdrucksensor. Aus dem Signal eines katalytisch aktiven Gassensors auf der Membran und aus den Signalen der Temperatursensoren auf der Membran und auf dem Substrat kann die Konzentration bestimmter Gase ermittelt werden. Aufgrund der Anordnung der Sensoren auf einem gemeinsamen Substrat kann der Energiebedarf für das Beheizen deutlich reduziert werden.
Die vorgenannten Sensoren liefern in der Regel nur kleine Signale, die außerhalb des Abgasstranges aufwendig konditioniert, verstärkt und ausgewertet werden müssen. Bei einem Hochtemperatureinsatz der Sensoren, wie z.B. im Abgasstrang eines Verbrennungsmotors, ist die Anzahl der verfügbaren Leitungen meist beschränkt, da beispielsweise geeignete Steckverbindungen relativ teuer sind. Wird jedoch - wie erfindungsge- maß vorgeschlagen - ein Siliziumcarbid-Substrat verwendet, so lassen sich auf dem Substrat zumindest Teile einer Konditionierungs- oder Auswerteelektronik, wie z.B. Verstärker oder Multiplexer, anordnen. Damit lässt sich die Zahl der erforderlichen Anschlussleitungen reduzieren. Des Weiteren kann auch ein Teil der Versorgungselektronik, wie z.B. eine Regelelektronik für eine konstante Temperatur oder die Gewinnung einer Referenzspan- nung, direkt auf dem Sensorsubstrat angeordnet werden. Ggf. lässt sich sogar die gesamte Auswerteelektronik bis hin zum digitalisierten Signal oder einem Bussystem in SiC realisieren.
Kurze Beschreibung der Zeichnung
Wie bereits voranstehend erörtert, gibt es verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu wird einerseits auf die dem unabhängigen Patentanspruch 1 nachgeordneten Patentansprüche und andererseits auf die nachfolgende Beschreibung eines Ausführungsbeispiels der Erfindung anhand der Zeichnung verwiesen.
Fig. Ia zeigt eine schematische Schnittdarstellung durch eine erfindungsgemäßes Sensorelement, und
Fig. Ib zeigt eine schematische Draufsicht auf das in Fig. Ia dargestellte Sensorelement. Die Schraffuren dienen hier lediglich zum besseren Verständnis der Schaltungsanordnung.
Ausführungsform der Erfindung
Das in den Figuren Ia und Ib dargestellte mikro-elektromechanische Sensorelement 10 ist speziell für den Einsatz in einer partikelhaltigen Umgebung, wie z.B. im Abgasstrang eines Verbrennungsmotors, konzipiert.
Die Bauelementstruktur umfasst eine Membran 11, die in einem Schichtaufbau auf einem Substrat 1 realisiert ist. Um die Membran 11 freizulegen wurde das Substrat 1 von der Rückseite ausgehend geöffnet. Eine Siliziumcarbid(SiC)-Schicht 2 bildet die oberste Schicht des Schichtaufbaus und damit auch der Membran 11.
Im hier dargestellten Ausführungsbeispiel dient die Membran 11 als Druckaufnehmer. Dazu ist auf der Membran 11 eine Elektrode 12 angeordnet, die hier in Dünnschichttechnik realisiert ist. Die mit der Membran 11 bewegliche Elektrode 12 bildet zusammen mit einer hier nicht dargestellten feststehenden Gegenelektrode einen Messkondensator, mit dessen Hilfe sich die druckbedingten Membranauslenkungen erfassen lassen. Fig. Ib veranschaulicht das Layout der Elektrode 12, die hier als Kreisfläche realisiert ist, sowie deren Anschlussleitung 13 und einer weiteren Leitungsstruktur 14, die ebenfalls in Dünn- schichttechnik realisiert sind.
Außerdem zeigt Fig. Ib neben der quadratischen Form der Membran 11 auch die Auslegung und Anordnung der durch Stege 15 gebildeten Federaufhängung der Membran 11. Diese Art der Membranaufhängung trägt zum einen zur Druckempfindlichkeit der Memb- ran 11 bei. Zum anderen wird dadurch auch eine sehr gute thermische Entkopplung der Membran 11 vom Substrat 1 erreicht. Unabhängig von ihrer eigenen Sensorfunktion eignet sich die Membran 11 deshalb auch sehr gut als Träger für weitere Sensorfunktionen, die eine möglichst weitgehende thermische Entkopplung erfordern.
Erfindungsgemäß umfasst das Sensorelement 10 Heizmittel, mit denen die Membran 11 auf eine Temperatur oberhalb der Umgebungstemperatur aufgeheizt wird und auf diesem Temperaturniveau gehalten wird. Da das Sensorelement 10 für den Einsatz im Abgasstrang eines Verbrennungsmotors konzipiert ist, handelt es sich hierbei typischerweise um Temperaturen >= 6000C. Die Heizmittel sind hier in Form eines kreisförmigen Heizwider- Stands 16 realisiert, der in einem Abstand zum Rand der Elektrode 12 verläuft und über Heizleitungen 17 angeschlossen wird, so dass die Heizleistung regelbar ist. Wie schon die Elektrode 12 mit Anschlussleitung 13 und die weitere Leitungsstruktur 14, so sind auch der Heizwiderstand 16 und die Heizleitungen 17 in Dünnschichttechnik realisiert. Dafür werden meist Metalle oder Metalllegierungen verwendet, wie z.B. Platin oder Wolfram. Die vorgenannten Schaltungselemente 12, 13, 14, 16 und 17 lassen sich alternativ auch durch eine entsprechende Dotierung direkt in die Siliziumcarbid-Schicht 2 integrieren.
Abschließend sei noch darauf hingewiesen, dass auch die gesamte Bauelementstruktur in einem Siliziumcarbid-Substrat realisiert werden kann, was sich aufgrund der hohen Tem- peraturbeständigkeit dieses Materials insbesondere für „harsh-environment"- Anwendungen anbietet.

Claims

Ansprüche
1. Mikro-elektromechanisches Sensorelement (10) mit einer Membran (11) als Träger mindestens einer Sensorfunktion, zum Einsatz in einer partikelhaltigen Umgebung, d a d u r c h g e k e n n z e i c h n e t, dass Heizmittel (16, 17) vorgesehen sind, mit denen die Membran (11) auf eine Temperatur oberhalb der Umgebungstemperatur aufgeheizt wird und auf diesem Temperaturniveau gehalten wird.
2. Sensorelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Heizmittel mindestens einen Heizwiderstand (16) und mindestens einen Temperatursensor zur Regelung der Heizleistung umfassen.
3. Sensorelement (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Membran (11) mindestens eine Siliziumcarbid(SiC)-Schicht (2) umfasst.
4. Sensorelement nach Anspruch 3, dadurch gekennzeichnet, dass der mindestens eine Heizwiderstand und/oder der Temperatursensor in der SiC-Schicht realisiert sind.
5. Sensorelement (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Heizwiderstand (16) und/oder der Temperatursensor in
Dünnschichttechnik auf der Membran realisiert sind.
6. Sensorelement (10) nach Anspruch 5, dadurch gekennzeichnet, dass der mindestens eine Heizwiderstand (16) und/oder der Temperatursensor unter Verwendung eines Metalls oder einer Metalllegierung, insbesondere mit Platin oder Wolfram, realisiert sind.
7. Sensorelement nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass Mittel zum Auswerten des Ausgangssignals des Temperatursensors bzw. der zuge- führten Heizleistung vorgesehen sind, um die Temperatur der Messumgebung zu bestimmen.
8. Sensorelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein weiterer Temperatursensor außerhalb des Membranbereichs angeordnet ist, mit dem die Temperatur der Messumgebung als Referenztemperatur bestimmt wird.
9. Sensorelement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass weitere Sensorfunktionen, insbesondere die eines Strömungssensors, eines Leitfä- higkeitssensors, eines Pellistors, eines MOSFET-Sensors und/oder einer elektrochemischen Zelle, integriert sind.
10. Mikro-elektromechanisches Sensorelement (10) nach einem der Ansprüche 1 bis 9, zum Einsatz im Abgasstrang eines Verbrennungsmotors, wobei die Membran (11) auf ein Temperatur >= 6000C, aufgeheizt wird und auf diesem Temperaturniveau gehalten wird.
PCT/EP2009/054796 2008-06-23 2009-04-22 Mikro-elektromechanisches sensorelement WO2009156201A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008002579.8 2008-06-23
DE200810002579 DE102008002579A1 (de) 2008-06-23 2008-06-23 Mikro-elektromechanisches Sensorelement

Publications (2)

Publication Number Publication Date
WO2009156201A2 true WO2009156201A2 (de) 2009-12-30
WO2009156201A3 WO2009156201A3 (de) 2010-08-19

Family

ID=41334662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/054796 WO2009156201A2 (de) 2008-06-23 2009-04-22 Mikro-elektromechanisches sensorelement

Country Status (2)

Country Link
DE (1) DE102008002579A1 (de)
WO (1) WO2009156201A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1930413A1 (en) * 2019-12-20 2021-06-21 David Bilby Transparent membranes for enabling the optical measurement of properties of soot-containing exhaust gas, and modes of operation for keeping their surface clear from deposits

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003328A1 (de) * 2013-02-28 2014-08-28 Man Truck & Bus Ag Drucksensor zur Messung eines Drucks, insbesondere in einem Abgassystem einer Brennkraftmaschine
DE102017205849A1 (de) * 2017-04-06 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft Brennkraftmaschine
DE102017210691A1 (de) * 2017-06-26 2018-12-27 Robert Bosch Gmbh Verfahren zur Herstellung von mikromechanischen Sensoren
DE102017122631A1 (de) * 2017-09-28 2019-03-28 Tdk Electronics Ag Drucksensor auf keramischen Druckstutzen
DE102017122605A1 (de) * 2017-09-28 2019-03-28 Tdk Electronics Ag Drucksensor auf keramischen Substrat
DE102020203910B3 (de) * 2020-03-26 2021-06-17 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Detektieren einer Verunreinigung eines MEMS-Sensorelements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464966A (en) * 1992-10-26 1995-11-07 The United States Of America As Represented By The Secretary Of Commerce Micro-hotplate devices and methods for their fabrication
US5705745A (en) * 1995-07-29 1998-01-06 Robert Bosch Gmbh Mass flow sensor
WO2001063361A1 (en) * 2000-02-23 2001-08-30 Obducat Aktiebolag Device for homogeneous heating of an object
DE10053326A1 (de) * 2000-10-27 2002-05-08 Bosch Gmbh Robert Mikromechanisches Bauelement und Herstellungsverfahren
US20040021184A1 (en) * 2001-07-25 2004-02-05 Hubert Benzel Micromechanical component
DE102004032489A1 (de) * 2004-07-05 2006-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrostrukturiertes Bauteil und dessen Verwendung
US20060289415A1 (en) * 2004-07-28 2006-12-28 Richard Muehlheim Micromechanical device having integrated heating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464966A (en) * 1992-10-26 1995-11-07 The United States Of America As Represented By The Secretary Of Commerce Micro-hotplate devices and methods for their fabrication
US5705745A (en) * 1995-07-29 1998-01-06 Robert Bosch Gmbh Mass flow sensor
WO2001063361A1 (en) * 2000-02-23 2001-08-30 Obducat Aktiebolag Device for homogeneous heating of an object
DE10053326A1 (de) * 2000-10-27 2002-05-08 Bosch Gmbh Robert Mikromechanisches Bauelement und Herstellungsverfahren
US20040021184A1 (en) * 2001-07-25 2004-02-05 Hubert Benzel Micromechanical component
DE102004032489A1 (de) * 2004-07-05 2006-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrostrukturiertes Bauteil und dessen Verwendung
US20060289415A1 (en) * 2004-07-28 2006-12-28 Richard Muehlheim Micromechanical device having integrated heating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1930413A1 (en) * 2019-12-20 2021-06-21 David Bilby Transparent membranes for enabling the optical measurement of properties of soot-containing exhaust gas, and modes of operation for keeping their surface clear from deposits

Also Published As

Publication number Publication date
DE102008002579A1 (de) 2009-12-24
WO2009156201A3 (de) 2010-08-19

Similar Documents

Publication Publication Date Title
WO2009156201A2 (de) Mikro-elektromechanisches sensorelement
DE69829129T2 (de) Gassensor
DE102005029556B3 (de) Gassensor
DE102017204029A1 (de) Verfahren zum Diagnostizieren einer Schädigung eines Katalysators und Katalysatorschädigungs-Diagnosesystem
DE102017204007A1 (de) Verfahren zum Diagnostizieren einer Schädigung eines Katalysators und Katalysatorschädigungsdiagnosesystem
DE102014207480A1 (de) Vorrichtung zum Erfassen eines Parameters eines Gases, Verfahren zum Betreiben einer derartigen Vorrichtung und Messsystem zum Bestimmen eines Parameters eines Gases
DE102017110589B4 (de) Steuervorrichtung für Abgassensor
DE102013204197A1 (de) Mikroelektrochemischer Sensor und Verfahren zum Betreiben eines mikroelektrochemischen Sensors
DE102009020841A1 (de) Gassensor und Verfahren zum Herstellen desselben
DE69730810T2 (de) Gas Sensor
EP0994346B1 (de) Messsonde für die Detektion der Momentankonzentrationen mehrerer Gasbestandteile eines Gases
DE102006062056A1 (de) Sensorelement mit unterdrückter Fettgasreaktion
DE102017113685A1 (de) Abgassensor
EP0192084A1 (de) Verfahren zur Messung des Sauerstoffgehaltes im Abgas von Brennkraftmaschinen
WO2006111459A1 (de) Sensorelement für partikelsensoren und verfahren zum betrieb desselben
DE102004005115B4 (de) Gasmessfühler mit Elektrodenabdeckung
DE102009046457A1 (de) Partikelsensor
DE102015214553B4 (de) Gaserfassungsvorrichtung
DE102023103268A1 (de) Gassensor und Gassensorbetriebsverfahren
EP2616803B2 (de) Sensorelement enthaltend eine referenzelektrode und einen referenzkanal
DE102017109389A1 (de) Verfahren und system zur erfassung von feinstaub in abgas
EP3622281B1 (de) Verfahren zur bestimmung der temperatur eines festelektrolyt-gassensors
DE112017002435T5 (de) Gassensor
DE4210398A1 (de) Anordnung zur Bestimmung eines Gaspartialdruckes in einem Gasgemisch
DE102013210903A1 (de) Gassensor zur Messung unterschiedlicher Gase und dazugehöriges Herstellungsverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769050

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 09769050

Country of ref document: EP

Kind code of ref document: A2