WO2009154032A1 - Radio tag - Google Patents

Radio tag Download PDF

Info

Publication number
WO2009154032A1
WO2009154032A1 PCT/JP2009/056446 JP2009056446W WO2009154032A1 WO 2009154032 A1 WO2009154032 A1 WO 2009154032A1 JP 2009056446 W JP2009056446 W JP 2009056446W WO 2009154032 A1 WO2009154032 A1 WO 2009154032A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
wireless tag
code
circuit
Prior art date
Application number
PCT/JP2009/056446
Other languages
French (fr)
Japanese (ja)
Inventor
毅 宮林
豊和 井上
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2009154032A1 publication Critical patent/WO2009154032A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory

Definitions

  • the present invention relates to a wireless tag including a light emitting diode.
  • the user uses a reader / writer to externally transmit a radio wave including a search ID code indicating an ID code of a wireless tag to be searched (hereinafter, a radio wave transmitted from the reader / writer is referred to as an AC transmission signal).
  • a radio wave transmitted from the reader / writer is referred to as an AC transmission signal.
  • each wireless tag receives the AC transmission signal as an AC reception signal.
  • Each wireless tag stores a storage ID code that is an ID code for identifying itself.
  • Each wireless tag collates whether or not the search ID code included in the AC reception signal and the stored ID code stored in the radio tag satisfy a predetermined relationship.
  • the light emitting diode provided in itself emits light, and if it cannot be verified, it does not emit light. As a result, the user can easily search for an article desired by the user using the wireless tag that emits light.
  • JP 2006-24018 A JP 2006-24018 A
  • the AC transmission signal attenuates as the propagation distance becomes longer. That is, as the distance between the reader / writer and the wireless tag becomes longer, the AC reception signal received by the wireless tag becomes a weak signal.
  • the AC transmission signal may be a weak signal from the viewpoint of power suppression or from the viewpoint of suppressing radio wave interference. In this case, since the AC transmission signal is a weak signal, the AC reception signal further becomes a weak signal.
  • the predetermined drive voltage necessary for driving the light emitting diode is larger than the AC voltage at the time of reception obtained from the AC reception signal. Therefore, when the AC reception signal becomes a weak signal due to a long distance between the reader / writer and the wireless tag or because the AC transmission signal is a weak signal, the light emitting diode may be caused to emit light. There are things that cannot be done.
  • An object of the present invention is to provide a wireless tag having a light emitting diode that can cause the light emitting diode to emit light even when the AC reception signal is a weak signal.
  • the wireless tag is a wireless tag that performs wireless communication with a reader / writer that transmits an AC transmission signal to the outside, and the AC tag receives the AC transmission signal transmitted from the reader / writer.
  • a reception antenna that receives the signal, a light emitting diode that emits light when a predetermined drive voltage greater than the reception AC voltage indicating the AC voltage obtained from the AC reception signal is applied in the forward direction, and the reception antenna.
  • a boost rectifier circuit that boosts the received AC voltage and rectifies the received AC voltage to a DC voltage so that the received AC voltage obtained from the AC received signal received by the receiving antenna is equal to or higher than the predetermined drive voltage;
  • a charging circuit in which at least a part of the boosted rectified voltage boosted by the boost rectifier circuit and rectified to a DC voltage is charged;
  • the boosting rectified voltage is connected between the receiving antenna and the boosted rectified voltage is suppressed from being discharged to the receiving antenna side, and the boosting voltage is charged to the charging circuit to be equal to or higher than the predetermined driving voltage.
  • a transmission circuit for transmitting a rectified voltage to the charging circuit; and a charging voltage discharging means for discharging the charging voltage so that the charging voltage charged in the charging circuit is applied in a forward direction of the light emitting diode. It is characterized by that.
  • the AC transmission signal includes a search ID code indicating an ID code of a wireless tag that a user wants to search, and the wireless tag includes an ID code storage unit that stores a storage ID code; Checking whether or not to check whether or not the search ID code included in the AC reception signal received by the receiving antenna and the stored ID code stored in the ID code storage means satisfy a predetermined relationship.
  • the charging voltage discharging means may stop discharging of the charging voltage when the verification availability determination means determines that the verification is not successful.
  • the step-up rectifier circuit may be a circuit in which one or a plurality of voltage doubler rectifier circuits configured by using a diode and a capacitor, which substantially doubles an input AC voltage and rectifies and outputs a DC voltage, are connected. good.
  • the boosted rectified voltage is gradually charged into the charging circuit, and the charging voltage discharging means discharges the charging voltage at a predetermined timing after the charging voltage becomes equal to or higher than the predetermined driving voltage. You may make it do.
  • the charging voltage discharging means may monitor the value of the charging voltage and discharge the charging voltage at a timing when the value of the charging voltage reaches the predetermined driving voltage.
  • an expected charging time in which the charging voltage is expected to be the predetermined driving voltage is determined in advance with reference to a time when the receiving antenna receives the AC reception signal, and the charging voltage discharging means
  • the charging voltage may be discharged at the timing of charging time.
  • the transmission circuit may be constituted by a resistance element.
  • the boost rectifier circuit gradually boosts the reception AC voltage, and the transmission circuit is turned on when a voltage equal to or higher than a predetermined Zener voltage is applied to both ends, the boost rectifier circuit, A transistor that is connected between the charging circuits and controls the conduction and interruption of the current and amplifies the input current, and when the voltage gradually boosted by the boost rectifier circuit becomes equal to or higher than the Zener voltage,
  • the Zener diode and the transistor may be connected so that the transistor becomes conductive.
  • FIG. 6 is a diagram illustrating an example of a method of using wireless tags 201 to 209.
  • FIG. 2 is a block diagram illustrating an electrical configuration of a reader / writer 10.
  • FIG. 1 is an external view of a wireless tag 201.
  • FIG. 2 is a block diagram showing an electrical configuration of a wireless tag 201.
  • FIG. 3 is a block diagram showing an electrical configuration of a power supply 2115.
  • FIG. FIG. 11 is a cross-sectional view of the light emitting diode 231 for explaining a process of providing the light emitting diode 231 on the substrate 241.
  • 6 is a flowchart showing a reader / writer control process executed by the control unit 12 of the reader / writer 10. It is the flowchart which showed the radio tag control processing which CPU2111a performs.
  • FIG. 2 It is the block diagram which showed the electrical structure of the wireless tag 251 in 2nd Embodiment. It is the flowchart which showed the radio tag control processing which CPU2117a executes. It is the block diagram which showed the electric constitution of the wireless tag 261 in 3rd Embodiment.
  • 3 is a block diagram showing an electrical configuration of a power supply 2118.
  • FIG. It is a graph for demonstrating the time change of the charging voltage charged to the capacitor
  • the wireless tags 201 to 209 are attached to the books 101 to 109 stored in the book box 20.
  • the wireless tags 201 to 209 each store a storage ID code that is an individual ID code for identifying itself. Further, each of the wireless tags 201 to 209 includes a light emitting diode.
  • the reader / writer 10 is a device for searching for the wireless tags 201 to 209 attached to the books 101 to 109 desired by the user.
  • the reader / writer 10 includes an input unit 11 for inputting the storage ID codes of the wireless tags 201 to 209 attached to the books 101 to 109 that the user desires to search.
  • the user When the user wants to search for any of the books 101 to 109, the user operates the input unit 11 of the reader / writer 10 to store the storage IDs of the wireless tags 201 to 209 attached to the books 101 to 109 to be searched. A search ID code corresponding to the code is input and the transmission switch is operated.
  • the reader / writer 10 transmits an AC transmission signal 50 including a search ID code input by the user to the outside.
  • Each of the wireless tags 201 to 209 receives the AC transmission signal 50 as an AC reception signal 60.
  • Each of the wireless tags 201 to 209 determines whether or not the search ID code included in the AC reception signal 60 matches the stored ID code stored in itself.
  • the light emitting diode when it is determined that they match, the light emitting diode emits light, and when it is determined that they do not match, the light emitting diode does not emit light. Then, the user can easily find any of the wireless tags 201 to 209 that emit light from the light emitting diode, that is, any of the books 101 to 109 desired by the user.
  • the reader / writer 10 includes an input unit 11, a control unit 12, a display unit 13, a power supply 14, a modulation unit 15, a demodulation unit 16, and a transmission / reception antenna 17.
  • the input unit 11 inputs the search ID code corresponding to the storage ID code of the wireless tags 201 to 209 desired by the user, and searches for the wireless tags 201 to 209 input by the input switch.
  • a transmission switch for inputting a transmission instruction signal for transmitting an AC transmission signal including an ID code to the outside is provided.
  • the input unit 11 is connected to the control unit 12, and the search ID code and the transmission instruction signal input from the input unit 11 are input to the control unit 12.
  • the control unit 12 executes a reader / writer control process to be described later.
  • the control unit 12 has a CPU, a ROM, and a RAM (not shown).
  • the ROM stores a program for executing the reader / writer control process
  • the CPU executes the reader / writer control process according to the program stored in the ROM.
  • the RAM plays a role of temporarily storing information in the process of executing the reader / writer control process. Details of the reader / writer control process will be described later with reference to a flowchart.
  • the display unit 13 is composed of a liquid crystal display, and displays a storage ID code input from the input unit 11 or displays that when the control unit 12 receives a reply signal from the wireless tags 201 to 209. To do. Note that an organic EL display or a plasma display may be used as the display unit 13 instead of the liquid crystal display.
  • the power source 14 is connected to the control unit 12 and has an on / off switch (not shown).
  • the on / off switch When the on / off switch is operated and turned on by the user, the power supply 14 supplies a predetermined DC voltage to the control unit 12 in order to drive the control unit 12.
  • the on / off switch is operated by the user to be turned off, the supply of voltage to the control unit 12 by the power supply 14 is stopped.
  • the modulation unit 15 is connected to the control unit 12.
  • the modulation unit 15 modulates the search ID code transmitted from the control unit 12 into an AC transmission signal 50 that can be transmitted to the outside, and outputs the AC transmission signal 50.
  • the modulation unit 15 is connected to the transmission / reception antenna 17, and the AC transmission signal 50 output from the modulation unit 15 is transmitted from the transmission / reception antenna 17 to the outside.
  • the demodulator 16 is connected to the transmission / reception antenna 17 and receives return signals from the wireless tags 201 to 209 received by the transmission / reception antenna 17. Then, the demodulator 16 demodulates the reply signal and inputs the demodulated signal to the controller 12.
  • the return signal is a signal indicating that the search ID code included in the AC transmission signal 50 matches the stored ID code stored in the wireless tags 201 to 209.
  • the configuration of the wireless tags 201 to 209 will be described. Note that the wireless tags 201 to 209 differ only in the stored ID code and have the same structure. Hereinafter, the configuration of the wireless tag 201 will be described as a representative.
  • the wireless tag 201 is provided with a coiled transmitting / receiving antenna 221 on the outer periphery of a rectangular substrate 241.
  • a chip 211 is connected to the transmission / reception antenna 221.
  • the substrate 241 is provided with a thin film light emitting diode 231.
  • the substrate 241 is a polyethylene terephthalate (PET) film, and the light emitting diode 231 is an organic EL.
  • PET polyethylene terephthalate
  • the wireless tag 201 includes a transmission / reception antenna 221, a chip 211, and a light emitting diode 231.
  • the transmission / reception antenna 221 receives the AC transmission signal 50 transmitted from the reader / writer 10 as the AC reception signal 60.
  • the transmission / reception antenna 221 is connected to the chip 211 and inputs the received AC reception signal 60 to the chip 211. Further, when the reply signal is output from the chip 211, the transmission / reception antenna 221 transmits the reply signal to the outside.
  • the chip 211 includes a storage unit 2112, a demodulation unit 2113, a modulation unit 2114, a power source 2115, a light emitting diode drive driver 2116, and a control unit 2111 connected thereto.
  • the storage unit 2112 stores a storage ID code.
  • the demodulator 2113 is connected to the transmission / reception antenna 221 and demodulates the AC reception signal 60 transmitted from the transmission / reception antenna 221.
  • the demodulator 2113 is connected to the controller 2111 and inputs the demodulated signal to the controller 2111.
  • Modulation section 2114 is connected to control section 2111, modulates the reply signal input from control section 2111 into a format that can be transmitted to the outside, and outputs the modulated reply signal.
  • the modulation unit 2114 is connected to the transmission / reception antenna 221, and the reply signal output from the modulation unit 2114 is transmitted from the transmission / reception antenna 221 to the outside.
  • the power supply 2115 is connected to the transmission / reception antenna 221, and rectifies the reception AC voltage obtained from the AC reception signal 60 received by the transmission / reception antenna 221 into a DC voltage.
  • the power supply 2115 drives the control unit 2111.
  • the control unit 2111 is connected to the control unit 2111, and a rectified DC voltage is supplied to the control unit 2111.
  • the power supply 2115 is connected to the anode terminal 1 of the light emitting diode 231 via a light emitting diode drive driver 2116 described later. When a predetermined condition is satisfied, a DC voltage is applied from the power supply 2115 to the light emitting diode 231. Supplied.
  • the power source 2115 includes N voltage doubler rectifier circuits each configured by using a diode and a capacitor in order to double the input AC voltage and rectify and output the DC voltage.
  • N is a positive number) connected N double voltage rectifier circuit 2115a, resistor element R1 having one end connected to output terminal 2115b of N voltage doubler rectifier circuit 2115a, and capacitor Ca connected to resistor element R1. .
  • the N voltage doubler rectifier circuit 2115a is a circuit in which N voltage doubler rectifier circuits are connected as described above, the N voltage doubler rectifier circuit 2150a rectifies the input AC voltage into a DC voltage and outputs it. Therefore, the N-fold voltage rectifier circuit 2115a rectifies the AC voltage during reception obtained from the AC reception signal 60 received by the transmission / reception antenna 221 approximately N times, and rectifies the DC voltage to output it.
  • the number N of connection stages of the voltage doubler rectifier circuit is determined so that the output voltage is equal to or higher than the driving voltage of the light emitting diode 231 described later.
  • the N-fold voltage rectifier circuit 2115a boosts the reception AC voltage so that the reception AC voltage obtained from the AC reception signal 60 received by the transmission / reception antenna 221 is equal to or higher than the driving voltage of the light emitting diode 231. At the same time, it is rectified to DC voltage.
  • a part of the DC voltage rectified by the N-fold voltage rectifier circuit 2115a is charged to the capacitor Ca via the resistance element R1. Further, the resistance element R1 suppresses the charging voltage charged in the capacitor Ca from being discharged to the transmitting / receiving antenna 221 side. Further, the resistance element R1 transmits the DC voltage rectified by the N-fold voltage rectifier circuit 2115a to the capacitor Ca so that the charging voltage charged in the capacitor Ca becomes equal to or higher than the driving voltage of the light emitting diode 231. Note that the N-fold voltage rectifier circuit 2115a gradually boosts and rectifies the AC voltage during reception, so that the capacitor Ca is gradually charged.
  • the light emitting diode driver 2116 is a field effect transistor, the gate terminal is connected to the control unit 2111, the source terminal is connected to the power source 2115, and the drain terminal is the light emitting diode 231.
  • the anode terminal 1 is connected.
  • the light emitting diode driver 2116 serves as a switching element. When a high level signal is input from the control unit 2111 to the gate terminal, the source-drain is electrically connected, and the low level signal is output from the control unit 2111. When the signal is input to the gate terminal, the source and drain are disconnected. In the present embodiment, a low level signal (0 V) is input from the control unit 2111 during normal times. That is, during normal times, the light emitting diode driver 2116 is in a cut-off state.
  • the control unit 2111 executes a wireless tag control process described later.
  • the control unit 2111 monitors the voltage value of the power supply supplied from the power supply 2115.
  • the control unit 2111 includes a CPU 2111a, a ROM 2111b, and a RAM 2111c.
  • the ROM 2111b stores a program for executing the RFID tag control process
  • the CPU 2111a executes the RFID tag control process according to the program stored in the ROM 2111b.
  • the RAM 2111c has a role of temporarily storing information in the process of executing the wireless tag control process.
  • the light emitting diode 231 is an organic EL
  • the anode terminal 1 is connected to the drain terminal of the light emitting diode drive driver 2116
  • the cathode terminal 2 is connected to the ground.
  • the light emitting diode 231 emits light when a voltage higher than a predetermined driving voltage is applied between the anode and the cathode.
  • the light emitting diode 231 includes an anode terminal 1, a cathode terminal 2, an anode 231a, a cathode 231b, a light emitting layer 231c, an insulating layer 231d, and a cathode supporting laminate film 231e.
  • a metal layer such as Cu is formed as the anode terminal 1 by etching or screen printing.
  • a metal layer such as Cu is formed as the cathode terminal 2 by etching or screen printing.
  • an ITO (Indium Tin Oxide) layer is formed as the anode 231a by screen printing or ink jet printing.
  • the light emitting layer 231c, PPV, PF, PVK, or the like is formed by screen printing or ink jet printing.
  • the insulating layer 231d is formed by screen printing or ink jet printing.
  • the cathode 231b is formed in advance on the cathode support laminate film 231e by vapor deposition.
  • the cathode support laminate film 231e on which the cathode 231b is formed is pressed by heat.
  • Al is used for the cathode 231b.
  • the cathode support laminate film 231e is made of plastic such as PET.
  • the chip 211 and the transmission / reception antenna 221 are installed on the substrate 241 after the light emitting diode 231 is formed on the substrate 241.
  • This reader / writer control process executed by the control unit 12 of the reader / writer 10 will be described based on the flowchart of FIG.
  • This reader / writer control process is started when the on / off switch of the power supply 14 is turned on, and thereafter is executed at regular intervals.
  • step S11 it is determined whether or not the user has operated the input switch of the input unit 11 to input a search ID code. If the search ID code is input (S11: YES), the process proceeds to step S12. If the search ID code is not input (S11: NO), the process of this flowchart ends. .
  • step S12 it is determined whether or not the transmission switch of the input unit 11 has been operated. This is determined by whether or not a transmission instruction signal is input from the input unit 11. If the transmission switch of the input unit 11 is operated (S12: YES), the process proceeds to step S13, and if the transmission switch of the input unit 11 is not operated (S12). : NO), this step is executed again.
  • step S13 the search ID code is transmitted to the outside.
  • the search ID code is input to the modulation unit 15.
  • the modulation unit 15 modulates the input search ID code into an AC transmission signal 50 that is a signal that can be transmitted to the outside, and transmits the AC transmission signal 50 to the outside from the transmission / reception antenna 17 (S13).
  • step S14 it is determined whether or not a reply signal from the wireless tags 201 to 209 has been received. Specifically, when the wireless tags 201 to 209 transmit a reply signal to the outside, the transmission / reception antenna 17 receives the reply signal. Then, the reply signal received by the transmission / reception antenna 17 is input to the demodulation unit 16. The reply signal input to the demodulator 16 is demodulated, and the demodulated reply signal is input to the controller 12. Therefore, the control unit 12 determines whether or not the reply signals from the wireless tags 201 to 209 are received depending on whether or not a reply signal is input from the demodulation unit 16 (S14).
  • step S15 If the reply signals from the wireless tags 201 to 209 are received (S14: YES), the process proceeds to step S15, and if the reply signals from the wireless tags 201 to 209 are not received (S14: NO). ), The reader / writer control process of this flowchart ends.
  • the wireless tags 201 to 209 have not received or received the AC transmission signal 50 transmitted in step S13, there may be a case where the collation is not permitted in the collation determination. If the wireless tags 201 to 209 have not received the AC transmission signal 50, it is necessary to bring the reader / writer 10 closer to the wireless tags 201 to 209 and transmit the AC transmission signal 50. Further, in the collation permission / inhibition determination, when the collation is rejected, it is necessary to transmit the AC transmission signal 50 toward the book to which another wireless tag is attached.
  • step S15 the display unit 13 displays that the search ID code included in the AC transmission signal 50 transmitted in step S13 matches the stored ID code stored in the wireless tags 201 to 209. Informed. For example, a message “verification is possible” is displayed. Thereafter, the reader / writer control process of this flowchart ends. On the other hand, when the reply signals from the wireless tags 201 to 209 are not received (No at Step S14), the notification is not made.
  • step S21 a search ID code is received. Specifically, the AC reception signal 60 received by the transmission / reception antenna 221 is input to the demodulation unit 2113.
  • the demodulator 2113 demodulates the input AC reception signal 60 into a search ID code, and inputs the search ID code to the CPU 2111a.
  • the input search ID code is collated with the storage ID code stored in the storage unit 2112.
  • subsequent step S23 it is determined whether or not the search ID code and the stored ID code match as a result of the collation in step S22. If the search ID code matches the storage ID code (S23: YES), the process proceeds to step S24. If the search ID code does not match the storage ID code (S23: NO) ), The wireless tag control process ends. In this case, since the electric charge charged in the capacitor Ca of the power supply 2115 is not discharged to the light emitting diode 231, the light emitting diode 231 does not emit light. In the present embodiment, it is determined whether or not the search ID code and the storage ID code match in step S23, but whether or not the search ID code and the storage ID code satisfy a predetermined relationship. May be determined.
  • step S24 it is determined whether or not the capacitor Ca constituting the power source 2115 is charged to a driving voltage necessary for causing the light emitting diode 231 to emit light. This is determined based on the value of the voltage input from the power source 2115 (the charging voltage charged in the capacitor Ca). If the capacitor Ca is charged until the drive voltage is reached (S24: YES), the process proceeds to step 25, and if the capacitor Ca is not charged until the drive voltage is reached, again, The determination process of this step is executed.
  • step S25 a discharge instruction signal which is a high-level signal is input to the gate terminal of the light emitting diode driver 2116 so that the light emitting diode driver 2116 becomes conductive.
  • the source-drain of the light-emitting diode driver 2116 conducts, and the charging voltage charged in the capacitor Ca of the power source 2115 is applied between the anode and cathode of the light-emitting diode 231.
  • the light emitting diode 231 emits light. Accordingly, when the user visually recognizes that the light emitting diode 231 emits light, the user can find the book 101 being searched for in the book box 20.
  • a reply signal indicating that the search ID code matches the stored ID code is transmitted to the outside.
  • the return signal is input to modulation section 2114.
  • Modulation section 2114 modulates the input reply signal into a format that can be transmitted to the outside, and transmits the modulated reply signal from transmission / reception antenna 221 to the outside.
  • the reader / writer 10 that has received this reply signal displays, for example, “verification is now possible” on the display unit 13 as described above. And this flowchart is complete
  • the AC transmission signal 50 including the search ID code transmitted from the reader / writer 10 is received as the AC reception signal 60.
  • the power supply 2115 has the N-fold voltage rectifier circuit 2115a
  • the AC voltage at the time of reception obtained from the AC received signal 60 is approximately N times and is rectified to a direct current and output.
  • the number N of connection stages of the voltage doubler rectifier circuit is determined so that the output voltage is equal to or higher than the driving voltage of the light emitting diode 231. Therefore, even if the AC reception signal 60 is a weak signal, it is boosted and rectified by the power source 2115, so that the light emitting diode 231 emits light when the search ID code matches the stored ID code.
  • the light emitting diode 231 provided in the wireless tag 201 can emit light, so that the usability of the wireless tag 201 can be improved.
  • the AC transmission signal 50 transmitted from the reader / writer 10 is a weak signal, the light emitting diode 231 can emit light, so that power consumption can be suppressed.
  • the cost can be reduced.
  • the CPU 2111a of the control unit 2111 monitors the value of the charging voltage charged in the capacitor Ca of the power supply 2115, and the light emitting diode after determining that the search ID code matches the stored ID code A discharge instruction signal is input to the gate terminal of the light emitting diode driver 2116 at the timing when the driving voltage 231 is reached. Thereby, the light emitting diode 231 can emit light quickly and reliably.
  • a resistance element R1 is connected between the N-fold voltage rectifier circuit 2115a and the capacitor Ca.
  • boost rectifier circuit an N double voltage rectifier in which one or a plurality of voltage double rectifier circuits that rectify an input AC voltage constituted by using a diode and a capacitor and rectify it to a DC voltage and output it is connected. Since the circuit 2115a is employed, the AC voltage at the time of reception can be boosted and rectified to a DC voltage so as to be a voltage desired by the user with a simple configuration.
  • the wireless tags 202 to 209 other than the wireless tag 201 have the same configuration as the wireless tag 201 except for the stored ID code, and therefore, the same effect as the wireless tag 201 can be obtained.
  • wireless tags having different storage ID codes are attached to a plurality of books, as in the first embodiment. Then, in order to find a desired book, the user causes the wireless tag attached to the desired book to emit light using a reader / writer.
  • FIG. 9 is a block diagram showing an electrical configuration of the wireless tag 251 of the present embodiment.
  • symbol is attached
  • the wireless tag 251 of the present embodiment has the same configuration as the wireless tag 201 to 209 of the first embodiment except for the control unit 2117.
  • the configuration of the reader / writer 10 is the same between the first embodiment and the second embodiment.
  • the wireless tag 251 is attached to the book 151.
  • the wireless tag 251 of the present embodiment will be described focusing on differences from the first embodiment.
  • the control unit 2117 executes the wireless tag control process similarly to the first embodiment, but the content is different from that of the first embodiment. From this relationship, in the present embodiment, the control unit 2117 does not monitor the voltage value supplied from the power source 2115.
  • the wireless tag control process in the present embodiment will be described later using a flowchart.
  • the control unit 2117 includes a CPU 2117a, a ROM 2117b, and a RAM 2117c.
  • the ROM 2117b stores a program for executing the RFID tag control process
  • the CPU 2117a executes the RFID tag control process according to the program stored in the ROM 2117b.
  • the RAM 2117c plays a role of temporarily storing information in the process of executing the wireless tag control process.
  • the charging voltage charged in the capacitor Ca of the power source 2115 is the drive voltage of the light emitting diode 231 based on the time when the transmission / reception antenna 221 receives the AC reception signal 60 from the capacitance of the capacitor Ca and the value of the resistance element R1.
  • the expected charging time expected to become can be determined in advance.
  • the estimated charging time is stored in the ROM 2117b, and the estimated charging time is referred to in the process of executing the wireless tag control process.
  • step S21 a search ID code is received.
  • step S31 time measurement is started in order to measure the expected charging time.
  • the input search ID code is collated with the storage ID code stored in the storage unit 2112.
  • step S23 it is determined whether or not the search ID code and the stored ID code match as a result of the collation. If the search ID code matches the storage ID code (S23: YES), the process proceeds to step S32. If the search ID code does not match the storage ID code (S23: NO) ), The wireless tag control process ends. In this case, the light emitting diode 231 does not emit light.
  • Step S32 it is determined whether or not the measurement time started in Step S31 has passed the expected charging time. If the expected charging time has elapsed (S32: YES), the process proceeds to step S25. If the expected charging time has not yet elapsed (S32: NO), this step is executed again.
  • step S25 a discharge instruction signal which is a high-level signal is input to the gate terminal of the light emitting diode driver 2116 so that the light emitting diode driver 2116 becomes conductive.
  • the source-drain of the light-emitting diode driver 2116 conducts, and the charging voltage charged in the capacitor Ca of the power source 2115 is applied between the anode and cathode of the light-emitting diode 231.
  • This charging voltage is approximately equal to the driving voltage of the light emitting diode 231. Therefore, the light emitting diode 231 emits light.
  • the user can find the book 151 searched by himself / herself from the book box.
  • the expected charging time is stored in the ROM 2117b, and the expected charging time is referred to in the process of executing the wireless tag control process.
  • the transmission / reception antenna 221 receives an AC reception signal and the search ID code included in the AC reception signal matches the stored ID code
  • the CPU 2117a of the control unit 2117 receives the AC reception.
  • the discharge instruction signal is input to the gate terminal of the light emitting diode driver 2116 at the timing when the expected charging time has elapsed with respect to the time when the signal is received.
  • the light emitting diode 231 may be caused to emit light at the timing of the expected charging time without monitoring the value of the charging voltage charged in the capacitor Ca. Even if it does in this way, the effect similar to 1st Embodiment can be acquired.
  • FIG. 11 is a block diagram showing an electrical configuration of the wireless tag 261 of the present embodiment.
  • the wireless tag 261 differs from the wireless tags 201 to 209, 251 of the first and second embodiments only in the power source 2118, and the other configurations are the same.
  • the method of using the wireless tag 261 and the operation of the wireless tag 261 are the same as those in the first and second embodiments.
  • the reader / writer 10 is the same as that in the first and second embodiments. Note that the wireless tag 261 is attached to the book 161.
  • the wireless tag 261 of the present embodiment will be described focusing on differences from the first and second embodiments.
  • FIG. 12 is a block diagram showing an electrical configuration of the power source 2118 of the wireless tag 261 of the present embodiment.
  • the power source 2118 includes an N-fold voltage rectifier circuit 2115a, a bipolar transistor Tr, a Zener diode Dz, a resistance element R2, and a capacitor Ca.
  • the N-fold voltage rectifier circuit 2115a and the capacitor Ca are the same as those in the first and second embodiments.
  • the power supply 2118 gradually boosts and rectifies the reception AC voltage obtained from the AC reception signal received by the transmission / reception antenna 221 by the N-fold voltage rectifier circuit 2115a, and outputs a part of the output voltage.
  • capacitor Ca Charge with capacitor Ca.
  • the resistor element R1 is connected between the N-fold voltage rectifier circuit 2115a and the capacitor Ca.
  • the bipolar transistor Tr1 instead of the resistor element R1, the bipolar transistor Tr1 is connected.
  • the bipolar transistor Tr is a PNP transistor, the emitter terminal of which is connected to the output terminal 2115b of the N-fold voltage rectifier circuit 2115a, the collector terminal is connected to the capacitor Ca, and the base terminal is a Zener diode Dz. Is connected to the cathode terminal. The anode terminal of the Zener diode Dz is connected to the ground via the resistance element R2.
  • the transmission / reception antenna 221 receives the AC reception signal 60
  • a reception AC voltage obtained from the AC reception signal 60 is input to the N-fold voltage rectifier circuit 2115a, and the reception AC voltage is The pressure is gradually increased and rectified.
  • the potential at the output terminal 2115b of the N-fold voltage rectifier circuit 2115a is gradually increased, the potential at the base terminal of the bipolar transistor Tr is also gradually increased.
  • the difference (voltage applied to the Zener diode Dz) between the potential of the base terminal of the bipolar transistor Tr (the potential of the cathode terminal of the Zener diode Dz) and the potential of the anode terminal of the Zener diode Dz (ground) is the Zener voltage.
  • FIG. 13 is a diagram for explaining the time change of the charging voltage charged in the capacitor Ca.
  • a curve 3 shows a time change of the voltage applied to the Zener diode Dz.
  • Curve 4 shows the time change of the charging voltage charged to the capacitor Ca when the resistor element R1 is connected between the N-fold voltage rectifier circuit 2115a and the capacitor Ca as in the first and second embodiments.
  • Curve 5 shows a capacitor when a circuit composed of a bipolar transistor Tr, a Zener diode Dz, and a resistor element R2 is connected between the N-fold voltage rectifier circuit 2115a and the capacitor Ca instead of the resistor element R1. The time change of the charging voltage charged to Ca is shown. As shown in FIG.
  • the curve 4 has a substantially proportional relationship between time and the charging voltage charged in the capacitor Ca.
  • the curve 5 is substantially zero until the curve 3 reaches the Zener voltage, and after the time when the curve 3 exceeds the Zener voltage, the charging voltage charged in the capacitor Ca changes rapidly. . Then, the curve 5 reaches the driving voltage of the light emitting diode 231 at a time earlier than the curve 4. That is, by using the bipolar transistor Tr and the Zener diode Dz, the capacitor Ca can be charged with the drive voltage of the light emitting diode 231 earlier than when the resistor element R1 is used.
  • the wireless tag according to the present embodiment employs a circuit including the bipolar transistor Tr, the Zener diode Dz, and the resistance element R2 as the transmission circuit.
  • the capacitor Ca can be charged with the drive voltage of the light emitting diode 231 earlier than when the resistance element R1 is employed in the transmission circuit.
  • FIG. 14 is a diagram for explaining a wireless tag system including the wireless tag 271, the reader / writer 70, and the server 80 according to the present embodiment.
  • the reader / writer 70 is installed at a plurality of points. Each reader / writer 70 is connected to the server 80 by wire.
  • the wireless tag 271 is possessed by the user.
  • the configuration of the reader / writer 70 is the same as that of the reader / writer 10, but the processing executed by a control unit (not shown) is different from the processing executed by the control unit 12.
  • the configuration of the wireless tag 271 is the same as that of the wireless tags 201 to 209, but the processing executed by a control unit (not shown) is different from the processing executed by the control unit 2111.
  • Each reader / writer 70 periodically transmits an AC transmission signal 51 for calling the wireless tag 271 to the outside.
  • the wireless tag 271 receives the AC transmission signal 51 as the AC reception signal 61, and then transmits the storage ID code to the reader / writer 70.
  • the reader / writer 70 receives the stored ID code and transmits it to the server 80.
  • the server 80 stores the storage ID code transmitted from the reader / writer 70 in association with information (name, address, etc.) regarding the location where the reader / writer 70 is installed and the current time.
  • the server 80 stores information (name, age, address, etc.) related to the user who owns the wireless tag 271 in association with the storage ID code stored in the wireless tag 271.
  • FIG. 14 shows a state where there is a user who has a wireless tag 271 at point A.
  • the charging voltage is discharged at the timing when the charging voltage reaches the driving voltage of the light emitting diode 231 by monitoring the value of the charging voltage or measuring the time.
  • the light emitting diode 231 emits light.
  • the charging voltage may be discharged at any timing to cause the light emitting diode 231 to emit light. If the value of the charging voltage is large, the light emitting diode 231 can be made to emit light for such a long time, so that the user can easily understand that the light emitting diode 231 emits light.
  • the wireless tag of the present disclosure when an AC reception signal is received, a charging voltage equal to or higher than a predetermined drive voltage is applied to the light emitting diode, so the AC reception signal is a weak signal.
  • the light emitting diode can emit light. That is, even when the distance between the reader / writer and the wireless tag is increased, the light emitting diode provided in the wireless tag can be caused to emit light, so that the usability of the wireless tag can be improved.
  • the AC transmission signal transmitted from the reader / writer is a weak signal, the light emitting diode can be caused to emit light, and thus power consumption can be suppressed.
  • the boost rectifier circuit is configured by using a diode and a capacitor, and is a circuit in which one or a plurality of voltage doubler rectifier circuits that rectify an input AC voltage and rectify it to a DC voltage for output. Therefore, the AC voltage during reception can be boosted and rectified to a DC voltage so as to be a voltage desired by the user with a simple configuration.
  • the charging voltage is discharged at a predetermined timing after the charging voltage becomes equal to or higher than the predetermined driving voltage, the light emission timing of the light emitting diode can be controlled, so that the usability of the wireless tag can be improved.
  • the expected charging time that the charging voltage is expected to become the predetermined driving voltage is determined in advance with reference to the time when the receiving antenna receives the AC reception signal. Since the charging voltage discharging means discharges the charging voltage at the timing of the expected charging time, the light emitting diode can be made to emit light quickly.
  • the transmission circuit is configured by a resistance element, it is possible to charge the charging circuit with a simple configuration with less load due to the boosted rectified voltage.
  • the boosted rectified voltage transmission circuit is configured by a circuit including a transistor and a Zener diode
  • the transistor does not conduct until the boosted rectified voltage exceeds the Zener voltage, but the boosted rectified voltage exceeds the Zener voltage.
  • the transistor becomes conductive and the boosted rectified voltage is transmitted to the charging circuit.
  • the charging circuit is charged with a voltage equal to or higher than the predetermined drive voltage earlier than when the resistance element is used as the transmission circuit.

Abstract

In a radio tag provided with a light-emitting diode for receiving an AC transmission signal transmitted from a reader/writer as an AC received signal, power supply (2115) of the radio tag consists of an N-fold voltage rectifier circuit (2115a) in which one or more double voltage rectifier circuits are connected. As a result, even if the AC received signal is a faint signal, the power supply (2115) raises and rectifies the AC voltage at the time of reception obtained from the AC received signal, thus allowing the light-emitting diode to emit light.

Description

無線タグWireless tag
 本発明は、発光ダイオードを備えた無線タグに関する。 The present invention relates to a wireless tag including a light emitting diode.
 従来、複数の物品が近接した場所に位置している場合に、その中からユーザが所望する物品を検索するために、各物品に発光ダイオードを備えた無線タグを装着して、リーダ・ライタと各無線タグとの間で無線通信を行って、ユーザが所望する物品に装着された無線タグの発光ダイオードを発光させる技術が提案されている(例えば、特許文献1)。 Conventionally, when a plurality of articles are located in close proximity, in order to search for articles desired by the user, a wireless tag equipped with a light emitting diode is attached to each article, and a reader / writer There has been proposed a technique for performing light communication with each wireless tag to emit light from a light emitting diode of the wireless tag attached to an article desired by a user (for example, Patent Document 1).
 具体的には、ユーザはリーダ・ライタを用いて、検索したい無線タグのIDコードを示す検索IDコードを含む電波(以下、リーダ・ライタから送信される電波を交流送信信号と言う。) を外部に送信して、各無線タグにその交流送信信号を交流受信信号として受信させる。各無線タグには、自身を識別するためのIDコードである記憶IDコードが記憶されている。そして、各無線タグは、交流受信信号に含まれている検索IDコードと自身に記憶されている記憶IDコードとが所定の関係を満たしているか否かの照合を行い、照合できた場合には、自身に備えられている発光ダイオードを発光させ、照合できない場合は発光させない。その結果、ユーザは発光されている無線タグにより、ユーザが所望する物品を容易に検索することができる。
特開2006-24018号公報
Specifically, the user uses a reader / writer to externally transmit a radio wave including a search ID code indicating an ID code of a wireless tag to be searched (hereinafter, a radio wave transmitted from the reader / writer is referred to as an AC transmission signal). And each wireless tag receives the AC transmission signal as an AC reception signal. Each wireless tag stores a storage ID code that is an ID code for identifying itself. Each wireless tag collates whether or not the search ID code included in the AC reception signal and the stored ID code stored in the radio tag satisfy a predetermined relationship. The light emitting diode provided in itself emits light, and if it cannot be verified, it does not emit light. As a result, the user can easily search for an article desired by the user using the wireless tag that emits light.
JP 2006-24018 A
 ところで、上記交流送信信号は伝搬する距離が長くなるほど減衰していく。すなわち、リーダ・ライタと無線タグとの間の距離が長くなるほど、無線タグが受信する上記交流受信信号は微弱信号となる。また、電力抑制の観点から、又は電波の混信を抑制する観点からあえて上記交流送信信号を微弱信号にする場合もある。この場合、交流送信信号が微弱信号なので、交流受信信号はさらに微弱信号となる。 By the way, the AC transmission signal attenuates as the propagation distance becomes longer. That is, as the distance between the reader / writer and the wireless tag becomes longer, the AC reception signal received by the wireless tag becomes a weak signal. In some cases, the AC transmission signal may be a weak signal from the viewpoint of power suppression or from the viewpoint of suppressing radio wave interference. In this case, since the AC transmission signal is a weak signal, the AC reception signal further becomes a weak signal.
 一方、発光ダイオードを駆動するのに必要な所定駆動電圧は交流受信信号から得られる受信時交流電圧よりも大きくなっている。したがって、リーダ・ライタと無線タグとの間の距離が長いことにより、又は交流送信信号が微弱信号であることにより、交流受信信号が微弱信号となった場合には、発光ダイオードを発光させることができないことがある。 On the other hand, the predetermined drive voltage necessary for driving the light emitting diode is larger than the AC voltage at the time of reception obtained from the AC reception signal. Therefore, when the AC reception signal becomes a weak signal due to a long distance between the reader / writer and the wireless tag or because the AC transmission signal is a weak signal, the light emitting diode may be caused to emit light. There are things that cannot be done.
 本発明は、発光ダイオードを備えた無線タグにおいて、交流受信信号が微弱信号であった場合でも、発光ダイオードを発光させることができる無線タグを提供することを目的とする。 An object of the present invention is to provide a wireless tag having a light emitting diode that can cause the light emitting diode to emit light even when the AC reception signal is a weak signal.
 本開示によれば、無線タグは、交流送信信号を外部に送信するリーダ・ライタとの間で無線通信を行う無線タグであって、前記リーダ・ライタから送信された前記交流送信信号を交流受信信号として受信する受信アンテナと、前記交流受信信号から得られる交流電圧を示す受信時交流電圧よりも大きい所定駆動電圧が順方向に印加されたときに発光する発光ダイオードと、前記受信アンテナに接続され、前記受信アンテナが受信した前記交流受信信号から得られる前記受信時交流電圧が前記所定駆動電圧以上となるように、その受信時交流電圧を昇圧するとともに直流電圧に整流する昇圧整流回路と、前記昇圧整流回路によって昇圧され且つ直流電圧に整流された昇圧整流電圧の少なくとも一部が充電される充電回路と、前記充電回路と前記受信アンテナとの間に接続され、前記昇圧整流電圧が前記受信アンテナ側に放電されるのを抑制して、前記充電回路に充電される充電電圧が前記所定駆動電圧以上となるように、前記昇圧整流電圧を前記充電回路に伝達させる伝達回路と、前記充電回路に充電されている充電電圧が前記発光ダイオードの順方向に印加されるように、その充電電圧を放電する充電電圧放電手段とを備えることを特徴とする。 According to the present disclosure, the wireless tag is a wireless tag that performs wireless communication with a reader / writer that transmits an AC transmission signal to the outside, and the AC tag receives the AC transmission signal transmitted from the reader / writer. A reception antenna that receives the signal, a light emitting diode that emits light when a predetermined drive voltage greater than the reception AC voltage indicating the AC voltage obtained from the AC reception signal is applied in the forward direction, and the reception antenna. A boost rectifier circuit that boosts the received AC voltage and rectifies the received AC voltage to a DC voltage so that the received AC voltage obtained from the AC received signal received by the receiving antenna is equal to or higher than the predetermined drive voltage; A charging circuit in which at least a part of the boosted rectified voltage boosted by the boost rectifier circuit and rectified to a DC voltage is charged; The boosting rectified voltage is connected between the receiving antenna and the boosted rectified voltage is suppressed from being discharged to the receiving antenna side, and the boosting voltage is charged to the charging circuit to be equal to or higher than the predetermined driving voltage. A transmission circuit for transmitting a rectified voltage to the charging circuit; and a charging voltage discharging means for discharging the charging voltage so that the charging voltage charged in the charging circuit is applied in a forward direction of the light emitting diode. It is characterized by that.
 また、本開示では、前記交流送信信号には、ユーザが検索したい無線タグのIDコードを示す検索IDコードが含まれており、前記無線タグは、記憶IDコードを記憶するIDコード記憶手段と、前記受信アンテナが受信した前記交流受信信号に含まれる前記検索IDコードと前記IDコード記憶手段に記憶されている前記記憶IDコードとが所定の関係を満たすか否かの照合可否判定をする照合可否判定手段とを有し、前記充電電圧放電手段は、前記照合可否判定手段によって、照合否と判定された場合には、前記充電電圧の放電を中止するようにしても良い。 According to the present disclosure, the AC transmission signal includes a search ID code indicating an ID code of a wireless tag that a user wants to search, and the wireless tag includes an ID code storage unit that stores a storage ID code; Checking whether or not to check whether or not the search ID code included in the AC reception signal received by the receiving antenna and the stored ID code stored in the ID code storage means satisfy a predetermined relationship. The charging voltage discharging means may stop discharging of the charging voltage when the verification availability determination means determines that the verification is not successful.
 また、前記昇圧整流回路は、ダイオードとコンデンサとを用いて構成された、入力交流電圧を略2倍にして且つ直流電圧に整流して出力する倍圧整流回路を単数又は複数接続した回路としても良い。 The step-up rectifier circuit may be a circuit in which one or a plurality of voltage doubler rectifier circuits configured by using a diode and a capacitor, which substantially doubles an input AC voltage and rectifies and outputs a DC voltage, are connected. good.
 また、前記充電回路に、前記昇圧整流電圧が徐々に充電されていき、前記充電電圧放電手段は、前記充電電圧が前記所定駆動電圧以上になった以降の、所定のタイミングで前記充電電圧を放電するようにしても良い。 Further, the boosted rectified voltage is gradually charged into the charging circuit, and the charging voltage discharging means discharges the charging voltage at a predetermined timing after the charging voltage becomes equal to or higher than the predetermined driving voltage. You may make it do.
 また、前記充電電圧放電手段は、前記充電電圧の値を監視して、前記充電電圧の値が前記所定駆動電圧に達したタイミングで前記充電電圧を放電するようにしても良い。 Further, the charging voltage discharging means may monitor the value of the charging voltage and discharge the charging voltage at a timing when the value of the charging voltage reaches the predetermined driving voltage.
 また、前記受信アンテナが前記交流受信信号を受信した時間を基準として、前記充電電圧が前記所定駆動電圧になると予想される予想充電時間が予め定められており、前記充電電圧放電手段は、前記予想充電時間のタイミングで前記充電電圧を放電するようにしても良い。また、前記伝達回路を抵抗素子から構成しても良い。 Further, an expected charging time in which the charging voltage is expected to be the predetermined driving voltage is determined in advance with reference to a time when the receiving antenna receives the AC reception signal, and the charging voltage discharging means The charging voltage may be discharged at the timing of charging time. Further, the transmission circuit may be constituted by a resistance element.
 また、前記昇圧整流回路は、前記受信時交流電圧を徐々に昇圧し、前記伝達回路は、両端に所定ツェナ電圧以上の電圧が印加されたときに導通するツェナダイオードと、前記昇圧整流回路と前記充電回路の間に接続され、電流の導通及び遮断を制御するとともに入力電流を増幅するトランジスタとを有し、前記昇圧整流回路によって徐々に昇圧された電圧が前記ツェナ電圧以上となったときに、前記トランジスタが導通するように、前記ツェナダイオードと前記トランジスタが接続されているようにしても良い。 The boost rectifier circuit gradually boosts the reception AC voltage, and the transmission circuit is turned on when a voltage equal to or higher than a predetermined Zener voltage is applied to both ends, the boost rectifier circuit, A transistor that is connected between the charging circuits and controls the conduction and interruption of the current and amplifies the input current, and when the voltage gradually boosted by the boost rectifier circuit becomes equal to or higher than the Zener voltage, The Zener diode and the transistor may be connected so that the transistor becomes conductive.
無線タグ201~209の使用方法の一例を示した図である。6 is a diagram illustrating an example of a method of using wireless tags 201 to 209. FIG. リーダ・ライタ10の電気的構成を示したブロック図である。2 is a block diagram illustrating an electrical configuration of a reader / writer 10. FIG. 無線タグ201の外観図である。1 is an external view of a wireless tag 201. FIG. 無線タグ201の電気的構成を示したブロック図である。2 is a block diagram showing an electrical configuration of a wireless tag 201. FIG. 電源2115の電気的構成を示したブロック図である。3 is a block diagram showing an electrical configuration of a power supply 2115. FIG. 発光ダイオード231を基板241に設ける工程を説明するための発光ダイオード231の断面図である。FIG. 11 is a cross-sectional view of the light emitting diode 231 for explaining a process of providing the light emitting diode 231 on the substrate 241. リーダ・ライタ10の制御部12が実行するリーダ・ライタ制御処理を示したフローチャートである。6 is a flowchart showing a reader / writer control process executed by the control unit 12 of the reader / writer 10. CPU2111aが実行する無線タグ制御処理を示したフローチャートである。It is the flowchart which showed the radio tag control processing which CPU2111a performs. 第2実施形態における無線タグ251の電気的構成を示したブロック図である。It is the block diagram which showed the electrical structure of the wireless tag 251 in 2nd Embodiment. CPU2117aが実行する無線タグ制御処理を示したフローチャートである。It is the flowchart which showed the radio tag control processing which CPU2117a executes. 第3実施形態における無線タグ261の電気的構成を示したブロック図である。It is the block diagram which showed the electric constitution of the wireless tag 261 in 3rd Embodiment. 電源2118の電気的構成を示したブロック図である。3 is a block diagram showing an electrical configuration of a power supply 2118. FIG. コンデンサCaに充電される充電電圧の時間変化を説明するためのグラフである。It is a graph for demonstrating the time change of the charging voltage charged to the capacitor | condenser Ca. 第4実施形態における、無線タグ271、リーダ・ライタ70及びサーバ80を備える無線タグシステムを説明するための図である。It is a figure for demonstrating the wireless tag system provided with the wireless tag 271, the reader / writer 70, and the server 80 in 4th Embodiment.
 (第1実施形態)
 以下、本開示に係る無線タグの第1実施形態について図面を参照して説明する。図1に示すように、各無線タグ201~209は、書籍箱20に収納されている書籍101~109に貼付されている。また、無線タグ201~209には、自身を識別するための個別のIDコードである記憶IDコードが各々記憶されている。さらに、各無線タグ201~209は、各々、発光ダイオードを備えている。一方、リーダ・ライタ10は、ユーザが所望する書籍101~109に貼付されている無線タグ201~209を検索するための機器である。そのリーダ・ライタ10には、ユーザが検索を所望する書籍101~109に貼付されている無線タグ201~209の記憶IDコードを入力する入力部11が備えられている。
(First embodiment)
Hereinafter, a first embodiment of a wireless tag according to the present disclosure will be described with reference to the drawings. As shown in FIG. 1, the wireless tags 201 to 209 are attached to the books 101 to 109 stored in the book box 20. The wireless tags 201 to 209 each store a storage ID code that is an individual ID code for identifying itself. Further, each of the wireless tags 201 to 209 includes a light emitting diode. On the other hand, the reader / writer 10 is a device for searching for the wireless tags 201 to 209 attached to the books 101 to 109 desired by the user. The reader / writer 10 includes an input unit 11 for inputting the storage ID codes of the wireless tags 201 to 209 attached to the books 101 to 109 that the user desires to search.
 ユーザが書籍101~109のいずれかを検索したいときには、当該ユーザは、リーダ・ライタ10の入力部11を操作して、検索したい書籍101~109に貼付されている無線タグ201~209の記憶IDコードに相当する検索IDコードを入力して、送信スイッチを操作する。リーダ・ライタ10は、ユーザが入力した検索IDコードを含む交流送信信号50を外部に送信する。各無線タグ201~209はその交流送信信号50を交流受信信号60として受信する。そして、各無線タグ201~209は、交流受信信号60に含まれている検索IDコードと自身に記憶されている記憶IDコードとが一致するか否かの照合可否判定を実行する。その結果、一致すると判断された場合には、発光ダイオードが発光し、一致しないと判断された場合には、発光ダイオードが発光しない。そして、ユーザは、発光ダイオードが発光している無線タグ201~209の内のいずれか、すなわち、ユーザが所望する書籍101~109のいずれかを容易に発見することができる。 When the user wants to search for any of the books 101 to 109, the user operates the input unit 11 of the reader / writer 10 to store the storage IDs of the wireless tags 201 to 209 attached to the books 101 to 109 to be searched. A search ID code corresponding to the code is input and the transmission switch is operated. The reader / writer 10 transmits an AC transmission signal 50 including a search ID code input by the user to the outside. Each of the wireless tags 201 to 209 receives the AC transmission signal 50 as an AC reception signal 60. Each of the wireless tags 201 to 209 determines whether or not the search ID code included in the AC reception signal 60 matches the stored ID code stored in itself. As a result, when it is determined that they match, the light emitting diode emits light, and when it is determined that they do not match, the light emitting diode does not emit light. Then, the user can easily find any of the wireless tags 201 to 209 that emit light from the light emitting diode, that is, any of the books 101 to 109 desired by the user.
 次に、リーダ・ライタ10の構成について説明する。図2に示すように、リーダ・ライタ10は、入力部11、制御部12、表示部13、電源14、変調部15、復調部16、及び送受信アンテナ17を備えている。 Next, the configuration of the reader / writer 10 will be described. As shown in FIG. 2, the reader / writer 10 includes an input unit 11, a control unit 12, a display unit 13, a power supply 14, a modulation unit 15, a demodulation unit 16, and a transmission / reception antenna 17.
 入力部11は、上述したように、ユーザが所望する無線タグ201~209の記憶IDコードに相当する検索IDコードを入力する入力スイッチと、入力スイッチにて入力された無線タグ201~209の検索IDコードを含む交流送信信号を外部に送信するための送信指示信号を入力する送信スイッチを有している。その入力部11は制御部12に接続されており、入力部11から入力された検索IDコードや、送信指示信号は、制御部12に入力される。 As described above, the input unit 11 inputs the search ID code corresponding to the storage ID code of the wireless tags 201 to 209 desired by the user, and searches for the wireless tags 201 to 209 input by the input switch. A transmission switch for inputting a transmission instruction signal for transmitting an AC transmission signal including an ID code to the outside is provided. The input unit 11 is connected to the control unit 12, and the search ID code and the transmission instruction signal input from the input unit 11 are input to the control unit 12.
 制御部12は、後述するリーダ・ライタ制御処理を実行する。この制御部12は、図示しないCPU、ROM、RAMを有している。ROMには、上記リーダ・ライタ制御処理を実行するためのプログラムが記憶されており、CPUは、このROMに記憶されているプログラムに従って、上記リーダ・ライタ制御処理を実行する。また、RAMは、リーダ・ライタ制御処理が実行される過程において、情報を一時的に記憶する役割を担っている。なお、リーダ・ライタ制御処理の詳細については、フローチャートを用いて後述する。 The control unit 12 executes a reader / writer control process to be described later. The control unit 12 has a CPU, a ROM, and a RAM (not shown). The ROM stores a program for executing the reader / writer control process, and the CPU executes the reader / writer control process according to the program stored in the ROM. The RAM plays a role of temporarily storing information in the process of executing the reader / writer control process. Details of the reader / writer control process will be described later with reference to a flowchart.
 表示部13は、液晶ディスプレイで構成されており、入力部11から入力された記憶IDコードを表示したり、制御部12が無線タグ201~209からの返信信号を受信したときには、その旨を表示する。なお、表示部13として、液晶ディスプレイの代わりに、有機ELディスプレイやプラズマディスプレイなどを用いてもよい。 The display unit 13 is composed of a liquid crystal display, and displays a storage ID code input from the input unit 11 or displays that when the control unit 12 receives a reply signal from the wireless tags 201 to 209. To do. Note that an organic EL display or a plasma display may be used as the display unit 13 instead of the liquid crystal display.
 電源14は、制御部12に接続されており、図示しないオンオフスイッチを有している。そして、そのオンオフスイッチがユーザによって操作されてオン状態になったときには、電源14は、制御部12を駆動させるために、制御部12に直流の所定電圧を供給する。一方、オンオフスイッチがユーザによって操作されてオフ状態になったときには、電源14による制御部12への電圧の供給が停止される。 The power source 14 is connected to the control unit 12 and has an on / off switch (not shown). When the on / off switch is operated and turned on by the user, the power supply 14 supplies a predetermined DC voltage to the control unit 12 in order to drive the control unit 12. On the other hand, when the on / off switch is operated by the user to be turned off, the supply of voltage to the control unit 12 by the power supply 14 is stopped.
 変調部15は、制御部12に接続されている。当該変調部15は、制御部12から送信される検索IDコードを外部に送信できる形式である交流送信信号50に変調して、その交流送信信号50を出力する。また、変調部15は、送受信アンテナ17に接続されており、変調部15から出力された交流送信信号50は、送受信アンテナ17から外部に送信される。 The modulation unit 15 is connected to the control unit 12. The modulation unit 15 modulates the search ID code transmitted from the control unit 12 into an AC transmission signal 50 that can be transmitted to the outside, and outputs the AC transmission signal 50. The modulation unit 15 is connected to the transmission / reception antenna 17, and the AC transmission signal 50 output from the modulation unit 15 is transmitted from the transmission / reception antenna 17 to the outside.
 復調部16は、送受信アンテナ17に接続されており、送受信アンテナ17が受信した無線タグ201~209からの返信信号が入力される。そして、復調部16は、その返信信号を復調して、復調後の信号を制御部12に入力する。なお、上記返信信号は、本実施形態では、交流送信信号50に含まれている検索IDコードと無線タグ201~209に記憶されている記憶IDコードとが一致した旨を示す信号である。 The demodulator 16 is connected to the transmission / reception antenna 17 and receives return signals from the wireless tags 201 to 209 received by the transmission / reception antenna 17. Then, the demodulator 16 demodulates the reply signal and inputs the demodulated signal to the controller 12. In the present embodiment, the return signal is a signal indicating that the search ID code included in the AC transmission signal 50 matches the stored ID code stored in the wireless tags 201 to 209.
 次に、無線タグ201~209の構成について説明する。なお、無線タグ201~209は、それぞれに記憶されている記憶IDコードのみが異なっており、構造は同一である。以下、代表として無線タグ201の構成について説明する。 Next, the configuration of the wireless tags 201 to 209 will be described. Note that the wireless tags 201 to 209 differ only in the stored ID code and have the same structure. Hereinafter, the configuration of the wireless tag 201 will be described as a representative.
 図3に示すように、無線タグ201には、長方形状の基板241の外周にコイル状の送受信アンテナ221が設けられている。その送受信アンテナ221にチップ211が接続されている。また、基板241には、薄膜状の発光ダイオード231が設けられている。なお、基板241は、ポリエチレンテレフタレート(PET)フィルムであり、発光ダイオード231は有機ELである。 As shown in FIG. 3, the wireless tag 201 is provided with a coiled transmitting / receiving antenna 221 on the outer periphery of a rectangular substrate 241. A chip 211 is connected to the transmission / reception antenna 221. The substrate 241 is provided with a thin film light emitting diode 231. The substrate 241 is a polyethylene terephthalate (PET) film, and the light emitting diode 231 is an organic EL.
 図4に示すように、無線タグ201は、送受信アンテナ221、チップ211、及び発光ダイオード231を備えている。送受信アンテナ221は、リーダ・ライタ10から送信された交流送信信号50を交流受信信号60として受信する。この送受信アンテナ221は、チップ211に接続されており、受信した交流受信信号60をチップ211に入力する。また、送受信アンテナ221は、チップ211から上記返信信号が出力されてきた場合には、その返信信号を外部に送信する。 As shown in FIG. 4, the wireless tag 201 includes a transmission / reception antenna 221, a chip 211, and a light emitting diode 231. The transmission / reception antenna 221 receives the AC transmission signal 50 transmitted from the reader / writer 10 as the AC reception signal 60. The transmission / reception antenna 221 is connected to the chip 211 and inputs the received AC reception signal 60 to the chip 211. Further, when the reply signal is output from the chip 211, the transmission / reception antenna 221 transmits the reply signal to the outside.
 チップ211は、図4に示すように、記憶部2112、復調部2113、変調部2114、電源2115、発光ダイオード駆動ドライバ2116、及びこれらと接続された制御部2111を有している。 As shown in FIG. 4, the chip 211 includes a storage unit 2112, a demodulation unit 2113, a modulation unit 2114, a power source 2115, a light emitting diode drive driver 2116, and a control unit 2111 connected thereto.
 記憶部2112は、記憶IDコードを記憶する。復調部2113は、送受信アンテナ221と接続されており、送受信アンテナ221から送信されてきた交流受信信号60を復調する。この復調部2113は、制御部2111と接続されており、復調後の信号を制御部2111に入力する。変調部2114は、制御部2111に接続されており、制御部2111から入力される返信信号を外部に送信できる形式に変調して、その変調後の返信信号を出力する。また、変調部2114は送受信アンテナ221に接続されており、変調部2114から出力された返信信号は、送受信アンテナ221から外部に送信される。 The storage unit 2112 stores a storage ID code. The demodulator 2113 is connected to the transmission / reception antenna 221 and demodulates the AC reception signal 60 transmitted from the transmission / reception antenna 221. The demodulator 2113 is connected to the controller 2111 and inputs the demodulated signal to the controller 2111. Modulation section 2114 is connected to control section 2111, modulates the reply signal input from control section 2111 into a format that can be transmitted to the outside, and outputs the modulated reply signal. The modulation unit 2114 is connected to the transmission / reception antenna 221, and the reply signal output from the modulation unit 2114 is transmitted from the transmission / reception antenna 221 to the outside.
 電源2115は、送受信アンテナ221に接続されており、送受信アンテナ221が受信した交流受信信号60から得られる受信時交流電圧を直流電圧に整流している、そして、電源2115は、制御部2111を駆動させるために、制御部2111に接続されており、制御部2111に整流した直流電圧を供給している。また、電源2115は、後述する発光ダイオード駆動ドライバ2116を介して、発光ダイオード231のアノード端子1に接続されており、所定の条件を満たした場合には、電源2115から発光ダイオード231に直流電圧が供給される。 The power supply 2115 is connected to the transmission / reception antenna 221, and rectifies the reception AC voltage obtained from the AC reception signal 60 received by the transmission / reception antenna 221 into a DC voltage. The power supply 2115 drives the control unit 2111. For this purpose, the control unit 2111 is connected to the control unit 2111, and a rectified DC voltage is supplied to the control unit 2111. The power supply 2115 is connected to the anode terminal 1 of the light emitting diode 231 via a light emitting diode drive driver 2116 described later. When a predetermined condition is satisfied, a DC voltage is applied from the power supply 2115 to the light emitting diode 231. Supplied.
 図5に示すように、電源2115は、入力交流電圧を略2倍にし、且つ、直流電圧に整流して出力するためにダイオードとコンデンサとを用いて構成された倍圧整流回路をN個(Nは正数)接続したN倍圧整流回路2115a、そのN倍圧整流回路2115aの出力端子2115bに一端が接続された抵抗素子R1、及びその抵抗素子R1に接続されたコンデンサCaから構成される。 As shown in FIG. 5, the power source 2115 includes N voltage doubler rectifier circuits each configured by using a diode and a capacitor in order to double the input AC voltage and rectify and output the DC voltage. N is a positive number) connected N double voltage rectifier circuit 2115a, resistor element R1 having one end connected to output terminal 2115b of N voltage doubler rectifier circuit 2115a, and capacitor Ca connected to resistor element R1. .
 N倍圧整流回路2115aは、上述したように、倍圧整流回路をN個接続した回路であるので、入力交流電圧を略N倍にして且つ直流電圧に整流して出力する。したがって、N倍圧整流回路2115aは、送受信アンテナ221が受信した交流受信信号60から得られる受信時交流電圧を略N倍にして且つ直流電圧に整流して出力する。この出力電圧が、後述する発光ダイオード231の駆動電圧以上となるように、倍圧整流回路の接続段数Nが定められている。このように、N倍圧整流回路2115aは、送受信アンテナ221が受信した交流受信信号60から得られる受信時交流電圧が発光ダイオード231の駆動電圧以上となるように、その受信時交流電圧を昇圧するとともに直流電圧に整流している。 Since the N voltage doubler rectifier circuit 2115a is a circuit in which N voltage doubler rectifier circuits are connected as described above, the N voltage doubler rectifier circuit 2150a rectifies the input AC voltage into a DC voltage and outputs it. Therefore, the N-fold voltage rectifier circuit 2115a rectifies the AC voltage during reception obtained from the AC reception signal 60 received by the transmission / reception antenna 221 approximately N times, and rectifies the DC voltage to output it. The number N of connection stages of the voltage doubler rectifier circuit is determined so that the output voltage is equal to or higher than the driving voltage of the light emitting diode 231 described later. In this way, the N-fold voltage rectifier circuit 2115a boosts the reception AC voltage so that the reception AC voltage obtained from the AC reception signal 60 received by the transmission / reception antenna 221 is equal to or higher than the driving voltage of the light emitting diode 231. At the same time, it is rectified to DC voltage.
 N倍圧整流回路2115aで整流された直流電圧の一部は、抵抗素子R1を介して、コンデンサCaに充電される。また、抵抗素子R1は、コンデンサCaに充電された充電電圧が送受信アンテナ221側に放電されるのを抑制している。さらに、コンデンサCaに充電される充電電圧が発光ダイオード231の駆動電圧以上となるように、抵抗素子R1は、N倍圧整流回路2115aで整流された直流電圧をコンデンサCaに伝達している。なお、N倍圧整流回路2115aは、受信時交流電圧を徐々に昇圧して整流するので、コンデンサCaには電荷が徐々に充電されていく。 A part of the DC voltage rectified by the N-fold voltage rectifier circuit 2115a is charged to the capacitor Ca via the resistance element R1. Further, the resistance element R1 suppresses the charging voltage charged in the capacitor Ca from being discharged to the transmitting / receiving antenna 221 side. Further, the resistance element R1 transmits the DC voltage rectified by the N-fold voltage rectifier circuit 2115a to the capacitor Ca so that the charging voltage charged in the capacitor Ca becomes equal to or higher than the driving voltage of the light emitting diode 231. Note that the N-fold voltage rectifier circuit 2115a gradually boosts and rectifies the AC voltage during reception, so that the capacitor Ca is gradually charged.
 図4の説明に戻って、発光ダイオード駆動ドライバ2116は、電界効果トランジスタであり、ゲート端子が制御部2111と接続されており、ソース端子が電源2115に接続されており、ドレイン端子が発光ダイオード231のアノード端子1に接続されている。この発光ダイオード駆動ドライバ2116は、スイッチング素子の役割を担っており、制御部2111から高レベル信号がゲート端子に入力されたときには、ソース-ドレイン間が導通して、制御部2111から低レベル信号がゲート端子に入力されたときには、ソース-ドレイン間は遮断する。本実施形態では、通常時は、制御部2111から低レベル信号(0V)が入力されている。すなわち、通常時は、発光ダイオード駆動ドライバ2116は遮断状態となっている。 Returning to the description of FIG. 4, the light emitting diode driver 2116 is a field effect transistor, the gate terminal is connected to the control unit 2111, the source terminal is connected to the power source 2115, and the drain terminal is the light emitting diode 231. The anode terminal 1 is connected. The light emitting diode driver 2116 serves as a switching element. When a high level signal is input from the control unit 2111 to the gate terminal, the source-drain is electrically connected, and the low level signal is output from the control unit 2111. When the signal is input to the gate terminal, the source and drain are disconnected. In the present embodiment, a low level signal (0 V) is input from the control unit 2111 during normal times. That is, during normal times, the light emitting diode driver 2116 is in a cut-off state.
 制御部2111は、後述する無線タグ制御処理を実行する。また、制御部2111は、電源2115から供給される電源の電圧値を監視している。この制御部2111は、CPU2111a、ROM2111b、RAM2111cを有している。ROM2111bには、上記無線タグ制御処理を実行するためのプログラムが記憶されており、CPU2111aは、このROM2111bに記憶されているプログラムに従って、上記無線タグ制御処理を実行する。また、RAM2111cは、無線タグ制御処理が実行される過程において、情報を一時的に記憶する役割を担っている。 The control unit 2111 executes a wireless tag control process described later. In addition, the control unit 2111 monitors the voltage value of the power supply supplied from the power supply 2115. The control unit 2111 includes a CPU 2111a, a ROM 2111b, and a RAM 2111c. The ROM 2111b stores a program for executing the RFID tag control process, and the CPU 2111a executes the RFID tag control process according to the program stored in the ROM 2111b. Further, the RAM 2111c has a role of temporarily storing information in the process of executing the wireless tag control process.
 発光ダイオード231は、上述したように、有機ELであり、アノード端子1が発光ダイオード駆動ドライバ2116のドレイン端子に接続されており、カソード端子2がグランドに接続されている。この発光ダイオード231は、アノード-カソード間に所定駆動電圧以上の電圧が印加されたときに発光する。 As described above, the light emitting diode 231 is an organic EL, the anode terminal 1 is connected to the drain terminal of the light emitting diode drive driver 2116, and the cathode terminal 2 is connected to the ground. The light emitting diode 231 emits light when a voltage higher than a predetermined driving voltage is applied between the anode and the cathode.
 図6に示すように、発光ダイオード231は、アノード端子1、カソード端子2、陽極231a、陰極231b、発光層231c、絶縁層231d、及び陰極支持ラミネートフィルム231eを有している。このように構成される発光ダイオード231をPETフィルムである基板241に設けるには、アノード端子1として、Cuなどの金属層がエッチング若しくはスクリーン印刷により形成される。同様に、カソード端子2として、Cuなどの金属層がエッチング若しくはスクリーン印刷により形成される。次いで、陽極231aとして、ITO(Indium Tin Oxide)層がスクリーン印刷若しくはインクジェット印刷で形成される。次いで、発光層231cとして、PPV、PF、PVK等がスクリーン印刷若しくはインクジェット印刷で形成される。次いで、絶縁層231dがスクリーン印刷若しくはインクジェット印刷によって形成される。陰極231bは、陰極支持ラミネートフィルム231eに蒸着によって予め形成されている。最後に、この陰極231bが形成された陰極支持ラミネートフィルム231eが熱により圧着される。なお、陰極231bには、Alが用いられる。また、陰極支持ラミネートフィルム231eには、PETなどのプラスチックが用いられる。このように、印刷技術を用いることにより、低コストで発光ダイオード231を形成することができる。 As shown in FIG. 6, the light emitting diode 231 includes an anode terminal 1, a cathode terminal 2, an anode 231a, a cathode 231b, a light emitting layer 231c, an insulating layer 231d, and a cathode supporting laminate film 231e. In order to provide the light emitting diode 231 configured as described above on the substrate 241 which is a PET film, a metal layer such as Cu is formed as the anode terminal 1 by etching or screen printing. Similarly, a metal layer such as Cu is formed as the cathode terminal 2 by etching or screen printing. Next, an ITO (Indium Tin Oxide) layer is formed as the anode 231a by screen printing or ink jet printing. Next, as the light emitting layer 231c, PPV, PF, PVK, or the like is formed by screen printing or ink jet printing. Next, the insulating layer 231d is formed by screen printing or ink jet printing. The cathode 231b is formed in advance on the cathode support laminate film 231e by vapor deposition. Finally, the cathode support laminate film 231e on which the cathode 231b is formed is pressed by heat. Note that Al is used for the cathode 231b. The cathode support laminate film 231e is made of plastic such as PET. Thus, the light emitting diode 231 can be formed at low cost by using the printing technique.
 なお、チップ211と送受信アンテナ221は、発光ダイオード231が基板241に形成されてから、基板241に設置される。 Note that the chip 211 and the transmission / reception antenna 221 are installed on the substrate 241 after the light emitting diode 231 is formed on the substrate 241.
 次に、リーダ・ライタ10の制御部12が実行する上記リーダ・ライタ制御処理について、図7のフローチャートに基づいて説明する。このリーダ・ライタ制御処理は、電源14のオンオフスイッチがオン状態になったときに開始され、それ以降、一定期間おきに実行される。 Next, the reader / writer control process executed by the control unit 12 of the reader / writer 10 will be described based on the flowchart of FIG. This reader / writer control process is started when the on / off switch of the power supply 14 is turned on, and thereafter is executed at regular intervals.
 先ず、ステップS11では、ユーザによって入力部11が有している入力スイッチが操作されて、検索IDコードが入力されたか否かが判定される。ここで、検索IDコードが入力された場合には(S11:YES)、処理がステップS12へ進み、検索IDコードが入力されていない場合には(S11:NO)、このフローチャートの処理が終了する。 First, in step S11, it is determined whether or not the user has operated the input switch of the input unit 11 to input a search ID code. If the search ID code is input (S11: YES), the process proceeds to step S12. If the search ID code is not input (S11: NO), the process of this flowchart ends. .
 ステップS12では、入力部11の送信スイッチが操作されたか否かが判定される。これは、入力部11から送信指示信号が入力されたか否かで判断される。ここで、入力部11が有している送信スイッチが操作された場合(S12:YES)、処理がステップS13へ進み、入力部11が有している送信スイッチが操作されていない場合は(S12:NO)、再度、本ステップが実行される。 In step S12, it is determined whether or not the transmission switch of the input unit 11 has been operated. This is determined by whether or not a transmission instruction signal is input from the input unit 11. If the transmission switch of the input unit 11 is operated (S12: YES), the process proceeds to step S13, and if the transmission switch of the input unit 11 is not operated (S12). : NO), this step is executed again.
 ステップS13では、検索IDコードが外部に送信される。具体的には、検索IDコードが変調部15に入力される。変調部15は、入力された検索IDコードを外部に送信できる形式の信号である交流送信信号50に変調し、その交流送信信号50を送受信アンテナ17から外部に送信する(S13)。 In step S13, the search ID code is transmitted to the outside. Specifically, the search ID code is input to the modulation unit 15. The modulation unit 15 modulates the input search ID code into an AC transmission signal 50 that is a signal that can be transmitted to the outside, and transmits the AC transmission signal 50 to the outside from the transmission / reception antenna 17 (S13).
 続くステップS14では、無線タグ201~209からの返信信号を受信したか否かが判定される。具体的には、無線タグ201~209が返信信号を外部に送信した場合には、その返信信号を送受信アンテナ17が受信する。そして、送受信アンテナ17で受信された返信信号は、復調部16へ入力される。復調部16へ入力された返信信号は、復調され、その復調後の返信信号が制御部12に入力される。したがって、制御部12は、復調部16から返信信号の入力があるか否かで、無線タグ201~209からの返信信号を受信したか否かを判定する(S14)。ここで、無線タグ201~209からの返信信号を受信した場合は(S14:YES)、処理がステップS15へ進み、無線タグ201~209からの返信信号を受信していない場合は(S14:NO)、このフローチャートのリーダ・ライタ制御処理が終了する。この場合、ステップS13において送信した交流送信信号50を無線タグ201~209が受信していないか、受信していたとしても、照合可否判定において、照合否となった場合が考えられる。交流送信信号50を無線タグ201~209が受信していない場合には、もう少し、リーダ・ライタ10を無線タグ201~209に近づけて、交流送信信号50を送信する必要がある。また、照合可否判定において、照合否となった場合は、他の無線タグが貼付されている書籍に向けて、交流送信信号50を送信する必要がある。 In the subsequent step S14, it is determined whether or not a reply signal from the wireless tags 201 to 209 has been received. Specifically, when the wireless tags 201 to 209 transmit a reply signal to the outside, the transmission / reception antenna 17 receives the reply signal. Then, the reply signal received by the transmission / reception antenna 17 is input to the demodulation unit 16. The reply signal input to the demodulator 16 is demodulated, and the demodulated reply signal is input to the controller 12. Therefore, the control unit 12 determines whether or not the reply signals from the wireless tags 201 to 209 are received depending on whether or not a reply signal is input from the demodulation unit 16 (S14). If the reply signals from the wireless tags 201 to 209 are received (S14: YES), the process proceeds to step S15, and if the reply signals from the wireless tags 201 to 209 are not received (S14: NO). ), The reader / writer control process of this flowchart ends. In this case, even if the wireless tags 201 to 209 have not received or received the AC transmission signal 50 transmitted in step S13, there may be a case where the collation is not permitted in the collation determination. If the wireless tags 201 to 209 have not received the AC transmission signal 50, it is necessary to bring the reader / writer 10 closer to the wireless tags 201 to 209 and transmit the AC transmission signal 50. Further, in the collation permission / inhibition determination, when the collation is rejected, it is necessary to transmit the AC transmission signal 50 toward the book to which another wireless tag is attached.
 ステップS15の処理では、ステップS13において送信した交流送信信号50に含まれている検索IDコードと無線タグ201~209に記憶されている記憶IDコードとが一致した旨が表示部13に表示されて報知される。例えば、「照合可となりました」等の表示をする。その後、このフローチャートのリーダ・ライタ制御処理が終了する。一方、無線タグ201~209からの返信信号を受信していない場合(ステップS14否定判定)は、報知されないことになる。 In step S15, the display unit 13 displays that the search ID code included in the AC transmission signal 50 transmitted in step S13 matches the stored ID code stored in the wireless tags 201 to 209. Informed. For example, a message “verification is possible” is displayed. Thereafter, the reader / writer control process of this flowchart ends. On the other hand, when the reply signals from the wireless tags 201 to 209 are not received (No at Step S14), the notification is not made.
 続いて、無線タグ201の制御部2111が有しているCPU2111aが実行する上記無線タグ制御処理について、図8のフローチャートに基づいて説明する。このフローチャートは、上記交流受信信号60を受信したときに開始される。 Subsequently, the wireless tag control process executed by the CPU 2111a included in the control unit 2111 of the wireless tag 201 will be described with reference to the flowchart of FIG. This flowchart is started when the AC reception signal 60 is received.
 先ず、ステップS21では、検索IDコードが受信される。具体的には、送受信アンテナ221で受信された交流受信信号60は復調部2113に入力される。復調部2113は、入力された交流受信信号60を検索IDコードに復調して、その検索IDコードをCPU2111aに入力する。 First, in step S21, a search ID code is received. Specifically, the AC reception signal 60 received by the transmission / reception antenna 221 is input to the demodulation unit 2113. The demodulator 2113 demodulates the input AC reception signal 60 into a search ID code, and inputs the search ID code to the CPU 2111a.
 続くステップS22では、入力された検索IDコードと記憶部2112に記憶されている記憶IDコードとが照合される。続くステップS23では、ステップS22における照合の結果、検索IDコードと記憶IDコードとが一致していたか否かが判定される。ここで、検索IDコードと記憶IDコードとが一致していた場合は(S23:YES)、処理がステップS24へ進み、検索IDコードと記憶IDコードとが一致していない場合は(S23:NO)、この無線タグ制御処理が終了する。この場合、電源2115のコンデンサCaに充電されている電荷は発光ダイオード231に放電されないので、発光ダイオード231は発光しないことになる。なお、本実施形態では、ステップS23において、検索IDコードと記憶IDコードとが一致しているか否かが判定されているが、検索IDコードと記憶IDコードとが所定の関係を満たしているか否かが判定されるようにしてもよい。 In the subsequent step S22, the input search ID code is collated with the storage ID code stored in the storage unit 2112. In subsequent step S23, it is determined whether or not the search ID code and the stored ID code match as a result of the collation in step S22. If the search ID code matches the storage ID code (S23: YES), the process proceeds to step S24. If the search ID code does not match the storage ID code (S23: NO) ), The wireless tag control process ends. In this case, since the electric charge charged in the capacitor Ca of the power supply 2115 is not discharged to the light emitting diode 231, the light emitting diode 231 does not emit light. In the present embodiment, it is determined whether or not the search ID code and the storage ID code match in step S23, but whether or not the search ID code and the storage ID code satisfy a predetermined relationship. May be determined.
 ステップS24では、電源2115を構成しているコンデンサCaに発光ダイオード231を発光させるのに必要な駆動電圧まで充電されているか否かを判定する。これは、電源2115から入力される電圧(コンデンサCaに充電されている充電電圧)の値に基づいて判定する。ここで、コンデンサCaが上記駆動電圧になるまで充電されている場合は(S24:YES)、処理がステップ25へ進み、未だコンデンサCaが上記駆動電圧になるまで充電されていない場合は、再度、本ステップの判断処理を実行する。 In step S24, it is determined whether or not the capacitor Ca constituting the power source 2115 is charged to a driving voltage necessary for causing the light emitting diode 231 to emit light. This is determined based on the value of the voltage input from the power source 2115 (the charging voltage charged in the capacitor Ca). If the capacitor Ca is charged until the drive voltage is reached (S24: YES), the process proceeds to step 25, and if the capacitor Ca is not charged until the drive voltage is reached, again, The determination process of this step is executed.
 ステップS25では、発光ダイオード駆動ドライバ2116が導通状態となるように、発光ダイオード駆動ドライバ2116のゲート端子に高レベルの信号である放電指示信号が入力される。その結果、発光ダイオード駆動ドライバ2116のソース-ドレイン間が導通して、電源2115のコンデンサCaに充電されている充電電圧が発光ダイオード231のアノード-カソード間に印加される。そして、発光ダイオード231は発光する。これにより、ユーザは、発光ダイオード231が発光しているのを視認すると、自身が検索している書籍101を書籍箱20の中から発見することができる。 In step S25, a discharge instruction signal which is a high-level signal is input to the gate terminal of the light emitting diode driver 2116 so that the light emitting diode driver 2116 becomes conductive. As a result, the source-drain of the light-emitting diode driver 2116 conducts, and the charging voltage charged in the capacitor Ca of the power source 2115 is applied between the anode and cathode of the light-emitting diode 231. The light emitting diode 231 emits light. Accordingly, when the user visually recognizes that the light emitting diode 231 emits light, the user can find the book 101 being searched for in the book box 20.
 続くステップS26では、検索IDコードと記憶IDコードとが一致した旨を示す返信信号が外部に送信される。具体的には、その返信信号が変調部2114に入力される。変調部2114は、入力された返信信号を外部に送信可能な形式に変調して、その変調後の返信信号を送受信アンテナ221から外部に送信する。その後、この返信信号を受信したリーダ・ライタ10は、上述したように、表示部13に、例えば、「照合可となりました」等の表示をする。そして、このフローチャートを終了する。 In the subsequent step S26, a reply signal indicating that the search ID code matches the stored ID code is transmitted to the outside. Specifically, the return signal is input to modulation section 2114. Modulation section 2114 modulates the input reply signal into a format that can be transmitted to the outside, and transmits the modulated reply signal from transmission / reception antenna 221 to the outside. After that, the reader / writer 10 that has received this reply signal displays, for example, “verification is now possible” on the display unit 13 as described above. And this flowchart is complete | finished.
 以上、本実施形態の無線タグ201では、リーダ・ライタ10から送信された検索IDコードを含む交流送信信号50が交流受信信号60として受信される。この際、電源2115は、N倍圧整流回路2115aを有しているので、交流受信信号60から得られる受信時交流電圧を略N倍にして、且つ、直流に整流して出力する。この出力電圧が、発光ダイオード231の駆動電圧以上となるように、倍圧整流回路の接続段数Nが定められている。したがって、交流受信信号60が微弱信号であったとしても、電源2115によって、昇圧されて整流されるので、検索IDコードと記憶IDコードとが一致している場合は、発光ダイオード231は発光することができる。これにより、リーダ・ライタ10と無線タグ201との間の距離が長くなっても、無線タグ201に備えられている発光ダイオード231は発光することができるので、無線タグ201の使い勝手が向上できる。又は、リーダ・ライタ10から送信される交流送信信号50が微弱信号であっても、発光ダイオード231は発光することができるので、使用電力が抑制できる。 As described above, in the wireless tag 201 of the present embodiment, the AC transmission signal 50 including the search ID code transmitted from the reader / writer 10 is received as the AC reception signal 60. At this time, since the power supply 2115 has the N-fold voltage rectifier circuit 2115a, the AC voltage at the time of reception obtained from the AC received signal 60 is approximately N times and is rectified to a direct current and output. The number N of connection stages of the voltage doubler rectifier circuit is determined so that the output voltage is equal to or higher than the driving voltage of the light emitting diode 231. Therefore, even if the AC reception signal 60 is a weak signal, it is boosted and rectified by the power source 2115, so that the light emitting diode 231 emits light when the search ID code matches the stored ID code. Can do. Accordingly, even if the distance between the reader / writer 10 and the wireless tag 201 is increased, the light emitting diode 231 provided in the wireless tag 201 can emit light, so that the usability of the wireless tag 201 can be improved. Alternatively, even if the AC transmission signal 50 transmitted from the reader / writer 10 is a weak signal, the light emitting diode 231 can emit light, so that power consumption can be suppressed.
 また、発光ダイオード231が、印刷によって、基板241に形成されているので、低コスト化が図られる。 Further, since the light emitting diode 231 is formed on the substrate 241 by printing, the cost can be reduced.
 また、制御部2111のCPU2111aは、電源2115のコンデンサCaに充電されている充電電圧の値を監視し、その値が、検索IDコードと記憶IDコードとが一致したとの判定後の、発光ダイオード231の駆動電圧に達したタイミングで、発光ダイオード駆動ドライバ2116のゲート端子に放電指示信号を入力している。これにより、迅速、且つ、確実に発光ダイオード231が発光することができる。 In addition, the CPU 2111a of the control unit 2111 monitors the value of the charging voltage charged in the capacitor Ca of the power supply 2115, and the light emitting diode after determining that the search ID code matches the stored ID code A discharge instruction signal is input to the gate terminal of the light emitting diode driver 2116 at the timing when the driving voltage 231 is reached. Thereby, the light emitting diode 231 can emit light quickly and reliably.
 また、電源2115において、N倍圧整流回路2115aとコンデンサCaとの間に抵抗素子R1が接続されている。これにより、簡易な構成で、コンデンサCaに充電された充電電圧が送受信アンテナ221側に放電されるのを抑制することができる。さらに、コンデンサCaに充電される充電電圧が発光ダイオード231の駆動電圧以上となるように、N倍圧整流回路2115aで整流された直流電圧を効率よくコンデンサCaに伝達することができる。 In the power source 2115, a resistance element R1 is connected between the N-fold voltage rectifier circuit 2115a and the capacitor Ca. Thereby, it is possible to suppress the charging voltage charged in the capacitor Ca from being discharged to the transmitting / receiving antenna 221 side with a simple configuration. Furthermore, the DC voltage rectified by the N-fold voltage rectifier circuit 2115a can be efficiently transmitted to the capacitor Ca so that the charging voltage charged in the capacitor Ca becomes equal to or higher than the driving voltage of the light emitting diode 231.
 また、昇圧整流回路として、ダイオードとコンデンサとを用いて構成された入力交流電圧を略2倍にして且つ直流電圧に整流して出力する倍圧整流回路が単数又は複数接続されたN倍圧整流回路2115aを採用しているので、簡易な構成でユーザが所望する電圧となるように受信時交流電圧が昇圧されて直流電圧に整流されることができる。 Further, as a boost rectifier circuit, an N double voltage rectifier in which one or a plurality of voltage double rectifier circuits that rectify an input AC voltage constituted by using a diode and a capacitor and rectify it to a DC voltage and output it is connected. Since the circuit 2115a is employed, the AC voltage at the time of reception can be boosted and rectified to a DC voltage so as to be a voltage desired by the user with a simple configuration.
 なお、無線タグ201以外の無線タグ202~209も、記憶IDコード以外は無線タグ201と構成は同じなので、無線タグ201と同じ効果を得ることができる。 Note that the wireless tags 202 to 209 other than the wireless tag 201 have the same configuration as the wireless tag 201 except for the stored ID code, and therefore, the same effect as the wireless tag 201 can be obtained.
 (第2実施形態)
 次に、本開示の無線タグの第2実施形態について説明する。本実施形態の無線タグの使用方法では、第1実施形態と同様に、複数の書籍にそれぞれ記憶IDコードが異なる無線タグが貼付される。そして、ユーザは、所望する書籍を発見するために、リーダ・ライタを用いて、所望する書籍に貼付されている無線タグを発光させる。
(Second Embodiment)
Next, a second embodiment of the wireless tag according to the present disclosure will be described. In the method of using the wireless tag of this embodiment, wireless tags having different storage ID codes are attached to a plurality of books, as in the first embodiment. Then, in order to find a desired book, the user causes the wireless tag attached to the desired book to emit light using a reader / writer.
 図9は、本実施形態の無線タグ251の電気的構成を示したブロック図である。なお、上記第1実施形態と同一の機能を有するものは同一の符号が付されている。図9に示すように、本実施形態の無線タグ251は、第1実施形態の無線タグ201~209と制御部2117が異なるだけで、他の構成は同じである。また、リーダ・ライタ10の構成は第1実施形態と第2実施形態とで同じである。なお、無線タグ251は、書籍151に貼付されるものとする。以下、本実施形態の無線タグ251を第1実施形態と異なる部分を中心に説明する。 FIG. 9 is a block diagram showing an electrical configuration of the wireless tag 251 of the present embodiment. In addition, the same code | symbol is attached | subjected to what has the same function as the said 1st Embodiment. As shown in FIG. 9, the wireless tag 251 of the present embodiment has the same configuration as the wireless tag 201 to 209 of the first embodiment except for the control unit 2117. The configuration of the reader / writer 10 is the same between the first embodiment and the second embodiment. Note that the wireless tag 251 is attached to the book 151. Hereinafter, the wireless tag 251 of the present embodiment will be described focusing on differences from the first embodiment.
 制御部2117は、第1実施形態と同様に無線タグ制御処理を実行するが、その内容が第1実施形態のそれとは異なっている。その関係から、本実施形態では、制御部2117は、電源2115から供給される電圧値を監視していない。本実施形態における無線タグ制御処理については、フローチャートを用いて後述する。この制御部2117は、CPU2117a、ROM2117b、RAM2117cを有している。ROM2117bには、上記無線タグ制御処理を実行するためのプログラムが記憶されており、CPU2117aは、このROM2117bに記憶されているプログラムに従って、上記無線タグ制御処理を実行する。また、RAM2117cは、無線タグ制御処理が実行される過程において、情報を一時的に記憶する役割を担っている。 The control unit 2117 executes the wireless tag control process similarly to the first embodiment, but the content is different from that of the first embodiment. From this relationship, in the present embodiment, the control unit 2117 does not monitor the voltage value supplied from the power source 2115. The wireless tag control process in the present embodiment will be described later using a flowchart. The control unit 2117 includes a CPU 2117a, a ROM 2117b, and a RAM 2117c. The ROM 2117b stores a program for executing the RFID tag control process, and the CPU 2117a executes the RFID tag control process according to the program stored in the ROM 2117b. In addition, the RAM 2117c plays a role of temporarily storing information in the process of executing the wireless tag control process.
 なお、コンデンサCaの容量、及び、抵抗素子R1の値から、送受信アンテナ221が交流受信信号60を受信した時間を基準として、電源2115のコンデンサCaに充電される充電電圧が発光ダイオード231の駆動電圧になると予想される予想充電時間を予め定めることができる。そして、ROM2117bにはその予想充電時間が記憶されており、無線タグ制御処理が実行される過程において、その予想充電時間が参照されることになる。 Note that the charging voltage charged in the capacitor Ca of the power source 2115 is the drive voltage of the light emitting diode 231 based on the time when the transmission / reception antenna 221 receives the AC reception signal 60 from the capacitance of the capacitor Ca and the value of the resistance element R1. The expected charging time expected to become can be determined in advance. The estimated charging time is stored in the ROM 2117b, and the estimated charging time is referred to in the process of executing the wireless tag control process.
 続いて、CPU2117aが実行する無線タグ制御処理について、図10に基づいて説明する。このフローチャートは、上記交流受信信号60を受信したときに開始される。なお、第1実施形態と同一の処理については同一の符号を付している。 Subsequently, the wireless tag control process executed by the CPU 2117a will be described with reference to FIG. This flowchart is started when the AC reception signal 60 is received. In addition, the same code | symbol is attached | subjected about the process same as 1st Embodiment.
 先ずステップS21では検索IDコードが受信される。続くステップS31では、上記予想充電時間を計測するために、時間の計測が開始される。続くステップS22では、入力された検索IDコードと記憶部2112に記憶されている記憶IDコードとが照合される。続くステップS23では、その照合の結果、検索IDコードと記憶IDコードとが一致しているか否かが判定される。ここで、検索IDコードと記憶IDコードとが一致している場合は(S23:YES)、処理がステップS32へ進み、検索IDコードと記憶IDコードとが一致していない場合は(S23:NO)、この無線タグ制御処理が終了する。この場合、発光ダイオード231は発光しないことになる。 First, in step S21, a search ID code is received. In subsequent step S31, time measurement is started in order to measure the expected charging time. In the subsequent step S <b> 22, the input search ID code is collated with the storage ID code stored in the storage unit 2112. In the subsequent step S23, it is determined whether or not the search ID code and the stored ID code match as a result of the collation. If the search ID code matches the storage ID code (S23: YES), the process proceeds to step S32. If the search ID code does not match the storage ID code (S23: NO) ), The wireless tag control process ends. In this case, the light emitting diode 231 does not emit light.
 ステップS32では、上記ステップS31にて計測開始された計測時間が上記予想充電時間を経過したか否かを判定する。ここで、予想充電時間を経過した場合には(S32:YES)、処理がステップS25へ進み、未だ予想充電時間を経過していない場合には(S32:NO)、再度本ステップを実行する。 In Step S32, it is determined whether or not the measurement time started in Step S31 has passed the expected charging time. If the expected charging time has elapsed (S32: YES), the process proceeds to step S25. If the expected charging time has not yet elapsed (S32: NO), this step is executed again.
 ステップS25では、発光ダイオード駆動ドライバ2116が導通状態となるように、発光ダイオード駆動ドライバ2116のゲート端子に高レベルの信号である放電指示信号が入力される。その結果、発光ダイオード駆動ドライバ2116のソース-ドレイン間が導通して、電源2115のコンデンサCaに充電されている充電電圧が発光ダイオード231のアノード-カソード間に印加される。この充電電圧は、およそ発光ダイオード231の駆動電圧と等しくなっている。したがって、発光ダイオード231は発光する。これにより、ユーザは、発光ダイオード231が発光しているのを視認すると、自身が検索している書籍151を書籍箱の中から発見することができる。 In step S25, a discharge instruction signal which is a high-level signal is input to the gate terminal of the light emitting diode driver 2116 so that the light emitting diode driver 2116 becomes conductive. As a result, the source-drain of the light-emitting diode driver 2116 conducts, and the charging voltage charged in the capacitor Ca of the power source 2115 is applied between the anode and cathode of the light-emitting diode 231. This charging voltage is approximately equal to the driving voltage of the light emitting diode 231. Therefore, the light emitting diode 231 emits light. Thus, when the user visually recognizes that the light emitting diode 231 emits light, the user can find the book 151 searched by himself / herself from the book box.
 続くステップS26では、検索IDコードと記憶IDコードとが一致した旨を示す返信信号を外部に送信する。そして、このフローチャートの無線タグ制御処理が終了する。 In the subsequent step S26, a reply signal indicating that the search ID code matches the stored ID code is transmitted to the outside. Then, the wireless tag control process of this flowchart ends.
 以上、本実施形態の無線タグ251において、ROM2117bには予想充電時間が記憶されており、無線タグ制御処理が実行される過程において、その予想充電時間が参照される。具体的には、送受信アンテナ221が交流受信信号を受信して、その交流受信信号に含まれている検索IDコードと記憶IDコードとが一致した場合には、制御部2117のCPU2117aは、交流受信信号を受信じた時間を基準として予想充電時間が経過したタイミングで、発光ダイオード駆動ドライバ2116のゲート端子に放電指示信号を入力している。このように、コンデンサCaに充電されている充電電圧の値を監視しないで、予想充電時間のタイミングで発光ダイオード231を発光させてもよい。このようにしても、第1実施形態と同様の効果を得ることができる。 As described above, in the wireless tag 251 of the present embodiment, the expected charging time is stored in the ROM 2117b, and the expected charging time is referred to in the process of executing the wireless tag control process. Specifically, when the transmission / reception antenna 221 receives an AC reception signal and the search ID code included in the AC reception signal matches the stored ID code, the CPU 2117a of the control unit 2117 receives the AC reception. The discharge instruction signal is input to the gate terminal of the light emitting diode driver 2116 at the timing when the expected charging time has elapsed with respect to the time when the signal is received. Thus, the light emitting diode 231 may be caused to emit light at the timing of the expected charging time without monitoring the value of the charging voltage charged in the capacitor Ca. Even if it does in this way, the effect similar to 1st Embodiment can be acquired.
 (第3実施形態)
 次に、本開示の無線タグの第3実施形態について説明する。図11は、本実施形態の無線タグ261の電気的構成を示したブロック図である。なお、第1、第2実施形態と同一の機能を有するものは同一の符号を付している。図11に示すように、無線タグ261は、第1、第2実施形態の無線タグ201~209、251とは、電源2118が異なるのみで、他の構成については同じである。また、無線タグ261の使用方法、及び無線タグ261の動作も第1、第2実施形態と同じである。さらに、リーダ・ライタ10も第1、第2実施形態と同じものを用いる。なお、無線タグ261は書籍161に貼付されるものとする。以下、本実施形態の無線タグ261を第1、第2実施形態と異なる部分を中心に説明する。
(Third embodiment)
Next, a third embodiment of the wireless tag according to the present disclosure will be described. FIG. 11 is a block diagram showing an electrical configuration of the wireless tag 261 of the present embodiment. In addition, what has the same function as 1st, 2nd embodiment attaches | subjects the same code | symbol. As shown in FIG. 11, the wireless tag 261 differs from the wireless tags 201 to 209, 251 of the first and second embodiments only in the power source 2118, and the other configurations are the same. Further, the method of using the wireless tag 261 and the operation of the wireless tag 261 are the same as those in the first and second embodiments. Further, the reader / writer 10 is the same as that in the first and second embodiments. Note that the wireless tag 261 is attached to the book 161. Hereinafter, the wireless tag 261 of the present embodiment will be described focusing on differences from the first and second embodiments.
 図12は、本実施形態の無線タグ261の電源2118の電気的構成を示したブロック図である。なお、第1、第2実施形態と同一の機能を有するものは同一の符号を付している。図12に示すように、電源2118は、N倍圧整流回路2115a、バイポーラトランジスタTr、ツェナダイオードDz、抵抗素子R2、及び、コンデンサCaを有している。このように、N倍圧整流回路2115aとコンデンサCaは第1、第2実施形態と同様である。すなわち、電源2118は、送受信アンテナ221で受信した交流受信信号から得られる受信時交流電圧をN倍圧整流回路2115aにて徐々に昇圧して且つ整流して出力し、その出力電圧の一部をコンデンサCaにて充電する。ここで、第1、第2実施形態では、N倍圧整流回路2115aとコンデンサCaの間に抵抗素子R1を接続していたが、本実施形態では、その抵抗素子R1の代わりに、バイポーラトランジスタTr、逆方向に所定のツェナ電圧が印加されたときに電流が流れるツェナダイオードDz、及び、抵抗素子R2から構成される回路が接続されている。 FIG. 12 is a block diagram showing an electrical configuration of the power source 2118 of the wireless tag 261 of the present embodiment. In addition, what has the same function as 1st, 2nd embodiment attaches | subjects the same code | symbol. As shown in FIG. 12, the power source 2118 includes an N-fold voltage rectifier circuit 2115a, a bipolar transistor Tr, a Zener diode Dz, a resistance element R2, and a capacitor Ca. Thus, the N-fold voltage rectifier circuit 2115a and the capacitor Ca are the same as those in the first and second embodiments. That is, the power supply 2118 gradually boosts and rectifies the reception AC voltage obtained from the AC reception signal received by the transmission / reception antenna 221 by the N-fold voltage rectifier circuit 2115a, and outputs a part of the output voltage. Charge with capacitor Ca. Here, in the first and second embodiments, the resistor element R1 is connected between the N-fold voltage rectifier circuit 2115a and the capacitor Ca. In this embodiment, instead of the resistor element R1, the bipolar transistor Tr1 is connected. A circuit composed of a Zener diode Dz through which a current flows when a predetermined Zener voltage is applied in the reverse direction and a resistance element R2 is connected.
 バイポーラトランジスタTrは、PNPトランジスタであり、そのエミッタ端子にはN倍圧整流回路2115aの出力端子2115bが接続されており、コレクタ端子にはコンデンサCaが接続されており、ベース端子にはツェナダイオードDzのカソード端子が接続されている。また、ツェナダイオードDzのアノード端子は、抵抗素子R2を介してグランドに接続されている。 The bipolar transistor Tr is a PNP transistor, the emitter terminal of which is connected to the output terminal 2115b of the N-fold voltage rectifier circuit 2115a, the collector terminal is connected to the capacitor Ca, and the base terminal is a Zener diode Dz. Is connected to the cathode terminal. The anode terminal of the Zener diode Dz is connected to the ground via the resistance element R2.
 このような構成の電源2118において、送受信アンテナ221が交流受信信号60を受信すると、交流受信信号60から得られる受信時交流電圧がN倍圧整流回路2115aに入力されて、その受信時交流電圧が徐々に昇圧され且つ整流されていく。そして、N倍圧整流回路2115aの出力端子2115bの電位が徐々に増加されていくに伴って、バイポーラトランジスタTrのベース端子の電位も徐々に増加されていく。ところが、バイポーラトランジスタTrのベース端子の電位(ツェナダイオードDzのカソード端子の電位)とツェナダイオードDzのアノード端子の電位(グランド)との差(ツェナダイオードDzに印加される電圧)が上記ツェナ電圧に達するまでは、ツェナダイオードDzに電流が流れない。すなわち、バイポーラトランジスタTrのベース端子に電流が流れないので、バイポーラトランジスタTrのエミッタ-コレクタ間に電流は流れない。したがって、コンデンサCaには電荷が充電されない。 In the power supply 2118 having such a configuration, when the transmission / reception antenna 221 receives the AC reception signal 60, a reception AC voltage obtained from the AC reception signal 60 is input to the N-fold voltage rectifier circuit 2115a, and the reception AC voltage is The pressure is gradually increased and rectified. As the potential at the output terminal 2115b of the N-fold voltage rectifier circuit 2115a is gradually increased, the potential at the base terminal of the bipolar transistor Tr is also gradually increased. However, the difference (voltage applied to the Zener diode Dz) between the potential of the base terminal of the bipolar transistor Tr (the potential of the cathode terminal of the Zener diode Dz) and the potential of the anode terminal of the Zener diode Dz (ground) is the Zener voltage. Until it reaches, no current flows through the Zener diode Dz. That is, since no current flows through the base terminal of the bipolar transistor Tr, no current flows between the emitter and collector of the bipolar transistor Tr. Therefore, the capacitor Ca is not charged.
 その後、N倍圧整流回路2115aの出力端子2115bの電位が徐々に増加されていって、ツェナダイオードDzに印加される電圧がツェナ電圧に達したときには、ツェナダイオードDzに電流が流れる。すなわち、バイポーラトランジスタTrのベース端子に電流が流れるので、バイポーラトランジスタTrのエミッタ-コレクタ間に電流が流れるようになる。それに伴って、コンデンサCaに電圧が充電し始める。そして、N倍圧整流回路2115aの出力端子2115bの電位がさらに増加して、ツェナダイオードDzに印加される電圧がツェナ電圧より大きくなるにつれて、ツェナダイオードDzに多くの電流が流れる。すなわち、バイポーラトランジスタTrのベース端子に電流が多く流れる。その結果、トランジスタの電流増幅作用によって、バイポーラトランジスタTrのエミッタ-コレクタ間に急激に電流が流れるようになる。したがって、コンデンサCaに電圧が急激に充電されていく。 Thereafter, when the potential of the output terminal 2115b of the N-fold voltage rectifier circuit 2115a is gradually increased and the voltage applied to the Zener diode Dz reaches the Zener voltage, a current flows through the Zener diode Dz. That is, since a current flows through the base terminal of the bipolar transistor Tr, a current flows between the emitter and collector of the bipolar transistor Tr. Along with this, voltage starts to be charged in the capacitor Ca. As the potential of the output terminal 2115b of the N-fold voltage rectifier circuit 2115a further increases and the voltage applied to the Zener diode Dz becomes larger than the Zener voltage, more current flows through the Zener diode Dz. That is, a large amount of current flows through the base terminal of the bipolar transistor Tr. As a result, a current suddenly flows between the emitter and collector of the bipolar transistor Tr due to the current amplification effect of the transistor. Accordingly, the voltage is rapidly charged in the capacitor Ca.
 図13は、コンデンサCaに充電される充電電圧の時間変化を説明するための図である。曲線3は、ツェナダイオードDzに印加される電圧の時間変化を示している。また、曲線4は、第1、第2実施形態のように、N倍圧整流回路2115aとコンデンサCaの間に抵抗素子R1を接続したときの、コンデンサCaに充電される充電電圧の時間変化を示している。また、曲線5は、抵抗素子R1の代わりに、N倍圧整流回路2115aとコンデンサCaの間、バイポーラトランジスタTr、ツェナダイオードDz、及び、抵抗素子R2から構成される回路を接続したときの、コンデンサCaに充電される充電電圧の時間変化を示している。図13に示すように、曲線4は、時間とコンデンサCaに充電される充電電圧とがほぼ比例関係にある。一方、曲線5は、曲線3がツェナ電圧に達するまでは、ほぼゼロとなっており、曲線3がツェナ電圧を超えた時間以降は、コンデンサCaに充電される充電電圧が急激に変化している。そして、曲線5は、曲線4よりも早い時間で発光ダイオード231の駆動電圧に達している。すなわち、バイポーラトランジスタTrとツェナダイオードDzを用いることによって、抵抗素子R1を用いたときよりも早く発光ダイオード231の駆動電圧をコンデンサCaに充電させることができる。 FIG. 13 is a diagram for explaining the time change of the charging voltage charged in the capacitor Ca. A curve 3 shows a time change of the voltage applied to the Zener diode Dz. Curve 4 shows the time change of the charging voltage charged to the capacitor Ca when the resistor element R1 is connected between the N-fold voltage rectifier circuit 2115a and the capacitor Ca as in the first and second embodiments. Show. Curve 5 shows a capacitor when a circuit composed of a bipolar transistor Tr, a Zener diode Dz, and a resistor element R2 is connected between the N-fold voltage rectifier circuit 2115a and the capacitor Ca instead of the resistor element R1. The time change of the charging voltage charged to Ca is shown. As shown in FIG. 13, the curve 4 has a substantially proportional relationship between time and the charging voltage charged in the capacitor Ca. On the other hand, the curve 5 is substantially zero until the curve 3 reaches the Zener voltage, and after the time when the curve 3 exceeds the Zener voltage, the charging voltage charged in the capacitor Ca changes rapidly. . Then, the curve 5 reaches the driving voltage of the light emitting diode 231 at a time earlier than the curve 4. That is, by using the bipolar transistor Tr and the Zener diode Dz, the capacitor Ca can be charged with the drive voltage of the light emitting diode 231 earlier than when the resistor element R1 is used.
 なお、バイポーラトランジスタTr、ツェナダイオードDz、及び、抵抗素子R2から構成される回路は、N倍圧整流回路2115aで昇圧され且つ整流された電圧の一部をコンデンサCaに伝達している。また、バイポーラトランジスタTrは、コレクタ側からエミッタ側に流れる電流は極めて少ないので、コンデンサCaに充電されている充電電圧が送受信アンテナ221側に放電されるのを抑制している。 Note that the circuit constituted by the bipolar transistor Tr, the Zener diode Dz, and the resistance element R2 transmits a part of the voltage boosted and rectified by the N-fold voltage rectifier circuit 2115a to the capacitor Ca. Further, since the bipolar transistor Tr has very little current flowing from the collector side to the emitter side, the charging voltage charged in the capacitor Ca is suppressed from being discharged to the transmitting / receiving antenna 221 side.
 以上、本実施形態の無線タグでは、伝達回路として、バイポーラトランジスタTr、ツェナダイオードDz、及び、抵抗素子R2から構成される回路を採用している。これにより、伝達回路に抵抗素子R1を採用したときよりも、早く、発光ダイオード231の駆動電圧をコンデンサCaに充電させることができる。 As described above, the wireless tag according to the present embodiment employs a circuit including the bipolar transistor Tr, the Zener diode Dz, and the resistance element R2 as the transmission circuit. Thereby, the capacitor Ca can be charged with the drive voltage of the light emitting diode 231 earlier than when the resistance element R1 is employed in the transmission circuit.
 (第4実施形態)
 上記第1~第3実施形態では、無線タグ201~209、251、261を書籍101~109、151、161に貼付して、ユーザはリーダ・ライタ10を用いて、所望の書籍101~109、151、161を検索するために無線タグ201~209、251、261を使用していたが、本実施形態でが、検索の目的ではなく、位置把握の目的で無線タグを使用している。
(Fourth embodiment)
In the first to third embodiments, the wireless tags 201 to 209, 251 and 261 are attached to the books 101 to 109, 151 and 161, and the user uses the reader / writer 10 to select the desired books 101 to 109, The wireless tags 201 to 209, 251 and 261 are used for searching 151 and 161, but in this embodiment, the wireless tags are used for the purpose of grasping the position, not for the purpose of searching.
 図14は、本実施形態の無線タグ271、リーダ・ライタ70及びサーバ80を備える無線タグシステムを説明するための図である。図14に示すように、リーダ・ライタ70は複数の地点に設置される。また、各リーダ・ライタ70は、サーバ80に有線で接続されている。一方、無線タグ271は、ユーザに所持されている。なお、リーダ・ライタ70の構成はリーダ・ライタ10と同じであるが、図示しない制御部が実行する処理は、制御部12が実行する処理と異なっている。また、無線タグ271の構成は、無線タグ201~209と同じであるが、図示しない制御部が実行する処理は、制御部2111が実行する処理と異なっている。したがって、リーダ・ライタ70の構成、及び、無線タグ271の構成の説明を省略して、リーダ・ライタ70が実行する処理、無線タグ271が実行する処理、及びサーバ80が実行する処理について、簡単に説明する。 FIG. 14 is a diagram for explaining a wireless tag system including the wireless tag 271, the reader / writer 70, and the server 80 according to the present embodiment. As shown in FIG. 14, the reader / writer 70 is installed at a plurality of points. Each reader / writer 70 is connected to the server 80 by wire. On the other hand, the wireless tag 271 is possessed by the user. The configuration of the reader / writer 70 is the same as that of the reader / writer 10, but the processing executed by a control unit (not shown) is different from the processing executed by the control unit 12. The configuration of the wireless tag 271 is the same as that of the wireless tags 201 to 209, but the processing executed by a control unit (not shown) is different from the processing executed by the control unit 2111. Therefore, the description of the configuration of the reader / writer 70 and the configuration of the wireless tag 271 is omitted, and the processing executed by the reader / writer 70, the processing executed by the wireless tag 271 and the processing executed by the server 80 are simply described. Explained.
 各リーダ・ライタ70は、定期的に無線タグ271を呼び出すための交流送信信号51を外部に送信するようにする。一方、無線タグ271は、リーダ・ライタ70の近くにあるときには、交流送信信号51を交流受信信号61として受信し、その後、リーダ・ライタ70に記憶IDコードを送信する。そして、リーダ・ライタ70は、その記憶IDコードを受信して、サーバ80に送信する。サーバ80は、リーダ・ライタ70から送信されてきた記憶IDコードを、リーダ・ライタ70が設置されている地点に関する情報(名称、住所等)、及び現在の時刻に関連付けて記憶しておく。また、サーバ80には、無線タグ271を所持するユーザに関する情報(氏名、年齢、住所等)を無線タグ271に記憶されている記憶IDコードを関連付けて記憶されている。なお、図14では、A地点に無線タグ271を所持しているユーザが居る状態を示している。 Each reader / writer 70 periodically transmits an AC transmission signal 51 for calling the wireless tag 271 to the outside. On the other hand, when the wireless tag 271 is near the reader / writer 70, the wireless tag 271 receives the AC transmission signal 51 as the AC reception signal 61, and then transmits the storage ID code to the reader / writer 70. Then, the reader / writer 70 receives the stored ID code and transmits it to the server 80. The server 80 stores the storage ID code transmitted from the reader / writer 70 in association with information (name, address, etc.) regarding the location where the reader / writer 70 is installed and the current time. Further, the server 80 stores information (name, age, address, etc.) related to the user who owns the wireless tag 271 in association with the storage ID code stored in the wireless tag 271. FIG. 14 shows a state where there is a user who has a wireless tag 271 at point A.
 これにより、サーバ80は、どの人がいつどこに居たのかを、把握することができる。この際、無線タグ271は、リーダ・ライタ70によって記憶IDコードが読み出されたときに、自身に備えられている発光ダイオード231を発光させるようにする。これにより、無線タグ271を所持しているユーザは、リーダ・ライタ70によって、記憶IDコードが読み出されたことを把握することができる。 As a result, the server 80 can grasp which person is where and when. At this time, when the stored ID code is read by the reader / writer 70, the wireless tag 271 causes the light emitting diode 231 provided therein to emit light. Thereby, the user who possesses the wireless tag 271 can grasp that the stored ID code has been read by the reader / writer 70.
 なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨に基づいて種々なる形態で実施することができる。例えば、上記第1~第4実施形態では、充電電圧の値を監視することによって若しくは時間を計測することによって、充電電圧が発光ダイオード231の駆動電圧に達したタイミングで、充電電圧を放電して発光ダイオード231を発光させていた。しかし、充電電圧が発光ダイオード231の駆動電圧以上であるならば、どのタイミングで充電電圧を放電して発光ダイオード231を発光させてもよい。充電電圧の値が大きければ、それだけ長い時間、発光ダイオード231を発光させることができるので、ユーザは発光ダイオード231が発光しているのを把握し易くなる。 Note that the present invention is not limited to the above embodiment, and can be implemented in various forms based on the gist of the present invention. For example, in the first to fourth embodiments, the charging voltage is discharged at the timing when the charging voltage reaches the driving voltage of the light emitting diode 231 by monitoring the value of the charging voltage or measuring the time. The light emitting diode 231 emits light. However, as long as the charging voltage is equal to or higher than the driving voltage of the light emitting diode 231, the charging voltage may be discharged at any timing to cause the light emitting diode 231 to emit light. If the value of the charging voltage is large, the light emitting diode 231 can be made to emit light for such a long time, so that the user can easily understand that the light emitting diode 231 emits light.
 また、上記第1~第4実施形態では、昇圧整流回路として、N倍圧整流回路2115aを用いていたが、N倍圧整流回路2115aの代わりにスイッチングレギュレータを用いてもよい。 In the first to fourth embodiments, the N voltage doubler rectifier circuit 2115a is used as the step-up rectifier circuit, but a switching regulator may be used instead of the N voltage doubler rectifier circuit 2115a.
 以上説明したように、本開示の無線タグによれば、交流受信信号を受信した場合には、所定駆動電圧以上の充電電圧が発光ダイオードに印加されるので、交流受信信号が微弱信号であったとしても、発光ダイオードを発光させることができる。すなわち、リーダ・ライタと無線タグとの間の距離が長くなっても、無線タグに備えられている発光ダイオードを発光させることができるので、無線タグの使い勝手を向上できる。又は、リーダ・ライタから送信される交流送信信号が微弱信号であっても、発光ダイオードを発光させることができるので、使用電力を抑制することができる。 As described above, according to the wireless tag of the present disclosure, when an AC reception signal is received, a charging voltage equal to or higher than a predetermined drive voltage is applied to the light emitting diode, so the AC reception signal is a weak signal. However, the light emitting diode can emit light. That is, even when the distance between the reader / writer and the wireless tag is increased, the light emitting diode provided in the wireless tag can be caused to emit light, so that the usability of the wireless tag can be improved. Alternatively, even if the AC transmission signal transmitted from the reader / writer is a weak signal, the light emitting diode can be caused to emit light, and thus power consumption can be suppressed.
 また、交流送信信号には、ユーザが検索したい無線タグのIDコードを示す検索IDコードが含まれているので、受信アンテナが受信した交流受信信号に含まれる検索IDコードとIDコード記憶手段に記憶されている記憶IDコードとが所定の関係を満たすか否かの照合可否判定が行われる。その結果、照合否となった場合には、充電電圧の放電が中止される。 Also, since the AC transmission signal includes a search ID code indicating the ID code of the wireless tag that the user wants to search, the search ID code included in the AC reception signal received by the receiving antenna and stored in the ID code storage means It is determined whether or not the stored ID code has a predetermined relationship. As a result, when the verification is rejected, the discharging of the charging voltage is stopped.
 また、昇圧整流回路が、ダイオードとコンデンサとを用いて構成された、入力交流電圧を略2倍にして且つ直流電圧に整流して出力する倍圧整流回路が単数又は複数接続された回路であるので、簡易な構成でユーザが所望する電圧となるように受信時交流電圧を昇圧して直流電圧に整流することができる。 In addition, the boost rectifier circuit is configured by using a diode and a capacitor, and is a circuit in which one or a plurality of voltage doubler rectifier circuits that rectify an input AC voltage and rectify it to a DC voltage for output. Therefore, the AC voltage during reception can be boosted and rectified to a DC voltage so as to be a voltage desired by the user with a simple configuration.
 また、充電電圧が所定駆動電圧以上になった以降の、所定のタイミングで充電電圧が放電されるので、発光ダイオードの発光タイミングを制御できるので無線タグの使い勝手を向上できる。 Also, since the charging voltage is discharged at a predetermined timing after the charging voltage becomes equal to or higher than the predetermined driving voltage, the light emission timing of the light emitting diode can be controlled, so that the usability of the wireless tag can be improved.
 また、充電電圧の値が監視されて、その充電電圧の値が所定の駆動電圧に達したタイミングで充電電圧が放電されるので、迅速且つ確実に発光ダイオードを発光させることができる。 Further, since the value of the charging voltage is monitored and the charging voltage is discharged at the timing when the value of the charging voltage reaches a predetermined driving voltage, the light emitting diode can be caused to emit light quickly and reliably.
 また、受信アンテナが交流受信信号を受信した時間を基準として、充電電圧が所定駆動電圧になると予想される予想充電時間が予め定められている。そして、充電電圧放電手段が、その予想充電時間のタイミングで充電電圧を放電するので、迅速に発光ダイオードを発光させることができる。 The expected charging time that the charging voltage is expected to become the predetermined driving voltage is determined in advance with reference to the time when the receiving antenna receives the AC reception signal. Since the charging voltage discharging means discharges the charging voltage at the timing of the expected charging time, the light emitting diode can be made to emit light quickly.
 また、伝達回路が抵抗素子で構成されると、簡易な構成で、昇圧整流電圧による負荷を少なくして充電回路に充電させることができる。 In addition, when the transmission circuit is configured by a resistance element, it is possible to charge the charging circuit with a simple configuration with less load due to the boosted rectified voltage.
 また、昇圧整流電圧伝達回路がトランジスタとツェナダイオードとを備えた回路で構成されると、昇圧整流電圧が、ツェナ電圧を超えるまでは、トランジスタは導通しないが、昇圧整流電圧がツェナ電圧を超えたときには、トランジスタは導通して、昇圧整流電圧は充電回路に伝達される。この際、トランジスタの電流増幅作用により、伝達回路として抵抗素子を用いたときよりも、早く所定駆動電圧以上の電圧が充電回路に充電される。 Further, when the boosted rectified voltage transmission circuit is configured by a circuit including a transistor and a Zener diode, the transistor does not conduct until the boosted rectified voltage exceeds the Zener voltage, but the boosted rectified voltage exceeds the Zener voltage. Sometimes, the transistor becomes conductive and the boosted rectified voltage is transmitted to the charging circuit. At this time, due to the current amplifying action of the transistor, the charging circuit is charged with a voltage equal to or higher than the predetermined drive voltage earlier than when the resistance element is used as the transmission circuit.

Claims (8)

  1.  交流送信信号を外部に送信するリーダ・ライタとの間で無線通信を行う無線タグであって、
     前記リーダ・ライタから送信された前記交流送信信号を交流受信信号として受信する受信アンテナと、
     前記交流受信信号から得られる交流電圧を示す受信時交流電圧よりも大きい所定駆動電圧が順方向に印加されたときに発光する発光ダイオードと、
     前記受信アンテナに接続され、前記受信アンテナが受信した前記交流受信信号から得られる前記受信時交流電圧が前記所定駆動電圧以上となるように、その受信時交流電圧を昇圧するとともに直流電圧に整流する昇圧整流回路と、
     前記昇圧整流回路によって昇圧され且つ直流電圧に整流された昇圧整流電圧の少なくとも一部が充電される充電回路と、
     前記充電回路と前記受信アンテナとの間に接続され、前記昇圧整流電圧が前記受信アンテナ側に放電されるのを抑制して、前記充電回路に充電される充電電圧が前記所定駆動電圧以上となるように、前記昇圧整流電圧を前記充電回路に伝達させる伝達回路と、
     前記充電回路に充電されている充電電圧が前記発光ダイオードの順方向に印加されるように、その充電電圧を放電する充電電圧放電手段とを備えることを特徴とする無線タグ。
    A wireless tag that performs wireless communication with a reader / writer that transmits an AC transmission signal to the outside,
    A receiving antenna that receives the AC transmission signal transmitted from the reader / writer as an AC reception signal;
    A light emitting diode that emits light when a predetermined drive voltage larger than the reception AC voltage indicating the AC voltage obtained from the AC reception signal is applied in the forward direction;
    The reception AC voltage is boosted and rectified to a DC voltage so that the reception AC voltage obtained from the AC reception signal received by the reception antenna is equal to or higher than the predetermined drive voltage. A boost rectifier circuit;
    A charging circuit in which at least a part of the boosted rectified voltage boosted by the boost rectifier circuit and rectified to a DC voltage is charged;
    Connected between the charging circuit and the receiving antenna, the boosted rectified voltage is suppressed from being discharged to the receiving antenna side, and the charging voltage charged in the charging circuit becomes equal to or higher than the predetermined driving voltage. A transmission circuit for transmitting the boosted rectified voltage to the charging circuit,
    A wireless tag comprising: charging voltage discharging means for discharging the charging voltage so that a charging voltage charged in the charging circuit is applied in a forward direction of the light emitting diode.
  2.  前記交流送信信号には、ユーザが検索したい無線タグのIDコードを示す検索IDコードが含まれており、
     前記無線タグは、
     記憶IDコードを記憶するIDコード記憶手段と、
     前記受信アンテナが受信した前記交流受信信号に含まれる前記検索IDコードと前記IDコード記憶手段に記憶されている前記記憶IDコードとが所定の関係を満たすか否かの照合可否判定をする照合可否判定手段とを有し、
     前記充電電圧放電手段は、前記照合可否判定手段によって、照合否と判定された場合には、前記充電電圧の放電を中止することを特徴とする請求項1に記載の無線タグ。
    The AC transmission signal includes a search ID code indicating an ID code of a wireless tag that the user wants to search,
    The wireless tag is
    ID code storage means for storing a storage ID code;
    Checking whether or not to check whether or not the search ID code included in the AC reception signal received by the receiving antenna and the stored ID code stored in the ID code storage means satisfy a predetermined relationship. Determination means,
    2. The wireless tag according to claim 1, wherein the charging voltage discharging unit stops discharging the charging voltage when it is determined that the verification is impossible by the verification availability determination unit.
  3.  前記昇圧整流回路は、ダイオードとコンデンサとを用いて構成された、入力交流電圧を略2倍にして且つ直流電圧に整流して出力する倍圧整流回路を単数又は複数接続した回路であることを特徴とする請求項1又は2に記載の無線タグ。 The step-up rectifier circuit is a circuit in which a single or a plurality of voltage doubler rectifier circuits configured by using a diode and a capacitor, which approximately doubles an input AC voltage and rectifies and outputs a DC voltage, are connected. The wireless tag according to claim 1 or 2, characterized in that:
  4.  前記充電回路に、前記昇圧整流電圧が徐々に充電されていき、
     前記充電電圧放電手段は、前記充電電圧が前記所定駆動電圧以上になった以降の、所定のタイミングで前記充電電圧を放電することを特徴とする請求項1~3のいずれか1項に記載の無線タグ。
    The boosted rectified voltage is gradually charged into the charging circuit,
    4. The charging voltage discharging unit according to claim 1, wherein the charging voltage discharging unit discharges the charging voltage at a predetermined timing after the charging voltage becomes equal to or higher than the predetermined driving voltage. Wireless tag.
  5.  前記充電電圧放電手段は、前記充電電圧の値を監視して、前記充電電圧の値が前記所定駆動電圧に達したタイミングで前記充電電圧を放電することを特徴とする請求項4に記載の無線タグ。 The wireless charging according to claim 4, wherein the charging voltage discharging means monitors the value of the charging voltage and discharges the charging voltage at a timing when the value of the charging voltage reaches the predetermined driving voltage. tag.
  6.  前記受信アンテナが前記交流受信信号を受信した時間を基準として、前記充電電圧が前記所定駆動電圧になると予想される予想充電時間が予め定められており、
     前記充電電圧放電手段は、前記予想充電時間のタイミングで前記充電電圧を放電することを特徴とする請求項4に記載の無線タグ。
    With reference to the time when the receiving antenna receives the AC reception signal, an expected charging time that the charging voltage is expected to become the predetermined driving voltage is predetermined,
    The wireless tag according to claim 4, wherein the charging voltage discharging unit discharges the charging voltage at the timing of the expected charging time.
  7.  前記伝達回路が抵抗素子であることを特徴とする請求項1~6のいずれか1項に記載の無線タグ。 The wireless tag according to any one of claims 1 to 6, wherein the transmission circuit is a resistance element.
  8.  前記昇圧整流回路は、前記受信時交流電圧を徐々に昇圧し、
     前記伝達回路は、両端に所定ツェナ電圧以上の電圧が印加されたときに導通するツェナダイオードと、前記昇圧整流回路と前記充電回路の間に接続され、電流の導通及び遮断を制御するとともに入力電流を増幅するトランジスタとを有し、
     前記昇圧整流回路によって徐々に昇圧された電圧が前記ツェナ電圧以上となったときに、前記トランジスタが導通するように、前記ツェナダイオードと前記トランジスタが接続されていることを特徴とする請求項1~6のいずれか1項に記載の無線タグ。
    The boost rectifier circuit gradually boosts the reception AC voltage,
    The transmission circuit is connected between a Zener diode that conducts when a voltage equal to or higher than a predetermined Zener voltage is applied to both ends, and is connected between the boost rectifier circuit and the charging circuit, and controls conduction and interruption of current, and also an input current And a transistor for amplifying
    The Zener diode and the transistor are connected so that the transistor becomes conductive when the voltage gradually boosted by the boost rectifier circuit becomes equal to or higher than the Zener voltage. The wireless tag according to any one of 6.
PCT/JP2009/056446 2008-06-18 2009-03-30 Radio tag WO2009154032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-159029 2008-06-18
JP2008159029A JP2010002971A (en) 2008-06-18 2008-06-18 Radio tag

Publications (1)

Publication Number Publication Date
WO2009154032A1 true WO2009154032A1 (en) 2009-12-23

Family

ID=41433949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056446 WO2009154032A1 (en) 2008-06-18 2009-03-30 Radio tag

Country Status (2)

Country Link
JP (1) JP2010002971A (en)
WO (1) WO2009154032A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2531379A (en) * 2014-10-10 2016-04-20 Zwipe As Power load management

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159139A (en) * 2010-02-02 2011-08-18 Tadayoshi Takahashi Use method of article search system
JP5928103B2 (en) * 2012-03-30 2016-06-01 富士通株式会社 Magnetic field generator for wireless communication, wireless communication apparatus, and magnetic field generating method for wireless communication
JP2014081959A (en) * 2014-01-29 2014-05-08 Tadayoshi Takahashi Method for using article search system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078777A (en) * 1998-09-01 2000-03-14 Oki Electric Ind Co Ltd Voltage generator circuit
JP2000194808A (en) * 1998-12-24 2000-07-14 Dainippon Printing Co Ltd Ic card
JP2004164462A (en) * 2002-11-15 2004-06-10 Dainippon Printing Co Ltd Ic chip for non-contact type data carrier, non-contact type data carrier, and system using the non-contact type data carrier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916658B2 (en) * 2003-12-19 2012-04-18 株式会社半導体エネルギー研究所 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078777A (en) * 1998-09-01 2000-03-14 Oki Electric Ind Co Ltd Voltage generator circuit
JP2000194808A (en) * 1998-12-24 2000-07-14 Dainippon Printing Co Ltd Ic card
JP2004164462A (en) * 2002-11-15 2004-06-10 Dainippon Printing Co Ltd Ic chip for non-contact type data carrier, non-contact type data carrier, and system using the non-contact type data carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2531379A (en) * 2014-10-10 2016-04-20 Zwipe As Power load management

Also Published As

Publication number Publication date
JP2010002971A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
US7158009B2 (en) Electronic circuit for contactless tag, and contactless tag
US20120313758A1 (en) Methods and apparatuses for activating and powering radio frequency identification tags and labels
JP5245690B2 (en) Contactless power receiving circuit and contactless power transmission system
WO2009154032A1 (en) Radio tag
US20120194073A1 (en) Driving circuit capable of enhancing energy conversion efficiency and driving method thereof
KR102324680B1 (en) Power supply device, display apparatus having the same and method for power supply
RU2590898C2 (en) Inventory control device
JP2009184592A (en) Lighting control device of vehicle lamp
US7932829B2 (en) Method and apparatus for self-expiration of a passive data tag device
US11081902B2 (en) Power supply device and power supply system including power supply device
JP2004303174A (en) Electronic circuit for non-contact tag and non-contact tag
US11114901B2 (en) Cradle device having wireless charging function
US20110069575A1 (en) Electronic device and method for preventing data loss in memory storage device and electronic device assembly
JP4223115B2 (en) IC card
JP5209571B2 (en) Luminescent medium
US8981937B2 (en) RFID tag
JP2005101987A (en) Integrated radio id tag
JP5217675B2 (en) Wireless tag
JP4910308B2 (en) Non-contact power transmission device, power feeding device, power receiving device
WO2014013854A1 (en) Sensor tag and power supply module for energy harvesting
JP4223114B2 (en) IC card
US10615645B2 (en) Power supply device of induction type power supply system and NFC device identification method of the same
JP5659628B2 (en) Voltage control circuit and electrical equipment
JP2007312556A (en) Switching power supply circuit
JPWO2017056260A1 (en) Wireless power feeding system, power feeding side device, and power receiving side device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766480

Country of ref document: EP

Kind code of ref document: A1