WO2009153954A1 - 人工飼育水及び人工飼育水生成物質 - Google Patents

人工飼育水及び人工飼育水生成物質 Download PDF

Info

Publication number
WO2009153954A1
WO2009153954A1 PCT/JP2009/002689 JP2009002689W WO2009153954A1 WO 2009153954 A1 WO2009153954 A1 WO 2009153954A1 JP 2009002689 W JP2009002689 W JP 2009002689W WO 2009153954 A1 WO2009153954 A1 WO 2009153954A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
seawater
water
breeding
sodium
Prior art date
Application number
PCT/JP2009/002689
Other languages
English (en)
French (fr)
Inventor
山本俊政
Original Assignee
学校法人加計学園
株式会社K2ライフラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人加計学園, 株式会社K2ライフラボ filed Critical 学校法人加計学園
Publication of WO2009153954A1 publication Critical patent/WO2009153954A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention is related to breeding water used when cultivating and breeding saltwater fish and freshwater fish in a closed environment, and more specifically, used when breeding saltwater fish and freshwater fish in a breeding tank such as an aquarium inland. It is related with the artificial breeding water suitable for.
  • seawater is considered essential for breeding saltwater fish, and a large amount of seawater is required for breeding inland, so inexpensive breeding is not possible.
  • artificial seawater has been developed as an artificial water to replace seawater in recent years, and artificial seawater is generated from fresh water such as tap water without being transported from the sea and used for rearing in aquariums. Became.
  • the most common sodium chloride is about 23-28 (g) in 1 (kg) of seawater with a specific gravity of 1.02-1.03.
  • Other salts in natural seawater include magnesium chloride, magnesium sulfate, calcium sulfate, potassium sulfate, potassium chloride, calcium carbonate, magnesium bromide, etc. Usually, it is around 35 (g) in 1 (kg) of seawater, that is, 35 ( ⁇ ) in weight ratio. Therefore, in principle, artificial seawater was prepared in accordance with the composition of such natural seawater.
  • Artificial seawater characterized by adding 08% by weight.
  • various salts such as sodium, potassium, magnesium and calcium, that is, a considerable number of salts are contained in artificial seawater, and sodium tetraborate 0.08 to 0.09
  • Artificial seawater was constituted by adding the respective materials of 10% by weight, 0.07 to 0.08% by weight of boric acid, and 0.07 to 0.08% by weight of potassium bromide.
  • KCl, NaSO 4 or the like, CaCO 3 , NaCO 3 , NaHCO 3 or the like may be used instead of K 2 SO 4 having the above salt composition, Furthermore, the addition of a trace amount of other salts of less than 0.1 parts by weight does not hinder the effects of the present invention.
  • the proportion of salt in the range close to natural seawater is defined as artificial seawater. Further, in the examples, sodium chloride is dissolved in artificial seawater so as to be about 23 to 28% by weight, and artificial seawater containing each salt similar to natural seawater is obtained.
  • the conventional artificial seawater has obtained artificial seawater that is a good breeding environment by bringing the kind of salt contained and the proportion of the salt close to that of natural seawater.
  • the present invention as artificial seawater, adds fewer types of salts than those contained in natural seawater to tap water, river water or groundwater, and the content of the salts in artificial seawater. It is an object of the present invention to provide artificial seawater that can be produced at a low cost by sufficiently reducing the number and amount of salts used per unit artificial seawater.
  • the artificial breeding water provided by the present invention obtained from various experiments conducted by the inventor uses only a very small number of salts, and the concentration of these salts in the artificial breeding water is minimized. It is a breeding water used for artificial breeding of seawater organisms and freshwater organisms, and at least sodium, calcium, and potassium are added to the breeding water so that the specific gravity is 1.004 or more and 1.025 or less.
  • the artificial breeding water characterized in that it is added, and in the artificial breeding water, magnesium is added to 0.1667 (g / l) to 1.31 (g / l), the specific gravity is 1.004 or more and 1.025
  • the minimum elements required for addition are sodium, calcium, and potassium.
  • the ratio of sodium to calcium is about 0.93, which is the best value for fish breeding. Even if the specific gravity is reduced to 1.004 (the salt concentration is reduced). Even so) I came to know that it does not affect fish breeding.
  • potassium ion, sodium ion, and calcium ion are represented.
  • This value is expressed by the content ratio of each element in artificial breeding water, the abundance ratio of potassium to calcium is 0.93, and the minimum contents are 0.1002 (g / l) and 0.09419 (g / l) for calcium and potassium, respectively. It is. And by adding only 0.1002 (g / l) and 0.09419 (g / l) respectively for calcium and potassium, the specific gravity is less than 1.004, so when sodium is added until it reaches 1.004, the sodium content becomes calcium and potassium. Is approximately 55 times that of 10.69145 (g / l). Based on these findings, it was found that the content of artificial breeding water of calcium and potassium was changed to the same level as natural seawater, so that it did not affect the breeding of fish in artificial breeding water. Furthermore, as a result of adding sodium to artificial breeding water and changing it to the concentration of natural seawater, it has been found that it does not affect fish breeding.
  • magnesium sulfate heptahydrate is present in an amount of 1.6897 (g / l) to natural seawater as artificial breeding water added with a large amount of magnesium contained in natural seawater and brought close to the components of natural seawater.
  • artificial breeding water having a specific gravity of not less than 1.004 and not more than natural seawater is provided.
  • the abundance ratio in the natural seawater is larger than that of potassium and calcium, and magnesium, which is less related to the osmotic pressure of fish, is added so as to be equivalent to the abundance ratio in the natural seawater. It can be brought close to the natural seawater environment, and artificial breeding water is a suitable environmental water for fish.
  • the inventor adjusted the abundance ratio of each component and experimented by producing environmental water suitable for various fish species, and as a result, depending on the fish species, the specific gravity was particularly light in the trough, Since it came to know that even if the content of the component is small, it does not affect the breeding, in the artificial breeding water, the content of each component is 0.25 times to 1 time of the breeding water and each of the above It came to provide artificial breeding water suitable for breeding pufferfish with the same ratio of components.
  • the growth status of the domestic fish was compared between the natural seawater and the artificial breeding water according to the present application for about one month, and the weight of the natural seawater was 81.46 (%). While the increase was recognized, the artificial breeding water according to the present application has an effect peculiar to the present application that allows the breeding fish to be bred at an early stage with respect to natural seawater as the weight increase of 119.07 (%) was recognized.
  • ammonia is generated when breeding the reared fish, and this ammonia is toxic with dissociated ammonium ions (NH 4 + ) that do not affect the fish, as shown in the equilibrium formula of Chemical Formula 1 below. Ammonia (NH 3 ) is in equilibrium.
  • fertilized eggs of trough pufferfish, a natural new fish are used for breeding with artificial breeding water and natural seawater.
  • the hatching rate in the breeding was investigated, the hatching rate was 30 (%) in natural seawater, whereas the hatching rate was 60 (%) in artificial breeding water mixed with 10 (%) natural seawater. It is possible to secure the rate, and it has an effect peculiar to the present application that makes it possible to establish an efficient and consistent seed production system from hatching to breeding.
  • marine Nannochloropsis which is indispensable for cultivating the rotifer, widely used as the initial feed for hatchling larvae, is a general culture method in which fertilization is applied to 100% natural seawater.
  • the culture density greatly changes depending on conditions such as location, time, seawater quality, etc., so stable culture management requires skill, and accordingly, rotifer culture also requires skill.
  • the specific gravity is lower than that of natural seawater and suitable conditions for the propagation of rotifers, and rotifers can be efficiently cultured.
  • artificial breeding water has a specific gravity of approximately 1.006.
  • each of these components is 2.777 (g / l) for sodium, 26.061% of the standard seawater content, 0.0993 (g / l) for calcium, 24.763% of the standard seawater content, and potassium. At 0.0951 (g / l), the standard seawater content ratio is 25.026%.
  • artificial breeding water for breeding trough puffer can be carried out even if the concentration of the salt is further lowered.
  • Sodium chloride to be dissolved is 1.781 (g / l)
  • calcium chloride dihydrate is 0.092 (g / l)
  • Potassium chloride can be implemented as 0.045 (g / l).
  • FIG. 1 is a schematic side view of a water tank and a filtration device used for observation experiments
  • FIG. 2 is a schematic plan view of a water tank and a filtration device used for observation experiments
  • FIG. FIG. 4 is a graph comparing the growth rates
  • FIG. 5 is an explanatory diagram related to changes in calcium content
  • FIG. 6 is an explanatory diagram related to changes in potassium
  • FIG. 7 is related to changes in sodium.
  • or FIG. 10 is explanatory drawing showing the component amount and component ratio of seawater.
  • the inventor considered that it was best to calculate the composition related to the osmotic pressure of fish from the salt in about 60 kinds of natural seawater, excluding radioisotopes, and add the minimum necessary components.
  • the filtration filter which consists of a sealed filtration tank in a water tank of about 100 (l). Then, ceramic was added to the filtration filter to adjust the pH of the breeding water over a long period of adjustment.
  • the foam separation apparatus 4 is described in FIG. 1, the foam separation apparatus 4 is used for removing floating substances such as fish droppings and surplus food in the breeding water in order to use the breeding water for a long time. It is not used in short-term experiments.
  • the breeding water cooling device 5 is also described, this is installed in order to keep the breeding water temperature constant according to the experimental environment because the temperature of the breeding water rises too much in the water tank installed outdoors in summer. Is.
  • the inventor came up with the idea of comparing the body fluids of mammals and fish with the components of natural seawater when determining the essential components.
  • an experiment was conducted to identify the essential elements of fish and their abundances from the six elements.
  • body fluids of mammals and fish are mainly composed of sodium chloride, potassium and phosphoric acid.
  • these components in the composition of diluted natural seawater, and the main components are sodium (2.777 (g / l)), chlorine (4.750 (g / l)), potassium (0.0951 (g / l)) ), Calcium (0.0993 (g / l)), magnesium (0.320 (g / l)), and sulfate (0.674 (g / l)).
  • the inventor has come up with the idea of preparing artificial breeding water from these components by adjusting the components related to the osmotic pressure of the fish so that the fish can survive.
  • each component of the standard seawater shown in FIG. 8 to FIG. 10 described in the introduction to biological oceanography (published by Kodansha Scientific)
  • the natural seawater concentration of each component is referred to and is 10780 (mg / kg) for sodium, 399 (mg / kg) for potassium, and 412 (mg / kg) for calcium.
  • seawater in the case where the salinity is 35 ppt at 20 ° C. is assumed, and in this invention, 1.025 is used as the specific gravity of standard seawater.
  • sodium is used as the content when the content of 10.656 (g / l) is 100% of standard seawater, and based on this, the content of sodium is displayed as a percentage.
  • 0.380 g / l
  • 0.401 0.401 (g / l) is used as the content when standard seawater is 100%. Based on this, the content of each component is displayed as a percentage.
  • the content of each component of standard seawater there are various sources and the values are slightly different.
  • the content of sodium is 10.656 (g / l) as standard. Use as 100% seawater.
  • the content is 0.380 (g / l)
  • the content is 0.401 (g / l).
  • sodium is 2.777 (g / l)
  • chlorine is 4.750 (g / l)
  • potassium is 0.0951 (g / l)
  • calcium is 0.0993 (g / l)
  • magnesium is 0.320. (g / l)
  • sodium chloride (industrial salt) magnesium chloride (industrial salt)
  • magnesium chloride (industrial salt) calcium chloride (primary reagent)
  • magnesium sulfate industrial salt
  • the inventor tried an experiment to identify the essential elements of fish and their abundance from the breeding water using the six elements and four reagents in order to further reduce the types of salts. And as a result of adding various components at the abundance ratio of these components in diluted natural seawater and repeating experiments, Sodium chloride 7.0587 (g / l) Calcium chloride dihydrate 0.3641 (g / l) Potassium chloride 0.18125 (g / l) Breeding was attempted by adding only. At this time, the pH of the breeding water was 6.45 and the specific gravity was 1.004.
  • the quantity of the reagent to add uses what contains impurities, such as industrial salt, the absolute quantity of each component contained in a reagent was computed and added.
  • the inventor investigated if other components could be reduced because it was an environment that could not be raised with artificial breeding water that did not contain magnesium. Therefore, the inventor paid attention to the fact that mainly potassium chloride and phosphoric acid are present in the cell fluid of marine fish, and only a small amount of sodium chloride is present.
  • potassium ions which are essential for fish, are selectively taken from seawater, and at the same time, sodium ions that are thought to be harmful by the action of the intracellular sodium pump are excreted from the salmon valve salt cells and kidneys. The water concentration is adjusted by suppressing the increase in salt concentration.
  • red sea bream and Japanese flounder can be bred smoothly for 2 months or longer without the occurrence of drowning, etc.
  • the body length of red sea bream is 25 (cm) and the length of Japanese flounder is 15 (cm) in about 2 months. Growth was seen.
  • sodium chloride is 1.781 (g / l)
  • magnesium sulfate heptahydrate is 0.426 (g / l)
  • calcium chloride dihydrate is 0.092 (g / l)
  • potassium chloride is 0.045 (g / l).
  • the causes of fish diseases are classified into protozoa such as bacterial, viral and ciliate and parasitic arthropods. Furthermore, with some exceptions such as Vibrio parahaemolyticus, it is roughly divided into seawater and freshwater.
  • trough pufferfish 10 tail
  • trough pufferfish 10 tail
  • a large caudal part missing and exposed dermis was housed in a suitable environmental water as described above and bred for 2 months, but continued to survive without vibrio infection.
  • This result indicates that traumatic Vibrio infection does not develop.
  • the traumatic pufferfish where the caudal portion was greatly lost and the dermis was exposed was observed by the open-type rearing method in which the open sea water was directly replenished. Infection was inevitable.
  • the preferred environmental water has no disease caused by parasites and fungi. And, from these results, the preferred environmental water is neither water nor fresh water, but a component and pH water that does not generally exist in nature, so the water quality that these protozoa and pathogens have never experienced, protozoa, It can be inferred that the pathogen is killed or unable to act.
  • a red sea bream 5 (tail) with a body length of 5 (cm) is placed in a natural seawater environment, and a red sea bream 5 (tail) with a body length of 6 (cm).
  • the animals were reared in a suitable environmental water environment, followed by observation of the growth of red sea bream, and the total weight was measured and compared every week.
  • the red sea bream in the natural seawater environment had a weight increase rate of 81.46 (%) after 4 weeks, while the red sea bream in the preferred environmental water environment had a weight increase rate of 119.07 (%).
  • the inventor experimented in which range the component concentrations of the three reagents are effective in the breeding with the above-mentioned suitable environmental water.
  • the same fish as described above was used as an experimental fish, and the state of each fish was observed.
  • 5 to 7 show the results. 5 to 7, K described in the top row is potassium, Na is sodium, and Ca is calcium.
  • the left side indicates the amount of the component present in the standard seawater as 100%. The abundance is expressed in percentage, and the right side represents the mass (g) in which the component is contained per 1 (l). Therefore, the left side of the amount described under each component indicates the abundance ratio with respect to the standard seawater in%, and the right column indicates the abundance per unit volume in (g / l).
  • the minimum amount of sodium, potassium and calcium is 2.777 (g / l) for sodium, 0.0951 (g / l) for potassium, 0.0995 (g / l) for calcium, and the concentration of these components in natural seawater Is 26.061% for sodium, 25.026% for potassium, and 24.763% for calcium.
  • the figure shows sodium and potassium obtained from the results of the above experiment, from the preferred environmental water content (2.777 (g / l) for sodium, natural seawater concentration ratio 26.061%) to natural seawater content (10.656 (g / l), natural It shows the result of observing whether or not experimental fish can be raised when the calcium content is changed with respect to sodium and potassium.
  • the figure shows that when the amount of sodium is 2.77 (g / l), which is the minimum amount, the amount of potassium and sodium in each case is similarly the minimum amount, natural seawater content concentration ratio 50%, natural seawater content concentration ratio It is the result when changing to 75%, natural seawater content concentration ratio 100%.
  • the content (mass per liter) of each component and the natural seawater concentration ratio at that time are the minimum, natural seawater content concentration ratio 50%, natural seawater content concentration ratio 75%, natural seawater content concentration ratio 100 Each time of% is expressed.
  • each cell has the function of a sodium / potassium pump to keep the amount of sodium in the cell constant and the amount of potassium constant. It excretes sodium and takes in potassium. From this fact, first, the experiment was conducted when the calcium content was changed regardless of these.
  • the minimum content of sodium is 2.777% (26.061%)
  • the minimum content of potassium is 0.0951 (g / l) (25.026%)
  • sodium and potassium are 50%, 75%, and 100%
  • the breeding situation was followed by changing the calcium content from 0.0996 (g / l) (24.765%) to 50%, 75%, and 100%.
  • the content of calcium is the minimum content 0.0993 (g / l) (24.763%) It turns out that the above is sufficient.
  • FIG. 5 shows the results of experiments accompanying changes in potassium content.
  • the potassium content was increased, and an experiment at a potassium content of 0.380 (g / l) (100%) was attempted.
  • the potassium content is 0.380 (g / l) (100%)
  • the sodium content is 2.777 (g / l) (26.061%) as in the case of the potassium content 0.0951 (g / l) (25.026%).
  • Experimental fish were bred well. The experiment was conducted with the minimum content of calcium at this time of 0.0993 (g / l) (24.763%) and the same content as seawater of 0.401 (g / l) (100%). However, all were good.
  • the content of sodium is 2.777 (g / l) (26.061%)
  • the content of potassium is 0.190 (g / l) (50%)
  • the content of calcium is 0.0993 (g / l) (24.763%)
  • a content of 0.401 (g / l) (100%) but in all cases, the experimental fish could be bred satisfactorily.
  • the sodium content is 2.777 (g / l) (26.061%), the content is 0.285 (g / l) (75%), and the calcium content is 0.0993 (g / l) (24.763%).
  • the content of 0.401 (g / l) (100%) the experiment fish were bred well in any case.
  • the sodium content is 2.777 (g / l) (26.061%) and the calcium content is 0.0993 (g / l) (24.763%) with a content of 0.380 (g / l) (100%).
  • the content of 0.401 (g / l) (100%) the experiment fish were bred well in any case.
  • the sodium content is 5.328 (g / l) (50%)
  • the potassium content is 0.0951 (g / l) (25.026%)
  • the calcium content is 0.0993 (g / l) (24.763%) and the content is 0.401 ( (g / l) (100%), and in all cases, the experimental fish were successfully bred.
  • the content of sodium is 5.328 (g / l) (50%)
  • the content of potassium is 0.190 (g / l) (50%)
  • the content of calcium is 0.0993 (g / l) (24.763% )
  • a content of 0.401 (g / l) (100%) but in any case, the experimental fish could be bred well.
  • the sodium content is 5.328 (g / l) (50%), the content is 0.285 (g / l) (75%), and the calcium content is 0.0993 (g / l) (24.763%) And the content of 0.401 (g / l) (100%), the experiment fish were bred well in any case.
  • the content of sodium is 5.328 (g / l) (50%)
  • the content is 0.380 (g / l) (100%)
  • the calcium content is 0.0993 (g / l) (24.763%)
  • the content of 0.401 (g / l) (100%) the experiment fish were bred well in any case.
  • the sodium content is 7.922 (g / l) (75%)
  • the potassium content is 0.0951 (g / l) (25.026%)
  • the calcium content is 0.0993 (g / l) (24.763%) and the content is 0.401 ( (g / l) (100%), and in all cases, the experimental fish were successfully bred.
  • the content of sodium is 7.922 (g / l) (75%)
  • the content of potassium is 0.190 (g / l) (50%)
  • the content of calcium is 0.0993 (g / l) (24.763% )
  • a content of 0.401 (g / l) (100%) but in any case, the experimental fish could be bred well.
  • the content of sodium is 7.922 (g / l) (75%)
  • the content is 0.285 (g / l) (75%)
  • the calcium content is 0.0993 (g / l) (24.763%)
  • the content of 0.401 (g / l) (100%) the experiment fish were bred well in any case.
  • the sodium content is 7.922 (g / l) (75%)
  • the content is 0.380 (g / l) (100%)
  • the calcium content is 0.0993 (g / l) (24.763%)
  • the content of 0.401 (g / l) (100%) the experiment fish were bred well in any case.
  • the sodium content is 10.656 (g / l) (100%)
  • the potassium content is 0.0951 (g / l) (25.026%)
  • the calcium content is 0.0993 (g / l) (24.763%) and the content is 0.401 ( (g / l) (100%), and in all cases, the experimental fish were successfully bred.
  • the content of sodium is 10.656 (g / l) (100%)
  • the content of potassium is 0.190 (g / l) (50%)
  • the content of calcium is 0.0993 (g / l) (24.763% )
  • a content of 0.401 (g / l) (100%) but in any case, the experimental fish could be bred well.
  • the sodium content is 10.656 (g / l) (100%)
  • the content is 0.285 (g / l) (75%)
  • the calcium content is 0.0993 (g / l) (24.763%)
  • the content of 0.401 (g / l) (100%) the experiment fish were bred well in any case.
  • the sodium content is 10.656 (g / l) (100%)
  • the content is 0.380 (g / l) (100%)
  • the calcium content is 0.0993 (g / l) (24.763%)
  • the content of 0.401 (g / l) (100%) the experiment fish were bred well in any case.
  • each of sodium, potassium and calcium components has a sodium content of 2.777 (g / l) (26.061%) or more, a content of 10.656 (g / l) (100%) or less, a potassium content of 0.0951 (g / l l) (25.026%) or more content 0.380 (g / l) (100%) or less, calcium content 0.0993 (g / l) (24.763%) or more content 0.401 (g / l) (100%) or less, respectively It was found that fish can be raised well if is present in the breeding water.
  • Sodium, potassium and calcium are mixed in the reagent state so as to have the contents as described above, and dissolved in fresh water such as tap water or river water so that suitable environmental water can be generated so that sodium chloride, calcium chloride
  • a solid, granular, powdered or concentrated liquid prepared by preparing a reagent such as dihydrate salt or potassium chloride is produced in advance as an artificial breeding water generating substance as suitable environmental water.
  • the artificial breeding water (suitable environmental water) according to the present invention can be used not only for breeding various seawater fish but also for breeding freshwater fish. Therefore, it can be used for aquaculture of various fish that require breeding water in large quantities, and it can be used as breeding water for breeding seawater tropical fish and freshwater tropical fish in ordinary households, as well as saltwater fish and freshwater fish. It is also possible to rear them together.
  • marine Nannochloropsis which is indispensable for cultivating rotifers widely used as the initial feed for hatchling larvae, should be cultured. It can be used for culturing rotifer culture in

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

 天然海水に代り、淡水魚および海水魚の両魚類の飼育に適した人工飼育水を提供する。  海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、 比重が1.004以上1.025以下となるように飼育水中に少なくともナトリウム、カルシウム、カリウムを添加し、それぞれの添加量はカリウムは0.0951(g/l)以上0.380(g/l)以下であり、カルシウムは0.0993(g/l)以上0.401(g/l)以下であり、ナトリウムは2.777(g/l)以上10.656(g/l)以下となるように添加する。

Description

人工飼育水及び人工飼育水生成物質
 この発明は、海水魚及び淡水魚を閉鎖環境において養殖や飼育する際に用いる飼育水にかかり、詳細には、内陸部で水槽等の飼育槽に海水魚や淡水魚を生息させて飼育する際に用いるのに好適な人工飼育水に関する。
 魚の養殖は古くから行われているが、従来一般に行われてきた養殖は、海に生息する海水性の魚であれば、湾内に網を巡らして海水をそのまま利用した閉塞環境となる生簀を構築し養殖を行い、川魚であれば河川を堰き止める等してやはり閉塞環境を構築し養殖を行っていた。
 また、海に生息する魚を陸上で飼育する場合もあったが、海水魚の飼育においては海水が必須と考えられ、内陸部での飼育では大量の海水が必要となるため安価な飼育ができずにいた。
 一方、海水魚の需要は食用に限られるものだけではなく、観賞用の熱帯魚なども有った。しかしながら、熱帯魚においても、小型なので食用のハマチなどに比べれば陸上での飼育は比較的行いやすいが、やはり海水を必要とするためコスト高となってしまっていた。更には、海水中に大量に含有する塩類が水槽やその附帯装置の回りに付着して見栄えを悪くしてしまい観賞用とするにはその処理が大変であった。
 そこで、昨今では、海水に代る人工水として人工海水が開発され、陸上においても、海から海水を運ぶことなく、人工海水を水道水等の淡水から生成し、水槽等での飼育に用いるようになった。
 この人工海水では、天然海水の状態に近づけるため、一般的に、天然海水に含有する塩類と同等の塩類を同量となるように含有させていた。
 即ち、天然海水では、一般に最も多く含有している塩化ナトリウムが比重1.02~1.03の海水1(kg)中に約23~28(g)である。また、天然海水中の他の塩類としては、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、硫酸カリウム、塩化カリウム、炭酸カルシウム、臭化マグネシウムなどが挙げられ、これら塩化ナトリウムを含む全塩類の含有量は、通常海水1(kg)中35(g)前後、即ち重量比で35(‰)である。そこで人工海水も原則として、このような天然海水の成分組成に準拠して調合していた。
 また、従来の人工海水を用いた人工的な海棲生物の受精では、経時段階的な異常卵が高頻度で出現し、例えば、天然海水以外の人工海水に過敏に反応するウニ卵では、極めて微量の生理的有害成分に対しても鋭敏に反応するので、正常な受精・発生率が得られ難く、所定時間内にプルテウス幼生期に到達する率が低く、また同じ条件にて行う天然海水での実験と比較して発生段階に遅延がみられる等、天然海水に比した人工海水独自の問題点を有していた。
 そこで、上記のような問題点を考慮した発明には、例えば、『人工海水』(特開平08-37988号)がある。この『人工海水』(以下、特許文献1という。)では、『(請求項1)天然海水の主要構成成分であるナトリウム、カリウム、マグネシウム、カルシウムなどの各種塩類を含む人工海水中に、ヨウ化カリウムを0.001~0.01重量%添加してなる人工海水。
(請求項2)請求項1記載の人工海水において、さらに四ホウ酸ナトリウム0.08~0.09重量%、ホウ酸0.07~0.08重量%および臭化カリウム0.07~0.08重量%を添加したことを特徴とする人工海水。』を提供し、海水に近い成分とするためにナトリウム、カリウム、マグネシウム、カルシウムなどの各種塩類、即ち相当数の塩類を人工海水中に含有させ、更に四ホウ酸ナトリウム0.08~0.09重量%、ホウ酸0.07~0.08重量%および臭化カリウム0.07~0.08重量%の各物質を添加して人工海水を構成していた。
 そして、特許文献1に表される人工海水では、問題点を解決する手段の欄に
『これら塩類の配合割合は、天然の海水の組成に近似するほど好ましいが、天然海水の組成そのものが場所、水深、季節、天候などにより変動するので、一概には規定できないが、下記の数値を目安にすることができる。
NaCl 68.0~85.0(重量部)
MgCl 9.8~12.1 〃MgSO 4.2~ 6.6 〃CaSO 3.2~ 4.4 〃K SO 2.2~ 2.7 〃CaCO 0.3~ 0.4 〃MgBr 0.1~ 0.3 〃なお、上記の塩類組成のK SO の代わりに、KCl、NaSO など、また、CaCO 、NaCO 、NaHCO などを用いてもよく、さらに、0.1重量部未満の微量のその他の塩類を添加しても、この発明の効果を阻害することはない。』と記載され、天然海水に近い範囲の塩類配合割合を人工海水に規定している。また、その実施例中には塩化ナトリウムが約23~28重量%となるように人工海水に溶解し、天然海水に類似の各塩類を含む人工海水を得るとしている。そして更に、通常の天然海水に類似の各種塩類を含む人工海水とした上で、更に、ヨウ化カリウムを0.001~0.01重量%添加し、上記範囲以内で、ウニ類の受精、発生過程に所期の目的を達成する顕著な効果が現れるようにしている。
 従って、特許文献1にも記載されるように、従来の人工海水は、含有する塩類の種類及び塩類の有比率を天然海水に近づけることで、良好な飼育環境となる人工海水を得ていた。
特開平08-37988号公報
 しかしながら、従来同様に内陸部で例えば100(t)以上となるような大規模な中間育成場を建設して養殖を行う場合には、海水の確保あるいは人工海水の製造が絶対条件となるが、天然海水の輸送コストあるいは人工海水を製造するためにかかるコストは膨大となり生産コストが高価となってしまった。これにより内陸部で養殖される魚類の価格も高価となってしまった。
 そこで発明者は、上記問題点を解決するため思考を重ねた結果、天然海水を希釈して用いることができないかとの思いに至った。
 しかしながら、天然海水を希釈して用いるとしても、水道費、輸送コスト、希釈槽の設備化や防疫上の問題は避けて通れない。そこで更に思考を加え、内陸部でも容易に確保できる水道水や河川水あるいは地下水に活性塩類を添加し、しかも低比重を実現できれば、低コスト型飼育水を得ることができるのではないかとの思いに至った。
 そこで、海水では放射性同位元素を除き約60種有る組成の中から、魚類の浸透圧にかかわるものを割り出し、必要最低限の成分を加えることが最良との思いに至り、種々の実験を重ねた。
 この発明は、上記問題点に鑑み、人工海水として、水道水や河川水あるいは地下水に天然海水中に含有される塩類より少ない種類の塩類を添加すると共に、人工海水中の該塩類の含有量を充分に減少して単位人工海水当りに使用する塩類の種類及び使用量を充分に少なくして低コストで製造できる人工海水を提供することを課題とする。
 そこで、発明者が種々行った実験から得られたこの発明の提供する人工飼育水は、極少ない種類の塩類のみを使用すると共に、これら塩類の人工飼育水における含有濃度を極力少なくしたものとして、海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、比重が1.004以上1.025以下となるように飼育水中に少なくともナトリウム、カルシウム、カリウムを添加し、それぞれの添加量はカリウムは0.0951(g/l)以上0.380(g/l)以下であり、カルシウムは0.0993(g/l)以上0.401(g/l)以下であり、ナトリウムは2.777(g/l)以上10.656(g/l)以下となるように添加することを特徴とする人工飼育水、及び、前記人工飼育水において、マグネシウムを0.1667(g/l)乃至1.31(g/l)となるように添加し、比重が1.004以上1.025以下である請求項1に記載の人工飼育水、を提供する。この人工飼育水は、安価に且つ容易に人工飼育水を製造するために、海水中に存在する各種塩類から必要最小限な塩類が何なのかを特定する作業を行った結果得られたものである。即ち、海水中の種々有る塩類を組合わせ、且つ、飼育水の比重を小さくしていき、飼育魚が良好に成長できる人工飼育水の最小比重及び最小構成塩類を特定する実験の結果、塩類として添加する際に最小限必要な要素はナトリウム、カルシウム、カリウムであり、カルシウムに対するナトリウムの存在比が0.93程度で魚の飼育に最も良い値を示し、1.004まで比重を小さくしても(塩分濃度を薄くしても)魚の飼育に影響を与えないことを知見するに至った。なお、この発明において、単にカリウム、ナトリウム、カルシウムとのみ記載した場合には、カリウムイオン、ナトリウムイオン、カルシウムイオンを表す。
 この値は、人工飼育水中の各要素の含有比で表すと、カルシウムに対するカリウムの存在比が0.93であり、最小含有量はカルシウム及びカリウムがそれぞれ0.1002(g/l)、0.09419(g/l)で有る。そしてカルシウム及びカリウムのみをそれぞれ0.1002(g/l)、0.09419(g/l)添加しただけでは比重が1.004に満たないため、ナトリウムを1.004となるまで添加すると、ナトリウムの含有量がカルシウムとカリウムとの大凡55倍、即ち10.69145(g/l)となる。これら知見に基づいて、カルシウムとカリウムの人工飼育水の含有量を天然海水と同等となるまで変化させた結果、人工飼育水中の魚の飼育に影響を与えないことを知見した。更に、ナトリウムも人工飼育水中に添加し、天然海水の濃度となるまで変化させた結果、やはり魚の飼育に影響を与えないことを知見するに至った。
 更にまたこの発明では、天然海水中に多く含まれるマグネシウムを添加し天然海水の成分に近づけた人工飼育水として、硫酸マグネシウム7水和塩を1.6897(g/l)乃至天然海水の存在量となるように添加し、比重が1.004以上天然海水比重以下である人工飼育水、を提供する。この人工海水では、天然海水中にカリウム及びカルシウムより存在比が大きく、魚類の浸透圧にはこれらより関わりの少ないマグネシウムを天然海水中における成分と存在比と同等となるように添加するので、更に天然海水環境に近付けることができ、人工飼育水が魚類に対する好適な環境水となる。
 同様に、発明者は各成分の存在比を調整して様々な魚種について好適な環境水を試作して実験を行った結果、魚種によっては、とりわけトラフグおいては更に比重が軽く、各成分の含有量が少なくても飼育に影響を与えないことを知見するに至ったので、前記人工飼育水において、前記各成分の含有量が前記飼育水の0.25倍乃至1倍であると共に前記各成分の存在比率が同等であるフグ類の飼育に適した、人工飼育水を提供するに至った。
 上記のように、人工飼育水中のカルシウム、カリウム、ナトリウムの各要素を調整することで、天然海水に比し極少量の塩類を添加するだけで良好な飼育が可能となる。即ち、従来の人工海水では、天然海水に近づけるために20(g/l)以上という大量の塩化ナトリウムを添加していたのに比し、7.0587(g/l)と略1/3程度の添加量で実施可能となるので、低コストで人工飼育水を提供できるというこの発明特有の効果を有する。
 また、観賞魚である海水性熱帯魚を飼育する際に利用することで、塩類の濃度の濃い天然海水あるいは人工海水では濾過装置の回り等に大量に付着する固形塩類の付着を少なくでき、飼育時の固化した塩類による錆びを低減できる等の効果を有すると共に、水槽回りの外観を損ねることが無いというこの発明特有の効果を奏する。
 また、この発明にかかる人工飼育水で飼育した実験に於ける全ての飼育魚において魚病の発生がなかった。このことから、人工飼育水ではpHや各塩類の濃度などが海水と淡水の中間であり、且つ、必要のない塩類等の添加がないので、細菌性、ウイルス性、繊毛類等の原生動物と寄生節足動物に分類される一般的な魚病性疾患の原因や、さらには、腸炎ビブリオ等の一部例外を除き海水性と淡水性に大別される魚病性疾患の根源となる原生動物や病原体にとって経験したことのない天然の海水でもない淡水でもない未知の水質であるためと推測ができ、これら魚病性疾患の原因となる外敵の侵入に対し高い抵抗力を有する人工飼育水を得ることが可能である。これにより飼育する際に、抗生物質等を飼育水に与える必要がなく更に低コスト化を図れるばかりでなく、安全な食用養殖魚の提供が可能であるという本願特有の効果を有する。
 更にまた、実施例記載の如く、飼育魚の成長状況を天然海水と本願にかかる人工飼育水とで約1ヶ月間に渡り飼育した結果を比較したところ、天然海水による飼育では81.46(%)の重量増加が認められたのに対し、本願にかかる人工飼育水では119.07(%)の重量増加が認められたように、天然海水に対し飼育魚の早期育成が可能となるという本願特有の効果を有する。
 更にまた、飼育魚を飼育する際にはアンモニアが発生するが、このアンモニアは、下記の化1の平衡式に表すように、魚類に影響を与えない解離のアンモニウムイオン(NH )と有毒なアンモニア(NH)とが平衡状態にある。
Figure JPOXMLDOC01-appb-C000001
そして、アンモニアの平行定数が高温、高塩、高pHの場合に有毒な非解離アンモニアに変化しやすいため、天然海水に比べpHの低い人工飼育水では、有毒なアンモニアの発生が抑えられるので、天然海水による飼育に比べ小さな濾過装置の設置のみで飼育が可能となり、設備費用が低減できるという本願特有の効果を有する。
 更にまた、海水の確保ができない内陸部で、種苗生産から中間育成まで一貫した生産体制を構築するため、天然新魚であるトラフグの受精卵を用いこの発明の人工飼育水による飼育と天然海水による飼育における孵化率を調査したところ、天然海水では孵化率30(%)であったのに対し、天然海水を10(%)混合した人工飼育水では孵化率が60(%)であり、高い孵化率を確保可能であり、孵化から育成までの効率よく一貫した種苗生産体制を確立することが可能となる本願特有の効果を有する。
 更にまた、孵化仔魚の初期餌料として広く利用されるシオミズツボワムシの培養には欠かせない存在である海産性のナンノクロロプシスは、天然海水100(%)に施肥を行なう一般的な培養方法では、場所、時期、海水の品質などの条件によって培養密度が大きく変化するので安定した培養管理には熟練を要し、これに伴ってワムシの培養にも熟練を要することとなっていたが、この発明によれば、天然海水に比し比重が低くワムシの増殖に好適な条件となり、ワムシの効率的な培養が可能となった。
 従って、大規模水槽(畜養槽)等による陸上に於ける海水性魚類の養殖に際し、この発明による人工飼育水によって孵化仔魚の飼育から成長魚類の出荷までを陸上において良好に行うことが可能となるという本願特有の作用効果を奏する。
観察実験に使用する水槽及び濾過装置の模式的な側面説明図である。 観察実験に使用する水槽及び濾過装置の模式的な平面説明図である。 成長率を比較した表である。 成長率を比較したグラフである。 カルシウム量の変化に関する説明図である。 カリウムの変化に関する説明図である。 ナトリウムの変化に関する説明図である。 海水の成分量及び成分比を表す説明図である。 海水の成分量及び成分比を表す説明図である。 海水の成分量及び成分比を表す説明図である。
 河川の水、地下水、雨水、あるいは、水道水に、塩化ナトリウムを7.0587(g/l)、塩化カルシウム2水和塩を0.3641(g/l)、塩化カリウムを0.18125(g/l)、となるように溶解させ人工飼育水を作成する。この時、人工飼育水は略1.006の比重となっている。
 そして、これらの各成分の含有量は、ナトリウムでは2.777(g/l)で標準海水含有量比26.061%であり、カルシウムでは0.0993(g/l)で標準海水含有量比24.763%であり、カリウムでは0.0951(g/l)で標準海水含有量比25.026%である。
 特にトラフグを飼育するための人工飼育水では、更に塩類の濃度を下げても実施でき、溶解させる塩化ナトリウムを1.781(g/l)、同塩化カルシウム2水和塩を0.092(g/l)、塩化カリウムを0.045(g/l)として実施できる。
 以下にこの発明の実施例を図面に基づき説明する。図1は観察実験に使用する水槽及び濾過装置の模式的な側面説明図であり、図2は観察実験に使用する水槽及び濾過装置の模式的な平面説明図であり、図3は成長率を比較した表であり、図4は成長率を比較したグラフであり、図5はカルシウム量の変化に関する説明図であり、図6はカリウムの変化に関する説明図であり、図7はナトリウムの変化に関する説明図であり、図8乃至図10は海水の成分量及び成分比を表す説明図である。なお、図3の表及び図4のグラフは、好適環境水における成長比較実験(マダイ)の結果を示すものである。この実験は、以下に示す飼育条件下で行ったものである。
(飼育条件)
 1)対照区(海水飼育マダイ 5尾 体長5cm):試験区(好適環境水飼育マダイ5尾 体長6cm)
 2)蓄用槽容量  100リットル
 3)濾過方式   密閉式濾過槽
 4)人工餌料   オトヒメC-0
 5)給餌頻度   朝夕2回給餌
 6)重量測定   5尾の総重量を電子天秤で測定した
 7)測定期間   2006年6月26日~7月23日
 8)飼育温度   22℃。
 海から離れた内陸部で100(t)以上有るような大規模な中間育成場を建設して効率よく海水魚を飼育することを想定した場合には、一般的には潤沢な海水の確保が絶対条件であり魚類飼育の生命線であると考えられる。しかし、潤沢な海水確保には海水を輸送する費用が多大にかかるため、人工海水を考えざるを得ない。
 しかしながら、人工海水も、従来天然海水に少しでも近づけることで飼育に良好な環境が得られると考えられていたので、天然海水と同等な複数の塩類を天然海水と同じ濃度となるように溶解させるため、人工海水にかかわるコストもやはり膨大となっていた。そこで発明者は、人工海水を天然海水に近づけるのではなく、マダイやハマチなど食用海水魚を天然海水とは異なる低塩類低濃度の環境で飼育(養殖)できないかを試みることに思い至った。
 そこで発明者は、放射性同位元素を除き約60種である天然海水中の塩類から、魚類の浸透圧にかかわる組成を割り出して必要最低限の成分を加えることが最良と考えた。
 尚、以下に表す各実験では、図1に表すように、100(l)程度の水槽に密閉式濾過槽からなる濾過フィルターを使用して実験を行った。そして、濾過フィルター中にはセラミックを加え調整長期に亙り飼育水のpH調整が可能とした。尚、図1には、泡沫分離装置4が記載されているが、泡沫分離装置4は飼育水を長期に亙り使用するために飼育水中の魚糞や余剰餌等の浮遊物を除去するためのものであり、短期間の実験では使用していない。また、飼育水冷却装置5も記載されているが、これは夏場の屋外に設置した水槽では飼育水の温度が上昇しすぎるため、飼育水温度を実験環境に合わせて一定に保つために設置したものである。
 これに先立ち、天然海水を真水で希釈した希釈天然海水中でどの程度の比重までカクレクマノミが耐えられるかの実験を試みた。この実験に先立ち、カクレクマノミへのストレスを考慮して約1ヶ月間の訓化期間を設けた。その結果、カクレクマノミは約8.8(‰)即ち比重1.006(pH7.0)が限界であり、希釈天然海水環境では比重1.005以下で斃死することを知見した。
 これに続けて、訓化なしでマダイ(体長5cmを5匹)を約8.8(‰)(比重1.006)の希釈天然海水中に放したところ、横臥現象が見られたものの約5分後には正常に泳ぎだし、数時間後には餌をとるまでに回復した。
 そして、該環境においてマダイを3ヶ月間にわたり飼育観察を行った結果、マダイの斃死はなく約5(%)の体重増加を伴って順調に飼育できた。
 この結果から、煩雑な訓化を行わなくても希釈天然海水で飼育可能であることが知見された。また、カクレクマノミ、マダイは、それぞれ観賞魚、養殖魚の中から無作為に入手しやすいものを選択したに過ぎないので、他の海水魚でも同様の結果となることが予想された。
 これら希釈天然海水による実験から、少なくとも比重1.006で飼育が可能であろうことが知見されたので、次いで発明者は人工飼育水として必要な要素の特定及びその存在度を特定する実験を試みた。
 そこで発明者は必須成分の割り出しに際して、哺乳類及び魚類の体液と天然海水の成分とを比較することに思い至った。そして、更に添加する塩類の種類を減少させるべく、前記6元素から魚類の必須元素及びその存在度を特定する実験を試みた。
 哺乳類や魚類の体液は、塩化ナトリウム、カリウム、リン酸を主体としていることが既知である。また、また希釈天然海水の組成にもこれらの成分が有り、主に存在する成分がナトリウム(2.777(g/l))、塩素(4.750(g/l))、カリウム(0.0951(g/l))、カルシウム(0.0993(g/l))、マグネシウム(0.320(g/l))、硫酸塩(0.674(g/l))であることが解った。発明者は、これら成分から、魚類が生存するのに適するためには魚類の浸透圧に拘る成分を調整して人工飼育水を作ることに思い至った。
 尚、天然海水は、海域等により各成分の含有量はことなるが、ここでは生物海洋学入門(講談社サイエンティフィク発行)に記載されている図8乃至図10に表す標準海水の各成分を参照して各成分の天然海水濃度といい、ナトリウムでは10780(mg/kg)、同様にカリウムでは399(mg/kg)、カルシウムでは412(mg/kg)である。
 また、天然海水の比重であるが、温度等により変わるが、20℃で塩分濃度が35pptの場合の海水を想定し、この発明では、1.025を標準海水の比重として用いる。
 この発明では、ナトリウムでは、含有量10.656(g/l)が標準海水100%の時の含有量として用い、これを基にナトリウムの含有量をパーセント表示する。同様にカリウムでは、含有量0.380(g/l)が標準海水100%の時の含有量として用い、カルシウムでは含有量0.401(g/l)が標準海水100%の時の含有量として用い、それぞれこれを基に各成分の含有量をパーセントで表示する。
 尚、標準海水の各成分の含有量(濃度)については、様々な出典があり、若干違う値を表しているが、この実施例では上記の通りナトリウムでは含有量10.656(g/l)を標準海水100%として使用する。同様にカリウムでは含有量0.380(g/l)が、カルシウムでは含有量0.401(g/l)がそれぞれ標準海水100%の時の値として使用する。
 そこで、人工飼育水の作成に当って、ナトリウムを2.777(g/l)、塩素を4.750(g/l)、カリウムを0.0951(g/l)、カルシウムを0.0993(g/l)、マグネシウムを0.320(g/l)、硫酸塩を0.674(g/l)をそれぞれ含有するように、塩化ナトリウム(工業塩)、塩化マグネシウム(工業塩)、塩化カルシウム(一級試薬)、硫酸マグネシウム(工業塩)、塩化カリウム(一級試薬)の5試薬を河川水に加え塩素を含む6元素5試薬による試薬調整を行い、この飼育水中に体長10(cm)のマダイ5(尾)を放し約50日にわたる飼育実験を行った。
 なお、リン酸は給餌による魚類の代謝から補給されると考え、添加は行なわなかった。
 その結果、該マダイは斃死することもなく異常が認められず、良好な飼育が行えた。
 前記実験を受け、更に添加する成分の減少を図るため、前記6元素から魚類の必須元素及びその存在度を特定する実験を試みた。即ち、前記6元素中マグネシウムイオンとして重複する塩化マグマグネシウムの添加をとりやめ、4試薬による5元素の成分添加を行った飼育水を製造し、体長10(cm)のマダイ及びヒラメを各5(尾)を放して3週間飼育を試みた結果、斃死もなく順調に生育し体色も良好で、良好な環境での飼育であった。この塩化マグネシウムを添加していない人工飼育水の比重は1.006である。
 なお、リン酸は給餌による魚類の代謝から補給されると考え、添加は行なわなかった。
 そして、該人工飼育水中に体長10(cm)のマダイ5(尾)を放し飼育を実施した結果、約3週間斃死等の問題が認められず体色も良好で順調に生育しており、良好な飼育環境であることが確認できた。
 発明者は、更に塩類の種類を減少させるべく、前記6元素4試薬による飼育水から、魚類の必須元素及びその存在度を特定する実験を試みた。そして種々の成分を希釈天然海水中のこれら成分相互の存在比で添加し実験を重ねた結果、
   塩化ナトリウム      7.0587(g/l)
   塩化カルシウム2水和塩  0.3641(g/l)
   塩化カリウム       0.18125(g/l)
のみを添加して飼育を試みた。この時の飼育水のpHは6.45、比重は1.004であった。
 その結果、飼育した体長12(cm)の3(尾)のマダイは、餌食いは良好であったが、約2週間目から頭皮の欠損症状が現れ、3週間目に斃死した。尚、添加する試薬の量は、工業塩等不純物を含むものを使用するので、試薬中に含有する各成分の絶対量を算出して添加した。
 次いで発明者は、マグネシウムを含まない人工飼育水では飼育できない環境であったため、他の成分の減少が図れないかを思索した。そこで発明者は、海産魚類の細胞液中には、主に塩化カリウム、リン酸が存在しており、塩化ナトリウムは僅かにしか存在していないことに着目した。即ち、海産魚類では、魚類にとって必須であるカリウムイオンを選択的に海水から取込むと同時に細胞内ナトリウムポンプの働きにより有害と思われるナトリウムイオンを鰓弁塩類細胞及び腎臓から排出し、細胞内の塩分濃度上昇を抑制し水分調整を行っている。
 そこで、塩化ナトリウムが体内から排出されてしまうのでるから、予め塩化ナトリウムを添加せずに飼育水を作成し海水魚を飼育することを試みた。これによれば、前記6元素4試薬の飼育水中最も添加量の多い(人工飼育水作成費用が嵩む)塩化ナトリウムを必要とせずに人工飼育水が開発できるものと予想した。
 即ち、塩化ナトリウム、硫酸マグネシウムを全く添加せず、塩化カルシウム2水和塩を0.3641(g/l)、塩化カリウムを0.18125(g/l)のみ添加し、人工飼育水を作成して12(cm)のマダイ3(尾)を飼育した。
 その結果、即座に平衡感覚を失い仰向けとなり、1時間後には斃死してしまった。
 これらの結果から、人工飼育水に添加する成分は、上記6元素4試薬より減少させることができないものと考えたが、先に行った4元素3試薬による実験、即ち、
   塩化ナトリウムを     7.0587(g/l)
   塩化カルシウム2水和塩を 0.3641(g/l)
   塩化カリウムを      0.18125(g/l)
添加した人工飼育水(以後、好適環境水という。)での飼育が、当初良好であり2週目以降に悪化し3週間に斃死した状況であり、塩化ナトリウム及び硫酸マグネシウムを全く加えない人工飼育水による飼育して直ぐに斃死してしまった結果とは異なっていることに着目し、3週間飼育した後の好適環境水を詳しく調べてみたところ、飼育前には6.45であったpHが、3週間後のマダイ斃死時には4.8にまで減少していた。
 これを受け、マダイが生存できるpHを実験した結果、pH5.0乃至pH8.4程度であることが判明し、先の好適環境水を用いた実験を再び行った。その際に、使用した濾過装置に用いた棒状セラミックスに加え、小豆台の天然サンゴ砂も加えて濾過装置とし、サンゴの主成分である炭酸カルシウムが徐々に好適環境水中に溶け出してpH調節が可能な状態(pH調整剤としての働きを行う状態)で飼育実験を行った。被検体は、体長15(cm)のマダイ2(尾)と、体長10(cm)のヒラメ10(尾)をそれぞれ別水槽に収容した。
 その結果、マダイ、ヒラメ共に2ヶ月以上の長期に亙り斃死等の発生もなく順調に飼育でき、約2ヶ月間でマダイの体長が25(cm)、ヒラメの体長が15(cm)となり良好な発育が見られた。
 上記実験の結果、
   塩化ナトリウムを     7.0587(g/l)
   塩化カルシウム2水和塩を 0.3641(g/l)
   塩化カリウムを      0.18125(g/l)
というように3試薬を添加した比重1.004の好適環境水中で海水魚の良好な飼育が可能であることが突き止められたので、飼育用の水槽を1000(l)の大型とし、濾過装置を重力落下式として通常用いる濾過フィルターに棒状セラミックス25(l)と前記サンゴ砂5(l)を加えて構成し、更に長期に亙る飼育実験を行うために泡沫分離装置を加えて好適環境水を濾過しながらオゾンを添加して長期飼育を試みた。
 その結果、斃死等の問題のない良好な飼育が行われ順調に生育したので、長期に亙る飼育が可能であることが知見された。そこで、他の魚類について好適環境水での飼育を試みた結果、
海水魚では、マダイ、イシダイ、イシガキダイ、サラサハタ、ヒラメ、トラフグ、オニオコゼ、カクレクマノミ、チョウチョウウオ科5種、スズメダイ4種、ゴマハギ、モンガラカワハギ、ルリヤッコ、ハリセンボン、ハコフグ、クダゴンベ、マハゼであり、
甲殻類では、イシガニであり、
淡水魚では、コイ、金魚(ランチュウ、子赤)、ネオンテトラ、ブラックテトラ、アーリーシクリット、スジシマドジョウである。
 このように好適環境水では、淡水魚から海水魚まであらゆる環境の魚類の飼育が可能であることが解り、しかも淡水魚及び海水魚を同一の水槽にて飼育しても問題ないことが知見された。
 特にトラフグに関しては、塩化ナトリウムを1.781(g/l)、硫酸マグネシウム7水和塩を0.426(g/l)、塩化カルシウム2水和塩を0.092(g/l)、塩化カリウムを0.045(g/l)添加した3.5(‰)(比重 1.002)の低濃度人工飼育水でも飼育が可能であることが実験から確認でき、更には硫酸マグネシウム7水和塩を添加しなくとも飼育可能であることも実験から知見された。
 また、好適環境水での飼育では以下に表すような作用が認められた。
 即ち、
 1.好適環境水(トラフグ飼育用の更に希釈された飼育水も含む)による飼育では、すべての魚において、魚病の発生がない。
 一般的に魚病性疾患の原因は細菌性、ウイルス性、繊毛類等の原生動物と寄生節足動物に分類される。さらには、腸炎ビブリオ等の一部例外を除き海水性と淡水性に大別される。
 そこで、マダイ畜養槽の好適環境水における一般細菌数(標準平板菌数)を測定したが、細菌の検出は認められなかった。
 また、夏場、海面養殖で問題となる単生類ベネデニア症(Benedenia)に感染しているキイロハギを前記好適環境水に収容して飼育すると、一瞬にして体表から寄生しているベネデニアが剥がれ落ち完全に治癒した。これは急激な浸透圧の変化による寄生虫へのダメージと推察される。
 また、ウーディニウム症( Oodinium ocellatum)トリコディナ症(Trichodina)に感染しているカクレクマノミを前記好適環境水に収容して飼育し経過を観察したところ、2週間で完治した。この現象は単生類ベネデニア症と同様に急激な浸透圧の変化によるこれら繊毛虫へのダメージと推察される。
 更に、尾柄部が大きく欠損して真皮が露出しているトラフグ10(尾)を前記同様好適環境水中に収容して2ヶ月間飼育したが、ビブリオ感染が見られず生存を続けた。この結果から外傷性ビブリオ感染が発症しないことが知見される。そして、これと対比すべく外洋水を直接補給する開放式飼育法によって同様に尾柄部が大きく欠損して真皮が露出しているトラフグを飼育して経過観察を行ったところ、該外傷性ビブリオ感染は避けられなかった。
 上記のように、好適環境水では、寄生虫及び菌類に起因する発病が無いことが知見された。そして、これらの結果から、好適環境水が海水でもない淡水でもない自然界には一般に存在しない含有成分およびpHの水なので、これら原生動物、病原体そのものが経験したことのない水質であり、原生動物、病原体が死滅するあるいは活動できない環境となっているのではないかと推察できる。
 2.天然海水に比し成長率が良いことが知見された。
 即ち、図3及び図4に表すように、前記100(l)の水槽において、体長5(cm)のマダイ5(尾)を天然海水環境で、体長6(cm)のマダイ5(尾)を好適環境水環境で、それぞれ飼育し、マダイの成長を経過観察し、経過1週間毎に総重量を測定して比較した。
 その結果、天然海水環境のマダイは4週間経過後81.46(%)の重量増加率であったのに比し、好適環境水環境のマダイは、119.07(%)の重量増加率であった。
 この現象は天然海水中での飼育ではエネルギー代謝の30(%)が浸透圧調整に消費されているのに比べ、好適環境水では低浸透圧なため浸透圧に拘るエネルギー代謝が低減されることが示唆され、これに伴い成長ホルモンの分泌が促進されていることが推察される。
 尚、前記した各好適環境水において、実験では極力少ない塩類(元素)でしかも極力少ない量の添加によって天然海水に代る好適環境水を得ようと試みているので、3乃至4種類の塩類の添加実験しか行っていないが、これらが添加してあれば海水魚の飼育には適正であり、これに他の塩類を適宜量添加してもその作用に影響を及ぼさずに好適環境水として利用可能であれば、従来行われていた人工海水に添加していた他の塩類や例えばビタミン等の栄養素等を上記各好適環境水に添加しても何ら差し支えなく、本願の好適環境水と同等である。
 次いで発明者は、上記好適環境水による飼育において、3試薬の成分濃度がどの範囲で有効であるかを実験した。該実験では、前記同様の魚類を実験魚として使用し、各魚類の状態を観察した。
 3.試薬による成分添加によれば、
   塩化ナトリウムを     7.0587(g/l)
   塩化カルシウム2水和塩を 0.3641(g/l)
   塩化カリウムを      0.18125(g/l)
であるが、これらによって添加されるナトリウムイオン、カリウムイオン、カルシウムイオンは、それぞれ
ナトリウムでは、2.777(g/l)
カリウムでは、0.0951(g/l)
カルシウムでは、0.0993(g/l)
であり、それぞれの標準海水に対する含有比率は、
ナトリウムでは、26.061%
カリウムでは、25.026%
カルシウムでは、24.763%
となる。
 図5乃至図7はその結果を表している。図5乃至図7中、最上段に記載するKはカリウム、Naはナトリウム、Caはカルシウムを表し、各元素の下に記載した数値中左側は標準海水に存在する該成分の量を100%としたときの存在量をパーセント表示してあり、右側は該成分が1(l)当たりに含有されている質量(g)を表している。従って各成分の下に記載されている量の左側は標準海水に対する存在比率を%で表示し、右欄は単位体積当たりの存在量を(g/l)で表している。
 先ず、各成分を上記最小の値としたときに魚の飼育が可能であるので、各成分をこの最小の範囲から天然海水濃度100%の値まで変化させたときにマダイ、ヒラメ、クマノミの各魚がどの範囲で飼育可能であるかを実験した。
 上記から、ナトリウム及びカリウム並びにカルシウムの最小量は、ナトリウムが2.777(g/l)、カリウムが0.0951(g/l)、カルシウムが0.0995(g/l)であり、これら各成分の天然海水に対する濃度がナトリウムで26.061%、カリウムで25.026%、カルシウムで24.763%となることが判る。
 そして、これら各成分を天然海水に対する最小濃度から濃度50%、57%、100%と濃度を推移させていき実験魚の飼育状況を観察することとした。
 図は上記実験の結果から得られたナトリウム及びカリウムを好適環境水含有量(ナトリウムでは2.777(g/l)、天然海水濃度比26.061%)から天然海水含有量(10.656(g/l)、天然海水濃度比100%)までの範囲で変化させ、これらナトリウム及びカリウムに対してカルシウム含有量を変化させたときに実験魚の飼育が可能であるかどうかを観察した結果を表している。
 図は、ナトリウム量を、最小量である2.777(g/l)としたときに、それぞれの時のカリウム量及びナトリウム量を同様に最小量、天然海水含有濃度比50%、天然海水含有濃度比75%、天然海水含有濃度比100%と変化させた時の結果である。
 ここで、各成分の含有量(1リットル当たりの質量)とそのときの天然海水濃度比を、最小量、天然海水含有濃度比50%、天然海水含有濃度比75%、天然海水含有濃度比100%の時のそれぞれを表しておく。
 ナトリウムでは、
2.777(g/l)(天然海水濃度比26.061%)
5.328(g/l)(天然海水濃度比50%)
7.992(g/l)(天然海水濃度比75%)
10.656(g/l)(天然海水濃度比100%)
 カリウムでは
0.0951(g/l)(天然海水濃度比25.026%)
0.190(g/l)(天然海水濃度比50%)
0.285(g/l)(天然海水濃度比75%)
0.380(g/l)(天然海水濃度比100%)
 カルシウムでは
0.0993(g/l)(天然海水濃度比24.763%)
0.201(g/l)(天然海水濃度比50%)
0.301(g/l)(天然海水濃度比75%)
0.401(g/l)(天然海水濃度比100%)
である。尚、以下に%を付して表す数値は、全て該当成分の天然海水濃度比である。
 実験魚であるマダイ、ヒラメ、クマノミ等の硬骨魚類では、細胞内のナトリウム量を一定に保つと共にカリウムの量を一定に保つためにナトリウム・カリウムポンプの働きを各細胞が持っており、余剰となるナトリウムを排出すると共にカリウムを取り入れる働きを行っている。この事実から、先ず、これらに拘らないカルシウムの含有量を変化させたときを実験した。
 即ち、ナトリウムを最小含有量2.777%(26.061%)、カリウムを最小含有量0.0951(g/l)(25.026%)としたとき、及びナトリウムとカリウムとを50%、75%、100%としたときに、カルシウムを最小含有量0.0996(g/l)(24.765%)から50%、75%、100%とそれぞれ変化させて飼育状況を経過観察した。
 その結果、良好な飼育が成された。
 また、カルシウムの含有量を最小含有量より更に減少させる実験も行ってみた。即ち、ナトリウムを最小含有量2.777%(26.061%)、カリウムを最小含有量0.0951(g/l)(25.026%)としたときに更にカルシウムの含有量を0%から5%、10%、20%と上昇させ、実験魚の観察を行ったが、何れもヒレ、体表等に荒れが発生し、良好な飼育が出来なかった。
 これらの結果から、カルシウムの最小含有量0.0993(g/l)(24.763%)では、他の2成分が最小含有量以上であり天然海水と同じ含有量までの間で、実験魚が良好に飼育できたことが知見でき、カルシウムの含有量が更に減少した場合には良好な飼育が出来ないことも知見出来た。尚、ナトリウム50%及びカリウム75%等ナトリウムとカリウムの存在比が異なる場合に、カルシウムの含有量が変化すると、実験魚の飼育が良好に行えるか否かは、実験でカルシウムが最小含有量より多ければ良好に飼育できること、及びこれから説明する他の実験におけるカルシウム含有量の変化において良好な飼育が出来ていることから、カルシウムの含有量は最小含有量である0.0993(g/l)(24.763%)以上であればよいことが判る。
 次いで、カリウムを最小含有量0.0951(g/l)(25.026%)から50%、75%、100%と変化させたとき、ナトリウムを最小含有量2.777(g/l)(26.061%)から50%、75%、100%と変化させそのときのカルシウムの含有量をも最小含有量0.0993(g/l)(24.763%)、100%と変化させてカリウムの含有量の変化時の他の2成分含有量変化の実験を試み、実験魚の飼育状態を観察する実験を行った。
 図5は、カリウムの含有量変化に伴う実験の結果を表す。
 実験の結果によれば、カリウムが含有量0.0951(g/l)(25.026%)の時、ナトリウムが含有量2.777(g/l)(26.061%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様にカリウムの含有量0.0951(g/l)(25.026%)の時、ナトリウムが含有量5.328(g/l)(50%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様にカリウムの含有量0.0951(g/l)(25.026%)の時、ナトリウムが含有量7.992(g/l)(75%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様にカリウムの含有量0.0951(g/l)(25.026%)の時、ナトリウムが含有量10.656(g/l)(100%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 上記の結果から、カリウムの最小含有量0.0951(g/l)(25.026%)では、他の2成分の量が何れの場合でも良好に実験魚の飼育が可能であった。
 次いでカリウムの含有量を増量し、カリウムの含有量0.190(g/l)(50%)の時の実験を試みた。カリウムの含有量0.190(g/l)(50%)の時にもカリウムの含有量0.0951(g/l)(25.026%)の場合同様、ナトリウムが含有量2.777(g/l)(26.061%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様に、カリウムの含有量0.190(g/l)(50%)の時、ナトリウムが含有量5.328(g/l)(50%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 更に同様に、カリウムの含有量0.285(g/l)(75%)の時、ナトリウムが含有量7.992(g/l)(75%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様に、カリウムの含有量0.190(g/l)(50%)の時、ナトリウムが含有量10.656(g/l)(100%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 従って、カリウムの含有量0.190(g/l)(50%)の場合にも、他の2成分の量が何れの場合でも良好に実験魚の飼育が可能であることが知見された。
 同様にカリウムの含有量を増量し、カリウムの含有量0.285(g/l)(75%)の時の実験を試みた。カリウムの含有量0.285(g/l)(75%)の時にもカリウムの含有量0.0951(g/l)(25.026%)の場合同様、ナトリウムが含有量2.777(g/l)(26.061%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様に、カリウムの含有量0.285(g/l)(75%)の時、ナトリウムが含有量5.328(g/l)(50%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 更に同様に、カリウムの含有量0.285(g/l)(75%)の時、ナトリウムが含有量7.992(g/l)(75%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様に、カリウムの含有量0.285(g/l)(75%)の時、ナトリウムが含有量10.656(g/l)(100%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 従って、カリウムの含有量0.285(g/l)(75%)の場合にも、他の2成分の量が何れの場合でも良好に実験魚の飼育が可能であることが知見された。
 同様にカリウムの含有量を増量し、カリウムの含有量0.380(g/l)(100%)の時の実験を試みた。カリウムの含有量0.380(g/l)(100%)の時にもカリウムの含有量0.0951(g/l)(25.026%)の場合同様、ナトリウムが含有量2.777(g/l)(26.061%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様に、カリウムの含有量0.380(g/l)(100%)の時、ナトリウムが含有量5.328(g/l)(50%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 更に同様に、カリウムの含有量0.380(g/l)(100%)の時、ナトリウムが含有量7.992(g/l)(75%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 同様に、カリウムの含有量0.380(g/l)(100%)の時、ナトリウムが含有量10.656(g/l)(100%)では実験魚が良好に飼育できた。そして、この時のカルシウムを最小含有量である0.0993(g/l)(24.763%)及び海水と同様の含有量である含有量0.401(g/l)(100%)のそれぞれで実験を行ったところ、何れも良好であった。
 従って、含有量0.380(g/l)(100%)の場合にも、他の2成分の量が何れの場合でも良好に実験魚の飼育が可能であることが知見された。
 以上の結果から、カリウムの含有量は、最小含有量である含有量0.0951(g/l)(25.026%)以上であれば、他の2成分の含有量は何れの場合でも良好に実験魚の飼育が可能なことが知見され、カルシウムに続き、カリウムでも最小含有量以上で飼育可能なことが判った。
 次いで図6に表すように、ナトリウムの含有量を変化させた場合、他の2成分の含有量が最小含有量以上海水濃度での実験魚の飼育が可能であるかを試みた。
 先ず、ナトリウムの含有量を2.777(g/l)(26.061%)と最小値で実験を行った。
 ナトリウム含有量2.777(g/l)(26.061%)のとき、カリウムを含有量0.0951(g/l)(25.026%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 同様に、ナトリウムの含有量を含有量2.777(g/l)(26.061%)とし、カリウムを含有量0.190(g/l)(50%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 更に同様に、ナトリウムの含有量を含有量2.777(g/l)(26.061%)とし、含有量0.285(g/l)(75%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 更に同様に、ナトリウムの含有量を含有量2.777(g/l)(26.061%)とし、含有量0.380(g/l)(100%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 これらから、ナトリウムの含有量が含有量2.777(g/l)(26.061%)の場合には、他の2成分の含有量は何れの場合でも実験魚の良好な飼育が可能であった。
 次いで、ナトリウム含有量を含有量5.328(g/l)(50%)とした時を実験した。
 ナトリウム含有量5.328(g/l)(50%)のとき、カリウムを含有量0.0951(g/l)(25.026%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 同様に、ナトリウムの含有量を含有量5.328(g/l)(50%)とし、カリウムを含有量0.190(g/l)(50%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 更に同様に、ナトリウムの含有量を含有量5.328(g/l)(50%)とし、含有量0.285(g/l)(75%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 更に同様に、ナトリウムの含有量を含有量5.328(g/l)(50%)とし、含有量0.380(g/l)(100%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 これらから、ナトリウムの含有量が含有量5.328(g/l)(50%)の場合には、他の2成分の含有量は何れの場合でも実験魚の良好な飼育が可能であった。
 次いで同様に、ナトリウム含有量を含有量7.992(g/l)(75%)の場合の実験を行った。
 ナトリウム含有量7.992(g/l)(75%)のとき、カリウムを含有量0.0951(g/l)(25.026%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 同様に、ナトリウムの含有量を含有量7.992(g/l)(75%)とし、カリウムを含有量0.190(g/l)(50%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 更に同様に、ナトリウムの含有量を含有量7.992(g/l)(75%)とし、含有量0.285(g/l)(75%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 更に同様に、ナトリウムの含有量を含有量7.992(g/l)(75%)とし、含有量0.380(g/l)(100%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 これらから、ナトリウムの含有量が含有量7.992(g/l)(75%)の場合には、他の2成分の含有量は何れの場合でも実験魚の良好な飼育が可能であった。
 次いで同様に、ナトリウム含有量を含有量10.656(g/l)(100%)の場合の実験を行った。
 ナトリウム含有量10.656(g/l)(100%)のとき、カリウムを含有量0.0951(g/l)(25.026%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 同様に、ナトリウムの含有量を含有量10.656(g/l)(100%)とし、カリウムを含有量0.190(g/l)(50%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 更に同様に、ナトリウムの含有量を含有量10.656(g/l)(100%)とし、含有量0.285(g/l)(75%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 更に同様に、ナトリウムの含有量を含有量10.656(g/l)(100%)とし、含有量0.380(g/l)(100%)としてカルシウムの含有量0.0993(g/l)(24.763%)と含有量0.401(g/l)(100%)とで実験を行ったが、何れの場合も実験魚は良好に飼育できた。
 これらから、ナトリウムの含有量が含有量10.656(g/l)(100%)の場合には、他の2成分の含有量は何れの場合でも実験魚の良好な飼育が可能であった。
 以上の結果から、ナトリウムの含有量は、最小含有量である含有量2.777(g/l)(26.061%)以上であれば、他の2成分の含有量は何れの場合でも良好に実験魚の飼育が可能なことが知見され、カルシウムに続き、カリウムでも最小含有量以上で飼育可能なことが判った。
 上記のように、ナトリウム、カリウム、カルシウムの各成分は、ナトリウム含有量2.777(g/l)(26.061%)以上含有量10.656(g/l)(100%)以下、カリウム含有量0.0951(g/l)(25.026%)以上含有量0.380(g/l)(100%)以下、カルシウム含有量0.0993(g/l)(24.763%)以上含有量0.401(g/l)(100%)以下、それぞれが飼育水中に存在していれば、魚類の飼育を良好に出来ることが判った。
 そして、上記結果から、天然海水に変わる好適環境水を作るに当たっては、各成分を上記範囲となるように添加して作成することで良好な飼育が可能となることが判った。
 そして、前記の通りの含有量となるようにナトリウム及びカリウム並びにカルシウムが試薬の状態で配合させ、水道水や河川水といった真水中に溶解させて好適環境水を生成できるように塩化ナトリウム、塩化カルシウム2水和塩、塩化カリウム等の試薬を調合して固形状、粒状、粉末状、濃縮液にしていたものを好適環境水である人工飼育水生成物質として予め生産しておく。
 これにより、人工飼育水性製物質を真水に溶解させるだけで、簡便に好適環境水を生成できる。
 上記の通り、この発明にかかる人工飼育水(好適環境水)は、種々の海水魚の飼育に利用可能であることは勿論、淡水魚の飼育にも利用可能である。従って、大量に飼育水を要する各種魚類の養殖に利用できると共に、一般家庭等で海水熱帯魚の飼育及び淡水熱帯魚の飼育に用いる飼育水として利用することが可能であるのは勿論、海水魚と淡水魚とを共存させて飼育することも可能である。
 更にまた、大規模な水槽(畜養槽)による陸上飼育では、孵化仔魚の初期餌料として広く利用されるシオミズツボワムシの培養には欠かせない存在である海産性のナンノクロロプシスを培養することで行うワムシの培養の培養に利用可能である。
 1 水槽(畜養槽)
 2 濾過装置
 3 濾過材
 4 泡沫分離装置
 5 飼育水冷却装置

Claims (5)

  1.  海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、
     比重が1.004以上1.025以下となるように飼育水中に少なくともナトリウム、カルシウム、カリウムを添加し、それぞれの添加量はカリウムは0.0951(g/l)以上0.380(g/l)以下であり、カルシウムは0.0993(g/l)以上0.401(g/l)以下であり、ナトリウムは2.777(g/l)以上10.656(g/l)以下となるように添加することを特徴とする人工飼育水。
  2.  マグネシウムを0.1667(g/l)乃至1.31(g/l)となるように添加し、比重が1.004以上1.025以下である請求項1に記載の人工飼育水。
  3.  前記各成分の含有量が前記飼育水の0.25倍乃至1倍であると共に前記各成分の存在比率が同等であるフグ類の飼育に適した請求項1に記載の人工飼育水。
  4.  前記各成分の含有量が前記飼育水の0.25倍乃至1倍であると共に前記各成分の存在比率が同等であるフグ類の飼育に適した請求項2に記載の人工飼育水。
  5.  水中に溶解させて海水性生物及び淡水性生物の人工飼育に用いる飼育水を作る固形または粒状あるいは粉末状の物質であるか高濃度の液状であって、少なくとも飼育水中にカリウムは0.0951(g/l)以上0.380(g/l)以下、カルシウムは0.0993(g/l)以上0.401(g/l)以下、ナトリウムは2.777(g/l)以上10.656(g/l)以下の割合でナトリウム、カリウム、カルシウムを存在させるように調合され、飼育水中にナトリウム、カリウム、カルシウムが該量存在するよう用いることを特徴とする人工飼育水生成物質。
PCT/JP2009/002689 2008-06-18 2009-06-12 人工飼育水及び人工飼育水生成物質 WO2009153954A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008159762A JP2010000009A (ja) 2008-06-18 2008-06-18 人工飼育水及び人工飼育水生成物質
JP2008-159762 2008-06-18

Publications (1)

Publication Number Publication Date
WO2009153954A1 true WO2009153954A1 (ja) 2009-12-23

Family

ID=41433877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002689 WO2009153954A1 (ja) 2008-06-18 2009-06-12 人工飼育水及び人工飼育水生成物質

Country Status (2)

Country Link
JP (1) JP2010000009A (ja)
WO (1) WO2009153954A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870722A (zh) * 2012-11-02 2013-01-16 海阳市黄海水产有限公司 绿鳍马面鲀的大规模苗种培育方法
CN103355245A (zh) * 2012-04-06 2013-10-23 武汉瑞世普禾生物技术有限公司 保障动物健康的营养与环境调控方法
JP2015165825A (ja) * 2015-07-01 2015-09-24 広島県 海水魚の延命および/または外傷回復方法で処理した海水魚

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117216A (ja) * 2012-12-17 2014-06-30 Gex Corp 淡水魚用飼育水及び淡水魚飼育水用濃縮原液並びに淡水魚飼育水用組成物
JP6056949B1 (ja) * 2014-11-27 2017-01-11 学校法人加計学園 エビやカニ、シャコ等の甲殻類の種苗養殖水とこれを用いた種苗の養殖方法
MY188377A (en) * 2014-11-27 2021-12-06 Kake Educational Inst Culturing water for crustacean seed such as shrimp, crab, mantis shrimp and the like, and culture method of crustacean seed using same
CN104719196A (zh) * 2015-02-26 2015-06-24 湖南省植物保护研究所 一种斑马鱼的繁殖方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111684A (ja) * 1991-09-30 1993-05-07 Kiyoshi Matsumoto 人工海水調製剤
JP3129707U (ja) * 2006-07-31 2007-03-08 有限会社ベルテックジャパン 人工海水の素体の包装容器
WO2008069261A1 (ja) * 2006-12-05 2008-06-12 Kake Educational Institution 人工飼育水及び人工飼育水による養殖システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111684A (ja) * 1991-09-30 1993-05-07 Kiyoshi Matsumoto 人工海水調製剤
JP3129707U (ja) * 2006-07-31 2007-03-08 有限会社ベルテックジャパン 人工海水の素体の包装容器
WO2008069261A1 (ja) * 2006-12-05 2008-06-12 Kake Educational Institution 人工飼育水及び人工飼育水による養殖システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103355245A (zh) * 2012-04-06 2013-10-23 武汉瑞世普禾生物技术有限公司 保障动物健康的营养与环境调控方法
CN102870722A (zh) * 2012-11-02 2013-01-16 海阳市黄海水产有限公司 绿鳍马面鲀的大规模苗种培育方法
JP2015165825A (ja) * 2015-07-01 2015-09-24 広島県 海水魚の延命および/または外傷回復方法で処理した海水魚

Also Published As

Publication number Publication date
JP2010000009A (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
WO2009153954A1 (ja) 人工飼育水及び人工飼育水生成物質
JP5062550B2 (ja) 人工飼育水
Swain et al. Significance of water pH and hardness on fish biological processes: A review
JP2010193902A (ja) 人工飼育水
Tavabe et al. Effects of different calcium and magnesium concentrations separately and in combination on Macrobrachium rosenbergii (de Man) larviculture
Wasielesky et al. Chronic effects of nitrogenous compounds on survival and growth of juvenile pink shrimp
JP4665258B2 (ja) 人工飼育水による養殖システム
Townsend et al. Survival of silver catfish fingerlings exposed to acute changes of water pH and hardness
Ikhwanuddin et al. Live foods for Juveniles' production of blue swimming crab, Portunus pelagicus (Linnaeus, 1766)
van Der Meeren et al. Tolerance of Atlantic cod (Gadus morhua L.) larvae to acute ammonia exposure
WO2008069261A1 (ja) 人工飼育水及び人工飼育水による養殖システム
JP5487378B2 (ja) 人工飼育水
JP5364874B2 (ja) 人工飼育水
JP4665252B2 (ja) 人工飼育水による養殖システム
JP4829516B2 (ja) カクレクマノミの初期生活段階における飼育方法
Kogane et al. Improvement of larval rearing technique for mass seed production of snow crab Chionoecetes opilio
JP2010166933A (ja) 人工飼育水
JP5578401B2 (ja) 観賞魚用飼育水、トリートメント水、および、観賞魚用トリートメント水、観賞魚用トリートメント水生成物質
JP5487377B2 (ja) 人工飼育水による養殖システム
Nur et al. Reproductive performance of seahorse, Hippocampus barbouri (Jordan and Richardson 1908) in control condition
WO2006056570A1 (en) Method for producing live food water organisms in the presence of an antibacterial
Elfwing et al. Effects of copper and reduced salinity on grazing activity and macroalgae production: a short-term study on a mollusc grazer, Trochus maculatus, and two species of macroalgae in the inner Gulf of Thailand
Unit Ecology of Lake Bardawil: a preliminary review
Kumar et al. Salinity tolerance and survival of freshwater carp, Labeo rohita Ham.(rohu) in inland saline water
Glover Evaluating the potential use of saltwater quarries in the florida keys for the semi-wild mariculture of Caribbean King Crab (Maguimithrax spinosissimus)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766402

Country of ref document: EP

Kind code of ref document: A1