WO2016042652A1 - 風力発電設備および風力発電設備の損傷度診断装置 - Google Patents

風力発電設備および風力発電設備の損傷度診断装置 Download PDF

Info

Publication number
WO2016042652A1
WO2016042652A1 PCT/JP2014/074800 JP2014074800W WO2016042652A1 WO 2016042652 A1 WO2016042652 A1 WO 2016042652A1 JP 2014074800 W JP2014074800 W JP 2014074800W WO 2016042652 A1 WO2016042652 A1 WO 2016042652A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
wind
wind power
wind speed
generation facility
Prior art date
Application number
PCT/JP2014/074800
Other languages
English (en)
French (fr)
Inventor
崇 佐伯
今朝明 峰村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/074800 priority Critical patent/WO2016042652A1/ja
Publication of WO2016042652A1 publication Critical patent/WO2016042652A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to wind power generation equipment, and more particularly to structural strength diagnosis of wind power generation equipment.
  • Patent Document 1 discloses that in a wind turbine of a wind turbine generator, a wind speed turbulence degree is calculated by dividing a standard deviation of wind speed fluctuation detected by an anemometer by an average wind speed, and the wind speed turbulence degree is a turbulence threshold value.
  • An operation control method for stopping the operation of the windmill for a predetermined period when it is determined as described above is disclosed.
  • Patent Document 2 discloses a blade pitch of a wind turbine of a wind power generator using predetermined parameters that affect the load variation of the blade, such as measured values of wind speed, temperature, and atmospheric pressure, and output of the wind power generator. A method for controlling the angle is disclosed.
  • a wind turbine load design requires a fatigue design that can withstand load fluctuations acting on blades and towers during normal operation.
  • load fluctuations vary in response to the price of wind fluctuations, so wind conditions are an important parameter in fatigue design.
  • the wind conditions greatly differ between the upper part and the lower part of the wind turbine as the wind turbine becomes larger in recent years.
  • an anemometer is provided, the wind turbulence intensity is calculated based on the wind speed, and the windmill operation is stopped based on the turbulence intensity.
  • the wind load can be calculated from the wind turbulence intensity measured by the anemometer, and the damage degree of the windmill can be calculated.
  • the damage degree of the entire wind turbine is estimated only by the wind speed at the installation position of the anemometer.
  • the wind speed varies depending on the site, so it is difficult to accurately estimate the degree of damage at sites other than the site where the anemometer is installed.
  • the wind speed is measured for each part, a large number of anemometers are installed, and the cost including sensor installation and maintenance becomes enormous.
  • the blade pitch angle is controlled using predetermined parameters that affect the load fluctuation of the blade, such as measured values of wind speed, temperature, and pressure in the wind turbine, and the output of the wind turbine generator.
  • the degree of damage to the windmill can be calculated from predetermined parameters that affect each load variation.
  • an object of the present invention is to provide a wind power generation facility capable of diagnosing the degree of damage of each part without providing sensors more than necessary by estimating the wind speed for each part of the windmill from the anemometer and other sensor information. It is to provide.
  • Another object of the present invention is to estimate the wind speed for each part of the wind turbine from the anemometer and other sensor information, and to make a wind power generation capable of diagnosing the damage level of each part without providing more sensors than necessary.
  • the object is to provide an equipment damage diagnosis apparatus.
  • the present invention provides a wind turbine generator having a rotor composed of a hub and a plurality of blades, which receives wind at the rotor and converts it into electrical energy,
  • An anemometer provided at a predetermined position of the wind power generation facility, a plurality of sensors provided at a plurality of parts constituting the wind power generation facility, and detecting an operating state of the wind power generation facility, and measured by the anemometer
  • a wind speed calculation device for each part that calculates a wind speed in each part of the wind power generation facility based on a wind speed value and detection data detected by the plurality of sensors, and the wind speed calculation device for each part includes the wind power generation Calculating the wind speed for each part of the wind power generation facility using the wind speed calculation table for each part including the operation status data of the facility and the part data of the wind power generation facility To.
  • the present invention is a damage diagnosis apparatus for wind power generation equipment having a hub and a rotor composed of a plurality of blades, which receives wind from the rotor and converts it into electric energy
  • the wind power generation equipment includes the wind power An anemometer provided at a predetermined position of the power generation facility, a plurality of sensors provided at a plurality of parts constituting the wind power generation facility and detecting an operating state of the wind power generation facility, and an wind speed measured by the anemometer Based on the value and the detection data detected by the plurality of sensors, the wind speed calculation device for each part that calculates the wind speed in each part constituting the wind power generation facility, and the wind speed data for each part calculated by the wind speed calculation device for each part Based on the turbulence intensity calculation part for calculating the turbulent flow intensity for each part based on the turbulence intensity for each part calculated by the turbulence intensity calculation part, the part for calculating the damage degree for each part A separate damage degree calculation unit, and the wind speed calculation device for each part
  • the present invention by estimating the wind speed for each part of the windmill from the sensor data and the control data for detecting the wind speed from the anemometer and the driving situation in the windmill, for each part of the windmill without adding a sensor.
  • the degree of fatigue damage can be calculated.
  • the increase in cost due to the addition of the sensor can be suppressed, and the problem of securing the installation location can be solved.
  • FIG. 1 is a block diagram showing an outline of a wind speed calculation system for each part of a wind turbine according to an embodiment of the present invention.
  • a windmill 100 shown in FIG. 1 is installed at a specific part of a windmill, for example, and a plurality of sensor data that are measured values from a plurality of sensors 10 that measure driving conditions installed in a windmill for which a wind speed for each part is to be calculated.
  • the input wind speed value which is the output value from the anemometer 20, is input, and the site-specific wind speed calculation table 30 for calculating the wind speed at the corresponding site and the site-specific wind speed calculation table 30 are input.
  • It has a part-specific wind speed display unit 40 for displaying the wind speed of the relevant part, and outputs a plurality of part-specific wind speeds S10.
  • the plurality of sensor data measured by the sensor 10 is data obtained by measuring the driving situation of the windmill, and is weather data around the windmill and control data for controlling the windmill.
  • the wind turbine meteorological data includes, for example, wind direction, wind speed, temperature, humidity, rainfall, atmospheric pressure, weather, and the like.
  • the wind turbine control data is a control command value and an operation record value recorded in a supervisory control system (SCADA: Supervision-Control-And-Data-Acquisition) generally called SCADA.
  • SCADA supervisory control system
  • Command values such as corners, cut-in and cut-out, and acceleration and power generation amount of the main shaft, generator and gearbox, operation records such as during operation, standby, and stop.
  • the specific part in the anemometer 20 installed in the specific part of the windmill may be, for example, an anemometer installed in the upper part of the nacelle.
  • the part-specific wind speed calculation table 30 receives a plurality of sensor data 10 that measures the operating state of the windmill and a wind speed value that is an output value from the anemometer 20 installed in a specific part of the windmill, and calculates the wind speed at the relevant part.
  • a sensor selection table for selecting related sensors and a part-specific wind speed calculation table for converting into a part-specific wind speed from a combination of sensors output from the sensor selection table are output, and a plurality of part-specific wind speeds S10 are output.
  • the relevant part is a part of a part constituting the wind turbine such as a tower, a blade, a nacelle, and a hub.
  • the classification of tower base, tower middle, tower tip, blade base, blade middle or blade tip, etc. can be considered
  • the sensor selection table selects the combination of the relevant part and the sensor related to the wind speed at the relevant part .
  • a selection method a method of preparing a correspondence table in advance or a method of preparing a program for changing a sensor to be selected according to the wind speed at that time can be considered.
  • the corresponding part is a nacelle
  • the nacelle itself is generally close to an anemometer installed in a wind turbine, there is no need to use a sensor value other than the output value of the anemometer.
  • the part-specific wind speed conversion table receives the relevant part output from the sensor selection table and the sensor combination related to the wind speed of the relevant part, converts the wind speed of the relevant part with reference to the table, and outputs the wind speed for each part.
  • the wind speed conversion table for each part is obtained from the database of the wind observation mast at the time of the wind condition survey conducted before the wind turbine construction, the wind speed value for each height unit of the wind turbine, the sensor combination at that time, that is, the weather data, Multiple sets of control data are extracted, and statistical processing such as average values is performed on multiple data sets, for example, and a table in which wind speed values, weather data, and control data sets are shown as average values is prepared. A method to keep it is conceivable.
  • a certain height unit is an installation interval of the anemometer measured by the wind observation mast, for example, every 10 m or every 50 m.
  • a wind turbine simulator prepares a wind turbine simulator in advance, create a wind model from wind turbine design information and terrain information, and calculate the wind speed of the relevant part using all possible wind speed values and sensor values as input.
  • a correspondence table of the wind speed value, the sensor value, and the wind speed value of the corresponding part is calculated.
  • a method is conceivable in which the wind speed value of the closest simulation result corresponding to the table is calculated using the wind speed value and sensor combination input to the wind speed conversion table for each part as keys.
  • FIG. 2 is a table showing an example of sensor selection in the site-specific wind speed calculation table 30 of FIG. Basically, since it has already been repeated, detailed description is omitted.
  • the vertical axis is a list of corresponding parts and the horizontal axis is a list of weather data and control data around the windmill. Are arranged, and sensors related to the wind speed of the corresponding part are indicated by ⁇ .
  • FIG. 3 is a flowchart showing an example of a wind speed calculation method for each part of the windmill. Basically, since the description has already been repeated, detailed description will be omitted. However, as shown in FIG. 3, when the calculation of the wind speed for each part is started, a plurality of sensor values D10 and wind speed values are detected in the sensor selection step F1. Using D20 as an input, a sensor combination related to the wind speed of the corresponding part is selected, sensor data D30 for wind speed calculation is output, and the process proceeds to the part-specific wind speed calculation step F2.
  • the site-specific wind speed is calculated using the wind speed calculation sensor data D30 selected in the sensor selection step F1 as a key, and the process ends.
  • FIG. 3 shows an example in which the wind speed calculation for each part is started by inputting the signal for starting the wind speed calculation for each part.
  • the wind speed may be continuously calculated while the wind turbine is operating or stopped. Good.
  • FIG. 4 is a schematic configuration diagram of a wind speed calculation system for each part of a wind turbine according to an embodiment of the present invention.
  • a windmill 200 shown in FIG. 4 includes, for example, a tower E10 or a blade E20 that is a part-specific wind speed calculation target device, a SCADA 50 that stores environmental data and control data of the windmill, and a wind speed installed at a specific part of the windmill.
  • a part-specific wind speed calculation device 300 that selects a plurality of sensor data related to the corresponding part from the wind speed value measured from the meter, the wind turbine weather data, and the control data, and outputs the part-specific wind speed S10.
  • the wind power generation facility described in the present embodiment is a horizontal axis type wind power generation in which a plurality of blades E20 are connected to a hub to form a rotor, and wind is received by the rotor and converted into electric energy.
  • the rotor is supported by tower E10.
  • the site-specific wind speed calculation device 300 has the same configuration as the site-specific wind speed calculation table 30 and the site-specific wind speed display unit 40 in the wind turbine 100 described in the above embodiments, and outputs the site-specific wind speed S10 of the tower E10 or the blade E20. To do.
  • the part-specific wind speed S10 is output in the form of a report, is output on a monitoring screen in a windmill monitoring building, or is stored in the SCADA 50, which is a data storage device as part of the environmental data of the windmill. Can be considered.
  • the wind speed calculation device 300 for each part is included in the windmill 200, but a configuration in which the windmill 200 is installed outside the windmill such as a monitoring tower of the windmill is also conceivable.
  • a mode in which the part-specific wind speed calculation device 300 is incorporated in the SCADA 50 and is a function of the SCADA 50 is also conceivable.
  • FIG. 5 is a block diagram showing an outline of a wind turbine part damage degree diagnosis system using a wind turbine according to an embodiment of the present invention.
  • the wind turbine diagnosis apparatus 400 illustrated in FIG. 5 includes, for example, sensor data that is measurement values from a plurality of sensors 10 installed in a wind turbine for which a wind speed for each part is to be calculated, and measurement from an anemometer 20 installed in the wind turbine.
  • a sensor selection unit that selects sensor data values related to the wind speed at the relevant part, that is, the part-specific wind speed calculation table 30 and the sensor data selected by the sensor selection part 30 as inputs, and the relevant part
  • the wind speed calculation part 40 for calculating the wind speed of each part, the wind speed for each part are input, the turbulence intensity calculation part 60 for calculating the turbulent intensity for each part, and the turbulent intensity for each part are input,
  • the wind turbine diagnosis apparatus 400 has a configuration in which a turbulence intensity calculation unit 60 and a site-specific damage degree calculation unit 70 are added to the same configuration as the wind turbine 100 described in the above embodiments. Since the sensor 10, the anemometer 20, the sensor selection unit, that is, the site-specific wind speed calculation table 30 and the site-specific wind speed calculation unit 40 are repeated, the detailed description is omitted.
  • the turbulent flow intensity calculation unit 60 receives the wind speed for each part as input, and calculates the turbulent intensity for each part.
  • the turbulence intensity is defined as a value obtained by dividing the standard deviation of the past time-series wind speed over a certain time width by the average of the time-series wind speed, and is known to strongly depend on the fatigue life of the wind turbine.
  • the turbulence intensity calculation unit 60 calculates the turbulence intensity T by the following equation.
  • T standard deviation based on time-series wind speed at a fixed time interval / average wind speed based on the time-series wind speed
  • the fixed time interval may be a 10-minute interval recorded in the SCADA 50 or another time interval.
  • the site-specific damage degree calculation unit 70 receives the site-specific turbulence intensity as an input, and calculates the site-specific damage level. Since the fluctuating load is proportional to the square of the wind speed in a certain wind speed range and depends on the turbulence intensity, the fluctuating load for each part, that is, the damage degree for each part, is calculated from the value of the wind speed for each part and the turbulent intensity for each part. Can be calculated.
  • FIG. 6 shows a modification of the site-specific damage degree diagnosis system shown in FIG.
  • one wind speed calculation table 30 for each part one turbulent flow strength calculation unit 60, and one part damage degree calculation unit 70 constituting the wind turbine diagnosis apparatus 400 are provided.
  • 6 is configured to calculate the degree of damage for each part, whereas in the part-by-part damage diagnosis system in FIG. 6, the part-specific wind speed calculation table 30 for each part of the windmill is included in the wind turbine diagnosis apparatus 400.
  • a flow intensity calculation unit 60 and a site-specific damage degree calculation unit 70 are provided.
  • sensor data that is measured values from a plurality of sensors 10 and wind speed values that are measured values from an anemometer 20 installed in the windmill can be processed collectively. Therefore, the cost of the wind turbine diagnostic device 400 can be reduced, but any one of the site-specific wind speed calculation table 30, the turbulent flow strength calculation unit 60, and the site-specific damage degree calculation unit 70 in the wind turbine diagnostic device 400 fails. In such a case, it becomes impossible to calculate the damage level of the entire wind turbine.
  • the part-specific wind speed calculation table 30, the turbulent flow intensity calculation unit 60, and the part-by-part damage degree calculation unit 70 are provided for each part of the windmill in the wind turbine diagnosis apparatus 400.
  • the cost of the wind turbine diagnosis device 400 is increased by providing, if any of the site-specific wind speed calculation table 30, the turbulent intensity calculation unit 60, or the site-specific damage degree calculation unit 70 in the wind turbine diagnosis device 400 fails Even so, since the damage degree calculation for the entire wind turbine excluding the failed part can be continued, the reliability as the part-by-part damage degree diagnosis system is improved.
  • a part-specific wind speed calculation table 30, a turbulent flow intensity calculation unit 60, and a part-by-part damage degree calculation unit 70 are provided for each part of the windmill in the wind turbine diagnosis apparatus 400.
  • the site-specific wind speed calculation table 30, the turbulent flow strength calculation unit 60, and the site-specific damage degree calculation unit 70 may be configured to be shared for each site.
  • the validity of the load load assumed in each site at the time of design can be verified by calculating the site-specific damage level.
  • the damage level for each part can be calculated, it is possible to find damage that was not assumed at the time of design There is. In other words, the degree of damage for each part can be fed back to the design.
  • the maintenance report of a windmill can be made by showing the damage degree according to the region to the customer, particularly the windmill owner. In addition, if parts need to be replaced, it will be evidence when requesting a cost burden.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • each of the above-described configurations and functions may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid-State-Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Abstract

 風速計とその他のセンサ情報から風車の部位別の風速を推定することで、必要以上にセンサを設けることなく、各部位の損傷度診断が可能な風力発電設備を提供する。 ハブおよび複数のブレードからなるロータを有し、前記ロータに風を受けて電気エネルギへ変換する風力発電設備であって、前記風力発電設備は、当該風力発電設備の所定の位置に設けられた風速計と、当該風力発電設備を構成する複数の部位に設けられ、当該風力発電設備の運転状況を検知する複数のセンサと、前記風速計により計測した風速値と前記複数のセンサにより検知した検知データに基づき、前記風力発電設備を構成する各部位における風速を算出する部位別風速算出装置と、を備え、前記部位別風速算出装置は、当該風力発電設備の運転状況データおよび当該風力発電設備の部位データを含む部位別風速算出テーブルを用いて、前記風力発電設備の部位別の風速を算出することを特徴とする。

Description

風力発電設備および風力発電設備の損傷度診断装置
 本発明は、風力発電設備に関し、特に、風力発電設備の構造強度診断に関する。
 本技術分野の背景技術として、特許文献1には、風力発電装置の風車において、風速計で検出した風速変動の標準偏差を平均風速で割って風速乱れ度を算出し、風速乱れ度が乱れ閾値以上であると判定された場合に、風車の運転を所定の期間停止させる運転制御方法が開示されている。
 また、特許文献2には、風力発電装置の風車において、風速、気温、気圧の測定値と、風力発電装置の出力等のブレードの荷重変動に影響を及ぼす所定のパラメータを使って、ブレードのピッチ角度の制御を行う方法が開示されている。
特許3962645号公報 特開2005-83308号公報
 機械の構造強度において、設計における試験データと顧客先である現場の実測データで乖離が大きく、想定より早く損傷が発生している。その原因として、設計時に想定していた、主に風速と風向で表される風況と実際の風況が大きく異なることが考えられる。
 風車の荷重設計では台風のような一時的な最大荷重に耐える設計のほかに、通常運転時におけるブレードやタワーに作用する荷重変動に耐える疲労設計が必要である。一般に荷重変動は風の変動の代償に対応して変動するため、風況は疲労設計における重要なパラメータである。特に近年風車の大型化に伴い、風車の上部と下部では風況が大きく異なることが容易に想像できる。
 風車の構造強度を測定する場合、各風車に多数のセンサを設置する必要がある。しかし、センサのコストや設置場所確保の問題があり、風車の多点計測は難しい。
 ここで、特許文献1によれば、風速計を備え、風速に基づいて風の乱れ強度を計算し、乱れ強度に基づいて風車の運転を停止する。風速計で計測された風の乱れ強度から風荷重を計算し、風車の損傷度を計算することができる。
 しかしながら、この方法では風速計の設置位置における風速だけで、風車全体の損傷度を推定することになる。近年の大型化した風車では部位によって風速が異なるため、風速計設置部位以外の部位で正確に損傷度を推定することは難しい。また、部位毎に風速を測定するとなると多数の風速計を設置することになり、センサの設置、メンテナンスを含めたコストが膨大となる。
 特許文献2では、風車における風速、気温、気圧の測定値と、風力発電装置の出力等のブレードの荷重変動に影響を及ぼす所定のパラメータを使って、ブレードのピッチ角度の制御を行っている。各荷重変動に影響を及ぼす所定のパラメータから風車の損傷度を計算することができる。
 しかしながら、この方法では特許文献1と同様に、風速計の設置位置における風速から風荷重を算出するため、風速計設置部位以外の部位で正確に損傷度を推定することは難しい。また、部位毎に風速を測定するとなると多数の風速計を設置することになり、センサの設置、メンテナンスを含めたコストが膨大となる。
 そこで、本発明の目的は、風速計とその他のセンサ情報から風車の部位別の風速を推定することで、必要以上にセンサを設けることなく、各部位の損傷度診断が可能な風力発電設備を提供することにある。
 また、本発明の別の目的は、風速計とその他のセンサ情報から風車の部位別の風速を推定することで、必要以上にセンサを設けることなく、各部位の損傷度診断が可能な風力発電設備の損傷度診断装置を提供することにある。
 上記課題を解決するために、本発明は、ハブおよび複数のブレードからなるロータを有し、前記ロータに風を受けて電気エネルギへ変換する風力発電設備であって、前記風力発電設備は、当該風力発電設備の所定の位置に設けられた風速計と、当該風力発電設備を構成する複数の部位に設けられ、当該風力発電設備の運転状況を検知する複数のセンサと、前記風速計により計測した風速値と前記複数のセンサにより検知した検知データに基づき、前記風力発電設備を構成する各部位における風速を算出する部位別風速算出装置と、を備え、前記部位別風速算出装置は、当該風力発電設備の運転状況データおよび当該風力発電設備の部位データを含む部位別風速算出テーブルを用いて、前記風力発電設備の部位別の風速を算出することを特徴とする。
 また、本発明は、ハブおよび複数のブレードからなるロータを有し、前記ロータに風を受けて電気エネルギへ変換する風力発電設備の損傷度診断装置であって、前記風力発電設備は、当該風力発電設備の所定の位置に設けられた風速計と、当該風力発電設備を構成する複数の部位に設けられ、当該風力発電設備の運転状況を検知する複数のセンサと、前記風速計により計測した風速値と前記複数のセンサにより検知した検知データに基づき、前記風力発電設備を構成する各部位における風速を算出する部位別風速算出装置と、前記部位別風速算出装置により算出した部位別の風速データに基づき、部位別の乱流強度を算出する乱流強度計算部と、前記乱流強度計算部により算出した部位別の乱流強度に基づき、部位別の損傷度を算出する部位別損傷度算出部と、を備え、前記部位別風速算出装置は、当該風力発電設備の運転状況データおよび当該風力発電設備の部位データを含む部位別風速算出テーブルを用いて、前記風力発電設備の部位別の風速を算出し、当該算出した部位別の風速に基づき、部位別の損傷度を算出することを特徴とする。
 本発明によれば、風速計からの風速と該風車における運転状況を検知したセンサデータおよび制御データから風車の部位毎の風速を推定することで、センサを追加することなく、風車の部位毎の疲労損傷度を計算することができる。
 また、風車の部位別の損傷度を考慮することで、次回のメンテナンスまで損傷部位を持たせるために、抑制運転を行うなど、最適なO&Mサービス(Operation-and-Maintenance)を提供することができる。
 また、風速計とその他のセンサ情報から風車の部位別の風速を推定することで、センサ追加によるコストの増加を抑制し、その設置場所確保の問題も解決することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態における風車の部位別風速算出システムの概要を示すブロック図である。 本発明の一実施形態における風車の部位別風速算出システムの部位別風速算出テーブルの例を示す図である。 本発明の一実施形態における風車の部位別風速算出方法の例を示すフローチャートである。 本発明の一実施形態における風車の部位別風速算出システムの概略構成図である。 本発明の一実施形態における風車の部位別損傷度診断システムの概要を示すブロック図である。 本発明の一実施形態における風車の部位別損傷度診断システムの概要を示すブロック図である。
 本発明の実施例を、図面を参照しながら説明する。尚、各図および各実施例において、同一又は類似の構成要素には同じ符号を付し、その説明を省略する。
 図1は、本発明の一実施例である風車の部位別風速算出システムの概要を示すブロック図である。
 図1に示す風車100は、例えば、部位別風速の算出対象の風車に設置された運転状況を測定する複数のセンサ10からの測定値である複数のセンサデータと、風車の特定の部位に設置された風速計20からの出力値である風速値を入力とし、該当部位における風速を算出する部位別風速算出テーブル30と、部位別風速算出テーブル30で算出された部位別の風速を入力とし、該当部位の風速を表示する部位別風速表示部40を有し、複数の部位別風速S10を出力する。
 センサ10で測定される複数のセンサデータは風車の運転状況を測定したデータであり、風車廻りの気象データと風車を制御するための制御データである。
 ここで、風車の気象データとは、例えば、風向、風速、温度、湿度、雨量、気圧、天気などが含まれる。また、風車の制御データとは、一般にSCADAと呼ばれる監視制御システム(SCADA:Supervisory-Control-And-Data-Acquisition)などに記録された制御指令値と運転記録値であり、例えば、ピッチ角やヨー角、カットインやカットアウトなどの指令値と、主軸、発電機、増速機の加速度や発電量、運転中、待機中、停止中などの運転記録である。
 風車の特定の部位に設置された風速計20における特定の部位とは、例えばナセル上部に設置された風向風速計が考えられる。
 部位別風速算出テーブル30は、風車の運転状況を測定した複数のセンサデータ10と風車の特定の部位に設置された風速計20からの出力値である風速値を入力とし、該当部位における風速に関連するセンサを選択するセンサ選択テーブルとセンサ選択テーブルから出力されたセンサの組合せから部位別風速へ換算する部位別風速算出テーブルを有し、複数の部位別風速S10を出力する。
 ここで、該当部位とは、タワー、ブレード、ナセル、ハブなど風車を構成する部品の一部である。例えば、タワー基部、タワー中間部、タワー先端部、ブレード基部、ブレード中間部やブレード先端部、などの分類が考えられる
 センサ選択テーブルは該当部位と該当部位における風速に関連するセンサの組合せを選択する。選択方法は、予め対応テーブルを作っておく方法や、例えば、そのときの風速に応じて選択するセンサを変えるプログラムを用意しておく方法が考えられる。
 また、該当部位がナセルの場合は、一般に、ナセル自体が風車に設置される風向風速計に近い為、風向風速計の出力値以外のセンサ値を用いる必要が無い。
 部位別風速換算テーブルは、センサ選択テーブルから出力された該当部位と該当部位の風速に関連するセンサ組合せを入力とし、テーブル参照で該当部位の風速を換算し、部位別の風速を出力する。
 また、部位別風速換算テーブルは、風車建設前に行われた風況調査時の風況観測マストのデータベースから風車のある高さ単位毎の風速値と、そのときのセンサ組合せ、つまり気象データ、制御データのセットを複数抽出しておき、複数のデータセットに対して、例えば、平均値など統計処理をおこなって、風速値と気象データ、制御データのセットが平均値で示されたテーブルを用意しておく方法が考えられる。
 ここで、ある高さ単位とは、風況観測マストで計測されていた風速計の設置間隔のことであり、例えば10m毎や50m毎が考えられる。
 または、予め風車の風況シミュレータを用意しておき、風車の設計情報、地形情報から風況モデルを作成しておき、想定されるあらゆる風速値とセンサ値を入力として、該当部位の風速を計算しておき、風速値およびセンサ値と該当部位の風速値の対応テーブルを計算しておく。
 部位別風速換算テーブルに入力された風速値およびセンサ組合せをキーとして、テーブル対応で一番近いシミュレーション結果の風速値を算出する方法が考えられる。
 図2は、図1の部位別風速算出テーブル30におけるセンサ選択の一例を示すテーブルである。基本的には既に説明したことの繰り返しとなるので、詳細な説明は省略するが、図2に示すように、縦軸に該当部位の一覧と横軸に風車廻りの気象データおよび制御データの一覧が並び、該当部位の風速に関連するセンサが○で示されている。
 この例では、該当部位における風速と複数のセンサにおける関連の有無のみを表わしているが、関連度合いを数値化して表す方法も考えられる。
 図3は、風車の部位別風速算出方法の一例を示すフローチャートである。基本的には既に説明したことの繰り返しとなるので、詳細な説明は省略するが、図3に示すように、部位別風速算出を開始すると、センサ選択ステップF1で複数のセンサ値D10と風速値D20を入力として、該当部位の風速に関連するセンサの組合せを選択し、風速算出用センサデータD30を出力して、部位別風速算出ステップF2へ進む。
 部位別風速算出ステップF2では、センサ選択ステップF1で選択された風速算出用センサデータD30をキーとして、部位別風速を算出して終了となる。
 なお、図3では、部位別風速算出開始の信号入力により部位別の風速算出を開始する例を示しているが、風車の稼働中或いは停止時において、継続的に風速を算出するようにしてもよい。言い換えれば、風速を継続的に算出し、常時風速を監視するような部位別風速算出方法とすることもできる。
 図4は、本発明の一実施例である風車の部位別風速算出システムの概略構成図である。
 図4に示す風車200は、例えば、部位別風速算出対象機器であるタワーE10またはブレードE20と、風車の環境データおよび制御データを蓄積しているSCADA50と、風車の特定の部位に設置された風速計から計測された風速値と風車の気象データおよび制御データから該当部位に関連する複数のセンサデータを選択して、部位別風速S10を出力する部位別風速算出装置300と、を有する。
 図4に示すように、本実施例において説明する風力発電設備は、複数のブレードE20がハブと連結されてロータを構成し、ロータに風を受けて電気エネルギへ変換する水平軸タイプの風力発電設備である。ロータはタワーE10によって支持されている。
 部位別風速算出装置300は、これまでの実施例で説明した風車100における部位別風速算出テーブル30および部位別風速表示部40と同じ構成であり、タワーE10またはブレードE20の部位別風速S10を出力する。
 部位別風速S10はレポートの形で出力される形態、風車の監視棟などにおけるモニタリング画面に出力される形態、または、風車の環境データの一部としてデータ蓄積装置である、SCADA50に記憶される形態が考えられる。
 また、図4では、部位別風速算出装置300は風車200に含まれているが、風車の監視棟など風車の外部に設置される形態も考えられる。または、部位別風速算出装置300がSCADA50に組み込まれて、SCADA50の一機能とする形態も考えられる。
 図5は、本発明の一実施例である風車を用いた風車の部位別損傷度診断システムの概要を示すブロック図である。
 図5に示す風車の診断装置400は、例えば、部位別風速の算出対象の風車に設置された複数のセンサ10からの測定値であるセンサデータと、風車に設置された風速計20からの測定値である風速値を入力とし、該当部位における風速に関連するセンサデータ値を選択するセンサ選択部すなわち部位別風速算出テーブル30と、センサ選択部30で選択されたセンサデータを入力とし、該当部位の風速を算出する部位別風速算出部40と、部位別の風速を入力とし、部位別の乱流強度を計算する乱流強度計算部60と、部位別の乱流強度を入力とし、部位別の損傷度を算出する部位別損傷度算出部70を有し、複数の部位別損傷度S20を出力する。
 風車の診断装置400は、これまでの実施例で説明した風車100と同じ構成に、乱流強度計算部60と部位別損傷度算出部70が追加された構成である。センサ10、風速計20、センサ選択部すなわち部位別風速算出テーブル30および部位別風速算出部40については既に説明したことの繰り返しとなるので、詳細な説明は省略する。
 乱流強度計算部60は部位別の風速を入力とし、部位別の乱流強度を計算する。
 ここで、乱流強度とは、一定時間幅の過去の時系列風速の標準偏差を時系列風速の平均で割った値と定義され、風車の疲労寿命に強く依存することが知られている。乱流強度計算部60は乱流強度Tを次式で計算する。
 T=一定時間間隔の時系列風速に基づく標準偏差/その時系列風速に基づく平均風速
 ここで、一定時間間隔とは、SCADA50に記録される10分間隔でもその他の時間間隔でも良い。
 部位別損傷度算出部70は、部位別の乱流強度を入力とし、部位別の損傷度を算出する。変動荷重は、ある風速の範囲で風速の2乗に比例し乱流強度に依存することから、部位別風速と部位別乱流強度の値から部位別の変動荷重、つまり部位別の損傷度を算出することができる。
 図6に、図5に示した部位別損傷度診断システムの変形例を示す。図5では、風車の診断装置400を構成する部位別風速算出テーブル30、乱流強度計算部60、部位別損傷度算出部70が各々1つずつ設けられ、風車の診断装置400内で風車の各部位毎の損傷度を算出するよう構成されているのに対し、図6の部位別損傷度診断システムでは、風車の診断装置400内に風車の部位毎にそれぞれ部位別風速算出テーブル30、乱流強度計算部60、部位別損傷度算出部70が設けられている。
 図5の部位別損傷度診断システムでは、複数のセンサ10からの測定値であるセンサデータと、風車に設置された風速計20からの測定値である風速値を、一括して処理することができるため、風車の診断装置400のコストを抑えることができる反面、風車の診断装置400内の部位別風速算出テーブル30、乱流強度計算部60、部位別損傷度算出部70のいずれかが故障した場合には、風車全体の損傷度算出を行うことができなくなる。
 一方、図6の部位別損傷度診断システムのように、風車の診断装置400内に風車の部位毎にそれぞれ部位別風速算出テーブル30、乱流強度計算部60、部位別損傷度算出部70を設けることにより、風車の診断装置400のコストは掛かるが、風車の診断装置400内の部位別風速算出テーブル30、乱流強度計算部60、部位別損傷度算出部70のいずれかが故障した場合であっても、故障した部位を除く風車全体としての損傷度算出を継続することができるため、部位別損傷度診断システムとしての信頼性は向上する。
 なお、図6の部位別損傷度診断システムでは、風車の診断装置400内に風車の部位毎にそれぞれ部位別風速算出テーブル30、乱流強度計算部60、部位別損傷度算出部70を設けているが、必要に応じて、部位別風速算出テーブル30、乱流強度計算部60、部位別損傷度算出部70のそれぞれを、部位毎に共用化するように構成してもよい。
 以上説明したように、本実施例の部位別損傷度診断システムによれば、部位別の損傷度を算出することで、設計時に各部位で想定した荷重負荷の妥当性を検証することができる。また、設計時には最大負荷部位の荷重負荷のみを計算して構造強度を決定することが一般的なため、部位別の損傷度が算出できると、設計時に想定していなかった損傷が発見できる可能性がある。つまり部位別の損傷度を設計にフィードバックすることができる。
 また、部位別の損傷度を把握することで、次回のメンテナンスまで損傷部位を持たせるために抑制運転をおこなう、もしくは故障する時期を予測し、次回のメンテナンス作業日までの間隔を鑑みて、次回メンテナンス作業日まで発電量が最大になるような運転をおこなうなど、損傷度に応じて運転モードを変更することで、顧客のニーズに最適なオペレーションサービスを提供することができる。
 一方、直ちに部品を発注し、次回の点検日を予定より早める、もしくは損傷度の進行経過を鑑みて、メンテナンス周期を見直すなど、メンテナンス調整サービスを提供することができる。さらに部位別の損傷度を顧客、特に風車オーナーに提示することで、風車のメンテナンスレポートとすることができる。さらに、部品交換が必要な場合、費用負担を請求する際の証拠となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。また、上記の各構成や機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリやハードディスク、SSD(Solid-State-Drive)などの記録装置、またはICカード、SDカード、DVDなどの記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際にはほとんどすべての構成が相互に接続されていると考えてもよい。
 10…センサ、20…風速計、30…部位別風速算出テーブル、40…部位別風速表示部、50…SCADA(監視制御システム)、60…乱流強度計算部、70…部位別損傷度算出部、100…風車、200…風車、300…部位別風速算出装置、400…風車の診断装置、D10…センサ値、D20…風速値、D30…風速算出用センサデータ、E10…タワー、E20…ブレード、F1…センサ選択ステップ、F2…部位別風速算出ステップ、S10…部位別風速、S20…部位別損傷度。

Claims (15)

  1.  ハブおよび複数のブレードからなるロータを有し、前記ロータに風を受けて電気エネルギへ変換する風力発電設備であって、
     前記風力発電設備は、当該風力発電設備の所定の位置に設けられた風速計と、
     当該風力発電設備を構成する複数の部位に設けられ、当該風力発電設備の運転状況を検知する複数のセンサと、
     前記風速計により計測した風速値と前記複数のセンサにより検知した検知データに基づき、前記風力発電設備を構成する各部位における風速を算出する部位別風速算出装置と、を備え、
     前記部位別風速算出装置は、当該風力発電設備の運転状況データおよび当該風力発電設備の部位データを含む部位別風速算出テーブルを用いて、前記風力発電設備の部位別の風速を算出することを特徴とする風力発電設備。
  2.  前記風力発電設備は、部位別の風速を表示する部位別風速表示部を備えることを特徴とする請求項1に記載の風力発電設備。
  3.  前記部位別風速算出テーブルの前記運転状況データは、少なくとも発電量を含む当該風力発電設備の制御データと当該風力発電設備の周辺の気象データを用いることを特徴とする請求項1または2に記載の風力発電設備。
  4.  前記風力発電設備の制御データは、当該風力発電設備のピッチ角、ヨー角、カットイン指令値、カットアウト指令値、主軸の加速度、発電機の加速度、増速機の加速度、運転中の記録、待機中の記録、停止中の記録のうち、少なくとも1つ以上のデータを用いることを特徴とする請求項3に記載の風力発電設備。
  5.  前記風力発電設備の周辺の気象データは、風向、風速、温度、湿度、雨量、気圧、天気のうち、少なくとも1つ以上のデータを用いることを特徴とする請求項3に記載の風力発電設備。
  6.  前記部位別風速算出装置により風速を算出する風力発電設備の部位は、タワー基部、タワー中間部、タワー先端部、ブレード基部、ブレード中間部、ブレード先端部のうち、少なくとも1つ以上の部位を含むことを特徴とする請求項1または2に記載の風力発電設備。
  7.  前記部位別風速算出装置により算出した部位別の風速データは、レポート形式での出力或いは前記風力発電設備の監視棟におけるモニタリング画面への表示により出力することを特徴とする請求項1に記載の風力発電設備。
  8.  ハブおよび複数のブレードからなるロータを有し、前記ロータに風を受けて電気エネルギへ変換する風力発電設備の損傷度診断装置であって、
     前記風力発電設備は、当該風力発電設備の所定の位置に設けられた風速計と、
     当該風力発電設備を構成する複数の部位に設けられ、当該風力発電設備の運転状況を検知する複数のセンサと、
     前記風速計により計測した風速値と前記複数のセンサにより検知した検知データに基づき、前記風力発電設備を構成する各部位における風速を算出する部位別風速算出装置と、
     前記部位別風速算出装置により算出した部位別の風速データに基づき、部位別の乱流強度を算出する乱流強度計算部と、
     前記乱流強度計算部により算出した部位別の乱流強度に基づき、部位別の損傷度を算出する部位別損傷度算出部と、を備え、
     前記部位別風速算出装置は、当該風力発電設備の運転状況データおよび当該風力発電設備の部位データを含む部位別風速算出テーブルを用いて、前記風力発電設備の部位別の風速を算出し、当該算出した部位別の風速に基づき、部位別の損傷度を算出することを特徴とする風力発電設備の損傷度診断装置。
  9.  前記乱流強度計算部は、一定時間間隔の時系列風速に基づく標準偏差と前記時系列風速に基づく平均風速の比より、乱流強度を算出することを特徴とする請求項8に記載の風力発電設備の損傷度診断装置。
  10.  前記部位別風速算出テーブルの前記運転状況データは、少なくとも発電量を含む当該風力発電設備の制御データと当該風力発電設備の周辺の気象データを用いることを特徴とする請求項8または9に記載の風力発電設備の損傷度診断装置。
  11.  前記風力発電設備の制御データは、当該風力発電設備のピッチ角、ヨー角、カットイン指令値、カットアウト指令値、主軸の加速度、発電機の加速度、増速機の加速度、運転中の記録、待機中の記録、停止中の記録のうち、少なくとも1つ以上のデータを用いることを特徴とする請求項10に記載の風力発電設備の損傷度診断装置。
  12.  前記風力発電設備の周辺の気象データは、風向、風速、温度、湿度、雨量、気圧、天気のうち、少なくとも1つ以上のデータを用いることを特徴とする請求項10に記載の風力発電設備の損傷度診断装置。
  13.  前記部位別損傷度算出部により損傷度を算出する前記風力発電設備の部位は、タワー基部、タワー中間部、タワー先端部、ブレード基部、ブレード中間部、ブレード先端部のうち、少なくとも1つ以上の部位を含むことを特徴とする請求項8または9に記載の風力発電設備の損傷度診断装置。
  14.  算出した部位別の損傷度に応じて、前記風力発電設備の運転を制御することを特徴とする請求項8または9に記載の風力発電設備の損傷度診断装置。
  15.  算出した部位別の損傷度に応じて、前記風力発電設備の保守補修を行うことを特徴とする請求項8または9に記載の風力発電設備の損傷度診断装置。
PCT/JP2014/074800 2014-09-19 2014-09-19 風力発電設備および風力発電設備の損傷度診断装置 WO2016042652A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074800 WO2016042652A1 (ja) 2014-09-19 2014-09-19 風力発電設備および風力発電設備の損傷度診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074800 WO2016042652A1 (ja) 2014-09-19 2014-09-19 風力発電設備および風力発電設備の損傷度診断装置

Publications (1)

Publication Number Publication Date
WO2016042652A1 true WO2016042652A1 (ja) 2016-03-24

Family

ID=55532715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074800 WO2016042652A1 (ja) 2014-09-19 2014-09-19 風力発電設備および風力発電設備の損傷度診断装置

Country Status (1)

Country Link
WO (1) WO2016042652A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185171A (ja) * 2017-04-24 2018-11-22 株式会社東芝 風車発電機の疲労寿命解析装置、風力発電システム、及び風車発電機の疲労寿命解析方法
CN109416023A (zh) * 2016-07-04 2019-03-01 株式会社日本制钢所 风力涡轮机监视装置、风力涡轮机监视方法、风力涡轮机监视程序以及存储介质
CN109791166A (zh) * 2016-09-30 2019-05-21 Koa株式会社 图像显示装置
CN111615589A (zh) * 2018-01-25 2020-09-01 西门子歌美飒可再生能源公司 用于协同控制风电场的风力涡轮机的方法和装置
US10794362B2 (en) 2017-08-29 2020-10-06 Mitsubishi Heavy Industries, Ltd. Method and system for diagnosing wind turbine power generating apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016417A (ja) * 2003-06-26 2005-01-20 Fuji Heavy Ind Ltd 水平軸風車の風況観測装置及び水平軸風車の性能評価方法
JP2005214066A (ja) * 2004-01-29 2005-08-11 Fuji Heavy Ind Ltd 水平軸風車及び水平軸風車の制御方法
JP2006241981A (ja) * 2005-02-28 2006-09-14 Mitsubishi Heavy Ind Ltd 風車の運転制御装置及びその方法並びにプログラム
JP2010079685A (ja) * 2008-09-26 2010-04-08 Mitsubishi Heavy Ind Ltd 風車構造体の応力解析装置及び応力解析プログラム並びに風力発電システム
JP2013174231A (ja) * 2011-05-02 2013-09-05 Toshiba Corp 風力発電システムおよびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016417A (ja) * 2003-06-26 2005-01-20 Fuji Heavy Ind Ltd 水平軸風車の風況観測装置及び水平軸風車の性能評価方法
JP2005214066A (ja) * 2004-01-29 2005-08-11 Fuji Heavy Ind Ltd 水平軸風車及び水平軸風車の制御方法
JP2006241981A (ja) * 2005-02-28 2006-09-14 Mitsubishi Heavy Ind Ltd 風車の運転制御装置及びその方法並びにプログラム
JP2010079685A (ja) * 2008-09-26 2010-04-08 Mitsubishi Heavy Ind Ltd 風車構造体の応力解析装置及び応力解析プログラム並びに風力発電システム
JP2013174231A (ja) * 2011-05-02 2013-09-05 Toshiba Corp 風力発電システムおよびその制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416023A (zh) * 2016-07-04 2019-03-01 株式会社日本制钢所 风力涡轮机监视装置、风力涡轮机监视方法、风力涡轮机监视程序以及存储介质
CN109791166A (zh) * 2016-09-30 2019-05-21 Koa株式会社 图像显示装置
CN109791166B (zh) * 2016-09-30 2022-01-04 Koa株式会社 图像显示装置
JP2018185171A (ja) * 2017-04-24 2018-11-22 株式会社東芝 風車発電機の疲労寿命解析装置、風力発電システム、及び風車発電機の疲労寿命解析方法
US10794362B2 (en) 2017-08-29 2020-10-06 Mitsubishi Heavy Industries, Ltd. Method and system for diagnosing wind turbine power generating apparatus
CN111615589A (zh) * 2018-01-25 2020-09-01 西门子歌美飒可再生能源公司 用于协同控制风电场的风力涡轮机的方法和装置
US11585323B2 (en) 2018-01-25 2023-02-21 Siemens Gamesa Renewable Energy A/S Method and apparatus for cooperative controlling wind turbines of a wind farm

Similar Documents

Publication Publication Date Title
JP6906354B2 (ja) 風車発電機の疲労損傷量算出装置、風力発電システム、及び風車発電機の疲労損傷量算出方法
JP5984791B2 (ja) 風力発電装置のモニタリングシステム及びモニタリング方法
Yang et al. Wind turbine condition monitoring: technical and commercial challenges
US9822762B2 (en) System and method for operating a wind turbine
US7895018B2 (en) Event monitoring via combination of signals
US9606518B2 (en) Control system and method of predicting wind turbine power generation
CA2858702C (en) Methods and systems for detecting wind turbine rotor blade damage
WO2016042652A1 (ja) 風力発電設備および風力発電設備の損傷度診断装置
CN106815771B (zh) 一种风电场载荷的长期评估方法
JP2010025115A (ja) 風力資源の予測のための方法および装置
CN102607850A (zh) 用于检测风力涡轮机中的异常的系统和方法
KR20100125458A (ko) 풍차 구조체의 응력 해석 장치 및 응력 해석 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체와 풍력 발전 시스템
JP2009243428A (ja) 風車の監視装置及び方法並びにプログラム
JP6783110B2 (ja) 予兆診断装置及びそれを有する発電装置制御システム
JPWO2018047564A1 (ja) 風力発電装置の状態監視装置及びそれを有する状態監視システム並びに風力発電装置の状態監視方法
JP6315836B2 (ja) 風車の監視装置、風車の監視方法および風車の監視プログラム
US20120029843A1 (en) Method, system, and computer program product for sensor data collection in a wind turbine
EP3855019A1 (en) System and method for operating a wind turbine
KR101358397B1 (ko) 가속도 센서 및 출력 전력에 기반하는 풍력 발전기의 고장진단장치 및 고장 진단 방법
US20210148336A1 (en) A method for determining wind turbine blade edgewise load recurrence
EP3608538A1 (en) Model-based repowering solutions for wind turbines
WO2016157503A1 (ja) 風車および風車の疲労劣化診断方法、風車の運転制御方法
Liu et al. Dynamical measurement system for wind turbine fatigue load
KR102273363B1 (ko) 후류 영향 분석 및 단지 제어 시뮬레이션을 통한 디지털 기반 해상풍력단지 통합 o&m 서비스 플랫폼 장치
Wang et al. Power curve based online condition monitoring for wind turbines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP