WO2009154271A1 - リソース割り当て方法、特定方法、基地局、移動局、及びプログラム - Google Patents

リソース割り当て方法、特定方法、基地局、移動局、及びプログラム Download PDF

Info

Publication number
WO2009154271A1
WO2009154271A1 PCT/JP2009/061195 JP2009061195W WO2009154271A1 WO 2009154271 A1 WO2009154271 A1 WO 2009154271A1 JP 2009061195 W JP2009061195 W JP 2009061195W WO 2009154271 A1 WO2009154271 A1 WO 2009154271A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
allocation
allocated
information
mobile station
Prior art date
Application number
PCT/JP2009/061195
Other languages
English (en)
French (fr)
Inventor
憲治 小柳
高道 井上
楽 劉
義一 鹿倉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP17184819.5A priority Critical patent/EP3258638B1/en
Priority to CN200980123258.8A priority patent/CN102067661B/zh
Priority to EP09766719.0A priority patent/EP2291024B1/en
Priority to KR1020127023571A priority patent/KR101313703B1/ko
Priority to KR1020127010933A priority patent/KR101228053B1/ko
Priority to ES09766719.0T priority patent/ES2651945T3/es
Priority to US13/000,265 priority patent/US9386574B2/en
Priority to JP2010517975A priority patent/JP5418789B2/ja
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP19194456.0A priority patent/EP3595233B1/en
Publication of WO2009154271A1 publication Critical patent/WO2009154271A1/ja
Priority to US15/172,447 priority patent/US9713130B2/en
Priority to US15/623,946 priority patent/US10182423B2/en
Priority to US16/161,624 priority patent/US10736086B2/en
Priority to US16/898,708 priority patent/US11405901B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to mobile radio system technology, and more particularly to resource allocation technology.
  • SC-FDMA Frequency Division Multiple Access
  • TTI Transmission Time Interval
  • RB resource block
  • Tree-Based is used for notification of uplink resource allocation information (Uplink Scheduling Grant) during LTE uplink scheduling.
  • Uplink Scheduling Grant Uplink Scheduling Grant
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • Bit Map a method suitable when the number of frequency blocks is large
  • Bit-Map has a larger overhead than Tree-Based used for notification of LTE uplink RB allocation information (Uplink-Scheduling-Grant).
  • Uplink Scheduling Grant in the current LTE, it is possible to notify allocation information of only one frequency block. Also, in LTE downlink, the resource blocks to be allocated are limited, and resource block allocation information with an upper limit of 37 bits can be transmitted. When the resource block allocation information is within 37 bits, dummy data is inserted. For this reason, it is required to always secure a resource capable of sending an information amount of 37 bits to one Uplink Scheduling Grant.
  • resource block allocation information which is the allocated information
  • 13 bits ⁇ 2 26 bits is sufficient, but 11 bits worth of dummy data Is inserted and the dummy data is wasted. For this reason, in some cases, the waste of the resource allocation information amount increases.
  • the problem to be solved by the present invention is to provide a technique capable of notifying resource block allocation information without waste when notifying allocated resource blocks.
  • the present invention for solving the above-described problem is a resource allocation method, in which a resource block group in which at least one resource block is continuously arranged on a frequency axis is allocated to a terminal, and the resource blocks of the allocated resource block group It is characterized in that the number of control signals for notifying the allocation information indicating is determined.
  • the present invention for solving the above-described problem is a communication method for allocating a resource block group in which at least one resource block is continuously arranged on the frequency axis, and is notified using a determined number of control signals.
  • the resource block allocated to the mobile station is identified from the information regarding the allocated resource block group.
  • the present invention for solving the above-described problem is a wireless system, wherein an allocating unit that allocates a resource block group in which at least one resource block is continuously arranged on a frequency axis to a terminal, and the allocated resource block group And determining means for determining the number of control signals for notifying allocation information indicating a resource block.
  • the present invention for solving the above-described problem is a wireless system that allocates a resource block group in which at least one resource block is continuously arranged on the frequency axis, and is notified using a determined number of control signals. And a specifying unit for specifying the resource block allocated to the mobile station from the information regarding the allocated resource block group.
  • the present invention for solving the above-mentioned problems is a base station, wherein an allocating means for allocating to a terminal a resource block group in which at least one resource block is continuously arranged on the frequency axis, and the allocated resource block group And determining means for determining the number of control signals for notifying allocation information indicating a resource block.
  • the present invention for solving the above-described problem is a mobile station that specifies allocation of a resource block group in which at least one resource block is continuously arranged on a frequency axis, and uses a determined number of control signals. And a means for specifying the resource block assigned to the mobile station from the information on the assigned resource block group notified in this manner.
  • the present invention for solving the above problem is a program of a base station, wherein the program allocates to the base station a resource block group consisting of a sequence of at least one resource block on the frequency axis. And a determination process for determining the number of control signals for notifying allocation information indicating resource blocks of the allocated resource block group.
  • the present invention for solving the above problem is a program of a mobile station that specifies allocation of a resource block group in which at least one resource block is continuously arranged on a frequency axis, and the program is provided to the mobile station, It is characterized in that a specific process for identifying a resource block allocated to a mobile station is executed from information on the allocated resource block group notified using the determined number of control signals.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • OFDM Orthogonal Frequency Division Multiplexing
  • RB continuous resource blocks
  • TTI transmission time interval
  • the present invention notifies the terminal of the number of scheduling information (Uplink Scheduling Grant), which is information in which a base station that assigns a plurality of frequency blocks to the same mobile station assigns resource blocks to each terminal, as described above.
  • the number of control signals PDCCH (Physical Downlink Control Channel) or the number of bits to be determined is determined. Details of the present invention will be described below with reference to the drawings.
  • FIG. 2 shows a block diagram of the base station and FIG. 3 shows a block diagram of the mobile station in the present embodiment.
  • the receiving unit 101 of the base station 100 receives a signal from the mobile station 200, establishes uplink synchronization using a guard interval, and outputs a base station received signal SRXB .
  • Uplink RS (Reference Signal) separation section 102 separates and outputs uplink RS signal S URSB in which uplink RS signals of a plurality of mobile stations are multiplexed from base station received signal S RXB .
  • Uplink CQI measuring section 103 receives uplink RS signals S URSB of a plurality of mobile stations, calculates CQI (Channel Quality Indicator) for each RB in each mobile station, and outputs it as uplink CQI information S UCQB .
  • CQI Channel Quality Indicator
  • the uplink scheduling unit 104 performs uplink scheduling and allocates resources to the mobile station.
  • Uplink scheduling section 104 determines the number of frequency blocks to be allocated to the same terminal based on uplink CQI information S UCQB . Specifically, the number of frequency blocks is increased when the CQI is good, and the number of frequency blocks is reduced when the CQI is bad. Resource blocks are allocated one resource block at a time so that the determined number of frequency blocks is obtained. Resource allocation information indicating the position of the allocated RB in Tree Based is generated for each frequency block, and output as UL Scheduling Grant S USCB . That is, the same number of UL Scheduling Grant S USCBs as the number of frequency blocks of the same user is generated.
  • the uplink scheduling section 104 When allocating 100 RBs, the uplink scheduling section 104 generates a 13-bit UL Scheduling Grant.
  • the UL Scheduling Grant is generated using the same number of frequency blocks as described above, but other configurations may be used.
  • the configuration may be such that allocation information of a plurality of frequency blocks is written in one UL scheduling Grant, and the number of UL Scheduling Grants is smaller than the number of frequency blocks.
  • Downlink control signal generation section 111 receives UL Scheduling Grant S USCB , mobile station identification signal S UIDB and DL Scheduling Grant S DSCB as input, and each of the plurality of UL Scheduling Grant and DL Scheduling Grant S DSCB receives the mobile station identification signal S UIDB is multiplexed, each of a plurality of UL Scheduling Grants is generated as a downlink control signal PDCCH S DCCB , and further, a DL Scheduling Grant is generated as a downlink control signal PDCCH S DCCB .
  • Control signal PDCCH S DCCB for downlink and a UL Scheduling Grant S control signal of the downlink downlink control signal PDCCH S DCCB and DL Scheduling Grant S DSCB of USCB PDCCH S DCCB are generated. That is, the downlink control signal PDCCH S DCCB is generated in the same number as the total scheduling grant of the UL Scheduling Grant S USCB and the DL Scheduling Grant S DSCB . Also, an information bit indicating a DCI (Downlink Control Information) format, which is an identifier for distinguishing between UL Scheduling Grant and DL Scheduling Grant, is multiplexed on the downlink control signal PDCCH S DCCB . For example, when the DCI format in the downlink control signal PDCCH S DCCB is UL Scheduling Grant, 0 is multiplexed, and when the DCI format is DL Scheduling Grant, 1 is multiplexed.
  • the downlink RS signal generation unit 112 generates and outputs a downlink RS signal as a downlink RS signal S DRSB .
  • Downlink data signal generation section 113 receives DL Scheduling Grant S DSCB as input, multiplexes downlink data signals of a plurality of mobile stations according to the RB pattern indicated by DL Scheduling Grant S DSCB, and creates Physical Downlink Shared Channel (PDSCH) S Generate and output DDCB .
  • DL Scheduling Grant S DSCB receives DL Scheduling Grant S DSCB as input, multiplexes downlink data signals of a plurality of mobile stations according to the RB pattern indicated by DL Scheduling Grant S DSCB, and creates Physical Downlink Shared Channel (PDSCH) S Generate and output DDCB .
  • PDSCH Physical Downlink Shared Channel
  • Multiplexer 114 receives PDCCH S DCCB , RS signal S DRSB, and PDSCH S DDCB as inputs, multiplexes these signals, and generates and outputs a downlink multiplexed signal S MUXB .
  • Transmitting section 115 receives downlink multiplexed signal S MUXB as input, and generates and outputs transmission signal S TXB .
  • Uplink data signal separation section 106 receives base station received signal S RXB as input, and extracts and outputs Physical Uplink Shared Channel (PUSCH) S UDCB in which uplink data signals of a plurality of mobile stations are multiplexed.
  • Uplink data signal demodulator receives the PUSCH S UDCB, to reproduce the transmission data of the mobile station demodulates the PUSCH S UDCB.
  • PUSCH Physical Uplink Shared Channel
  • Uplink control signal demultiplexing section 108 receives base station received signal S RXB as input, and extracts and outputs Physical Uplink Control Channel (PUCCH) S UCCB in which uplink control signals of a plurality of mobile stations are multiplexed.
  • Uplink control signal demodulator 109 demodulates the PUCCH S UCCB, and outputs a plurality of mobile stations is the measurement result of the CQI of downlink transmitted downlink CQI measurement signal S UCQB.
  • Downlink scheduling section 110 receives downlink CQI measurement signal S UCQB , performs downlink scheduling of a plurality of mobile stations, and generates and outputs DL Scheduling Grant S DSCB indicating information on allocated RBs.
  • the UE ID generation unit 116 generates and outputs mobile station identification information S UIDB .
  • FIG. 3 is a block diagram showing the main configuration of the mobile station according to the present embodiment.
  • the receiving unit 201 of the mobile station 200 receives a signal from the base station 100, establishes downlink synchronization using a guard interval, and outputs a mobile station received signal S RXU .
  • Downlink RS (Reference Signal) signal separator 202 inputs the mobile station receive signal S RXU, outputs separate the downlink RS signal S DRSU the RS downlink signal is multiplexed.
  • Downlink CQI measurement section 203 receives downlink RS signal S DRSU as input, calculates CQI for each RB, and outputs it as downlink CQI information S DCQU .
  • Downlink control signal separation section 206 receives mobile station received signal S RXU as input, and separates and outputs PDCCH S DCCU in which downlink control signals of a plurality of mobile stations are multiplexed.
  • the downlink control signal demodulator 207 receives the PDCCH S DCCU, demodulates the PDCCH S DCCU to reproduce a downlink control signal, the mobile station identification information corresponding to the own mobile station separates all the reproduction result which is multiplexed And output as a downlink control reproduction signal S DCMU . Note that the same number of PDCCHs as the number of frequency blocks are multiplexed for the mobile station. Further, the downlink control signal demodulator 207 determines whether there is an error in all downlink control signals addressed to the own mobile station as a result of demodulating the PDCCH S DCCU and reproducing the downlink control signal.
  • the downlink control signal determination signal S DSKU is notified from the mobile station 200 to the base station 100, and if the downlink control signal determination signal S DAKU is NACK, the base station 100 transmits the downlink control signal corresponding to the mobile station 200. Will be resent. Note that one downlink control signal determination signal S DAKU is generated for all PDCCHs transmitted to the same user, but it is also possible to generate a downlink control signal determination signal S DAKU for each PDCCH. It is done. If the downlink control signal determination signal S DAKU is generated for each PDCCH, the base station 100 may retransmit the erroneous PDCCH.
  • Downlink scheduling information extraction section 208 receives downlink control reproduction signal S DCMU as input, and extracts information in which “1” is written in DCIformat, that is, downlink resource allocation information DL Scheduling Grant. Then, the RB indicated by the downlink RB allocation information included in the DL Scheduling Grant is identified and output as the downlink RB allocation determination information S DSCU .
  • Uplink scheduling information extraction section 210 extracts information in which “0” is written in DCIformat from downlink control reproduction signal S DCMU , that is, UL Scheduling Grant indicating information to which an uplink RB is allocated. Next, the RB indicated by the uplink RB allocation information included in the UL Scheduling Grant is identified and output as the uplink RB allocation determination information S USCU .
  • Uplink control signal generation section 211 receives uplink RB allocation determination information S USCU and downlink CQI information S DCQU , and uses the downlink CQI information S DCQU as a resource for a predetermined control signal indicated by uplink RB allocation determination information S USCU Generates and outputs Physical Uplink Control Channel (PUCCH) S UCCU multiplexed.
  • PUCCH Physical Uplink Control Channel
  • Uplink RS signal generation section 212 receives uplink RB allocation determination information S USCU as input, and generates uplink RS transmission signal S URSU using the predetermined RS resource in uplink RB allocation determination information S USCU . Output.
  • Uplink data signal generation section 213 receives uplink RB allocation determination information S USCU as input, and uses uplink data transmission resource (PUSCH) S UDCU using predetermined data signal resources in uplink RB allocation determination information S USCU . Is generated and output.
  • PUSCH uplink data transmission resource
  • Multiplexer 214 receives PUCCH S UCCU , uplink RS transmission signal S URSU , PUSCH S UDCU and downlink control signal determination signal S DAKU , multiplexes these signals, and generates and outputs mobile station multiplexed signal S MUXU .
  • Transmitting section 215 receives mobile station multiplexed signal S MUXU as input, generates mobile station transmission signal S MUXU , and transmits it to base station 100.
  • the downlink data signal separation unit 204 receives the downlink RB allocation received signal S DSCU and the mobile station received signal S RXU as inputs, and multiplexes the downlink RB allocation received signal S DSCU to the downlink RB allocated to the own mobile station based on the downlink RB allocation determination information S DSCU. Separated PDSCH S DDCU and output.
  • Downlink data signal demodulator 205 receives the PDSCH S DDCU, reproduces the transmission data to the mobile station from the base station demodulates the PDSCH S DDCU.
  • the receiving unit 101 of the base station 100 receives a signal from the mobile station 200, establishes uplink synchronization using a guard interval, and outputs a base station received signal S RXB (step S1).
  • the uplink RS (Reference Signal) separation section 102 separates and outputs an uplink RS signal S URSB in which uplink RS signals of a plurality of mobile stations are multiplexed (step S2). .
  • Uplink CQI measurement section 103 calculates CQI (Channel Quality Indicator) for each RB in each mobile station from uplink RS signals S URSB of a plurality of mobile stations, and outputs it as uplink CQI information S UCQB (step S3).
  • CQI Channel Quality Indicator
  • the uplink scheduling unit 104 determines the number of frequency blocks in the resource allocated to each mobile station based on the uplink CQI information S UCQB for each mobile station (step S4).
  • RBs are allocated so that the number of determined frequency blocks is reached (step S5).
  • the uplink scheduling unit 104 generates information indicating the position of the allocated RB for each frequency block, and outputs the information for each frequency block as a 13-bit UL Scheduling Grant S USCB (step S6).
  • UL control signal generator 111 receives UL Scheduling Grant S USCB , DL Scheduling Grant S DSCB , and mobile station identification information S UIDB , and downlink control signal generator 111 includes a plurality of UL Scheduling Grant S USCBs , and , DL Scheduling Grant S DSCB and mobile station identification information S UIDB are multiplexed, and downlink control signals equal to the total number of scheduling grants of UL Scheduling Grant S USCB and DL Scheduling Grant S DSCB are transmitted as PDCCH (Physical Downlink Control). (Channel) S DCCB is generated and output (step S7).
  • PDCCH Physical Downlink Control Channel
  • S DCCB in which UL Scheduling Grant S USCB is multiplexed is generated as many as the number of frequency blocks.
  • the downlink RS signal generation unit 112 generates a downlink RS signal as the downlink RS signal S DRSB , and the downlink data signal generation unit 113 receives the DL Scheduling Grant S DSCB as an input, according to the RB pattern indicated by the DL Scheduling Grant S DSCB. Then, downlink data signals of a plurality of mobile stations are multiplexed to generate and output a Physical Downlink Shared Channel (PDSCH) S DDCB (step S8).
  • PDSCH Physical Downlink Shared Channel
  • Multiplexer 114 receives PDCCH S DCCB , RS signal S DRSB and PDSCH S DDCB as inputs, multiplexes these signals to generate downlink multiplexed signal S MUXB , and transmitter 115 transmits transmission signal S from downlink multiplexed signal S MUXB. TXB is generated and transmitted (step S9).
  • the receiving unit 201 of the mobile station 200 receives the signal from the base station 100, establishes downlink synchronization using the guard interval, and outputs the mobile station received signal S RXU (step S10).
  • Downlink RS (Reference Signal) signal separator 202 inputs the mobile station receive signal S RXU, and outputs to separate the downlink RS signal S DRSU the RS downlink signals are multiplexed, the downlink CQI measurement section 203, downlink The CQI for each RB is calculated from the RS signal S DRSU and output as downlink CQI information S DCQU (step S11).
  • Downlink control signal separator 206 inputs the mobile station receive signal S RXU, downlink control signals of the plurality of mobile stations and outputs separates PDCCH S DCCU multiplexed (step S12).
  • the downlink control signal demodulation unit 207 demodulates the PDCCH S DCCU to reproduce the downlink control signal, separates the reproduction result in which the mobile station identification information corresponding to the mobile station is multiplexed, and the downlink control reproduction signal S DCMU (Step S13).
  • Downlink scheduling information extraction section 208 receives downlink control reproduction signal S DCMU as input, and extracts and outputs downlink RB allocation determination information S DSCU corresponding to downlink resource allocation information (step S14).
  • Uplink scheduling information extraction section 210 extracts each UL Scheduling Grant indicating information to which uplink RBs are allocated from downlink control reproduction signal S DCMU , identifies the RB indicated by uplink RB allocation information, and allocates uplink RB
  • the determination information S USCU is output (step S15).
  • Uplink control signal generation section 211 receives uplink RB allocation determination information S USCU and downlink CQI information S DCQU , and uses downlink CQI information S DCQU as a resource for a predetermined control signal indicated by uplink RB allocation determination information S USCU.
  • Multiplexed Physical Uplink Control Channel (PUCCH) S UCCU is generated and output (step S16).
  • PUCCH Physical Uplink Control Channel
  • Uplink RS signal generation section 212 receives uplink RB allocation determination information S USCU as input, and generates uplink RS transmission signal S URSU using the predetermined RS resource in uplink RB allocation determination information S USCU . Output (step S17).
  • Uplink data signal generation section 213 receives uplink RB allocation determination information S USCU as input, and uses uplink data transmission resource (PUSCH) S UDCU using predetermined data signal resources in uplink RB allocation determination information S USCU . Is generated and output (step S18).
  • PUSCH uplink data transmission resource
  • Multiplexer 214 receives PUCCH S UCCU , uplink RS transmission signal S URSU , PUSCH S UDCU and downlink control signal determination signal S DAKU , multiplexes these signals, generates mobile station multiplexed signal S MUXU , and transmits Unit 215 transmits mobile station multiplexed signal S MUXU to base station 100 (step S19).
  • the resource allocation information is described using Tree Based, but it may be other than Tree Based.
  • CQI measured with the sounding reference signal
  • the above cell size is determined by information that affects the communication environment such as the position of base stations, the distance between base stations, interference power, etc., even if the number of frequency blocks is selected using these information good.
  • the number of frequency blocks determined according to uplink CQI and the number of PDCCHs are the same.
  • the maximum number of frequency blocks determined according to uplink CQI and the number of PDCCHs. May be the same.
  • a maximum frequency block number determination unit 105 that determines the maximum number of frequency blocks determined according to the uplink CQI is configured in the base station.
  • the maximum frequency block number extraction unit 209 is configured in the mobile station as shown in FIG.
  • the maximum number of frequency blocks is the maximum number of frequency blocks that can be assigned to the same terminal.
  • the maximum frequency block number determining unit determines the maximum frequency block number based on the positions of the mobile station and the base station.
  • FIG. 7 is a block diagram of the base station 100 when the maximum number of frequency blocks is determined by the positions of the mobile station and the base station.
  • uplink control signal demodulating section 109 demodulates PUCCH S UCCB , and a downlink CQI measurement signal S UCQB , which is a downlink CQI measurement result transmitted by a plurality of mobile stations, and a mobile station indicating the position Outputs station location information S ULCB .
  • Maximum frequency block number determination section 105-1 receives mobile station position reception information S ULCB as input, and determines the maximum frequency block in the frequency resource allocated to each mobile station from the position of the mobile station indicated by mobile station position reception information S ULCB. The number is determined, and the maximum frequency block signal S UDFB of each mobile station is generated and output. Specifically, the maximum number of frequency blocks is determined and generated so that the user farther from the base station becomes smaller.
  • FIG. 8 is a block diagram of the mobile station 200 when the maximum number of frequency blocks is determined by the positions of the mobile station and the base station.
  • the position measuring unit 416 has a function of measuring the position of the mobile station using a signal from the GPS signal satellite, receives a signal from the GPS satellite, measures the position of the mobile station 200, Generate and output mobile station location information S ULCU .
  • Uplink control signal generator 211-1 receives uplink RB allocation determination information S USCU , downlink CQI information S DCQU and mobile station location information S ULCU , and receives downlink CQI information S DCQU and mobile station location information S ULCB as uplink RB
  • a PUCCH S UCCU is generated and output using a resource for a control signal determined in advance in the resource indicated by the allocation determination information S USCU .
  • the mobile station with the smallest number of frequency blocks allocates RBs with a smaller allocation resolution, and the mobile station with the largest number of frequency blocks allocates RBs with an increased allocation resolution.
  • the maximum frequency block number determining unit determines the maximum number of frequency blocks according to the power headroom indicating the transmission power that can be increased in the mobile station.
  • FIG. 9 is a block diagram of the base station 100 when the maximum number of frequency blocks is determined according to the power headroom indicating the transmission power that can be increased in the mobile station.
  • uplink transmission power determination section 517 receives uplink CQI information S UCQB as input, calculates the transmission power value of the mobile station necessary to satisfy the required reception power, and sets uplink transmission power setting information S UPWB Generate and output.
  • Uplink control signal demodulating section 109 demodulates uplink control signal S UCCB, and receives downlink CQI measurement signal S UCQB and mobile station power headroom reception information S UHRB as downlink CQI measurement results transmitted by a plurality of mobile stations. Output.
  • Maximum frequency block number determination section 105-2 receives power headroom reception information S UHRB as input, and determines the maximum number of frequency blocks in the frequency resource allocated to each mobile station based on power headroom reception information S UHRB. And generate and output the maximum frequency block signal S UDFB of the mobile station. Specifically, for example, if the initial value of the maximum number of frequency blocks is set to 1 and the value indicated by the power headroom reception information SUHRB exceeds the threshold power P DFUP (P DFUP is a positive real number), the maximum The value of the number of frequency blocks is increased by one. If the value indicated by the power headroom reception information S UHRB is 0 and the maximum number of frequency blocks is 2 or more, the value of the maximum frequency block number is decreased by 1.
  • the maximum number of frequency blocks is increased to increase the number of frequency blocks that can be allocated, and the gain in channel-dependent frequency scheduling is increased. Further, when there is no margin in transmission power and the power is limited, the maximum frequency block number is reduced to transmit a signal with a higher power density.
  • the downlink control signal generation unit 511 receives the mobile station identification information S UIDB , UL Scheduling Grant S USCB , DL Scheduling Grant S DSCB , maximum frequency block signal S UDFB, and uplink transmission power setting information S UPWB , and multiplexes them A link control signal is generated and output as PDCCH S DCCB .
  • FIG. 10 is a block diagram of the mobile station 200 when the maximum number of frequency blocks is determined according to the power headroom indicating the transmission power that can be increased in the mobile station.
  • uplink transmission power information extraction section 616 receives uplink transmission power set value reception information S indicating the uplink transmission power value in the mobile station, notified from the base station from downlink control reproduction signal S DCMU. Extract and output UPWU .
  • the power headroom calculation unit 617 receives the uplink transmission power setting value reception information S UPWU as an input, and subtracts the uplink transmission power setting value reception information S UPWU from the maximum transmission power value that can be transmitted by the mobile station. Output as headroom information S UHRU .
  • the mobile station power headroom information SUHRU indicates surplus power that can be further transmitted by the mobile station after transmission with the power indicated by the uplink transmission power set value reception information S UPWU .
  • the uplink control signal generator 211-2 receives the uplink RB allocation determination information S USCU , the downlink CQI information S DCQU and the mobile station power headroom information S UHRU , and receives the downlink CQI information S DCQU and the mobile station power headroom information S UHRU.
  • PUCCH S UCCU is generated and output using a control signal resource predetermined in the resource indicated by the uplink RB allocation determination information S USCU .
  • the maximum frequency block includes the quality status of the propagation path of the mobile station, cell size and system bandwidth, base station coverage, uplink sounding reference Signal bandwidth, bandwidth used for uplink data transmission, number of modulation multi-values and coding rate used for uplink data transmission, mobile station transmit / receive bandwidth (also called UE) capability), type of uplink transmission data (VoIP , (HTTP, FTP (etc.)), information related to the communication environment, such as the charge system with which the user has a contract, and the target SINR for uplink power control.
  • Uplink scheduling section 104 outputs resource allocation information indicating the position of the allocated RB as UL Scheduling Grant S USCB and the determined number of frequency blocks as S UDFB .
  • the downlink control signal generation unit 111 receives the UL Scheduling Grant S USCB , the mobile station identification signal S UIDB and the DL Scheduling Grant S DSCB as inputs, and each of the plurality of UL Scheduling Grants and the DL Scheduling Grant includes the mobile station identification signal S UIDB. And a plurality of UL Scheduling Grants are generated as downlink control signals PDCCH S DCCB , and a DL Scheduling Grant is generated as a downlink control signal PDCCH S DCCB .
  • Control signal PDCCH S DCCB for downlink and a UL Scheduling Grant S control signal of the downlink downlink control signal PDCCH S DCCB and DL Scheduling Grant S DSCB of USCB PDCCH S DCCB are generated. That is, the downlink control signal PDCCH S DCCB is generated in the same number as the total scheduling grant of the UL Scheduling Grant S USCB and the DL Scheduling Grant S DSCB . Also, an information bit indicating a DCI (Downlink Control Information) format, which is an identifier for distinguishing between UL Scheduling Grant and DL Scheduling Grant, is multiplexed on the downlink control signal PDCCH S DCCB .
  • DCI Downlink Control Information
  • the DCI format in the downlink control signal PDCCH S DCCB is UL Scheduling Grant
  • 0 is multiplexed
  • the DCI format is DL Scheduling Grant
  • 1 is multiplexed.
  • the frequency block count S UDFB is input, and a higher layer control signal is generated and output as a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • Downlink control signal separation section 206 receives mobile station reception signal S RXU as input, and separates and outputs PDCCH S DCCU and PBCH multiplexed with downlink control signals of a plurality of mobile stations.
  • Downlink control signal demodulator 207 receives PBCH, demodulates PBCH, reproduces a higher layer control signal, and separates a reproduction result in which mobile station identification information corresponding to the own mobile station is multiplexed. Then, the number of PDCCHs addressed to the own mobile station is recognized from the number of frequency blocks of the higher layer control reproduction signal, and when the number of PDCCHs addressed to the own mobile station reaches the same number as the number of frequency blocks, the PDCCH demodulation Exit.
  • the receiving unit 101 of the base station 100 receives a signal from the mobile station 200, establishes uplink synchronization using a guard interval, and outputs a base station received signal S RXB (step S1).
  • the uplink RS (Reference Signal) separation section 102 separates and outputs an uplink RS signal S URSB in which uplink RS signals of a plurality of mobile stations are multiplexed (step S2). .
  • Uplink CQI measurement section 103 calculates CQI (Channel Quality Indicator) for each RB in each mobile station from uplink RS signals S URSB of a plurality of mobile stations, and outputs it as uplink CQI information S UCQB (step S3).
  • CQI Channel Quality Indicator
  • the uplink scheduling unit 104 determines the number of frequency blocks in the resource allocated to each mobile station based on the uplink CQI information S UCQB for each mobile station (step S4).
  • RBs are allocated so that the number of determined frequency blocks is reached (step S5).
  • the uplink scheduling section 104 generates information indicating the position of the assigned RB for each frequency block, and outputs 13-bit UL Scheduling Grant S USCB for each frequency block. Further, the determined frequency block is output as SUDFB (step S6).
  • UL control signal generator 111 receives UL Scheduling Grant S USCB , DL Scheduling Grant S DSCB , and mobile station identification information S UIDB , and downlink control signal generator 111 includes a plurality of UL Scheduling Grant S USCBs , and , DL Scheduling Grant S DSCB and mobile station identification information S UIDB are multiplexed, and downlink control signals equal to the total number of scheduling grants of UL Scheduling Grant S USCB and DL Scheduling Grant S DSCB are transmitted as PDCCH (Physical Downlink Control). Channel) S Generate and output as DCCB .
  • PDCCH Physical Downlink Control
  • PDCCH Physical Downlink Control Channel
  • S DCCB Physical Downlink Control Channel in which UL Scheduling Grant S USCB is multiplexed is generated as many as the number of frequency blocks. Further, a higher layer control signal is generated by inputting the frequency block number S UDFB and is output as PBCH (step S7).
  • the downlink RS signal generation unit 112 generates a downlink RS signal as a downlink RS signal S DRSB , and the downlink data signal generation unit 113 performs downlink data of a plurality of mobile stations according to the RB pattern indicated by the DL Scheduling Grant S DSCB.
  • the signals are multiplexed to generate and output Physical Downlink Shared Channel (PDSCH) S DDCB (step S8).
  • PDSCH Physical Downlink Shared Channel
  • Multiplexer 114 receives PDCCH S DCCB , RS signal S DRSB and PDSCH S DDCB as inputs, multiplexes these signals to generate downlink multiplexed signal S MUXB , and transmitter 115 transmits transmission signal from downlink multiplexed signal S MUXB S TXB is generated and transmitted (step S9).
  • the receiving unit 201 of the mobile station 200 receives the signal from the base station 100, establishes downlink synchronization using the guard interval, and outputs the mobile station received signal S RXU (step S10).
  • Downlink RS (Reference Signal) signal separation section 202 receives mobile station received signal S RXU as input, separates downlink RS signal S DRSU multiplexed with downlink RS signal, and downlink CQI measurement section 203 receives downlink RS signal. It calculates CQI for each RB from S DRSU, and outputs it as downlink CQI information S DCQU (step S11).
  • the downlink control signal separation unit 206 receives the mobile station reception signal S RXU as an input, separates and outputs PDCCH S DCCU and PBCH multiplexed with downlink control signals of a plurality of mobile stations (step S12).
  • Downlink control signal demodulator 207 receives PBCH, demodulates PBCH, reproduces a higher layer control signal, separates a reproduction result in which mobile station identification information corresponding to the own mobile station is multiplexed,
  • the number of PDCCHs destined for the own mobile station is recognized from the number of frequency blocks of the layer control reproduction signal.
  • the PDCCH demodulation is terminated. (Step S20).
  • the downlink control signal demodulator 207 receives the PDCCH S DCCU, demodulates the PDCCH S DCCU to reproduce a downlink control signal, separates the playback results mobile station identification information corresponding to the mobile station itself is multiplexed And output as a downlink control reproduction signal S DCMU (step S13).
  • Downlink scheduling information extraction section 208 receives downlink control reproduction signal S DCMU as input, and extracts and outputs downlink RB allocation determination information S DSCU corresponding to downlink resource allocation information (step S14).
  • Uplink scheduling information extraction section 210 extracts UL Scheduling Grant indicating information to which uplink RBs are allocated from downlink control reproduction signal S DCMU , specifies the RB indicated by the uplink RB allocation information, and determines uplink RB allocation determination information Output as S USCU (step S15).
  • Uplink control signal generation section 211 receives uplink RB allocation determination information S USCU and downlink CQI information S DCQU , and uses downlink CQI information S DCQU as a resource for a predetermined control signal indicated by uplink RB allocation determination information S USCU.
  • Multiplexed Physical Uplink Control Channel (PUCCH) S UCCU is generated and output (step 16).
  • PUCCH Physical Uplink Control Channel
  • Uplink RS signal generation section 212 receives uplink RB allocation determination information S USCU as input, and generates uplink RS transmission signal S URSU using the predetermined RS resource in uplink RB allocation determination information S USCU . Output (step S17).
  • Uplink data signal generation section 213 receives uplink RB allocation determination information S USCU as input, and uses uplink data transmission resource (PUSCH) S UDCU using predetermined data signal resources in uplink RB allocation determination information S USCU . Is generated and output (step S18).
  • PUSCH uplink data transmission resource
  • Multiplexer 214 receives PUCCH S UCCU , uplink RS transmission signal S URSU , PUSCH S UDCU and downlink control signal determination signal S DAKU , multiplexes these signals, generates mobile station multiplexed signal S MUXU , and transmits Unit 215 transmits mobile station multiplexed signal S MUXU to base station 100 (step S19).
  • the number of frequency blocks has been described using the case of being notified by PBCH, but in addition to this, it is notified by a higher layer control signal mapped to PDSCH (Physical / Downlink / Shared / Channel) or the like. . Further, if the maximum frequency block is determined for each mobile station, the base station may notify the mobile station of the maximum frequency block.
  • PDSCH Physical / Downlink / Shared / Channel
  • the present invention further includes the mobile station.
  • the effect of reducing the amount of processing can also be obtained.
  • the mobile station in order to obtain a PDCCH addressed to the own mobile station, the mobile station checks the information on the mobile station identifier multiplexed on the PDCCH to determine whether it is addressed to the own mobile station.
  • the mobile station can end the PDCCH demodulation process. That is, the mobile station does not need to demodulate all PDCCHs, and the processing amount can be reduced.
  • ⁇ Third embodiment> a mode in which the number of UL Scheduling Grant bits can be reduced will be described.
  • the same number is attached
  • the description is based on the second embodiment, but may be based on the first embodiment.
  • the uplink scheduling unit 104 performs uplink scheduling for each mobile station.
  • the uplink scheduling unit 104 determines the number of frequency blocks in the resource to be allocated based on the uplink CQI information S UCQB .
  • RBs are allocated with the determined allocation resolution and with the determined number of frequency blocks.
  • a Tree-based structure indicating the allocated RB position is determined accordingly.
  • Scheduling information of resource allocation information and allocation resolution value for each frequency block indicating the position of the allocated RB in Tree-based is generated for each frequency block, that is, UL Scheduling Grant S USCB for the number of frequency blocks, Output with the number of bits according to the determined Tree-based structure.
  • the number of frequency blocks is output as S UDFB .
  • the allocation resolution value may be included in all UL Scheduling Grants, or may be included in the UL Scheduling Grant that is notified first.
  • the uplink scheduling unit 104 changes and sets the minimum frequency bandwidth in resource allocation, that is, the allocation resolution that is the minimum unit of resource block allocation, according to the number of frequency blocks determined based on the uplink CQI information S UCQB. . Specifically, the allocation resolution is set to increase as the number of frequency blocks increases.
  • resource allocation is performed using a correspondence table showing the relationship between the number of frequency blocks and the allocation resolution shown in FIG.
  • This correspondence table is set according to the communication environment and the like. For example, the allocation resolution is set to increase as the number of frequency blocks increases. By using this relationship, it is possible to reduce the number of signaling bits when the number of frequency blocks is 4 or less to 14 bits including notification of the resolution value (2 bits).
  • the number of frequency blocks allocated to UE1 is 3
  • the number of frequency blocks allocated to UE2 is 2
  • the number of frequency blocks allocated to UE3 is 1, and the frequency block allocated to UE4
  • the number is 1.
  • the resource blocks shown in FIG. 13 are RB0, RB1,... RB8, RB9 in order from left to right
  • RB0, RB1, RB4, RB5, RB8 and RB9 are in UE1
  • RB6, RB2 is scheduled for UE3, and RB7 is scheduled for UE4.
  • the case of using the scheduling of FIG. 13 and the relationship between the number of frequency blocks and the allocation resolution of FIG. 12 will be described.
  • 14, 15, 16, and 17 show examples of RB allocation and examples of ULulScheduling Grant using Tree-Based in UE1, UE2, UE3, and UE4, respectively.
  • the allocation resolution is 1 RB. Therefore, when allocating resource blocks to UE3 and UE4, resource blocks are allocated so that one resource block is provided and the number of frequency blocks is within one. Any value in 1 to 55 (6 bits) is required to represent a resource corresponding to one frequency block in the entire band 10 RB in Tree-Based with an allocation resolution of 1 RB.
  • the values of 1 to 55 indicating the resources of one frequency block in FIGS. 16 and 17 are configured to have a tree structure.
  • the tree structure in this Tree-Based changes depending on the allocation resolution. That is, the number of bits of UL Scheduling Grant also changes.
  • the tree structure when the allocation resolution is 1 RB, the tree structure is composed of a sequence of 1 to 55 that can be expressed in 6 bits. Further, when the allocation resolution is 2 RBs, the allocation is performed in units of 2 resource blocks, so that it can be handled with the same numerical sequence as when the system band is 5 RBs. Therefore, the tree structure is composed of a sequence of 1 to 15.
  • the tree structure in Tree-Based can be identified.
  • one UL Scheduling Grant is generated for UE3 and UE4.
  • the contents of UL Scheduling Grant notified to UE 3 are the value “1” of allocation resolution and “2” (“2” in FIG. 16) when the position of the allocated resource block is shown in a tree structure. Will be notified.
  • UL Scheduling Grant of UE4 is 8 bits, and an allocation resolution value “1” and a position “7” (“7” in FIG. 17) in a tree structure are notified.
  • the allocation resolution is 1 RB.
  • any value in 1 to 55 that can be represented in 6 bits is used.
  • two UL Scheduling Grants are generated for UE2.
  • the contents shown in UL Scheduling Grant to be notified to UE2 are the allocation resolution value “1” and “3” and “6” (in FIG. 15), which are the positions when the positions of the allocated resource blocks are shown in a tree structure. “3” and “6”) are notified.
  • the allocation resolution is 2 RBs using the correspondence table of FIG.
  • the allocation resolution is 2 RBs and a resource corresponding to one frequency block in the entire band 10 RB is expressed by Tree-Based, any value in 1 to 15 that can be expressed by 4 bits is used.
  • three frequency blocks are scheduled for UE1, three UL Scheduling Grants are generated for UE1.
  • the contents of the UL Scheduling Grant to be notified to the UE 1 are the allocation resolution value “2” and “0”, “2” and “4” which are positions when the position of the allocated resource block is shown in a tree structure ( "0", "2", and "4" in FIG. 14) are notified.
  • the resource allocation information is composed of n resource instruction values (RIV).
  • the resource indication value RIV n of the nth frequency block indicates the start frequency block (RBG start, n ) and the length of the continuous frequency block (L CRBGs, n ).
  • the nth resource instruction value RIV n is defined by the following Equation 1. (Formula 1)
  • the UL Scheduling Grant is generated using the same number of frequency blocks as described above, but other configurations may be used. For example, a configuration may be adopted in which allocation information of a plurality of frequency blocks is written in one UL scheduling scheduling grant so that the number of UL scheduling scheduling grants is smaller than the number of frequency blocks.
  • a configuration will be described using an example in which two UL Scheduling Grants are generated in UE1 having three frequency blocks.
  • the base station notifies the mobile station of the number of frequency blocks.
  • the base station when the number of UL Scheduling Grant is less than the number of frequency blocks, Since the number and the number of PDCCH (Physical Downlink Control Channel) are different, the base station notifies the mobile station of the number of PDCCH (Physical Downlink Control Channel).
  • the number of times of demodulation of PDCCH (Physical Downlink Control Channel) in the terminal can be further reduced as compared with the second embodiment.
  • the UL Scheduling Grant S USCB generated as described above is input to the downlink control signal generation unit 111.
  • the downlink control signal generator 111 also receives DL Scheduling Grant S DSCB , mobile station identification information S UIDB and frequency block signal S UDFB .
  • Each of a plurality of UL Scheduling Grants and a DL Scheduling Grant are multiplexed with a mobile station identification signal S UIDB , and each of the plurality of UL Scheduling Grants is generated as a downlink control signal PDCCH S DCCB. It is generated as a downlink control signal PDCCH S DCCB .
  • the downlink control signal PDCCH S DCCB is generated in the same number as the total scheduling grant of the UL Scheduling Grant S USCB and the DL Scheduling Grant S DSCB . Also, an information bit indicating a DCI (Downlink Control Information) format, which is an identifier for distinguishing between UL Scheduling Grant and DL Scheduling Grant, is multiplexed on the downlink control signal PDCCH S DCCB . For example, when the DCI format in the downlink control signal PDCCH S DCCB is UL Scheduling Grant, 0 is multiplexed, and when the DCI format is DL Scheduling Grant, 1 is multiplexed.
  • DCI Downlink Control Information
  • the downlink control signal demodulator 207 receives the PDCCH S DCCU, demodulates the PDCCH S DCCU to reproduce a downlink control signal, separates the playback results mobile station identification information corresponding to the mobile station itself is multiplexed And output as a downlink control reproduction signal S DCMU .
  • the PDCCH for the own mobile station is multiplexed by the number of frequency blocks allocated to the own station.
  • Uplink scheduling information extraction section 210 extracts UL Scheduling Grant indicating information to which an uplink RB is allocated from downlink control reproduction signal S DCMU . Next, the tree-based tree structure is identified from the allocation resolution value included in the UL Scheduling Grant, and the RB indicated by the uplink RB allocation information is specified in the tree structure, and the uplink RB allocation determination information S USCU is specified. Output.
  • the receiving unit 101 of the base station 100 receives a signal from the mobile station 200, establishes uplink synchronization using a guard interval, and outputs a base station received signal S RXB (step S1).
  • the uplink RS (Reference Signal) separation section 102 separates and outputs an uplink RS signal S URSB in which uplink RS signals of a plurality of mobile stations are multiplexed (step S2). .
  • Uplink CQI measurement section 103 calculates CQI (Channel Quality Indicator) for each RB in each mobile station from uplink RS signals S URSB of a plurality of mobile stations, and outputs it as uplink CQI information S UCQB (step S3).
  • CQI Channel Quality Indicator
  • the uplink scheduling unit 104 determines the number of frequency blocks in the resource allocated to each mobile station based on the uplink CQI information S UCQB for each mobile station (step S4).
  • the tree-based structure is determined by determining the allocation resolution associated with the determined number of frequency blocks, and UL Scheduling Grant The number of bits is set so as to be the number of bits corresponding to the determined Tree-based structure (step S21).
  • RBs are allocated in the number of resource blocks corresponding to the determined allocation resolution and the determined number of frequency blocks (step S5-1).
  • the uplink scheduling section 104 outputs the information indicating the position of the allocated RB in Tree Based and the value of the allocation resolution for each frequency block with the number of bits set as UL Scheduling Grant S USCB. Is output as SUDFB (step S6).
  • the downlink control signal generator 111 receives UL Scheduling Grant S USCB , DL Scheduling Grant S DSCB , mobile station identification information S UIDB and frequency block signal S UDFB , and the downlink control signal generator 111 receives a plurality of UL Scheduling Grant S Each USCB and DL Scheduling Grant S DSCB are multiplexed with mobile station identification information S UIDB , and downlink control signals equal to the total number of scheduling grants of UL Scheduling Grant S USCB and DL Scheduling Grant S DSCB are sent.
  • PDCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • S DCCB Physical Downlink Control Channel in which UL Scheduling Grant S USCB is multiplexed is generated as many as the number of frequency blocks. Further, a higher layer control signal is generated by inputting the frequency block number S UDFB and is output as PBCH (step S7).
  • the downlink RS signal generation unit 112 generates and outputs the downlink RS signal as the downlink RS signal S DRSB , and the downlink data signal generation unit 113 receives the DL Scheduling Grant S DSCB as an input, and the RB indicated by the DL Scheduling Grant S DSCB According to the pattern, downlink data signals of a plurality of mobile stations are multiplexed to generate and output Physical Downlink Shared Channel (PDSCH) S DDCB (step S8).
  • PDSCH Physical Downlink Shared Channel
  • Multiplexer 114 receives PDCCH S DCCB , RS signal S DRSB and PDSCH S DDCB as input, multiplexes these signals, generates and outputs as downlink multiplexed signal S MUXB , and transmitter 115 transmits downlink multiplexed signal S MUXB Is generated and output as a transmission signal STXB (step S9).
  • the receiving unit 201 of the mobile station 200 receives the signal from the base station 100, establishes downlink synchronization using the guard interval, and outputs the mobile station received signal S RXU (step S10).
  • Downlink RS (Reference Signal) signal separation section 202 receives mobile station received signal S RXU as input, and separates downlink RS signal S DRSU multiplexed with downlink RS signal, and downlink CQI measurement section 203 receives this downlink RS signal.
  • S DRSU is input to calculate CQI for each RB and output as downlink CQI information S DCQU (step S11).
  • Downlink control signal demultiplexing section 206 receives mobile station received signal S RXU as input, demultiplexes PDCCH S DCCU in which downlink control signals of a plurality of mobile stations are multiplexed, and downlink control signal demodulation section 207 demultiplexes PDCCH S DCCU .
  • the downlink control signal is demodulated and reproduced, and the reproduction result in which the mobile station identification information corresponding to the own mobile station is multiplexed is separated and output as the downlink control reproduction signal S DCMU (step S12).
  • Downlink control signal demodulator 207 receives PBCH, demodulates PBCH, reproduces a higher layer control signal, separates a reproduction result in which mobile station identification information corresponding to the own mobile station is multiplexed,
  • the number of PDCCHs destined for the own mobile station is recognized from the number of frequency blocks of the layer control reproduction signal.
  • the PDCCH demodulation is terminated. (Step S20).
  • Downlink scheduling information extraction section 208 receives downlink control reproduction signal S DCMU as input, and extracts and outputs downlink RB allocation determination information S DSCU corresponding to downlink resource allocation information (step S13).
  • the uplink scheduling information extraction unit 210 extracts UL Scheduling Grant indicating information to which an uplink RB is allocated from the downlink control reproduction signal S DCMU , and confirms the value of the allocation resolution (step S22).
  • the tree-based tree structure is identified from the value of the allocation resolution, and the RB indicated by the uplink RB allocation information is specified in this tree structure, and is output as the uplink RB allocation determination information S USCU (step S14-1). .
  • Uplink control signal generation section 211 receives uplink RB allocation determination information S USCU and downlink CQI information S DCQU , and uses downlink CQI information S DCQU as a resource for a predetermined control signal indicated by uplink RB allocation determination information S USCU.
  • Multiplexed Physical Uplink Control Channel (PUCCH) S UCCU is generated and output (step S15).
  • PUCCH Physical Uplink Control Channel
  • Uplink RS signal generation section 212 receives uplink RB allocation determination information S USCU as input, and generates uplink RS transmission signal S URSU using the predetermined RS resource in uplink RB allocation determination information S USCU . Output (step S16).
  • Uplink data signal generation section 213 receives uplink RB allocation determination information S USCU as input, and uses uplink data transmission resource (PUSCH) S UDCU using predetermined data signal resources in uplink RB allocation determination information S USCU . Is generated and output (step S17).
  • PUSCH uplink data transmission resource
  • Multiplexer 214 receives PUCCH S UCCU , uplink RS transmission signal S URSU , PUSCH S UDCU and downlink control signal determination signal S DAKU , multiplexes these signals, generates mobile station multiplexed signal S MUXU , and transmits Unit 215 transmits mobile station transmission signal S MUXU to base station 100 (step S18).
  • the number of frequency blocks is determined from the quality status of the propagation path of the mobile station, and the allocation resolution is set according to the frequency block.
  • the allocation resolution may be set according to the quality status.
  • PDCCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • Dynamic BCH Dynamic BCH
  • the frequency block number S UDFB is input to a PBCH generation unit or PDSCH generation unit (both not shown) provided in the downlink control signal generation unit 111 of the base station, and is notified to the mobile station by PBCH or PDSCH.
  • PBCH generation unit or PDSCH generation unit both not shown
  • the allocation resolution may be limited so as to change in a plurality of frame periods.
  • the allocation resolution is described using the configuration that is determined according to the frequency block.
  • the allocation resolution is determined according to the maximum number of frequency blocks that can be allocated to the same terminal. It may be.
  • the uplink scheduling unit 104 has been described using a mode in which resource blocks are allocated by the determined number of allocation resolutions and RBs are allocated by the determined number of frequency blocks.
  • RBs may be allocated so that the number of resource blocks is equal to the number of allocation resolutions and the number of frequency blocks is within the determined number.
  • the allocation resolution value is notified.
  • the allocation resolution value may not be transmitted.
  • a correspondence table as shown in FIG. 12 is stored in the mobile station, and the allocation resolution is recognized using the number of received frequency blocks and the correspondence table.
  • the system band has been described as 10 RBs, but the effect of reducing the number of bits in the case of an actual LTE system with a system band of 20 MHz will be described.
  • FIG. 20 shows the number of bits required to notify the RB pattern of several frequency blocks using Tree-Based for each of the 1 to 4 frequency block numbers.
  • mobile stations with good propagation path quality increase the number of frequency blocks, and mobile stations with poor propagation path quality reduce the number of frequency blocks, and the allocation resolution is determined accordingly.
  • mobile stations with good channel quality transmit at a low power density, so they can be transmitted in a wide band, and the channel quality is good overall, so even if the allocation resolution is increased along with the number of frequency blocks, propagation is possible. This is because the road quality does not deteriorate.
  • a mobile station with poor propagation path quality it transmits at a narrow band because it transmits at a high power density, and since the propagation path quality is poor overall, the frequency block is used to select a good resource accurately. This is because it is necessary to reduce the allocation resolution together with the number.
  • the allocation resolution, the number of frequency blocks, and the quality of the propagation path of the mobile station are associated with each other, it is possible to suppress a decrease in reception characteristics caused by setting the allocation resolution.
  • the number of frequency blocks or the maximum number of frequency blocks is, for example, cell size, system bandwidth, base station coverage, channel quality information measured by downlink reference signal, bandwidth of downlink data signal, downlink data Information that changes depending on the communication environment such as the number of modulation levels of signals and the coding rate may be used.
  • cell size is determined by information that affects the communication environment such as the position of base stations, the distance between base stations, interference power, etc., even if the number of frequency blocks is selected using these information good.
  • a mode in which a mode in which uplink resource blocks are allocated and a mode in which downlink resource blocks are allocated may be combined.
  • the mobile station and the base station of the present invention described above can be configured by hardware, but can also be realized by a computer program.

Abstract

 本発明の課題は、現在のLTEの下りでは、37ビット固定のスケジューリング情報を送信するように制限を加えているため、場合によっては、リソース割り当て情報量の無駄が増大してしまうので、割り当てたリソースブロックを通知するにあたって、無駄無くリソースブロック割り当て情報を通知できる技術を提供することにある。本発明は、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当て、割り当てたリソースブロックを示す割り当て情報を通知する制御信号の数を決定させる。

Description

リソース割り当て方法、特定方法、基地局、移動局、及びプログラム
 本発明は、移動無線システムの技術に関し、特にリソース割り当ての技術に関する。
 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)の上りリンクではPAPR(Peak to Average Power Ratio)の増大を回避し広いカバレッジを実現するために、無線アクセス方式としてSC(Single Carrier)‐FDMA(Frequency Division Multiple Access)方式が採用されている。SC‐FDMAでは、1伝送タイムインターバル(TTI:Transmit Time Interval)内において、周波数軸上で少なくとも1以上のリソースブロック(RB:複数のサブキャリアから構成される)が連続して成る周波数ブロックを、1移動局あたり1個、割り当てることができる。SC-FDMAのように周波数ブロック数が少ない場合には、木構造ベース(Tree-Based)(非特許文献1参照)の方法によりリソース割り当ての情報量を最小化できる。このため、LTE上りリンクのスケジューリング時における上りリンクリソース割り当て情報(Uplink Scheduling Grant)の通知には、Tree-Basedが用いられている。
3GPP R1-070881 NEC Group, NTT DoCoMo"Uplink Resource Allocation for E-UTRA", 2007年2月
 一方、LTEの下りリンクのアクセス方式として採用されているOFDM(Orthogonal Frequency Division Multiplexing)では、非連続なサブキャリア割り当てを行って周波数ブロック数を増やし、マルチダイバーシチ効果を実現させてスループットを向上させている。OFDMでは、LTEの下りリンクのリソースブロック割り当て情報(Downlink Scheduling Grant)の通知には、Bit Map(周波数ブロック数が大きい場合に適した方法)の採用が検討されている。Bit Mapは、LTEの上りリンクのRB割り当て情報(Uplink Scheduling Grant)の通知に用いられているTree-Basedよりもオーバヘッドが大きくなっている。
 具体的には、100RBの中で、リソース割り当てを行う場合、Bit Mapを用いると、周波数ブロックの数によらず100bitsのリソースブロック割り当て情報が必要となる。一方、Tree-Basedを用いると、周波数ブロック数が1つの場合、log2100(100+1)/2=13bitsのScheduling Grantを、下りリンクの制御信号であるPDCCH(Physical Downlink Control Channel)で、基地局から移動局に通知されるようになっている。
 現在のLTEにおけるUplink Scheduling Grantでは、1つのみの周波数ブロックの割り当て情報を通知することが可能である。また、LTEの下りでは割り当てるリソースブロックに制限を加えており、上限37bitsのリソースブロック割り当て情報を送信することができ、リソースブロック割り当て情報が37bits以内の場合はダミーデータを挿入している。このため、1つのUplink Scheduling Grantに37bitsの情報量が送れるようなリソースを常に確保することが求められる。しかしながら、例えば、100RBの中で、ある端末に周波数ブロックを2つ割り当て、この割り当てた情報であるリソースブロック割り当て情報をTree Basedで通知する場合、13bits×2=26bitsで済むが11bits分のダミーデータを挿入して通知しており、ダミーデータ分が無駄になる。このため、場合によっては、リソース割り当て情報量の無駄が増大してしまう。
 そこで、本願発明が解決しようとする課題は、割り当てたリソースブロックを通知するにあたって、無駄無くリソースブロック割り当て情報を通知できる技術を提供することにある。
 上記課題を解決するための本発明は、リソース割り当て方法であって、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当て、前記割り当てたリソースブロック群のリソースブロックを示す割り当て情報を通知する制御信号の数を決定することを特徴とする。
 上記課題を解決するための本発明は、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を割り当てる通信方法であって、決定された数分の制御信号を用いて通知される、割り当てられたリソースブロック群に関する情報から、移動局に割り当てられたリソースブロックを特定することを特徴とする。
 上記課題を解決するための本発明は、無線システムであって、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当てる割当手段と、前記割り当てたリソースブロック群のリソースブロックを示す割り当て情報を通知する制御信号の数を決定する決定手段とを有することを特徴とする。
 上記課題を解決するための本発明は、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を割り当てる無線システムであって、決定された数分の制御信号を用いて通知される、割り当てられたリソースブロック群に関する情報から、移動局に割り当てられたリソースブロックを特定する特定手段を有することを特徴とする。
 上記課題を解決するための本発明は、基地局であって、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当てる割当手段と、前記割り当てたリソースブロック群のリソースブロックを示す割り当て情報を通知する制御信号の数を決定する決定手段とを有することを特徴とする。
 上記課題を解決するための本発明は、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群の割り当てを特定する移動局であって、決定された数分の制御信号を用いて通知される、割り当てられたリソースブロック群に関する情報から、移動局に割り当てられたリソースブロックを特定する特定手段を有することを特徴とする。
 上記課題を解決するための本発明は、基地局のプログラムであって、前記プログラムは前記基地局に、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当てる割当処理と、前記割り当てたリソースブロック群のリソースブロックを示す割り当て情報を通知する制御信号の数を決定する決定処理とを実行させることを特徴とする。
 上記課題を解決するための本発明は、周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群の割り当てを特定する移動局のプログラムであって、前記プログラムは前記移動局に、決定された数分の制御信号を用いて通知される、割り当てられたリソースブロック群に関する情報から、移動局に割り当てられたリソースブロックを特定する特定処理を実行させることを特徴とする。
 本発明によると、割り当て情報を通知する際に生じていたリソースの無駄を削減することができる。
周波数ブロックを説明するための図である。 第1の実施の形態による無線通信システムにおける基地局のブロック図である。 第1の実施の形態による無線通信システムにおける移動局のブロック図である。 第1の実施の形態のフロー図である。 第1の実施の形態による無線通信システムにおける基地局の別のブロック図である。 第1実施の形態による無線通信システムにおける移動局の別のブロック図である。 第1の実施の形態による無線通信システムにおける基地局の別のブロック図である。 第1実施の形態による無線通信システムにおける移動局の別のブロック図である。 第1の実施の形態による無線通信システムにおける基地局の別のブロック図である。 第1実施の形態による無線通信システムにおける移動局の別のブロック図である。 第2の実施の形態のフロー図である。 周波数ブロックと割り当て分解能との対応表の一例である。 移動局に割り当てられたRBの例を示した図である。 UE1に割り当てられたRBとUL Scheduling Grantの例を示した図である。 UE2に割り当てられたRBとUL Scheduling Grantの例を示した図である。 UE3に割り当てられたRBとUL Scheduling Grantの例を示した図である。 UE4に割り当てられたRBとUL Scheduling Grantの例を示した図である。 割り当て分解能によって変更するTree Basedを説明する図である。 第3の実施の形態のフロー図である。 最大周波数ブロックと割り当て分解能に対しリソース割り当て情報のビット数を示した図である。
100 基地局
101 受信部
102 上りRS分離部
103 上りCQI測定部
104 上りスケジュール部
105 最大周波数ブロック数決定部
106 上りデータ信号分離部
107 上りデータ信号復調部
108 上り制御信号分離部
109 上り制御信号復調部
110 下りスケジュール部
111 下り制御信号生成部
112 下りRS信号生成部
113 下りデータ信号生成部
114 多重部
115 送信部
116 UE ID生成部
200 移動局
201 受信部
202 下りRS分離部
203 下りCQI測定部
204 下りデータ信号分離部
205 下りデータ信号復調部
206 下り制御信号分離部
207 下り制御信号復調部
208 下りスケジューリング情報抽出部
209 最大周波数ブロック数抽出部
210 上りスケジューリング情報抽出部
211 上り制御信号生成部
212 上りRS信号生成部
213 上りデータ信号生成部
214 多重部
215 送信部
 3rd Generation Partnership Project(3GPP)にて標準化が進められているLong Term Evolution(LTE)では、下りリンクのアクセス方式として、Orthogonal Frequency Division Multiplexing (OFDM)が採用されている。LTEの下りリンクでは、伝搬路依存の周波数スケジューリングが適用され、1伝送タイムインターバル(TTI:Transmit Time Interval)内において周波数軸上で少なくとも1以上の連続なリソースブロック(RB:複数のサブキャリアから構成される)から構成されるリソースブロック群である周波数ブロックを1移動局あたり複数個割り当てることができる。図1にLTEの下りリンクにおける周波数ブロック割当の例を示す。ここでは、システム帯域において1TTI内に4移動局がスケジューリングされる例である。移動局1(UE1)の周波数ブロック数は3、移動局2(UE2)の周波数ブロック数は2、移動局3(UE3)の周波数ブロックは2、移動局4(UE4)の周波数ブロックは1となる。
 本発明は、上記のような、同一移動局に周波数ブロックを複数個割り当てる基地局が各端末にリソースブロックを割り当てた情報であるスケジューリング情報(Uplink Scheduling Grant)の数及びこのスケジューリング情報を端末に通知する制御信号PDCCH(Physical Downlink Control Channel)の数、又はビット数を決定することを特徴とする。以下に、本発明の詳細を図面を用いて説明する。
<第1の実施の形態>
 本実施の形態における、基地局のブロック図を図2に、移動局のブロック図を図3に示す。
 初めに基地局100の構成について説明する。
 基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する。
 上りRS(Reference Signal)分離部102は、基地局受信信号SRXBから、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する。
 上りCQI測定部103は、複数の移動局の上りRS信号SURSBを入力とし、それぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する。
 上りスケジュール部104は、上りリンクのスケジューリングを行って、移動局にリソース割り当てを行う。上りスケジュール部104は、上りCQI情報SUCQBに基づいて、同一端末に割り当てる周波数ブロックの数を決定する。具体的には、CQIが良い状況では周波数ブロック数を大きくし、CQIが悪い状況では周波数ブロック数を小さくする。この決定された周波数ブロック数になるように、1リソースブロックずつ、リソースブロックを割り当てる。割り当てられたRBの位置をTree Basedで示したリソース割り当て情報を周波数ブロック毎に生成し、UL Scheduling Grant SUSCBとして出力する。即ち、同一ユーザの周波数ブロック数と同数のUL Scheduling Grant SUSCBを生成する。100RBを割り当てる場合、上りスケジューリング部104は、13bitsのUL Scheduling Grantを生成することになる。尚、以下では、上記のようにUL Scheduling Grantを周波数ブロック数と同数生成する構成を用いて説明するが、他の構成であっても良い。例えば、複数の周波数ブロックの割り当て情報を、1つのUL scheduling Grantに記して、UL Scheduling Grantの数を周波数ブロックの数より少なくする構成であっても良い。
 下り制御信号生成部111は、UL Scheduling Grant SUSCB、移動局識別信号SUIDBおよびDL Scheduling Grant SDSCBを入力とし、複数のUL Scheduling Grantのそれぞれ、およびDL Scheduling Grant SDSCBに、移動局識別信号SUIDBを多重し、複数のUL Scheduling Grantそれぞれを下りリンクの制御信号PDCCH SDCCBとして生成し、さらに、DL Scheduling Grantを下りリンクの制御信号PDCCH SDCCBとして生成する。下りリンクの制御信号PDCCH SDCCBは、UL Scheduling Grant SUSCBの下りリンクの制御信号PDCCH SDCCBとDL Scheduling Grant SDSCBの下りリンクの制御信号PDCCH SDCCBとが生成される。即ち、下りリンクの制御信号PDCCH SDCCBは、UL Scheduling Grant SUSCBとDL Scheduling Grant SDSCBとの合計のScheduling Grantと同数生成される。また、下りリンクの制御信号PDCCH SDCCBには、UL Scheduling GrantとDL Scheduling Grantとを区別するための識別子であるDCI(Downlink Control Information)formatを示した情報bitが多重される。例えば、下りリンクの制御信号PDCCH SDCCBにおけるDCIformatが、UL Scheduling Grantの場合には0、DL Scheduling Grantの場合には1が、多重される。
 下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し出力する。
 下りデータ信号生成部113は、DL Scheduling Grant SDSCBを入力とし、DL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する。
 多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成し出力する。
 送信部115は、下り多重信号SMUXBを入力とし、送信信号STXBを生成し出力する。
 上りデータ信号分離部106は、基地局受信信号SRXBを入力とし、複数の移動局の上りリンクのデータ信号が多重されたPhysical Uplink Shared Channel(PUSCH)SUDCBを抽出し出力する。上りデータ信号復調部は、PUSCH SUDCBを入力し、PUSCH SUDCBを復調し移動局の送信データを再生する。
 上り制御信号分離部108は、基地局受信信号SRXBを入力とし、複数の移動局の上りリンクの制御信号が多重されたPhysical Uplink Control Channel(PUCCH) SUCCBを抽出し出力する。上り制御信号復調部109は、PUCCH SUCCBを復調し、複数の移動局が送信した下りリンクのCQIの測定結果である下りCQI測定信号SUCQBを出力する。下りスケジュール部110は、下りCQI測定信号SUCQBを入力とし、複数の移動局の下りリンクのスケジューリングを行い、割り当てられたRBの情報を示すDL Scheduling Grant SDSCBを生成し出力する。
 UE ID生成部116は、移動局識別情報SUIDBを生成し、出力する。
 続いて、移動局について説明する。図3は本実施の形態の移動局の主要構成を示すブロック図である。
 移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する。
 下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離し出力する。下りCQI測定部203は、下りRS信号SDRSUを入力とし、RB毎のCQIを算出し、下りCQI情報SDCQUとして出力する。
 下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUを分離し出力する。
 下り制御信号復調部207はPDCCH SDCCUを入力とし、PDCCH SDCCUを復調して下りリンク制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果をすべて分離し、下り制御再生信号SDCMUとして出力する。尚、自移動局に対するPDCCHは、周波数ブロック数と同じ数が多重されている。さらに、下り制御信号復調部207は、PDCCH SDCCUを復調して下りリンク制御信号を再生した結果において、自移動局宛の全ての下りリンクの制御信号の中に、誤りがあるかどうかを判断し、全てのPDCCHに間違いが無ければACKを、1つでも間違いがあればNACKを示す信号を、下り制御信号判定信号SDAKUとして生成し出力する。なお、下り制御信号判定信号SDSKUは、移動局200から基地局100へ通知され、下り制御信号判定信号SDAKUがNACKであれば、基地局100は、移動局200に対応する下りリンク制御信号を全て再送する。尚、下り制御信号判定信号SDAKUは、同一のユーザに送信された全てのPDCCHに対し、1つ生成されているが、PDCCHそれぞれに対し、下り制御信号判定信号SDAKUを生成することも考えられる。PDCCH毎に、下り制御信号判定信号SDAKUを生成すれば、基地局100は、誤ったPDCCHを再送すれば良い。
 下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、DCIformatに“1”が記されている情報を、即ち、下りリンクのリソース割り当て情報DL Scheduling Grantを抽出する。そして、DL Scheduling Grantに含まれている下りRB割り当て情報が示すRBを特定し、下りRB割り当て判定情報 SDSCUとして出力する。
 上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUからDCIformatに“0”が記されている情報を、即ち、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantを抽出する。次に、UL Scheduling Grantに含まれている上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する。
 上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを、上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する。
 上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する。
 上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、Physical Uplink Shared Channel(PUSCH) SUDCUを生成し出力する。
 多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し出力する。送信部215は、移動局多重信号SMUXUを入力とし、移動局送信信号SMUXUを生成し、基地局100へ送信する。
 下りデータ信号分離部204は、下りRB割り当て受信信号SDSCUと移動局受信信号SRXUを入力とし、下りRB割り当て判定情報SDSCUを基に、自移動局に割り当てられた下りリンクのRBに多重されたPDSCH SDDCUを分離し出力する。下りデータ信号復調部205は、PDSCH SDDCUを入力とし、PDSCH SDDCUを復調し基地局から自移動局への送信データを再生する。
 続いて、本実施の形態の動作を図4のフローを用いて説明する。尚、以下の説明では、100RBを割り当てる場合を用いて説明する。
 基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する(ステップS1)。
 出力された基地局受信信号SRXBから、上りRS(Reference Signal)分離部102は、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する(ステップS2)。
 複数の移動局の上りRS信号SURSBから、上りCQI測定部103がそれぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する(ステップS3)。
 上りスケジュール部104は、移動局毎の上りCQI情報SUCQBに基づいて、各移動局に割り当てるリソースにおける周波数ブロックの数を決定する(ステップS4)。
 決定した周波数ブロックの数になるようにRBを割り当てる(ステップS5)。
 次に、上りスケジュール部104は、割り当てたRBの位置を示した情報を周波数ブロック毎に生成し、各々が13BitsのUL Scheduling Grant SUSCBとして周波数ブロックの数だけ出力する(ステップS6)。
 下り制御信号生成部111には、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、移動局識別情報SUIDBが入力され、下り制御信号生成部111は、複数のUL Scheduling Grant SUSCBのそれぞれ、および、DL Scheduling Grant SDSCB に、移動局識別情報SUIDBを多重し、UL Scheduling Grant SUSCBとDL Scheduling Grant SDSCBの合計のScheduling Grantの数と同数の下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する(ステップS7)。UL Scheduling Grant SUSCBが多重されたPDCCH(Physical Downlink Control Channel) SDCCBは、周波数ブロック数と同数生成される。
 下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し、下りデータ信号生成部113は、DL Scheduling Grant SDSCBを入力とし、DL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する(ステップS8)。
 多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成し、送信部115は下り多重信号SMUXBから送信信号STXBを生成し送信する(ステップS9)。
 移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する(ステップS10)。
 下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離し出力し、下りCQI測定部203は、下りRS信号SDRSUからRB毎のCQIを算出し、下りCQI情報SDCQUとして出力する(ステップS11)。
 下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUを分離し出力する(ステップS12)。
 下り制御信号復調部207はPDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する(ステップS13)。
 下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、下りリンクのリソース割り当て情報に対応する下りRB割り当て判定情報 SDSCUを抽出し出力する(ステップS14)。
 上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示す各UL Scheduling Grantを抽出して、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する(ステップS15)。
 上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する(ステップS16)。
 上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する(ステップS17)。
 上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、Physical Uplink Shared Channel(PUSCH) SUDCUを生成し出力する(ステップS18)。
 多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し、送信部215は移動局多重信号SMUXUを基地局100へ送信する(ステップS19)。
 尚、上記実施の形態では、リソースの割り当て情報をTree Basedで示した場合を用いて説明したが、Tree Based以外であってもよい。
 また、上記実施の形態では、移動局の伝搬路の品質状況(Soundingリファレンス信号で測定したCQI)から周波数ブロック数を決定する形態を用いて説明したが、例えば、セルサイズやシステム帯域幅、基地局のカバレッジ、上りSoundingリファレンス信号の帯域幅、上りデータ送信に用いた帯域幅、上りデータ送信に用いた変調多値数および符号化率、移動局の送受信可能帯域幅(UE capabilityとも言う)、上り送信データの種類(VoIP, HTTP, FTP etc.)等の通信環境に関する情報や、ユーザが契約している料金体系、パワーヘッドルーム(パワーヘッドルームとは移動局の最大送信電力と移動局の実際の送信電力の差である。)、上りパワーコントロールのターゲットSINR等の通信環境に影響を与える情報であってもよい。また、上記のセルサイズは、基地局の位置、基地局間の距離、干渉電力等の通信環境に影響を与える情報によって決定されるため、これらの情報を用いて周波数ブロック数を選択しても良い。
 また、上記実施の形態では、上りCQIに応じて決定した周波数ブロック数とPDCCHの数とを同一にする形態を用いて説明したが、上りCQIに応じて決定した最大周波数ブロック数とPDCCHの数とを同一にする形態であってもよい。この場合、図5に示すように、基地局に、上りCQIに応じて決定した最大周波数ブロック数を決定する最大周波数ブロック数決定部105が構成される。一方、移動局は、図6に示すように、最大周波数ブロック数抽出部209が構成される。尚、最大周波数ブロック数とは、同一端末に割り当てることができる周波数ブロックの最大の数である。
 ここで、最大周波数ブロック数の決定方法の別の方法について以下で説明する。
 まず、最大周波数ブロック数決定部が、最大周波数ブロック数を移動局と基地局との位置によって決定する場合の構成について説明する。
 図7は、最大の周波数ブロック数を移動局と基地局との位置によって決定する場合の基地局100のブロック図である。
 基地局100において、上り制御信号復調部109は、PUCCH SUCCBを復調し、複数の移動局が送信した下りリンクのCQIの測定結果である下りCQI測定信号SUCQBと移動局の位置を示す移動局位置受信情報SULCBを出力する。
 最大周波数ブロック数決定部105-1は、移動局位置受信情報SULCBを入力とし、移動局位置受信情報SULCBが示す移動局の位置から、それぞれの移動局に割り当てる周波数リソースにおける最大の周波数ブロック数を決定し、それぞれの移動局の最大周波数ブロック信号SUDFBを生成し出力する。具体的には、最大の周波数ブロック数は、基地局から遠いユーザほど小さくなるように決定されて生成される。
 図8は、最大の周波数ブロック数を移動局と基地局との位置によって決定する場合の移動局200のブロック図である。
 移動局200において、位置測定部416は、GPS信号衛星からの信号を用いて移動局の位置を測定する機能を有し、GPS衛星からの信号を受信し、移動局200の位置を測定し、移動局位置情報SULCUを生成し出力する。
 上り制御信号生成部211-1は、上りRB割り当て判定情報SUSCU、下りCQI情報SDCQUと移動局位置情報SULCUを入力とし、下りCQI情報SDCQUと移動局位置情報SULCBを、上りRB割り当て判定情報SUSCUが示すリソースにおいて予め決められた制御信号用のリソースを用いてPUCCH SUCCUを生成し出力する。
 上記の構成により、最大の周波数ブロック数が小さい移動局には割り当て分解能を小さくしてRBを割り当て、最大の周波数ブロック数が大きい移動局には割り当て分解能を大きくしてRBを割り当てる。
 続いて、最大周波数ブロック数決定部が、移動局において増大可能な送信電力を示したパワーヘッドルームに応じて最大の周波数ブロック数を決定する場合について説明する。
 図9は、最大の周波数ブロック数を移動局において増大可能な送信電力を示したパワーヘッドルームに応じて決定する場合の基地局100のブロック図である。
 基地局100において、上り送信電力決定部517は、上りCQI情報SUCQBを入力とし、所用受信電力を満たすために必要な、移動局の送信電力値を算出し、上り送信電力設定情報SUPWBとして生成し出力する。
 上り制御信号復調部109は、上り制御信号SUCCBを復調し、複数の移動局が送信した下りリンクのCQIの測定結果である下りCQI測定信号SUCQBと移動局パワーヘッドルーム受信情報SUHRBを出力する。
 最大周波数ブロック数決定部105-2は、パワーヘッドルーム受信情報SUHRBを入力とし、パワーヘッドルーム受信情報SUHRBを基に、それぞれの移動局に割り当てる周波数リソースにおける最大の周波数ブロック数を決定し、移動局の最大周波数ブロック信号SUDFBとして生成し出力する。具体的には、例えば、最大の周波数ブロック数の初期値を1にし、パワーヘッドルーム受信情報SUHRBが示す値が閾値電力PDFUPを(PDFUPは正の実数)を超えていれば、最大の周波数ブロック数の値を1増大させる。パワーヘッドルーム受信情報SUHRBが示す値が0で、最大の周波数ブロック数が2以上であれば、最大の周波数ブロック数の値を1減少させる。即ち、送信電力に余裕があれば、最大の周波数ブロック数を大きくして割り当て可能な周波数ブロック数を増やし、伝搬路依存の周波数スケジューリングにおける利得を増大させる。また、送信電力に余裕がなく、パワーリミテッドな場合には、最大の周波数ブロック数を小さくしてより高い電力密度で信号を送信するようにする。
 下り制御信号生成部511は、移動局識別情報SUIDB、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、最大周波数ブロック信号SUDFBおよび上り送信電力設定情報SUPWBを入力とし、これらを多重した下りリンクの制御信号を、PDCCH SDCCBとして生成し出力する。
 図10は、最大の周波数ブロック数を移動局において増大可能な送信電力を示したパワーヘッドルームに応じて決定する場合の移動局200のブロック図である。
 移動局200において、上り送信電力情報抽出部616は、下り制御再生信号 SDCMUから、基地局から通知された、移動局における上りリンクの送信電力値が示された上り送信電力設定値受信情報SUPWUを抽出し出力する。
 パワーヘッドルーム算出部617は、上り送信電力設定値受信情報SUPWUを入力とし、移動局が送信可能な最大送信電力値から上り送信電力設定値受信情報SUPWUを差し引いた値を、移動局パワーヘッドルーム情報SUHRUとして出力する。移動局パワーヘッドルーム情報SUHRUは、上り送信電力設定値受信情報SUPWUが示す電力で送信後において、移動局が更に送信可能な余剰電力を示す。
 上り制御信号生成部211-2は、上りRB割り当て判定情報SUSCU、下りCQI情報SDCQUと移動局パワーヘッドルーム情報SUHRUを入力とし、下りCQI情報SDCQUと移動局パワーヘッドルーム情報SUHRUを、上りRB割り当て判定情報SUSCUが示すリソースにおいて予め決められた制御信号用のリソースを用いて、PUCCH SUCCUを生成し出力する。
 尚、最大周波数ブロックは、上記の移動局と基地局との位置関係やパワーヘッドルーム以外にも、移動局の伝搬路の品質状況、セルサイズやシステム帯域幅、基地局のカバレッジ、上りSoundingリファレンス信号の帯域幅、上りデータ送信に用いた帯域幅、上りデータ送信に用いた変調多値数および符号化率、移動局の送受信可能帯域幅(UE capabilityとも言う)、上り送信データの種類(VoIP, HTTP, FTP etc.)等の通信環境に関する情報や、ユーザが契約している料金体系、上りパワーコントロールのターゲットSINR等の通信環境に影響を与える情報であってもよい。
 上記のように、リソースブロックの割り当て情報を必要最低限のビット数で、周波数ブロック数の数分PDCCHを生成すると、PDCCHのリソースの無駄を削減することができる。
<第2の実施の形態>
 上記実施の形態では、Uplink Scheduling Grantの数と、このUplink Scheduling Grantを端末に通知する制御信号PDCCHの数とを、周波数ブロックの数又は最大周波数ブロックの数と同数分生成する形態について説明した。本実施の形態では、上記実施の形態において、基地局が移動局に周波数ブロックの数を通知する形態について説明する。尚、上記実施の形態と同様の構成に付いては、同一番号を付し、詳細な説明は省略する。
 上りスケジュール部104は、割り当てられたRBの位置を示すリソース割り当て情報をUL Scheduling Grant SUSCBとして、決定された周波数ブロック数をSUDFBとして出力する。
 下り制御信号生成部111は、UL Scheduling Grant SUSCB、移動局識別信号SUIDBおよびDL Scheduling Grant SDSCBを入力とし、複数のUL Scheduling Grantのそれぞれ、及びDL Scheduling Grantに、移動局識別信号SUIDBを多重し、複数のUL Scheduling Grantそれぞれを下りリンクの制御信号PDCCH SDCCBとして生成し、さらに、DL Scheduling Grantを下りリンクの制御信号PDCCH SDCCBとして生成する。下りリンクの制御信号PDCCH SDCCBは、UL Scheduling Grant SUSCBの下りリンクの制御信号PDCCH SDCCBとDL Scheduling Grant SDSCBの下りリンクの制御信号PDCCH SDCCBとが生成される。即ち、下りリンクの制御信号PDCCH SDCCBは、UL Scheduling Grant SUSCBとDL Scheduling Grant SDSCBとの合計のScheduling Grantと同数生成される。また、下りリンクの制御信号PDCCH SDCCBには、UL Scheduling GrantとDL Scheduling Grantとを区別するための識別子であるDCI(Downlink Control Information)formatを示した情報bitが多重される。例えば、下りリンクの制御信号PDCCH SDCCBにおけるDCIformatが、UL Scheduling Grantの場合には0、DL Scheduling Grantの場合には1が、多重される。また、周波数ブロック数SUDFBを入力とし、Higher layerの制御信号を生成してPBCH(Physical Broadcast Channel)として出力する。
 下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUとPBCHを分離し出力する。
 下り制御信号復調部207は、PBCHを入力とし、PBCHを復調してHigher layerの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離する。そして、Higher layer制御再生信号の周波数ブロックの数から自移動局宛のPDCCHの数を認識し、復調した自移動局宛のPDCCHの数が周波数ブロックの数と同数に達した時、PDCCHの復調を終了する。
 続いて、本実施の形態の動作を図11のフローを用いて説明する。
 基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する(ステップS1)。
 出力された基地局受信信号SRXBから、上りRS(Reference Signal)分離部102は、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する(ステップS2)。
 複数の移動局の上りRS信号SURSBから、上りCQI測定部103がそれぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する(ステップS3)。
 上りスケジュール部104は、移動局毎の上りCQI情報SUCQBに基づいて、各移動局に割り当てるリソースにおける周波数ブロックの数を決定する(ステップS4)。
 決定した周波数ブロックの数になるようにRBを割り当てる(ステップS5)。
 次に、上りスケジュール部104は、割り当てたRBの位置を示した情報を周波数ブロック毎に生成して各々が13BitsのUL Scheduling Grant SUSCBを周波数ブロックの数分、出力する。さらに、決定された周波数ブロックをSUDFBとして出力する(ステップS6)。
 下り制御信号生成部111には、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、移動局識別情報SUIDBが入力され、下り制御信号生成部111は、複数のUL Scheduling Grant SUSCBのそれぞれ、および、DL Scheduling Grant SDSCB に、移動局識別情報SUIDBを多重し、UL Scheduling Grant SUSCBとDL Scheduling Grant SDSCBの合計のScheduling Grantの数と同数の下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する。UL Scheduling Grant SUSCBが多重されたPDCCH(Physical Downlink Control Channel) SDCCBは、周波数ブロック数と同数生成される。更に、周波数ブロック数SUDFBを入力としてHigher layerの制御信号を生成してPBCHとして出力する(ステップS7)。
 下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し、下りデータ信号生成部113はDL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する(ステップS8)。
 多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成し、送信部115は、下り多重信号SMUXBから送信信号STXBを生成し送信する(ステップS9)。
 移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する(ステップS10)。
 下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離し、下りCQI測定部203は、下りRS信号SDRSUからRB毎のCQIを算出し、下りCQI情報SDCQUとして出力する(ステップS11)。
 下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUとPBCHを分離し出力する(ステップS12)。
 下り制御信号復調部207は、PBCHを入力とし、PBCHを復調してHigher layerの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離して、Higher layer制御再生信号の周波数ブロックの数から自移動局宛のPDCCHの数を認識し、復調した自移動局宛のPDCCHの数が周波数ブロックの数と同数に達した時、PDCCHの復調を終了する(ステップS20)。
 下り制御信号復調部207は、PDCCH SDCCUを入力とし、PDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する(ステップS13)。
 下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、下りリンクのリソース割り当て情報に対応する下りRB割り当て判定情報 SDSCUを抽出し出力する(ステップS14)。
 上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantを抽出して上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する(ステップS15)。
 上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する(ステップ16)。
 上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する(ステップS17)。
 上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、Physical Uplink Shared Channel(PUSCH) SUDCUを生成し出力する(ステップS18)。
 多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し、送信部215は、移動局多重信号SMUXUを基地局100へ送信する(ステップS19)。
 尚、上記実施の形態では、周波数ブロック数はPBCHで通知される場合を用いて説明したが、このほかにもPDSCH(Physical Downlink Shared Channel)等にマッピングされるHigher layerの制御信号で通知される。また、移動局毎に最大周波数ブロックが決定されていれば、基地局は移動局に最大周波数ブロックを通知する形態であっても良い。
 上記のように、移動局に送信されるPDCCHの数に対応する周波数ブロック数、又は最大周波数ブロック数が、基地局から移動局に事前に通知されていれば、本発明は、さらに、移動局の処理量を削減する効果も得ることができる。例えば、LTEでは、移動局は、自移動局宛のPDCCHを得るために、自移動局宛であるかどうかを、PDCCHに多重された移動局識別子の情報を確認する。復調した自移動局宛のPDCCHの数が、基地局から通知された周波数ブロック数や最大周波数ブロック数に達すれば、移動局は、PDCCHの復調処理を終了することが出来る。つまり、移動局は、すべてのPDCCHを復調する必要がなくなり、処理量を削減できる。
<第3の実施の形態>
 本実施の形態では、UL Scheduling Grantのビット数を減らすことができる形態について説明する。尚、上記実施の形態と同様の構成については同一番号を付し、詳細な説明は省略する。尚、以下の説明では、第2の実施の形態を基にして説明するが、第1の実施の形態に基づいても良い。
 上りスケジュール部104は、移動局毎に上りリンクのスケジューリングを行う。上りスケジュール部104は、上りCQI情報SUCQBに基づいて割り当てるリソースにおける周波数ブロックの数を決定する。この決定された周波数ブロックの数に応じて、決定する割り当て分解能で、且つ決定された周波数ブロックの数でRBを割り当てる。割り当て分解能が決定すると、これに応じて、割り当てたRBの位置を示すTree-basedの構造が決定する。割り当てたRBの位置をTree-basedで示した周波数ブロック毎のリソース割り当て情報と割り当て分解能の値とのスケジューリング情報を周波数ブロック毎に生成して、即ちUL Scheduling Grant SUSCBを周波数ブロックの数分、決定したTree-basedの構造に応じたビット数で出力する。また、周波数ブロック数をSUDFBとして出力する。尚、割り当て分解能の値は、全UL Scheduling Grantに入れても良いが、最初に通知されるUL Scheduling Grantに入れても良い。
 ここで、上りスケジュール部104における、具体的な処理を次に説明する。
 上りスケジュール部104では、上りCQI情報SUCQBに基づいて決定した周波数ブロックの数によって、リソース割り当てにおける最小の周波数帯域幅、即ち、リソースブロックの割り当ての最小単位である割り当て分解能を変化させて設定する。詳細には、周波数ブロックの数が大きいほど、割り当て分解能を大きくするように設定する。
 以下に、システム帯域を10個のRBとした時に、1ユーザのリソース割り当てに用いるシグナリングBit数が14bits以内に抑えられる場合の具体例を次に述べる。
 上りスケジュール部104のリソース割り当てでは、図12に示す周波数ブロック数と割り当て分解能との関係を示した対応表を用いてリソース割り当てを行う。この対応表は、通信環境等に応じて設定する。例えば、周波数ブロックの数が大きいほど、割り当て分解能を大きくするように設定されている。この関係を用いることで、周波数ブロック数が4以下におけるシグナリングBit数を割り当て分解能の値の通知(2bit)を含めて14bitsに抑えることが可能である。
 UE1、UE2、UE3、UE4の4つの移動局において、UE1に割り当てられる周波数ブロック数は3、UE2に割り当てられる周波数ブロック数は2、UE3に割り当てられる周波数ブロック数は1、UE4に割り当てられる周波数ブロック数は1とする。このとき、図13に示すリソースブロックを左から右に順番にRB0、RB1、・・・RB8、RB9とすると、UE1にはRB0、RB1,RB4、RB5、RB8及びRB9が、UE2にはRB3及びRB6が、UE3にはRB2が、UE4にはRB7がスケジューリングされるとする。図13のスケジューリングと、図12の周波数ブロック数と割り当て分解能の関係を用いた場合について説明する。尚、図14、図15、図16、図17に、UE1、UE2、UE3、UE4それぞれにおける、RBの割り当て例およびTree-Basedを用いたときのUL Scheduling Grantの例を示す。
 UE3およびUE4では、周波数ブロック数は1であるため、図12の対応表を用いると割り当て分解能は1RBとなる。従って、UE3およびUE4には、リソースブロックを割り当てる際、リソースブロックを1個ずつ且つ周波数ブロック数が1以内になるようにリソースブロックが割り当てられることになる。そして、割り当て分解能を1RBとし、Tree-Basedで全帯域10RB内における1つの周波数ブロックに対応するリソースを表記するには、1~55(6bits)におけるいずれかの値が必要である。ここで、図16および図17における1周波数ブロックのリソースを示す1~55の値は、木構造になるように構成されている。このTree-Basedにおける木構造は、割り当て分解能によって変化する。即ち、UL Scheduling Grantのビット数も変化する。
 例えば、図18に示すように、割り当て分解能が1RBの場合、木構造は6bitsで表記可能な1~55の数列から構成される。また、割り当て分解能が2RBの場合、2リソースブロックを単位にして割り当てられていくので、システム帯域が5個のRBである場合と同様の数列で扱える。そのため、木構造は1~15の数列から構成される。この木構造を決定された周波数ブロック数と1対1に対応付け、移動局へ割り当て分解能又は周波数ブロック数を通知することにより、Tree-Basedにおける木構造を識別できる。
 UE3およびUE4には、周波数ブロック数=1個の周波数ブロックがスケジューリングされるため、UE3およびUE4には、UL Scheduling Grantが1つ生成される。そして、そのUL Scheduling Grantのビット数は、割り当て分解能の値の通知を含めると、6bits+2bits=8bitsになる。UE3に通知するUL Scheduling Grantが示す内容は、割り当て分解能の値“1”と、割り当てたリソースブロックの位置を木構造で示した場合の位置である“2”(図16中の“2”)が通知される。また、UE4のUL Scheduling Grantは8bitsになり、割り当て分解能の値“1”と、木構造で示した場合の位置である“7”(図17中の“7”)が通知される。
 UE2では、周波数ブロック数は2であるため、図12の対応表を用いると割り当て分解能は1RBとなる。割り当て分解能を1RBとし、Tree-Basedで全帯域10RB内における1つの周波数ブロックに対応するリソースを表記するには、6bitsで表記可能な1~55におけるいずれかの値となる。UE2には、周波数ブロックが2個スケジューリングされるため、UE2にはUL Scheduling Grantが2つ生成される。そして、そのUL Scheduling Grantのビット数は、割り当て分解能の値の通知を含めると、6bits+2bits=8bitsのUL Scheduling Grantと6bitsのUL Scheduling Grantとなる。UE2に通知するUL Scheduling Grantが示す内容は、割り当て分解能の値“1”と、割り当てたリソースブロックの位置を木構造で示した場合の位置である“3”及び“6”(図15中の“3”及び“6”)が通知される。尚、割り当て分解能の値を、全UL Scheduling Grantに入れる場合は、6bits+2bits=8bitsのUL Scheduling Grantが2つとなる。
 また、UE1では、周波数ブロック数は3であるため、図12の対応表を用いると割り当て分解能は2RBとなる。割り当て分解能を2RBとし、Tree-Basedで全帯域10RB内における1つの周波数ブロックに対応するリソースを表記するには、4bitsで表記可能な1~15におけるいずれかの値となる。UE1には、周波数ブロック数が3個スケジューリングされるため、UE1にはUL Scheduling Grantが3つ生成される。そして、そのUL Scheduling Grantのビット数は、割り当て分解能の値の通知を含めると、4bits+2bits=6bitsのUL Scheduling Grantと4bitsのUL Scheduling Grantが2つとなる。UE1に通知するUL Scheduling Grantが示す内容は、割り当て分解能の値“2”と、割り当てたリソースブロックの位置を木構造で示した場合の位置である“0”、“2”及び“4”(図14中の“0”、“2”、及び“4”)が通知される。尚、割り当て分解能の値を、全UL Scheduling Grantに入れる場合は、4bits+2bits=6bitsのUL Scheduling Grantが3つとなる。このように、周波数ブロック数が増大しても、割り当て分解能を大きくすることで、リソース割り当て情報量を削減することが出来る。
 次に、一般的な木構造のリソース割り当て情報の生成法を述べる。割り当て分解能がPリソースブロック(Pは1以上)、周波数ブロック数がn(nは1以上)の場合の例を、式1を用いて説明する。ここで、1周波数ブロックをP(割り当て分解能)個の連続したリソースブロックと定義する。リソース割り当て情報は、n個のリソース指示値(RIV)から構成される。第n番目の周波数ブロックのリソース指示値RIVは、開始の周波数ブロック(RBGstart,n)と連続する周波数ブロックの長さ(LCRBGs,n)とを示す。第n番目のリソース指示値RIVは以下の式1で定義される。
(式1)
Figure JPOXMLDOC01-appb-I000001
 以下では、上記のようにUL Scheduling Grantを周波数ブロック数と同数生成する構成を用いて説明するが、他の構成であっても良い。例えば、複数の周波数ブロックの割り当て情報を、1つのUL scheduling Grantに記して、UL Scheduling Grantの数を周波数ブロックの数より少なくする構成であっても良い。ここで、このような構成について、周波数ブロック数が3であるUE1において、2つのUL Scheduling Grantを生成する例を用いて説明する。
 1つのUL Scheduling Grantに、1つの周波数ブロックに対応するリソースの情報と割り当て分解能の値(4bits+2bits=6bits)を含め、他方のUL Scheduling Grantには、2つの周波数ブロックに対応するリソースの情報(4bits+4bits=8bits)を含める。また、1つのUL Scheduling Grantに、2つの周波数ブロックに対応するリソースの情報と割り当て分解能の値(4bits+4bits+2bits=10bits)を含め、他方のUL Scheduling Grantには、1つの周波数ブロックに対応するリソースの情報(4bits)を含めても良い。UL Scheduling Grantに含めることが可能な最大のbit数が予め決まっていれば、このbit数によって、1つのUL Scheduling Grantに含める周波数ブロックの割り当て情報の数を決定すれば良い。
 尚、第2の実施の形態では、基地局は移動局に周波数ブロックの数を通知していたが、本実施の形態において、UL Scheduling Grantの数を周波数ブロック数より少なくする場合、周波数ブロックの数とPDCCH(Physical Downlink Control Channel)の数は異なるため、基地局は移動局にPDCCH(Physical Downlink Control Channel)の数を通知する。この結果、端末におけるPDCCH(Physical Downlink Control Channel)の復調回数を第2の実施の形態よりもさらに削減することが出来る。
 上記のように生成されたUL Scheduling Grant SUSCBは、下り制御信号生成部111に入力される。下り制御信号生成部111には、他にもDL Scheduling Grant SDSCB、および移動局識別情報SUIDBおよび周波数ブロック信号SUDFBが入力される。複数のUL Scheduling Grantのそれぞれ、および、DL Scheduling Grantに、移動局識別信号SUIDBを多重し、複数のUL Scheduling Grantそれぞれを下りリンクの制御信号PDCCH SDCCBとして生成し、さらに、DL Scheduling Grantを下りリンクの制御信号PDCCH SDCCBとして生成する。下りリンクの制御信号PDCCH SDCCBは、UL Scheduling Grant SUSCBとDL Scheduling Grant SDSCBとの合計のScheduling Grantと同数生成される。また、下りリンクの制御信号PDCCH SDCCBには、UL Scheduling GrantとDL Scheduling Grantを区別するための識別子であるDCI(Downlink Control Information)formatを示した情報bitが多重される。例えば、下りリンクの制御信号PDCCH SDCCBにおけるDCIformatが、UL Scheduling Grantの場合には0、DL Scheduling Grantの場合には1が、多重される。
 下り制御信号復調部207は、PDCCH SDCCUを入力とし、PDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する。尚、自移動局に対するPDCCHは自局に割り当てられた周波数ブロックの数分、多重されている。
 上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantを抽出する。次に、UL Scheduling Grantに含まれている割り当て分解能の値からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する。
 続いて、本実施の形態の動作を図19のフローを用いて説明する。
 基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する(ステップS1)。
 出力された基地局受信信号SRXBから、上りRS(Reference Signal)分離部102は、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する(ステップS2)。
 複数の移動局の上りRS信号SURSBから、上りCQI測定部103がそれぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する(ステップS3)。
 上りスケジュール部104は、移動局毎の上りCQI情報SUCQBに基づいて、各移動局に割り当てるリソースにおける周波数ブロックの数を決定する(ステップS4)。
 自装置において保持している図12のような対応表を用いて、決定した周波数ブロックの数に対応付けられている割り当て分解能を決定することによりTree-basedの構造を決定し、UL Scheduling Grantのビット数を決定したTree-basedの構造に応じたビット数になるように設定する(ステップS21)。
 決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数でRBを割り当てる(ステップS5-1)。
 次に、上りスケジュール部104は、割り当てたRBの位置をTree Basedで示した情報と割り当て分解能の値とをUL Scheduling Grant SUSCBとして設定されたビット数で周波数ブロック毎に出力し、周波数ブロック数をSUDFBとして出力する(ステップS6)。
 下り制御信号生成部111は、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、移動局識別情報SUIDBおよび周波数ブロック信号SUDFBが入力され、下り制御信号生成部111は、複数のUL Scheduling Grant SUSCBのそれぞれ、および、DL Scheduling Grant SDSCB に、移動局識別情報SUIDBを多重し、UL Scheduling Grant SUSCBとDL Scheduling Grant SDSCBの合計のScheduling Grantの数と同数の下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する。UL Scheduling Grant SUSCBが多重されたPDCCH(Physical Downlink Control Channel) SDCCBは、周波数ブロック数と同数生成される。更に、周波数ブロック数SUDFBを入力としてHigher layerの制御信号を生成してPBCHとして出力する(ステップS7)。
 下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し出力し、下りデータ信号生成部113は、DL Scheduling Grant SDSCBを入力とし、DL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する(ステップS8)。
 多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成して出力し、送信部115は、下り多重信号SMUXBを入力として送信信号STXBを生成し出力する(ステップS9)。
 移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する(ステップS10)。
 下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離し、下りCQI測定部203はこの下りRS信号SDRSUを入力としてRB毎のCQIを算出し、下りCQI情報SDCQUとして出力する(ステップS11)。
 下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUを分離し、下り制御信号復調部207はPDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する(ステップS12)。
 下り制御信号復調部207は、PBCHを入力とし、PBCHを復調してHigher layerの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離して、Higher layer制御再生信号の周波数ブロックの数から自移動局宛のPDCCHの数を認識し、復調した自移動局宛のPDCCHの数が周波数ブロックの数と同数に達した時、PDCCHの復調を終了する(ステップS20)。
 下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、下りリンクのリソース割り当て情報に対応する下りRB割り当て判定情報 SDSCUを抽出し出力する(ステップS13)。
 上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantを抽出して割り当て分解能の値を確認する(ステップS22)。
 次に、割り当て分解能の値からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する(ステップS14-1)。
 上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する(ステップS15)。
 上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する(ステップS16)。
 上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、Physical Uplink Shared Channel(PUSCH) SUDCUを生成し出力する(ステップS17)。
 多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し、送信部215は移動局送信信号SMUXUを基地局100へ送信する(ステップS18)。
 尚、上記実施の形態では、移動局の伝搬路の品質状況から周波数ブロック数を決定し、この周波数ブロックに応じて割り当て分解能を設定している構成を用いて説明したが、移動局の伝搬路の品質状況に応じて割り当て分解能を設定する構成であっても良い。また、上記実施の形態では、周波数ブロック数はPhysical Downlink Control Channel (PDCCH)で通知される場合を用いて説明したが、このほかにもPBCH(Physical Broadcast Channel)、Dynamic BCHと呼ばれるPDSCH(Physical Downlink Shared Channel)等にマッピングされるHigher layerの制御信号で通知される。この場合、基地局の下り制御信号生成部111に設けられているPBCH生成部又はPDSCH生成部(共に図示せず)に周波数ブロック数SUDFBが入力され、PBCH又はPDSCHによって移動局に通知される。また、また、上りリンクおよび下りリンクの制御信号の情報は、1msec程度のフレーム単位で変化するため、これらの変化に合わせて割り当て分解能を変化させると、端末の処理が複雑になる問題がある。このため、割り当て分解能は、複数フレーム周期で変更するように制限を加えても良い。
 また、上記実施の形態では、割り当て分解能を周波数ブロックに応じて決定する構成を用いて説明したが、同一端末に割り当てることができる周波数ブロックの最大数である最大周波数ブロック数に応じて決定する構成であっても良い。
 また、上記実施の形態では、上りスケジュール部104は、決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数でRBを割り当てる形態を用いて説明したが、決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数以内になるようにRBを割り当てる形態であっても良い。
 また、上記実施の形態では、割り当て分解能の値を通知する場合を用いて説明したが、割り当て分解能の値を送信しない形態であっても良い。この場合、移動局に図12で示したような対応表を記憶させておき、受信した周波数ブロックの数と対応表とを用いて割り当て分解能を認識する構成をとる。
 また、上記では、説明の簡略のため、システム帯域を10個のRBとして説明したが、システム帯域20MHzの実際のLTEシステムの場合におけるビット数削減効果を説明する。複数の周波数ブロックの割り当てが可能なLTEの下りリンクと同様に、システム帯域20MHz(RB数=100)において、1ユーザのリソース割り当てに用いるシグナリングbit数を37とすることを前提とすると、図12の周波数ブロック数と割り当て分解能の関係を用いることで、周波数ブロック数が4以下におけるシグナリングビット数を割り当て分解能の通知(2bit)を含めて37bits以下の35bitsに抑えることが可能である。尚、図20には、1~4の周波数ブロック数それぞれについて、Tree-Basedを用いて周波数ブロック数個の周波数ブロックのRBパターンを通知するために必要なビット数を示している。
 上述の通り、伝搬路の品質が良い移動局は周波数ブロック数を大きくし、伝搬路の品質が悪い移動局は周波数ブロック数を小さくし、これに応じて割り当て分解能を決定している。これは、伝搬路の品質が良い移動局の場合は低い電力密度で送信するため広い帯域で送信でき、全体的に伝搬路品質が良好なため、周波数ブロック数と共に割り当て分解能を大きくしても伝搬路品質が低下することがないからである。一方、伝搬路の品質が悪い移動局の場合は高い電力密度で送信するため狭い帯域で送信し、全体的に伝搬路品質が劣悪である故に、中でも良好なリソースを正確に選ぶため、周波数ブロック数とともに割り当て分解能も小さくする必要があるからである。このように、割り当て分解能と周波数ブロック数と移動局の伝搬路の品質とを対応付ければ、割り当て分解能を設定することによる受信特性の低下を抑えることが出来る。
 尚、上述した各実施の形態では、上りリンクのリソースブロックを割り当てる形態を用いて説明したが、下りリンクのリソースブロックを割り当てる形態であってもよい。このような場合、周波数ブロック数又は最大周波数ブロック数は、例えば、セルサイズ、システム帯域幅、基地局のカバレッジ、下りリファレンス信号により測定された伝搬路品質情報、下りデータ信号の帯域幅、下りデータ信号の変調多値数や符号化率等の通信環境によって変化する情報であっても良い。また、上記のセルサイズは、基地局の位置、基地局間の距離、干渉電力等の通信環境に影響を与える情報によって決定されるため、これらの情報を用いて周波数ブロック数を選択しても良い。
 また、上りリンクのリソースブロックを割り当てる形態と下りリンクのリソースブロックを割り当てる形態とを組み合わせて実行する形態であっても良い。
 また、上述した本発明の移動局と基地局とは、上記説明からも明らかなように、ハードウェアで構成することも可能であるが、コンピュータプログラムにより実現することも可能である。
 プログラムメモリに格納されているプログラムで動作するプロセッサによって、上述した実施の形態と同様の機能、動作を実現させる。尚、上述した実施の形態の一部の機能をコンピュータプログラムにより実現することも可能である。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解し得る様々な変更をすることが出来る。
 本出願は、2008年6月20日に出願された日本出願特願2008-161753号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (43)

  1.  リソース割り当て方法であって、
     周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当て、
     前記割り当てたリソースブロック群のリソースブロックを示す割り当て情報を通知する制御信号の数を決定する
    ことを特徴とする割り当て方法。
  2.  前記制御信号の数は、割り当てたリソースブロック群の数と同一の数に決定することを特徴とする請求項1に記載の割り当て方法。
  3.  1つの制御信号で複数のリソースブロック群の割り当て情報を通知し、前記制御信号の数を割り当てたリソースブロック群の数未満に決定することを特徴とする請求項1に記載の割当方法。
  4.  前記制御信号の数は、端末に割り当てることができるリソースブロック群の最大の数と同一の数に決定することを特徴とする請求項1に記載の割り当て方法。
  5.  1つの制御信号で複数のリソースブロック群の割り当て情報を通知し、前記制御信号の数を、端末に割り当てることのできるリソースブロック群の最大数未満に決定することを特徴とする請求項1に記載の割当方法。
  6.  割り当て情報の大きさに応じて、前記制御信号の大きさを変更することを特徴とする請求項1から請求項5のいずれかに記載の割り当て方法。
  7.  リソースブロック群を割り当てる際、決定されたリソースブロックの割り当て単位でリソースブロックを割り当てることを特徴とする請求項1から請求項6のいずれかに記載の割当方法。
  8.  端末に割り当てることができるリソースブロック群の最大の数に応じて、リソースブロックの割り当て単位を決定することを特徴とする請求項7に記載の割当方法。
  9.  リソースブロック群の数に応じて、リソースブロックの割り当て単位を決定することを特徴とする請求項7に記載の割当方法。
  10.  基地局又は移動局の通信環境に関する情報、通信環境に影響を与える情報、若しくは通信能力に基づいて、リソースブロックの割り当て単位を決定することを特徴とする請求項7に記載の割当方法。
  11.  決定したリソースブロックの割り当て単位で割り当てたリソースブロックをTree Basedで示すためにそのTree Basedの構造を決定する
    ことを特徴とする請求項7から請求項10のいずれかに記載の割当方法。
  12.  割り当てたリソースブロックを示す情報のビット数を、Tree Basedの構造に応じて変更することを特徴とする請求項11に記載の割当方法。
  13.  割り当て単位に応じて、制御信号の大きさを変更することを特徴とする請求項7から請求項12のいずれかに記載の割り当て方法。
  14.  割り当て単位に応じて、1つの制御信号で通知する割り当て情報の数を変更することを特徴とする請求項7から請求項12のいずれかに記載の割り当て方法。
  15.  割り当てたリソースブロックを示す情報と割り当て単位の情報とを有するスケジューリング情報を端末に通知することを特徴とする請求項7から請求項14のいずれかに記載の割当方法。
  16.  送信されたスケジューリング情報の割り当て単位の情報からTree Basedの構造を識別して、スケジューリング情報に示されている、割り当てられたリソースブロックを特定することを特徴とする請求項15に記載の割当方法。
  17.  割り当てたリソースブロックを示す情報と、割り当てたリソースブロック群の数若しくは端末に割り当てることができるリソースブロック群の最大の数とを端末に通知することを特徴とする請求項1から請求項14のいずれかに記載の割り当て方法。
  18.  送信されたリソースブロック群の数又はリソースブロック群の最大の数に基づいてTree Basedの構造を識別して、割り当てたリソースブロックを示す情報に示されている、割り当てられたリソースブロックを特定することを特徴とする請求項17に記載の割当方法。
  19.  周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を割り当てる通信方法であって、
     決定された数分の制御信号を用いて通知される、割り当てられたリソースブロック群に関する情報から、移動局に割り当てられたリソースブロックを特定する
    ことを特徴とする通信方法。
  20.  無線システムであって、
     周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当てる割当手段と、
     前記割り当てたリソースブロック群のリソースブロックを示す割り当て情報を通知する制御信号の数を決定する決定手段と
    を有することを特徴とする無線システム。
  21.  決定手段は、前記制御信号の数を、割り当てたリソースブロック群の数と同一の数に決定することを特徴とする請求項20に記載の無線システム。
  22.  決定手段は、1つの制御信号で複数のリソースブロック群の割り当て情報を通知する場合、前記制御信号の数を割り当てたリソースブロック群の数未満に決定することを特徴とする請求項20に記載の無線システム。
  23.  決定手段は、前記制御信号の数を、端末に割り当てることができるリソースブロック群の最大の数と同一の数に決定することを特徴とする請求項20に記載の無線システム。
  24.  決定手段は、1つの制御信号で複数のリソースブロック群の割り当て情報を通知し、前記制御信号の数を、端末に割り当てることができるリソースブロック群の最大数未満に決定することを特徴とする請求項20に記載の無線システム。
  25.  割り当て情報と、割り当てたリソースブロック群の数若しくは端末に割り当てることができるリソースブロック群の最大の数とを端末に通知する通知手段を有することを特徴とする請求項20から請求項24のいずれかに記載の無線システム。
  26.  割り当て情報の大きさに応じて、前記制御信号の大きさを変更する制御信号生成手段を有することを特徴とする請求項20から請求項25のいずれかに記載の無線システム。
  27.  割当手段は、リソースブロック群を少なくとも1以上割り当てるにあたって決定するリソースブロックの割り当て単位で、リソースブロックを割り当てることを特徴とする請求項20から請求項26のいずれかに記載の無線システム。
  28.  制御信号生成手段は、前記割り当て単位に応じて、前記制御信号の大きさを変更することを特徴とする請求項27に記載の無線システム。
  29.  制御信号生成手段は、前記割り当て単位に応じて、1つの制御信号で通知する割り当て情報の数を変更することを特徴とする請求項27に記載の無線システム。
  30.  周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を割り当てる無線システムであって、
     決定された数分の制御信号を用いて通知される、割り当てられたリソースブロック群に関する情報から、移動局に割り当てられたリソースブロックを特定する特定手段を有することを特徴とする無線システム。
  31.  基地局であって、
     周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当てる割当手段と、
     前記割り当てたリソースブロック群のリソースブロックを示す割り当て情報を通知する制御信号の数を決定する決定手段と
    を有することを特徴とする基地局。
  32.  決定手段は、前記制御信号の数を、割り当てたリソースブロック群の数と同一の数に決定することを特徴とする請求項31に記載の基地局。
  33.  決定手段は、1つの制御信号で複数のリソースブロック群の割り当て情報を通知する場合、前記制御信号の数を割り当てたリソースブロック群の数未満に決定することを特徴とする請求項31に記載の基地局。
  34.  決定手段は、前記制御信号の数を、端末に割り当てることができるリソースブロック群の最大の数と同一の数に決定することを特徴とする請求項31に記載の基地局。
  35.  決定手段は、1つの制御信号で複数のリソースブロック群の割り当て情報を通知する場合、前記制御信号の数を、端末に割り当てることができるリソースブロック群の最大数未満に決定することを特徴とする請求項31に記載の基地局。
  36.  割り当て情報と、割り当てたリソースブロック群の数若しくは端末に割り当てることができるリソースブロック群の最大の数とを端末に通知する通知手段を有することを特徴とする請求項31から請求項35のいずれかに記載の基地局。
  37.  割り当て情報の大きさに応じて、前記制御信号の大きさを変更する制御信号生成手段を有することを特徴とする請求項31から請求項36のいずれかに記載の基地局。
  38.  割当手段は、リソースブロック群を少なくとも1以上割り当てるにあたって決定するリソースブロックの割り当て単位で、リソースブロックを割り当てることを特徴とする請求項31から請求項37のいずれかに記載の基地局。
  39.  制御信号生成手段は、割り当て単位に応じて、前記制御信号の大きさを変更することを特徴とする請求項38に記載の基地局。
  40.  制御信号生成手段は、割り当て単位に応じて、1つの制御信号で通知する割り当て情報の数を変更することを特徴とする請求項38に記載の基地局。
  41.  周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群の割り当てを特定する移動局であって、
     決定された数分の制御信号を用いて通知される、割り当てられたリソースブロック群に関する情報から、移動局に割り当てられたリソースブロックを特定する特定手段を有することを特徴とする移動局。
  42.  基地局のプログラムであって、前記プログラムは前記基地局に、
     周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群を端末に割り当てる割当処理と、
     前記割り当てたリソースブロック群のリソースブロックを示す割り当て情報を通知する制御信号の数を決定する決定処理と
    を実行させることを特徴とするプログラム。
  43.  周波数軸上で少なくとも1以上のリソースブロックが連続して成るリソースブロック群の割り当てを特定する移動局のプログラムであって、前記プログラムは前記移動局に、
     決定された数分の制御信号を用いて通知される、割り当てられたリソースブロック群に関する情報から、移動局に割り当てられたリソースブロックを特定する特定処理を実行させることを特徴とするプログラム。
     
PCT/JP2009/061195 2008-06-20 2009-06-19 リソース割り当て方法、特定方法、基地局、移動局、及びプログラム WO2009154271A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US13/000,265 US9386574B2 (en) 2008-06-20 2009-06-19 Resource allocation method, identification method, base station, mobile station, and program
EP09766719.0A EP2291024B1 (en) 2008-06-20 2009-06-19 Resource allocation method, base station, mobile station, and program
KR1020127023571A KR101313703B1 (ko) 2008-06-20 2009-06-19 리소스 할당 방법, 특정 방법, 기지국 및 이동국
KR1020127010933A KR101228053B1 (ko) 2008-06-20 2009-06-19 리소스 할당 방법, 특정 방법, 기지국 및 이동국
ES09766719.0T ES2651945T3 (es) 2008-06-20 2009-06-19 Método de asignación de recursos, estación base, estación móvil, y programa
EP17184819.5A EP3258638B1 (en) 2008-06-20 2009-06-19 Resource allocation method and base station
JP2010517975A JP5418789B2 (ja) 2008-06-20 2009-06-19 リソース割り当て方法、特定方法、基地局、移動局、及びプログラム
CN200980123258.8A CN102067661B (zh) 2008-06-20 2009-06-19 资源分配方法、识别方法、基站、移动站以及程序
EP19194456.0A EP3595233B1 (en) 2008-06-20 2009-06-19 Resource allocation method, identification method, base station, and mobile station
US15/172,447 US9713130B2 (en) 2008-06-20 2016-06-03 Resource allocation method, identification method, base station, mobile station, and program
US15/623,946 US10182423B2 (en) 2008-06-20 2017-06-15 Resource allocation method, identification method, base station, mobile station, and program
US16/161,624 US10736086B2 (en) 2008-06-20 2018-10-16 Resource allocation method, identification method, base station, mobile station, and program
US16/898,708 US11405901B2 (en) 2008-06-20 2020-06-11 Resource allocation method, identification method, base station, mobile station, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008161753 2008-06-20
JP2008-161753 2008-06-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/000,265 A-371-Of-International US9386574B2 (en) 2008-06-20 2009-06-19 Resource allocation method, identification method, base station, mobile station, and program
US15/172,447 Continuation US9713130B2 (en) 2008-06-20 2016-06-03 Resource allocation method, identification method, base station, mobile station, and program

Publications (1)

Publication Number Publication Date
WO2009154271A1 true WO2009154271A1 (ja) 2009-12-23

Family

ID=41434183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061195 WO2009154271A1 (ja) 2008-06-20 2009-06-19 リソース割り当て方法、特定方法、基地局、移動局、及びプログラム

Country Status (7)

Country Link
US (5) US9386574B2 (ja)
EP (3) EP3258638B1 (ja)
JP (2) JP5418789B2 (ja)
KR (3) KR101313703B1 (ja)
CN (1) CN102067661B (ja)
ES (3) ES2899605T3 (ja)
WO (1) WO2009154271A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229089A (ja) * 2010-04-22 2011-11-10 Kyocera Corp 端末装置、基地局および無線通信システム
WO2011150761A1 (zh) * 2010-07-23 2011-12-08 华为技术有限公司 资源分配方法和装置
JP2015222968A (ja) * 2010-01-13 2015-12-10 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. 移動局がリソースを識別できるようにするパラメータから得られる値を決定する方法及び装置、移動局がリソースを識別できるようにするパラメータを決定する方法及び装置、ならびにコンピュータプログラム

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375531B1 (ko) * 2008-03-14 2014-03-17 삼성전자주식회사 광대역 무선통신시스템에서 자원 할당 장치 및 방법
JP2009231976A (ja) * 2008-03-19 2009-10-08 Nec Corp 異なる無線アクセス方式間のハンドオーバ方法および無線通信システム
EP3567790B1 (en) 2008-06-20 2023-09-06 NEC Corporation Resource allocation method and apparatus
KR101313703B1 (ko) 2008-06-20 2013-10-01 닛본 덴끼 가부시끼가이샤 리소스 할당 방법, 특정 방법, 기지국 및 이동국
JP5280322B2 (ja) * 2009-09-07 2013-09-04 Kddi株式会社 周波数ブロック割当装置、周波数ブロック割当方法及びコンピュータプログラム
JP5108902B2 (ja) * 2010-01-11 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び無線通信制御方法
US20130121278A1 (en) * 2010-06-01 2013-05-16 Lg Electronics Inc. Method and apparatus for allocating resources in a wireless communication system
US9036584B2 (en) * 2010-08-09 2015-05-19 Panasonic Intellectual Property Corporation Of America Base station, mobile station, method for transmitting calculation parameters for power headroom, and method for transmitting power headroom
CN102469609B (zh) * 2010-11-16 2016-03-09 华为技术有限公司 测量参考信号的发送方法和配置指示方法及设备
WO2012150762A2 (ko) * 2011-05-02 2012-11-08 주식회사 팬택 자원할당정보의 전송장치 및 방법
JP5480858B2 (ja) * 2011-09-09 2014-04-23 株式会社Nttドコモ 無線通信システム、基地局、移動局および通信制御方法
JP5900884B2 (ja) * 2012-02-17 2016-04-06 シャープ株式会社 制御局装置、および無線通信システム
CN103327615B (zh) * 2012-03-20 2016-04-20 华为技术有限公司 资源分配指示方法、资源分配方法及设备
CN104734821B (zh) * 2013-12-19 2019-04-05 电信科学技术研究院 数据传输方法和装置
CN106413093A (zh) * 2015-07-29 2017-02-15 中兴通讯股份有限公司 资源配置信息的指示方法及装置
CN109479247B (zh) 2016-08-08 2021-07-16 Lg 电子株式会社 用于报告功率余量的方法和设备
CN107801243B (zh) * 2016-08-29 2021-01-29 华为技术有限公司 一种下行传输方法及装置
US10321386B2 (en) 2017-01-06 2019-06-11 At&T Intellectual Property I, L.P. Facilitating an enhanced two-stage downlink control channel in a wireless communication system
US9775121B1 (en) * 2017-01-19 2017-09-26 Sprint Spectrum L.P. Dynamic control of reference-signal transmission power based on reference signal coverage quality at or near half-way point between base stations
CN110226352B (zh) * 2017-01-25 2021-12-31 华为技术有限公司 一种资源分配方法及第一节点、第二节点
US20180279273A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. Downlink Control Signal Design In Mobile Communications
JP2019022081A (ja) * 2017-07-18 2019-02-07 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN108111280B (zh) * 2017-09-11 2023-07-14 中兴通讯股份有限公司 参考信号配置、信息的发送、信息的接收方法及装置
CN110351839B (zh) 2018-04-04 2023-03-28 华为技术有限公司 通信方法及装置
CN112311509B (zh) * 2019-07-26 2021-11-12 大唐移动通信设备有限公司 一种资源配置方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161753A (ja) 2006-12-27 2008-07-17 Daicel Chem Ind Ltd 透析排水の処理方法。

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066661A1 (ja) * 2003-01-23 2004-08-05 Fujitsu Limited 通信資源管理装置
US7016319B2 (en) * 2003-03-24 2006-03-21 Motorola, Inc. Method and apparatus for reducing co-channel interference in a communication system
JP4780298B2 (ja) * 2003-12-24 2011-09-28 日本電気株式会社 無線通信システム、無線通信装置及びそれに用いるリソース割当て方法
GB0420658D0 (en) * 2004-09-16 2004-10-20 Nokia Corp Scheduling data transmissions in a wireless communications network
US8131306B2 (en) * 2006-03-20 2012-03-06 Intel Corporation Wireless access network and method for allocating data subcarriers within a downlink subframe based on grouping of user stations
KR101221821B1 (ko) * 2006-04-21 2013-01-14 삼성전자주식회사 주파수 분할 다중 접속 시스템에서 자원 할당 정보 시그널링 방법
CN101064903B (zh) 2006-04-25 2011-12-21 华为技术有限公司 一种通信系统资源分配指示方法、基站及用户设备
CN101119277A (zh) 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
JP5077525B2 (ja) * 2006-08-22 2012-11-21 日本電気株式会社 無線通信システムにおけるリファレンス信号多重方法および無線通信装置
JP4904994B2 (ja) * 2006-08-25 2012-03-28 富士通東芝モバイルコミュニケーションズ株式会社 移動無線端末装置
JP4940867B2 (ja) * 2006-09-29 2012-05-30 日本電気株式会社 移動通信システムにおける制御信号およびリファレンス信号の多重方法、リソース割当方法および基地局
KR100910707B1 (ko) * 2006-10-19 2009-08-04 엘지전자 주식회사 제어신호 전송 방법
JP5092350B2 (ja) * 2006-10-26 2012-12-05 富士通株式会社 パイロット信号伝送方法及び移動通信システム
WO2008054141A1 (en) * 2006-11-01 2008-05-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control information in packet data communication system
KR101319877B1 (ko) * 2006-11-01 2013-10-18 엘지전자 주식회사 자원 할당 방법 및 자원 할당 정보 전송 방법
US7924809B2 (en) * 2006-11-22 2011-04-12 Intel Corporation Techniques to provide a channel quality indicator
US9295003B2 (en) * 2007-03-19 2016-03-22 Apple Inc. Resource allocation in a communication system
US9137821B2 (en) * 2007-05-02 2015-09-15 Qualcomm Incorporated Flexible signaling of resources on a control channel
KR101468490B1 (ko) * 2007-05-02 2014-12-10 삼성전자주식회사 무선 통신 시스템에서 제어 채널들의 집합을 한정하여 송수신하는 방법 및 장치
US7933350B2 (en) * 2007-10-30 2011-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel-dependent frequency-domain scheduling in an orthogonal frequency division multiplexing communications system
EP3567790B1 (en) 2008-06-20 2023-09-06 NEC Corporation Resource allocation method and apparatus
KR101313703B1 (ko) 2008-06-20 2013-10-01 닛본 덴끼 가부시끼가이샤 리소스 할당 방법, 특정 방법, 기지국 및 이동국

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161753A (ja) 2006-12-27 2008-07-17 Daicel Chem Ind Ltd 透析排水の処理方法。

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Uplink Resource Allocation for E-UTRA", 3GPP RL-070881, NEC GROUP, NTT DOCOMO, February 2007 (2007-02-01)
NEC GROUP ET AL.: "Uplink Resource Allocation for E-UTRA", R1-070881, TSG-RAN WG1 #48, 12 February 2007 (2007-02-12), XP050104892 *
NEC GROUP ET AL.: "Uplink Resource Allocation for E-UTRA", R1-073457, TSG-RAN WG1 #50, 20 August 2007 (2007-08-20), XP050107066 *
NEC GROUP: "DL Unicast Resource Allocation Signalling using L1L2 control channels", R1- 072832, TSG-RAN WG1 #49BIS, 25 June 2007 (2007-06-25), XP050106513 *
NEC GROUP: "DL Unicast Resource Allocation Signalling using L1L2 control channels", R1- 075055, TSG-RAN WG1 #51, 5 November 2007 (2007-11-05), XP050108496 *
See also references of EP2291024A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222968A (ja) * 2010-01-13 2015-12-10 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. 移動局がリソースを識別できるようにするパラメータから得られる値を決定する方法及び装置、移動局がリソースを識別できるようにするパラメータを決定する方法及び装置、ならびにコンピュータプログラム
JP2011229089A (ja) * 2010-04-22 2011-11-10 Kyocera Corp 端末装置、基地局および無線通信システム
WO2011150761A1 (zh) * 2010-07-23 2011-12-08 华为技术有限公司 资源分配方法和装置
US9179441B2 (en) 2010-07-23 2015-11-03 Huawei Technologies Co., Ltd. Resource allocation method and apparatus

Also Published As

Publication number Publication date
EP2291024A4 (en) 2014-08-27
KR20120053539A (ko) 2012-05-25
US10182423B2 (en) 2019-01-15
EP3258638A1 (en) 2017-12-20
EP2291024A1 (en) 2011-03-02
KR101216159B1 (ko) 2012-12-27
US9386574B2 (en) 2016-07-05
EP3595233A1 (en) 2020-01-15
JP2012195954A (ja) 2012-10-11
KR101228053B1 (ko) 2013-01-31
ES2764580T3 (es) 2020-06-03
CN102067661B (zh) 2016-08-17
US20110113433A1 (en) 2011-05-12
JPWO2009154271A1 (ja) 2011-12-01
JP5418789B2 (ja) 2014-02-19
US9713130B2 (en) 2017-07-18
US20160286546A1 (en) 2016-09-29
US20170289996A1 (en) 2017-10-05
US20190090232A1 (en) 2019-03-21
KR101313703B1 (ko) 2013-10-01
US10736086B2 (en) 2020-08-04
EP3258638B1 (en) 2019-10-02
US11405901B2 (en) 2022-08-02
EP3595233B1 (en) 2021-09-01
KR20110014213A (ko) 2011-02-10
ES2899605T3 (es) 2022-03-14
ES2651945T3 (es) 2018-01-30
JP5413628B2 (ja) 2014-02-12
CN102067661A (zh) 2011-05-18
EP2291024B1 (en) 2017-09-13
KR20120120507A (ko) 2012-11-01
US20200305149A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5413628B2 (ja) リソース割り当て方法、通信方法、通信システム、基地局、及び移動局
US11395285B2 (en) Resource allocation method, identification method, radio communication system, base station, mobile station, and program
JP4728301B2 (ja) ユーザ装置、送信方法、及び通信システム
CN106304349B (zh) 数据传输方法及装置
WO2019065307A1 (ja) 無線通信装置、無線通信方法およびコンピュータプログラム
JP5226099B2 (ja) ユーザ装置、送信方法、通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123258.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517975

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107028621

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13000265

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009766719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009766719

Country of ref document: EP