WO2009153866A1 - 風車の動特性監視装置及びその方法 - Google Patents
風車の動特性監視装置及びその方法 Download PDFInfo
- Publication number
- WO2009153866A1 WO2009153866A1 PCT/JP2008/061133 JP2008061133W WO2009153866A1 WO 2009153866 A1 WO2009153866 A1 WO 2009153866A1 JP 2008061133 W JP2008061133 W JP 2008061133W WO 2009153866 A1 WO2009153866 A1 WO 2009153866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dynamic characteristic
- monitoring
- wind turbine
- wind
- windmill
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 18
- 238000012806 monitoring device Methods 0.000 claims description 7
- 230000006870 function Effects 0.000 description 14
- 238000012546 transfer Methods 0.000 description 12
- 230000005856 abnormality Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
- F03D7/043—Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
- F03D7/045—Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
- F03D7/043—Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
- F03D7/046—Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/32—Wind speeds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a wind turbine dynamic characteristic monitoring apparatus and method.
- control parameters are preferably changed to optimum values in accordance with seasonal temperature, wind conditions, or changes over time.
- control parameters once set at the time of construction are not changed in the subsequent control. Therefore, there is a possibility that the operation is continuously performed in a state of low efficiency.
- the dynamic characteristics of a driving device such as an actuator used to change the pitch angle of a wind turbine blade may change with aging, but the dynamic characteristics regarding these driving devices are not monitored. . Therefore, regarding the actuator or the like, the occurrence of the abnormality is noticed by an alarm or the like notified when the abnormality occurs, and it is difficult to prevent the occurrence of the abnormality of the device.
- Patent Document 1 discloses a system in which a compensation controller and a parameter identifier are added to a pitch angle control system that outputs a pitch angle command value in pitch angle control of a wind turbine blade.
- a compensation controller and a parameter identifier are added to a pitch angle control system that outputs a pitch angle command value in pitch angle control of a wind turbine blade.
- an operation amount obtained by adding a control compensation command value output from the compensation controller to the operation amount calculated by the pitch angle control system is output as a final pitch angle control command.
- the parameter identifier identifies the parameters of the wind power generator online, and uses the identified parameters in the compensation controller to obtain the control compensation command value.
- the system disclosed in Patent Document 1 includes a compensation controller and a parameter identifier, and calculates a control compensation command value by online identifying the parameters of the compensation controller using the parameter identifier.
- the control parameters of the original controller are fixed, the control characteristics of the original controller may be deteriorated due to changes in temperature, wind conditions, or changes over time. Further, there is a problem that dynamic characteristic monitoring is not carried out and a change in characteristics of the wind turbine cannot be detected.
- the present invention has been made to solve the above problems, and by directly adjusting the control parameters of the original controller, it is possible to maintain the control performance of the controller when an aging or the like occurs. It is another object of the present invention to provide a wind turbine dynamic characteristic monitoring apparatus and method capable of detecting a change in characteristics of the wind turbine system.
- an identification unit that identifies a dynamic characteristic model of a windmill for each of a plurality of regions determined according to wind speed, and the dynamic characteristic model identified by the identification unit are monitored for each region.
- a dynamic characteristic monitoring apparatus for a windmill including a monitoring unit.
- the above-mentioned area is, for example, a first operation area in which the rotation speed is adjusted so that the generator output becomes the maximum output point at a fixed pitch angle, and the fixed rotation angle is set to the rated rotation speed.
- it is divided into a second operation region in which the generator output is adjusted and a third operation region in which the pitch angle is controlled so that the rotation speed and output are constant.
- the monitoring unit monitors a time-series change of a predetermined dynamic characteristic parameter in the dynamic characteristic model identified by the identification unit for each operation region, and the time of the dynamic characteristic parameter is determined. It may be determined whether it is necessary to adjust the control parameters of the wind turbine based on the series change.
- the monitoring unit needs to adjust the control parameter of the windmill. It may be determined.
- the dynamic characteristic model is represented by, for example, a transfer function including a dead time, and the monitoring unit determines the adjustment time of the control parameter based on a time series change of at least one of the dead time and the coefficient of the transfer function. It is good.
- the transfer function including the dead time includes a second-order or higher-order transfer function.
- the monitoring unit classifies the predetermined dynamic characteristic parameter into a plurality of classes based on a wind speed or a combination of wind speed and wind direction, and the time series change of the dynamic characteristic parameter for each class. It is good also as monitoring.
- a windmill monitoring system that monitors an operating state of a plurality of windmills and gives a control command to the plurality of windmills, and includes the dynamic characteristic monitoring device for any one of the windmills. It is a monitoring system.
- a wind turbine dynamic characteristic model is identified for each of a plurality of operation areas determined according to the operation control method, and the identified dynamic characteristic model is monitored for each operation area. It is a monitoring method.
- the wind turbine can be operated in a stable state, and the control parameters of the wind turbine can be changed at an appropriate time.
- FIG. 1 is a functional block diagram showing the functions of a wind turbine dynamic characteristic monitoring apparatus according to an embodiment of the present invention
- FIG. 2 is a hardware diagram of the wind turbine dynamic characteristic monitoring apparatus according to an embodiment of the present invention. It is the figure which showed the hardware structure.
- the wind turbine dynamic characteristic monitoring apparatus 10 includes an identification unit 11, a storage unit 12, a monitoring unit 13, and a display unit 14.
- the wind turbine dynamic characteristic monitoring device 10 is, for example, as shown in FIG. 2, a computer system (computer system), a CPU (central processing unit) 1, a RAM (Random Access).
- a main storage device 2 such as a memory
- an auxiliary storage device 3 such as a hard disk drive (HDD)
- an input device 4 such as a keyboard and a mouse
- an output device 5 such as a monitor and a printer.
- Various programs are stored in the auxiliary storage device 3, and the CPU 1 reads out the programs from the auxiliary storage device 3 to the main storage device 2 and executes them to implement various processes.
- the identification unit 11 identifies a wind turbine dynamic characteristic model for each of a plurality of operation regions determined according to the wind speed.
- the operation region is classified into three regions as shown in FIG.
- the first operation region is a region where the wind speed is the lowest, and the rotation speed is controlled so that the generator pitch becomes a maximum output point with a fixed pitch angle.
- the second operation area is an intermediate wind speed area, and the generator output is controlled so that the fixed pitch angle and the rotation speed become the rated rotation speed.
- the third operation region is a region where the wind speed is the highest, and the pitch angle is controlled so that the rotation speed and the output are constant.
- the pitch angle is fixed at a pitch angle that maximizes the generator output.
- the pitch angle is fixed, and the generator output is controlled by the generator rotational speed, so an identification model as shown in FIG. 4 is used.
- G 1 (s) and G 2 (s) are transfer functions (dynamic characteristic models) representing dynamic characteristics to be identified.
- the difference between the set value of the generator rotational speed and the actual rotational speed of the generator is input to the output controller 31, and the output set value that is the output is input to the first dynamic characteristic model 32. .
- the wind speed is input to the second dynamic characteristic model 33.
- the output of the first dynamic characteristic model 32 and the output of the second dynamic characteristic model 33 are added to obtain the generator rotational speed.
- the output controller 31 for example, any one of a P controller, a PI controller, a PID controller, and the like can be employed.
- the pitch angle is controlled so that the rotation speed and the output are constant, so an identification model as shown in FIG. 5 is used.
- G 3 (s) and G 4 (s) are transfer functions (dynamic characteristic models) representing the dynamic characteristics to be identified.
- the difference between the set value of the generator speed and the actual speed of the generator is input to the pitch angle controller 41, and the output pitch angle set value is input to the third dynamic characteristic model 42. ing.
- the wind speed is input to the fourth dynamic characteristic model 43.
- the output of the third dynamic characteristic model 42 and the output of the fourth dynamic characteristic model 43 are added to obtain the generator rotational speed.
- the pitch angle controller 41 for example, any one of a P controller, a PI controller, a PID controller, and the like can be employed.
- pitch angle control For pitch angle control, an identification model as shown in FIG. 6 is used.
- the pitch angle set value is an input of the fifth dynamic characteristic model 51, and the output is the actual pitch angle.
- Each of the dynamic characteristic models G 1 (s) to G 5 (s) shown in FIGS. 4 to 6 is all represented by a transfer function having a dead time as an element.
- the identification of the dynamic characteristic model by the identification unit 11 is performed according to the following procedure.
- the dynamic characteristic model G 1 (s) will be described as an example.
- the dynamic characteristic model G 1 (s) is expressed by, for example, the following expression (1) as a first-order transfer function having first-order delay and dead time as elements.
- coefficients a 1 , K 1 , and l 1 are obtained from the above equation (3) by applying a known linear prediction method using actual input / output data, and further, this coefficient a 1 calculates the time constant of K 1, l 1 from (1) a first dynamic characteristic model G 1 expressed in (s), the gain, dynamic characteristic parameter T 1 relating to dead time, K 1, L 1, respectively.
- the identification unit 11 calculates the value of the dynamic characteristic parameter for the other dynamic characteristic models G 2 (s) to G 5 (s).
- the identification method by the identification unit 11 is not limited to the above example, and the dynamic characteristic parameters T 1 , K 1 , and L 1 of the above equation (1) are directly calculated from the time response waveform. It is good as well.
- the storage unit 12 stores each dynamic characteristic parameter calculated by the identification unit 11 in association with time information and wind speed for each operation region.
- the monitoring unit 13 acquires specific dynamic characteristic parameters among the dynamic characteristic parameters stored in the storage unit 12 for each operation region, and sets the acquired dynamic characteristic parameters into a plurality of classes based on the wind speed for each operation region. Classify and create a time series change table showing time series changes in dynamic characteristic parameters for each class.
- FIG. 7 shows a time series change table in the first operation region when a time constant is selected as a specific dynamic characteristic parameter.
- time is plotted on the horizontal axis and dynamic characteristic parameters (for example, time constants) are plotted on the vertical axis, and the wind speed is divided into classes of 1 m.
- the monitoring unit 13 When the monitoring unit 13 creates such a time series change table for each operation region, the monitoring unit 13 outputs the created time series change table to the display unit 14.
- the time series change table related to the time constant has been described.
- the dynamic characteristic parameter to be selected is not limited to the time constant.
- dynamic characteristic parameters may be selected, or a plurality of dynamic characteristic parameters may be selected, and a time series change table may be created for each of these dynamic characteristic parameters.
- it classified into several classes according to the wind speed it is not limited to this, For example, it is good also as classifying based on the combination of a wind speed and a wind direction.
- each dynamic characteristic parameter stored in the storage unit 12 is obtained when the dynamic characteristic parameter is obtained. Are associated with the wind speed and direction.
- the monitoring unit 12 determines whether or not the wind turbine control parameter needs to be adjusted based on the created time series change table. Specifically, the value of the dynamic characteristic parameter in the time series change table is set in advance with respect to the initial value (or the value when the control parameter is adjusted when the control parameter is adjusted). If the change exceeds a predetermined change amount (for example, 20%), it is determined that adjustment of the control parameters of the windmill is necessary, and a message to that effect is output to the display unit 14.
- a predetermined change amount for example, 20%
- the display unit 14 notifies the user by displaying on the display monitor that the control parameter needs to be adjusted.
- each dynamic characteristic model G 1 (s) to G 5 (s) for example, output set value, pitch angle set value, wind speed, etc.
- the identification unit 11 identifies the operation region based on the wind speed, identifies the dynamic characteristic model using the identification model corresponding to the identified operation region, and calculates each dynamic characteristic parameter (step SA1 in FIG. 8).
- the dynamic characteristic parameters of the dynamic characteristic models G 1 (s) and G 2 (s) are calculated using the identification model shown in FIG.
- the obtained dynamic characteristic parameters are output to the storage unit 12 in association with the wind speed, the operation region, and the time.
- the dynamic characteristic parameters G 3 (s) to G 5 (s) are calculated using the identification models shown in FIGS. 5 and 6, and the calculated dynamic characteristics are calculated.
- the parameters are output to the storage unit 12 in association with the wind speed, the operation region, and the time.
- the dynamic characteristic parameters calculated by the identification unit 11 are stored in the storage unit 12 in association with the driving region or the like.
- the monitoring unit 12 reads out the dynamic characteristic parameters stored in the storage unit 12 and the data associated therewith at a predetermined time interval, and creates a time series change table as shown in FIG. 6 based on the information. This is output to the display unit 14 (step SA2 in FIG. 8). Thereby, the time series change table created by the monitoring unit 12 is displayed on the display unit 14 (step SA3 in FIG. 8). Thereby, the user can confirm the time-series change of the dynamic characteristic parameter.
- the monitoring unit 12 determines whether or not the control parameter needs to be adjusted based on the time series change table (step SA4 in FIG. 8). As a result, when it is determined that adjustment of the control parameter is necessary, a signal indicating that is output to the display unit 14. As a result, the display unit 14 displays that the control parameter needs to be adjusted, and can notify the user (step SA5 in FIG. 8).
- the control parameter adjustment unit (not shown) adjusts the control parameter. Specifically, the PID parameters of the output controller 31 shown in FIG. 4 and the pitch angle controller 41 shown in FIG. 5 are adjusted.
- a known method such as a known sensitivity sensitivity method of Ziegler & & Nichols or Kitamori method.
- the wind turbine dynamic characteristic monitoring device 10 it is possible to grasp a change in the dynamic characteristics of the wind turbine, and according to the state of the drive system of the wind turbine, It becomes possible to change to an appropriate control parameter at an appropriate time, and a decrease in operating efficiency can be avoided.
- the operation region is divided in a range in which the linearity is maintained, and the dynamic characteristic model is identified for each division. It becomes possible to make it high.
- the dynamic characteristic models G 1 (s) to G 5 (s) are represented by a first-order transfer function whose elements are a first-order delay and a dead time. It is not limited to the above example.
- the dynamic characteristic models G 1 (s) to G 5 (s) may be expressed as second-order or higher-order transfer functions.
- the above expression (4) is an expression including a delay element in the coefficient
- the expression (5) is an expression that further considers the dead time in the expression (4).
- the monitoring unit 13 determines the dead time and the transfer function.
- the control parameter adjustment timing may be determined based on at least one time-series change of the coefficient.
- the dynamic characteristic parameters of the dynamic characteristic models G 1 (s) to G 5 (s) are calculated using the identification model as shown in FIG. 4 and FIG.
- the model is not limited to this example.
- an identification model as shown in FIG. 9 may be used instead of the identification model shown in FIG.
- the output of the second dynamic characteristic model 33 is input between the output controller 31 and the first dynamic characteristic model 32.
- the output and the output of the second dynamic characteristic model 33 are added, and this result is used as the input of the first dynamic characteristic model 32.
- an identification model as shown in FIG. 10 may be used instead of the identification model shown in FIG.
- the output of the fourth dynamic characteristic model 43 is input between the pitch angle controller 41 and the third dynamic characteristic model 42, and the pitch angle controller The output of 41 and the output of the fourth dynamic characteristic model 43 are added, and this result is used as the input of the third dynamic characteristic model 42.
- the above-described effects can be obtained.
- the wind turbine dynamic characteristic monitoring apparatus 10 may be provided inside the wind turbine or may be provided outside the wind turbine. Moreover, it may be provided one-to-one with respect to the windmill, or one unit may be provided with respect to a plurality of windmills.
- the wind turbine dynamic characteristic monitoring device 10 may be provided in a wind turbine monitoring system 60 that controls the operation of a plurality of wind turbines, as shown in FIG.
- input / output data required for identification is transmitted from each wind turbine 1 via a communication line.
- the adjusted control parameter is transmitted to each wind turbine 1 through the communication line.
- the control parameter may be changed for each wind turbine, or may be changed so that the same parameter is set for each area having substantially the same terrain or wind conditions.
- the control parameters are managed by the windmill monitoring system 60 for each windmill.
- the storage unit 12 that stores the data calculated by the identification unit 11 is provided, and the monitoring unit 13 reads information from the storage unit 12.
- the storage unit 12 The data may be directly input from the identification unit 11 to the monitoring unit 13 without going through.
- the monitoring unit 13 may update the time series change table as illustrated in FIG. 6 based on the data input from the identification unit 11. By doing so, it is possible to always grasp the temporal change of the dynamic characteristic parameter.
- the user is notified by displaying on the display unit 14 that the control parameter needs to be adjusted.
- the notification method is not limited to this example. Other methods such as notification by lighting of the lamp may be employed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Wind Motors (AREA)
Abstract
Description
このような制御パラメータは、季節による温度や風況、或いは、経年変化に応じて最適な値に変更することが好ましい。しかしながら、一般的に、建設時に一旦設定された制御パラメータは以降の制御において変更されることはない。従って、効率が悪い状態で継続して運転がなされるおそれがある。
本発明の第1の態様は、風速に応じて決定される複数の領域別に、風車の動特性モデルを同定する同定部と、前記同定部によって同定された動特性モデルを前記領域毎に監視する監視部とを具備する風車の動特性監視装置である。
11 同定部
12 記憶部
13 監視部
14 表示部
31 出力制御器
32 第1動特性モデル
33 第2動特性モデル
41 ピッチ角制御器
42 第3動特性モデル
43 第4動特性モデル
51 第5動特性モデル
60 風車監視システム
図1は、本発明の一実施形態に係る風車の動特性監視装置が備える機能を展開して示した機能ブロック図、図2は本発明の一実施形態に係る風車の動特性監視装置のハードウェア構成を示した図である。
風車の動特性監視装置10は、例えば、図2に示されるように、コンピュータシステム(計算機システム)であり、CPU(中央演算処理装置)1、RAM(Random Access
Memory)などの主記憶装置2、HDD(Hard Disk Drive)などの補助記憶装置3、キーボードやマウスなどの入力装置4、及びモニタやプリンタなどの出力装置5などを備えて構成されている。
補助記憶装置3には、各種プログラムが格納されており、CPU1が補助記憶装置3から主記憶装置2にプログラムを読み出し、実行することにより種々の処理を実現させる。
本実施形態において、運転領域は、図3に示すように、3つの領域に分類される。
第1運転領域は、風速が最も低い領域であり、固定ピッチ角で、かつ、発電機出力が最大出力点になるように回転数が制御される。第2運転領域は、中間の風速領域であり、固定ピッチ角で、かつ、回転数が定格回転数になるように発電機出力が制御される。第3運転領域は、風速が最も大きい領域であり、回転数及び出力が一定となるように、ピッチ角が制御される。上記第1運転領域、第2運転領域において、ピッチ角は発電機出力が最大となるピッチ角に固定される。
図4に示される同定モデルにおいて、G1(s)及びG2(s)は、同定する動特性を表す伝達関数(動特性モデル)である。図4において、発電機回転数の設定値と発電機の実回転数との差分が出力制御器31に入力され、その出力である出力設定値が第1動特性モデル32の入力とされている。また、風速が第2動特性モデル33の入力とされている。第1動特性モデル32の出力及び第2動特性モデル33の出力は加算され、発電機回転数とされる。
上記出力制御器31には、例えば、P制御器、PI制御器、PID制御器等のいずれかを採用することができる。
図5に示される同定モデルにおいて、G3(s)及びG4(s)は、同定する動特性を表す伝達関数(動特性モデル)である。図5において、発電機回転数の設定値と発電機の実回転数との差分がピッチ角制御器41に入力され、その出力であるピッチ角設定値が第3動特性モデル42の入力とされている。また、風速が第4動特性モデル43の入力とされている。第3動特性モデル42の出力及び第4動特性モデル43の出力は加算され、発電機回転数とされる。
上記ピッチ角制御器41には、例えば、P制御器、PI制御器、PID制御器等のいずれかを採用することができる。
監視部13は、記憶部12に格納された各動特性パラメータのうち、特定の動特性パラメータを運転領域別に取得し、運転領域毎に、取得した動特性パラメータを風速に基づいて複数のクラスに分類し、クラス毎に動特性パラメータの時系列変化を示す時系列変化テーブルを作成する。
まず、図3から図5に示した同定モデルにおいて各動特性モデルG1(s)~G5(s)の入力、出力に相当するデータ、例えば、出力設定値、ピッチ角設定値、風速等が同定部11に入力される。
同定部11は、風速に基づいて運転領域を特定し、特定した運転領域に対応する同定モデルを用いて動特性モデルの同定を行い、各動特性パラメータを算出する(図8のステップSA1)。
これにより、記憶部12には、同定部11によって算出された動特性パラメータが運転領域等に関連付けられて格納されることとなる。
このように、同定モデルの構成が変わっても、上述の如き効果を得ることが可能である。
また、制御パラメータの調整が必要であると判断した場合には、通信回線を介して各風車1に対して調整後の制御パラメータを送信する。このとき、風車毎に制御パラメータを変更してもよいし、地形や風況などが略同等のエリア毎に同じパラメータとなるように変更することとしてもよい。制御パラメータは風車毎に風車監視システム60において管理する。
Claims (5)
- 風速に応じて決定される複数の領域別に、風車の動特性モデルを同定する同定部と、
前記同定部によって同定された動特性モデルを前記領域毎に監視する監視部と
を具備する風車の動特性監視装置。 - 前記監視部は、前記運転領域毎に、前記同定部によって同定された動特性モデルにおける所定の動特性パラメータの時系列変化を監視し、該動特性パラメータの時系列変化に基づいて風車の制御パラメータの調整が必要であるか否かを判断する請求項1に記載の風車の動特性監視装置。
- 前記監視部は、前記所定の動特性パラメータを風速または風速及び風向の組み合わせに基づいて複数のクラスに分類し、該クラス毎に前記動特性パラメータの時系列変化を監視する請求項2に記載の風車の動特性監視装置。
- 複数の風車の運転状態を監視し、複数の前記風車に対して制御指令を与える風車監視システムであって、
請求1から請求項3に記載の風車の動特性監視装置を備える風車監視システム。 - 運転制御方法に応じて決定される複数の運転領域別に、風車の動特性モデルを同定し、同定した動特性モデルを前記運転領域毎に監視する風車の動特性監視方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0819450-5A BRPI0819450A2 (pt) | 2008-06-18 | 2008-06-18 | Aparelho de monitoração das características dinâmicas de uma turbina eólica e método para tal |
JP2010517590A JP5260649B2 (ja) | 2008-06-18 | 2008-06-18 | 風車の動特性監視装置及びその方法 |
PCT/JP2008/061133 WO2009153866A1 (ja) | 2008-06-18 | 2008-06-18 | 風車の動特性監視装置及びその方法 |
US12/745,155 US8405239B2 (en) | 2008-06-18 | 2008-06-18 | Wind-turbine-dynamic-characteristics monitoring apparatus and method therefor |
EP08777332.1A EP2287465B1 (en) | 2008-06-18 | 2008-06-18 | Wind-turbine-dynamic-characteristics monitoring apparatus and method therefore |
AU2008358216A AU2008358216A1 (en) | 2008-06-18 | 2008-06-18 | Device and method for monitoring dynamic characteristics of windmill |
CN2008801183784A CN101878366A (zh) | 2008-06-18 | 2008-06-18 | 风车的动特性监视装置及其方法 |
CA2704988A CA2704988C (en) | 2008-06-18 | 2008-06-18 | Wind-turbine-dynamic-characteristics monitoring apparatus and method therefor |
KR1020107011804A KR101159444B1 (ko) | 2008-06-18 | 2008-06-18 | 풍차의 동적 특성 감시 장치 및 그 방법 |
TW097123960A TW201000754A (en) | 2008-06-18 | 2008-06-26 | Device for monitoring dynamic characteristics of windmill and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/061133 WO2009153866A1 (ja) | 2008-06-18 | 2008-06-18 | 風車の動特性監視装置及びその方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009153866A1 true WO2009153866A1 (ja) | 2009-12-23 |
Family
ID=41433796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/061133 WO2009153866A1 (ja) | 2008-06-18 | 2008-06-18 | 風車の動特性監視装置及びその方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US8405239B2 (ja) |
EP (1) | EP2287465B1 (ja) |
JP (1) | JP5260649B2 (ja) |
KR (1) | KR101159444B1 (ja) |
CN (1) | CN101878366A (ja) |
AU (1) | AU2008358216A1 (ja) |
BR (1) | BRPI0819450A2 (ja) |
CA (1) | CA2704988C (ja) |
TW (1) | TW201000754A (ja) |
WO (1) | WO2009153866A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2317133A1 (en) * | 2009-10-30 | 2011-05-04 | General Electric Company | System and device for controlling a wind turbine using seasonal parameters |
EP2559892A4 (en) * | 2010-04-13 | 2017-06-21 | Gamesa Innovation & Technology, S.L. | Methods for monitoring wind turbines |
JP2019532215A (ja) * | 2016-10-17 | 2019-11-07 | ロマックス テクノロジー リミテッド | 風力タービンの負荷を決定する方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1719910B1 (en) * | 2004-02-27 | 2019-06-26 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator, active vibration damping method for the same, and wind turbine tower |
US8174136B2 (en) * | 2006-04-26 | 2012-05-08 | Alliance For Sustainable Energy, Llc | Adaptive pitch control for variable speed wind turbines |
ES2433415T3 (es) * | 2008-11-18 | 2013-12-10 | Vestas Wind Systems A/S | Un procedimiento para controlar el funcionamiento de una turbina eólica |
ES2554836T3 (es) * | 2009-04-22 | 2015-12-23 | Vestas Wind Systems A/S | Sistema y procedimiento de configuración de una turbina eólica |
EP2474734A4 (en) * | 2009-08-31 | 2014-07-16 | Mitsubishi Heavy Ind Ltd | DEVICE AND METHOD FOR CONTROLLING A WIND TURBINE, AND PROGRAM |
TWI417746B (zh) | 2010-12-03 | 2013-12-01 | Ind Tech Res Inst | 裝置的效能預測及故障檢測之方法 |
KR101215503B1 (ko) * | 2011-02-21 | 2012-12-26 | 삼성중공업 주식회사 | 풍력발전기의 나셀 풍속 보정 시스템 및 그 방법 |
EP2518308A1 (en) * | 2011-04-29 | 2012-10-31 | Siemens Aktiengesellschaft | Controlling the operation of a wind turbine based on a terrain class parameter value |
EP3088733B1 (en) | 2015-04-27 | 2018-10-17 | Envision Energy (Jiangsu) Co., Ltd. | Method for operating a wind turbine based on degradation of wind turbine blade |
DK178737B1 (en) * | 2015-04-27 | 2016-12-12 | Envision Energy (Jiangsu) Co Ltd | Method for operating a wind turbine based on degradation of wind turbine blade |
EP3521612A1 (en) * | 2018-01-31 | 2019-08-07 | Siemens Gamesa Renewable Energy A/S | Method for controlling the pitch angle of wind turbine blades |
KR102620287B1 (ko) | 2020-12-31 | 2024-01-02 | 주식회사 대산 | 소나무 심재로부터 추출된 항산화제 및 이를 추출하는 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002023845A (ja) * | 2000-07-13 | 2002-01-25 | Hitachi Ltd | 機器の遠隔診断システム |
JP2002048050A (ja) * | 2000-08-07 | 2002-02-15 | Mitsubishi Heavy Ind Ltd | 風力発電装置のピッチ角制御方法及びその装置 |
JP2005147047A (ja) * | 2003-11-18 | 2005-06-09 | Fuji Heavy Ind Ltd | 水平軸風車及びその制御方法 |
JP2006037850A (ja) | 2004-07-27 | 2006-02-09 | Univ Of Ryukyus | 風力発電機のピッチ角制御装置 |
JP2007032488A (ja) * | 2005-07-28 | 2007-02-08 | Univ Of Ryukyus | ウインドファームにおける発電電力平準化装置および方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4461957A (en) * | 1982-06-17 | 1984-07-24 | Control Data Corporation | Speed tolerant alternator system for wind or hydraulic power generation |
JP4470933B2 (ja) | 2006-09-08 | 2010-06-02 | 祥人 平田 | 任意の観測地点数に対応した風況予測制御による地域型風力発電システム |
CN100476651C (zh) | 2007-08-23 | 2009-04-08 | 上海交通大学 | 大型海上风力发电场监控系统 |
-
2008
- 2008-06-18 JP JP2010517590A patent/JP5260649B2/ja active Active
- 2008-06-18 KR KR1020107011804A patent/KR101159444B1/ko not_active IP Right Cessation
- 2008-06-18 BR BRPI0819450-5A patent/BRPI0819450A2/pt not_active IP Right Cessation
- 2008-06-18 AU AU2008358216A patent/AU2008358216A1/en not_active Abandoned
- 2008-06-18 EP EP08777332.1A patent/EP2287465B1/en active Active
- 2008-06-18 WO PCT/JP2008/061133 patent/WO2009153866A1/ja active Application Filing
- 2008-06-18 CA CA2704988A patent/CA2704988C/en not_active Expired - Fee Related
- 2008-06-18 US US12/745,155 patent/US8405239B2/en active Active
- 2008-06-18 CN CN2008801183784A patent/CN101878366A/zh active Pending
- 2008-06-26 TW TW097123960A patent/TW201000754A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002023845A (ja) * | 2000-07-13 | 2002-01-25 | Hitachi Ltd | 機器の遠隔診断システム |
JP2002048050A (ja) * | 2000-08-07 | 2002-02-15 | Mitsubishi Heavy Ind Ltd | 風力発電装置のピッチ角制御方法及びその装置 |
JP2005147047A (ja) * | 2003-11-18 | 2005-06-09 | Fuji Heavy Ind Ltd | 水平軸風車及びその制御方法 |
JP2006037850A (ja) | 2004-07-27 | 2006-02-09 | Univ Of Ryukyus | 風力発電機のピッチ角制御装置 |
JP2007032488A (ja) * | 2005-07-28 | 2007-02-08 | Univ Of Ryukyus | ウインドファームにおける発電電力平準化装置および方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2287465A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2317133A1 (en) * | 2009-10-30 | 2011-05-04 | General Electric Company | System and device for controlling a wind turbine using seasonal parameters |
EP2559892A4 (en) * | 2010-04-13 | 2017-06-21 | Gamesa Innovation & Technology, S.L. | Methods for monitoring wind turbines |
JP2019532215A (ja) * | 2016-10-17 | 2019-11-07 | ロマックス テクノロジー リミテッド | 風力タービンの負荷を決定する方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2008358216A1 (en) | 2009-12-23 |
CA2704988A1 (en) | 2009-12-23 |
EP2287465B1 (en) | 2016-06-22 |
EP2287465A1 (en) | 2011-02-23 |
JPWO2009153866A1 (ja) | 2011-11-24 |
US8405239B2 (en) | 2013-03-26 |
CN101878366A (zh) | 2010-11-03 |
TW201000754A (en) | 2010-01-01 |
US20100301606A1 (en) | 2010-12-02 |
BRPI0819450A2 (pt) | 2015-07-14 |
EP2287465A4 (en) | 2014-11-19 |
CA2704988C (en) | 2013-01-08 |
JP5260649B2 (ja) | 2013-08-14 |
KR20100082800A (ko) | 2010-07-19 |
KR101159444B1 (ko) | 2012-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5260649B2 (ja) | 風車の動特性監視装置及びその方法 | |
JP5318454B2 (ja) | 風力タービンの運転方法及び風力タービン | |
EP3613982B1 (en) | Method for controlling operation of a wind turbine | |
EP3317526B1 (en) | Methods and systems for generating wind turbine control schedules | |
EP1790851A2 (en) | Windpark control system | |
CN111615589B (zh) | 用于协同控制风电场的风力涡轮机的方法和装置 | |
EP3317525B1 (en) | Methods and systems for generating wind turbine control schedules | |
US20150337802A1 (en) | System and method for pitch fault detection | |
JP6783110B2 (ja) | 予兆診断装置及びそれを有する発電装置制御システム | |
WO2009016020A1 (en) | Wind turbine monitoring system | |
Do et al. | State-of-the-art in integrated prognostics and health management control for utility-scale wind turbines | |
JP2006500694A (ja) | 複数のシステムを含む技術的設備、特に発電所設備、を監視するための装置および方法 | |
US9188021B2 (en) | Steam turbine blade vibration monitor backpressure limiting system and method | |
US20210388815A1 (en) | Method of controlling a wind turbine | |
WO2016042652A1 (ja) | 風力発電設備および風力発電設備の損傷度診断装置 | |
WO2019230191A1 (ja) | 風力発電システム | |
WO2018076236A1 (en) | Wind farm and method and controller for feeding the same | |
US20240229767A9 (en) | Controlling a wind turbine with respect to dynamic stability | |
CN114127412A (zh) | 用于控制风电场的方法、风电场的控制模块和风电场 | |
JP2021174114A (ja) | 状態監視装置及び状態監視方法 | |
EP3830415B1 (en) | Reaction to an overspeed event | |
Meyer | SCADA-based fault detection in wind turbines: data-driven techniques and applications | |
Do et al. | Effects of actuator faults on large-scale wind turbine dynamics with an industry-standard controller | |
Fandiño | Degradation modeling and degradation-aware control of wind turbine drive-trains | |
Kruse | Long-Lived Despite Harsh Winds: The Further Development of Components in Offshore wind Turbines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880118378.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08777332 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2704988 Country of ref document: CA Ref document number: 2008358216 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008777332 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3684/DELNP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2008358216 Country of ref document: AU Date of ref document: 20080618 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20107011804 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010517590 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12745155 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0819450 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100524 |