WO2009150857A1 - Pyrolyzer and organic-substance treatment apparatus equipped therewith - Google Patents

Pyrolyzer and organic-substance treatment apparatus equipped therewith Download PDF

Info

Publication number
WO2009150857A1
WO2009150857A1 PCT/JP2009/002707 JP2009002707W WO2009150857A1 WO 2009150857 A1 WO2009150857 A1 WO 2009150857A1 JP 2009002707 W JP2009002707 W JP 2009002707W WO 2009150857 A1 WO2009150857 A1 WO 2009150857A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
thermal decomposition
heat
pyrolysis
decomposition apparatus
Prior art date
Application number
PCT/JP2009/002707
Other languages
French (fr)
Japanese (ja)
Inventor
岡内年明
徳田美幸
Original Assignee
黒澤弘
香取三雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒澤弘, 香取三雄 filed Critical 黒澤弘
Publication of WO2009150857A1 publication Critical patent/WO2009150857A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/869Multiple step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/11Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • the present invention relates to a thermal decomposition apparatus for processing a gas generated when pyrolyzing organic waste and an organic substance processing apparatus including the same.
  • Organic waste is generally incinerated in an incinerator.
  • dioxins and carbon dioxide are generated at the time of incineration, and recently, organic waste is treated using a thermal decomposition reaction.
  • Organic waste treatment equipment which is designed to suppress the generation of dioxins and carbon dioxide by completely combusting the waste by thermally decomposing organic waste represented by municipal waste in a reducing atmosphere.
  • Many systems have been developed to reuse resources such as heat generated in this pyrolysis process, water, and pyroligneous acid produced by cooling the generated gas.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-307237 (Patent Document 1) describes an apparatus for producing ceramics by treating organic waste using such a thermal decomposition reaction. JP 2004-307237 A
  • the raw organic substance is decomposed into a carbide and a gas component to produce ceramics from the carbide, while the gas component is oxidized using a catalytic oxidation device.
  • the oxidized gas is neutralized and washed using an alkali neutralization washing apparatus.
  • the present invention is a pyrolysis capable of reducing the load on these apparatuses when the pyrolysis gas generated by the pyrolysis of organic waste is processed by a catalytic oxidation apparatus or an alkali neutralization cleaning apparatus. It is an object of the present invention to provide an apparatus and an organic matter processing apparatus including the apparatus.
  • a thermal decomposition apparatus is a thermal decomposition apparatus for thermally decomposing a raw material organic material, and a material layer (for example, Ceramics generation means (for example, air introduction pipe 65, air introduction port 66, fan 34 in the embodiment) for producing an inorganic oxide (ceramics) by bonding oxygen to the inorganic substance contained in the ceramic layer 28) in the embodiment.
  • Ceramics generation means for example, air introduction pipe 65, air introduction port 66, fan 34 in the embodiment
  • a decomposition gas passage means for example, a gas decomposition means that is disposed below the material layer in the pyrolysis apparatus and allows the pyrolysis gas generated by the pyrolysis in the pyrolysis apparatus to pass over the entire surface of the material layer accumulated in the pyrolysis apparatus (for example, The cracking gas passage pipe 61) in the embodiment, and the cracking gas passage means is configured to introduce the pyrolysis gas accumulated above in the pyrolysis device into the cracking gas passage means It has been.
  • a decomposition gas passage means for example, a gas decomposition means that is disposed below the material layer in the pyrolysis apparatus and allows the pyrolysis gas generated by the pyrolysis in the pyrolysis apparatus to pass over the entire surface of the material layer accumulated in the pyrolysis apparatus (for example, The cracking gas passage pipe 61) in the embodiment, and the cracking gas passage means is configured to introduce the pyrolysis gas accumulated above in the pyrolysis device into the cracking gas
  • the pyrolysis apparatus having the above-described configuration is provided with cracking gas introduction means (for example, cracking gas introduction pipes 63 and 68 and fan 33 in the embodiment) for communicating the upper part of the pyrolysis apparatus with the cracking gas passage means.
  • cracking gas introduction means for example, cracking gas introduction pipes 63 and 68 and fan 33 in the embodiment.
  • the pyrolysis gas accumulated above in the pyrolysis apparatus is sucked into the cracking gas introduction means and introduced into the cracking gas passage means through the cracking gas introduction means, so that it passes through the material layer. Is preferred.
  • the cracked gas passage means is formed of a tubular member formed in a lattice shape, and the pyrolysis gas introduced by the cracked gas introduction means is formed on the side surface or lower surface of the cracked gas passage means as a material layer. It is preferable that a cracked gas outlet is formed to blow out toward the bottom.
  • pressure adjustment means that is open to the atmosphere (for example, the pressure adjustment unit 51 in the embodiment) for adjusting the pressure of the pyrolysis gas inside the thermal decomposition apparatus is provided. preferable.
  • a heat medium supply pipe that supplies a heat medium to the thermal decomposition apparatus, and heat generated by the thermal decomposition gas and the heat medium that is connected to the heat medium supply pipe and is generated in the thermal decomposition apparatus.
  • the heat exchange pipe line to be exchanged and the heat medium that is connected to the heat exchange pipe line and exchanges heat in the heat exchange pipe line is sent to a heat supply target (for example, a hot water pool, heating, a snow melting device) for thermal decomposition.
  • a heat supply target for example, a hot water pool, heating, a snow melting device
  • the heat supply target is a steam turbine (power generation), a hot water pool, a greenhouse, heating, a snow melting apparatus, or the like.
  • an organic matter processing apparatus comprises a pyrolysis apparatus and a gas treatment apparatus for treating a pyrolysis gas generated by thermal decomposition in the pyrolysis apparatus.
  • An apparatus in which a gas processing apparatus oxidizes a gas component thermally decomposed by a thermal decomposition apparatus (for example, the catalytic oxidation apparatus 2 in the embodiment), and a gas pipeline (for example, a duct in the embodiment) to oxidize the apparatus. 13b) is provided with a means for neutralizing and cleaning the oxidized gas (for example, the dry distillation gas cleaning scrubber 17 in the embodiment), and an oxidizing gas introduction for connecting the gas line with the cracked gas passage means.
  • the pyrolysis gas oxidized by the gas processing device is sucked into the oxidizing gas introducing means and passed through the oxidizing gas introducing means. By being introduced into, and is configured so as to pass through the material layer.
  • a ceramic outlet for taking out the ceramic generated in the material layer from the thermal decomposition apparatus is formed below the thermal decomposition apparatus.
  • ceramic suction means for example, a suction fan 54 in the embodiment
  • the ceramic suction means may be for recovering ceramics accumulated in the ceramic recovery box 52.
  • an air intake means that is open to the atmosphere for taking in air (for example, the air intake section 55 in the embodiment) is provided in the gas pipeline or the neutralization cleaning means. Is preferred.
  • the heat supply system provided in the organic matter processing apparatus includes a heat medium supply pipe for supplying a heat medium to at least one of the thermal decomposition apparatus and the oxidizing means, and a heat medium.
  • the heat medium that is connected to the heat exchange line and exchanges heat in the heat exchange pipeline is sent to a heat supply target (for example, a hot water pool, heating, snow melting device) to heat at least one of the heat in the pyrolysis device and the oxidation means.
  • a heat supply target for example, a hot water pool, heating, snow melting device
  • the heat exchange pipe is a cracker-side heat exchange pipe provided in the pyrolyzer, and is generated by thermal decomposition in the pyrolyzer in the cracker-side heat exchange pipe.
  • heat exchange between the pyrolysis gas and the heat medium is performed.
  • the oxidation apparatus side heat exchange pipe provided in the means for oxidizing the heat exchange pipe, and introduced into the means for oxidizing from the thermal decomposition apparatus in the oxidation apparatus side heat exchange pipe
  • the heat exchange between the pyrolysis gas and the heat medium may be performed.
  • the heat supply target is preferably a steam turbine (power generation), a hot water pool, a greenhouse, heating, a snow melting apparatus, or the like.
  • the pyrolysis gas generated by the thermal decomposition in the thermal decomposition apparatus constituting the organic matter treatment apparatus passes through the material layer accumulated in the thermal decomposition apparatus.
  • a cracked gas passage means is provided.
  • the cracked gas passage means is configured such that the introduced pyrolyzed gas passes over the entire surface of the material layer.
  • the load at the time of a gas processing apparatus processing pyrolysis gas can be reduced.
  • the temperature of the pyrolysis gas rises by passing through ceramics and the like that are pyrolyzed at a high temperature, the function of the catalyst of the catalytic oxidation apparatus constituting the gas processing apparatus can be improved, and the life of the catalyst can be increased.
  • the pyrolysis gas accumulated above in the pyrolysis apparatus is passed through the cracking gas introducing means. It can be introduced into the passage means and passed through the material layer.
  • the cracked gas passage means is formed in a lattice and the cracked gas passage means is provided with a cracked gas outlet, the pyrolysis gas can pass through the entire surface of the material layer. Since more ceramic can be used to raise the temperature of the pyrolysis gas than when the pyrolysis gas is allowed to pass through only the part, the temperature of the pyrolysis gas can be effectively increased.
  • the thermal decomposition apparatus has pressure adjustment means that is open to the atmosphere for adjusting the pressure of the pyrolysis gas generated inside due to the thermal decomposition of the raw organic material. For this reason, when the internal pressure of the pyrolysis apparatus, which is normally in a negative pressure state, is higher than the atmospheric pressure, the gas inside the pyrolysis apparatus is discharged outside through the pressure adjusting means. Therefore, even when the raw material is ignited due to an increase in the temperature in the thermal decomposition apparatus, the pressure adjusting means functions as a safety valve, so that it is possible to prevent an explosion due to rapid thermal expansion of the gas.
  • the organic matter processing apparatus includes a pyrolysis apparatus and a gas processing apparatus for processing a pyrolysis gas generated by pyrolysis in the pyrolysis apparatus, and the gas components constituting the gas processing apparatus are The means for oxidizing and the means for neutralizing and cleaning the gas communicate with each other through a gas line.
  • An oxidizing gas introducing means is provided for communicating the gas pipe line with the cracked gas passage means.
  • ceramic suction means for preventing the ceramic accumulated in the ceramic recovery box 52 (see FIG. 3) from scattering around the ceramic outlet in the lower part of the thermal decomposition apparatus is provided. For this reason, the rise of the dust of the ceramics at the time of ceramics collection is suppressed, and the working environment of the worker engaged in the ceramics collection work can be improved. Further, if ceramic suction means is used, the ceramic powder collected in the ceramic collection box 52 can be sucked and collected in a desired place.
  • air is introduced into the neutralization cleaning means on the gas pipe that communicates the means for oxidizing the gas components constituting the gas processing apparatus and the neutralization cleaning means, or above the neutralization cleaning means. Therefore, the dry distillation gas flowing inside the neutralizing and cleaning means is cooled. Thereby, the dissolution rate of the pyrolysis gas dissolved in the alkali neutralization detergent used in the neutralization washing means can be increased. Furthermore, the dry distillation gas can be diluted with the outside air introduced into the neutralization washing means through the air intake means. Thereby, the load of alkali neutralization washing in the neutralization washing means can be reduced, and the deodorized gas can be exhausted to the outside of the neutralization washing means.
  • the organic substance processing apparatus of this invention By effectively using the heat generated by the thermal decomposition in the energy, it is possible to eliminate energy waste and contribute to energy saving.
  • the heat generated by the thermal decomposition of organic waste as a heat source for supplying heat to the heat supply target, unlike the case where fuel is burned, carbon dioxide gas is not generated, giving consideration to the environment. Is possible.
  • FIG. 1 shows a schematic view of an organic matter processing apparatus of the present invention.
  • FIG. 2 is a schematic view of a thermal decomposition apparatus constituting the organic matter processing apparatus of the present invention.
  • FIG. 3 shows a schematic diagram of a thermal decomposition apparatus and the like constituting the organic matter processing apparatus of the present invention.
  • FIG. 4 is a plan view showing the periphery of the air introduction pipe provided in the thermal decomposition apparatus.
  • Fig.5 (a) is a top view of the said air introduction pipe
  • FIG. 6 is a schematic diagram for explaining a second embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of an embodiment of an organic matter processing apparatus according to the present invention.
  • the organic matter is treated by using industrial waste such as garbage as the raw material organic material, and ceramics are generated from the inorganic material contained in the raw material.
  • the raw material is not limited to industrial waste, and any material such as feces can be used.
  • the organic matter processing apparatus 100 includes a thermal decomposition apparatus 1, a catalytic oxidation apparatus 2 that oxidizes a thermal decomposition gas generated in the thermal decomposition apparatus 1 using an oxidation catalyst, and a residual after treatment with the oxidation catalyst.
  • the raw material input from the raw material input port is thermally decomposed in the thermal decomposition apparatus 1 and separated into carbide and gas components.
  • the carbide is further oxidized to produce ceramics.
  • the gas components separated by the thermal decomposition apparatus 1 are processed in the order of the oxidation catalyst apparatus 2, the neutralization washing apparatus 3, and the solid-liquid separation apparatus 4, and the solid components separated by the solid-liquid separation apparatus 4 are pyrolyzed. It is put into the apparatus 1 and reused in the thermal decomposition apparatus 1.
  • FIG. 2 shows a schematic diagram of the thermal decomposition apparatus 1.
  • the pyrolysis apparatus 1 includes a raw material inlet 11 at the top, a ceramic outlet 12 at the bottom, and a reaction gas (pyrolysis gas) collection opening 13.
  • the raw material inlet 11 and the ceramics outlet 12 are comprised so that the inside of the thermal decomposition apparatus 1 can be kept airtight by closing these.
  • the reaction gas collection opening 13 communicates with the catalytic oxidation device 2 through a duct 13a, and the pyrolysis gas generated in the thermal decomposition device 1 is introduced into the catalytic oxidation device 2 through the duct 13a.
  • a process for oxidizing the pyrolysis gas using an oxidation catalyst is performed.
  • thermal decomposition of the raw material starts in the thermal decomposition apparatus 1.
  • Suitable raw materials include, for example, paper, wood, vinyls (those made of vinyl chloride, polyethylene, polypropylene, polystyrene, etc.), food residues, animal dung, human dung, and the like.
  • the pyrolysis gas generated by the combustion and pyrolysis becomes smoke and flows from the reaction gas collection opening 13 to the catalytic oxidation apparatus 2 through the duct 13a.
  • the thermal decomposition apparatus 1 Since the thermal decomposition apparatus 1 is hermetically sealed, the inside is maintained in a reducing atmosphere, and even if the temperature in the thermal decomposition apparatus 1 rises, the raw material does not ignite.
  • thermal decomposition is performed by using the amount of heat of the organic substance itself input as a raw material.
  • dry distillation gas and vapor generated by pyrolysis adhere to the inner wall of the apparatus as tar, carbonize after lamination, peel off, and fall onto the untreated layer 24.
  • the untreated layer 24 becomes a dry layer 25, and steam accompanying the drying is generated from the surface of the dry layer 25.
  • a dry distillation gas is generated from the dry layer 25, and components other than the carbon component and a small amount of inorganic components contained in the raw material are evaporated as gas.
  • the carbon component remaining in the dry layer 25 accumulates in the lower part of the thermal decomposition apparatus 1 to form a carbonized layer 26.
  • this carbon component is also vaporized to evaporate, and finally, only the inorganic component contained in the raw material remains, and the ashed layer 27 is formed.
  • a small amount of oxygen is sent between the carbonized layer 26 and the ashing layer 27 (see the air introduction pipe 65 in FIG.
  • this inorganic component is combined with a small amount of oxygen to form an inorganic oxide, that is,
  • the ceramic 28 powder remains on the bottom of the thermal decomposition apparatus 1.
  • the ceramic 28 is taken out from the ceramic outlet 12 provided at the bottom or bottom of the thermal decomposition apparatus 1 and used in various applications.
  • a ceramics collection box 52 is installed immediately below the ceramics outlet 12 (see FIG. 3), and ceramic powder falling from the thermal decomposition apparatus 1 through the ceramics outlet 12 can be stored.
  • a ceramic collection pipe 53 (see FIG. 3) for collecting ceramics extends toward a desired location.
  • the ceramic recovery tube 53 is provided with a suction fan 54 for preventing the ceramic powder accumulated in the ceramic recovery box 52 from scattering.
  • the pyrolysis gas generated by the pyrolysis is introduced from the reaction gas collection opening 13 into the catalytic oxidation apparatus 2 through the duct 13a.
  • the pyrolysis gas introduced into the catalytic oxidation apparatus 2 passes through the catalyst case 15, where the hydrocarbon-based gas is oxidized into carbon dioxide and water.
  • the pyrolysis gas generated in the thermal decomposition step is reduced by about 90%, and the residual gas after the treatment by the catalytic oxidation becomes a gas containing elements such as chlorine, sulfur and nitrogen.
  • the oxidation catalyst metals such as Pt, Cr, Cu, and Mn, or metal oxides such as Al 2 O 3 can be used.
  • the alkali neutralization cleaning device 3 includes a dry distillation gas cleaning scrubber 17, a circulation box 18, and a chemical solution injection tank 19.
  • the reason why the pyrolysis gas generated in the pyrolysis apparatus 1 is sent to the alkali neutralization washing apparatus after passing through the catalyst oxidation apparatus 2 is to greatly reduce the pyrolysis gas by catalytic oxidation treatment before the alkali neutralization washing. This is because the efficiency of gas treatment is better when the load applied to the alkali neutralization washing apparatus 3 is reduced.
  • An alkali neutralized cleaning agent is introduced into the circulation box 18 from the chemical solution injection tank 19, and water is sprinkled from the shower-type sprinkler 16 provided in the dry distillation gas cleaning scrubber 17 through the circulation box 18.
  • the alkali neutralized detergent that has been sprinkled and subjected to the alkali cleaning step is accumulated at the bottom of the scrubber 17 and returned to the circulation box 18 again, and then sprinkled from the sprinkler 18 again. Circulate inside.
  • Preferred examples of the alkali neutralizing detergent include caustic soda.
  • a gas containing an element such as chlorine, sulfur, or nitrogen, that is, an acid gas is neutralized, and water, salt, or the like is generated.
  • the waste water used in the alkali neutralization cleaning process 3 is sent from the circulation box 18 to the solid-liquid separation device 4 and separated into solid and liquid.
  • the cleaning efficiency of the alkali neutralization cleaning device 3 can be increased.
  • the solid-liquid separator 4 includes a transpiration unit 20 and a distillation unit 21 arranged in a vacuum tank.
  • the wastewater sent from the neutralization cleaning device 3 is evaporated in the transpiration unit 20 to become a liquid containing gas and solids.
  • the gas is further sent to the distillation unit 21 and then cooled by passing through a cooling tower (not shown) to be distilled water, which is recycled to the circulation box 18 of the neutralization cleaning device 3 and reused.
  • the liquid containing the solid content is further separated into a liquid and a solid, and the solid is returned to the thermal decomposition apparatus 1 and again thermally decomposed together with new raw materials.
  • the liquid is returned to the transpiration unit 20 of the solid-liquid separation device 4, and transpiration / distilled again together with the wastewater sent from the neutralization washing device 3 to separate the liquid.
  • transpiration / distilled again together with the wastewater sent from the neutralization washing device 3 to separate the liquid.
  • it returns to the alkali neutralization washing
  • a pressure adjusting unit 51 that protrudes horizontally is provided on the upper side of the thermal decomposition apparatus 1.
  • the pressure adjusting unit 51 is a tubular member, and is configured to open the inside of the thermal decomposition apparatus 1 to the atmosphere. Pyrolysis gas generated in the thermal decomposition apparatus 1 is directed toward the catalytic oxidation apparatus 2 by a fan 32 (see FIG. 1) installed in a duct 13b that communicates the catalytic oxidation apparatus 2 and the alkali neutralization cleaning apparatus 3. Therefore, the inside of the thermal decomposition apparatus 1 becomes a negative pressure.
  • the pressure inside the thermal decomposition apparatus 1 is normally kept at a negative pressure that is almost close to atmospheric pressure.
  • the pressure adjusting unit 51 is useful as a safety valve when the internal pressure of the thermal decomposition apparatus 1 is increased, and even when the raw material is ignited due to an increase in the temperature in the thermal decomposition apparatus 1, the pyrolysis gas is used. Can be prevented from exploding due to rapid thermal expansion of the pyrolysis gas.
  • inorganic oxides ceramics
  • external air is passed through the thermal decomposition apparatus 1.
  • a plurality of air inlets 66 for feeding into the interior are formed at substantially equal intervals.
  • An air introduction pipe 65 communicating with the outside of the thermal decomposition apparatus 1 is connected to the air introduction port 66, and the fan 34 is installed in the air introduction pipe 65. With such a configuration, by operating the fan 34, it is possible to send external air into the thermal decomposition apparatus 1 through the air inlet 66.
  • the air introduced into the air introduction pipe 65 by the operation of the fan 34 enters the lower part in the thermal decomposition apparatus 1 through the plurality of air introduction ports 66 and flows upward, and the ceramic layer 28, the ashing layer 27, and the carbonized layer. 26, the dried layer 25 and the untreated layer 24 are passed through these layers in this order.
  • air introduced from the outside of the thermal decomposition apparatus 1 via the air introduction ports 66 passes uniformly over the entire surface of these layers, so that there is no bias in the place where ceramics are generated. Homogeneous ceramics are uniformly produced, and as a result, the purity of the produced ceramics can be increased.
  • a decomposition gas passage pipe 61 for allowing the pyrolysis gas to pass through the material layer accumulated in the pyrolysis device 1 is provided in the lower part of the pyrolysis device 1 and below the material layer (ceramic layer 28). Is provided.
  • the cracked gas passage pipe 61 is arranged in a lattice shape in a plan view at the lower part in the thermal decomposition apparatus 1.
  • a plurality of substantially circular cracked gas outlets 62 for injecting the air flowing through the cracked gas passage pipe 61 onto the inorganic substance are formed at a side portion or a lower portion of the cracked gas passage pipe 61.
  • the cracked gas passage pipe 61 is provided with a circular cracked gas passage pipe 61 in which four pipes having an outer diameter of about 50 mm are arranged in the horizontal direction on the paper surface, six in the vertical direction, and approximately 200 mm, and two in the horizontal direction.
  • a set of cracked gas introduction pipes composed of the cracked gas passage pipe 61 having a rectangular cross section is configured to be installed in the thermal cracking apparatus 1 on the left and right sides.
  • the cracked gas outlet 62 has a diameter of about 2 mm, and a total of about 120 pieces are provided at intervals of about 250 mm.
  • the dimensions and number of the cracked gas passage pipe 61 and the cracked gas outlet 62 are not necessarily limited to these dimensions.
  • the cracked gas passage pipe 61 is preferably made of, for example, stainless steel or carbon steel for piping. Further, the cracked gas passage pipe 61 is not limited to the lattice shape formed vertically and horizontally as described above, and may be formed only in the horizontal direction or formed only in the vertical direction.
  • a plurality of cracked gas introduction pipes 68 and 68 are installed outside the thermal decomposition apparatus 1.
  • Each cracked gas introduction pipe 68 communicates with each of the cracked gas passage pipes 61 installed on the left and right in the pyrolyzer 1 and through the wall of the pyrolyzer 1 composed of heat-resistant bricks or the like.
  • the cracked gas introduction pipes 68 passing through the walls of the thermal decomposition apparatus 1 are indicated by dotted lines in FIG. 4).
  • Such a configuration allows the pyrolysis gas to flow through the cracking gas passage pipe 61 as described below.
  • the operation of the fan 33 causes the pyrolysis gas having a lower temperature than that of the ceramic layers 24 to 28 accumulated in the upper portion of the pyrolysis apparatus 1 to pass through the opening 67 and enter the cracked gas introduction pipe 63.
  • the pyrolysis gas flows in the cracking gas introduction pipe 63 and is introduced into the cracking gas passage pipe 61 via the cracking gas introduction pipes 68 and 68.
  • the pyrolysis gas flowing through the cracked gas passage pipe 61 is blown out from the cracked gas outlet 62 and flows upward.
  • the pyrolysis gas passes through the ceramic layer 28, the ashing layer 27, the carbonized layer 26, the dry layer 25 and the untreated layer 24 in order from the bottom (these layers 24 to 28 are shown in FIG. 3). Not shown).
  • the pyrolysis gas that has passed through these layers is again introduced into the cracking gas introduction pipe 63 through the opening 67, or is introduced into the catalytic oxidation apparatus 2 through the duct 13a.
  • the hydrocarbon-based gas contained in the pyrolysis gas is filtered in the process in which the pyrolysis gas passes through the layers as described above.
  • a relatively clean pyrolysis gas having a small hydrocarbon component can be introduced into the catalytic oxidation device 2 through the duct 13a, and the load on the catalytic oxidation device 2 and the dry distillation gas cleaning scrubber 17 can be reduced. it can.
  • the temperature of the pyrolysis gas by allowing the pyrolysis gas to pass through the ceramic layer 28 etc. where pyrolysis and oxygen bonding to inorganic substances are performed at a temperature of about 500 ° C. to about 680 ° C. It is.
  • the function of the catalyst in the catalytic oxidation apparatus 2 can be enhanced, and further the life of the catalyst can be increased.
  • This is particularly useful for the present processing apparatus configured to introduce the catalytic cracking apparatus 2 to perform the oxidation treatment, instead of subjecting the pyrolysis gas generated in the thermal decomposition apparatus 1 to combustion treatment.
  • a part of the pyrolysis gas as the oxidizing gas after being processed in the catalytic oxidation step in the catalytic oxidation device 2 passes through the oxidizing gas introduction pipe 64 to the respective decomposition gas introduction pipes 68 and 68. To be introduced.
  • the pyrolysis gas thus introduced is blown out from the cracking gas outlet 62 and flows upward in the pyrolysis apparatus 1 in the same manner as the pyrolysis gas introduced through the cracking gas introduction pipe 63. .
  • the pyrolysis gas as the oxidation residual gas after being processed by the catalytic oxidation apparatus 2 is similarly composed of these layers in the order of the ceramic layer 28, the ashing layer 27, the carbonized layer 26, the dry layer 25, and the untreated layer 24. Pass through.
  • the pyrolysis gas that has passed through these layers is introduced into the cracking gas introduction pipe 63 through the opening 67 or introduced into the catalytic oxidation apparatus 2 through the duct 13a.
  • the effect obtained by introducing a part of the pyrolysis gas into the oxidizing gas introduction pipe 64 is that the high-temperature pyrolysis gas treated by the catalytic oxidation apparatus 2 is sent to the pyrolysis apparatus 1 side to cause the pyrolysis apparatus 1. It is possible to increase the temperature inside and promote the thermal decomposition performed in the thermal decomposition apparatus 1.
  • a dust suction device is provided around the ceramic outlet 12 provided at the bottom or bottom of the thermal decomposition apparatus 1.
  • the dust suction device is preferably a suction fan 54 provided on a ceramic recovery pipe 53 extending from the ceramic recovery box 52, as shown in FIG.
  • the duct 13b communicates the catalytic oxidation apparatus 2 and the dry distillation gas cleaning scrubber 17 of the alkali neutralization cleaning apparatus 3, and is located at the upper part on the downstream side of the oxidizing gas introduction pipe 64.
  • a protruding air intake 55 is provided.
  • the air intake portion 55 is formed of a tubular member, and since the inside of the duct 13b is open to the outside, external air can be introduced into the duct 13b. In addition, you may provide the air intake part 55 in the upper part of the dry distillation gas washing scrubber 17 instead of providing in the duct 13b.
  • the following two effects can be obtained. That is, by introducing outside air into the dry distillation gas cleaning scrubber 17 through the air intake 55, the dry distillation gas inside the dry distillation gas cleaning scrubber 17 is cooled. Thereby, the dissolution rate of the dry distillation gas which melt
  • the load of alkali neutralization cleaning in the dry distillation gas cleaning scrubber 17 is reduced, and the deodorized gas is exhausted from the exhaust unit 56 provided on the upper side of the dry distillation gas cleaning scrubber 17 to the outside of the dry distillation gas cleaning scrubber 17. can do.
  • the organic matter processing apparatus 100 of this embodiment includes a heat supply system 70 that can supply heat generated by the organic matter processing apparatus 100 to an external heat supply target 200. Since the configurations of the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 of the present embodiment are the same as those of the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 of the above-mentioned Example 1, here, the description will focus on parts that are different from the Example 1. .
  • the heat supply system 70 includes a plurality of pipelines composed of pipelines 71-78.
  • the cold water introduction pipe line 71 introduces cold water as a heat medium supplied from a cold water supply source (not shown).
  • the cold water may be circulating water returned after being supplied to the heat supply target 200 in addition to tap water and stored water.
  • a cracking apparatus side supply pipe 72 for supplying cold water to the pyrolysis apparatus 1 side branches to one side and extends to the pyrolysis apparatus 1, while the catalytic oxidation apparatus 2
  • An oxidizer side supply pipe 75 for supplying cooling water to the first side branches to the other side and extends to the catalyst oxidizer 2 side.
  • the decomposition apparatus side heat exchange line 73 extending from the decomposition apparatus side supply line 72 is spirally wound on the outside of the thermal decomposition apparatus 1 from the lower part to the upper part of the apparatus 1.
  • the heat exchange pipeline 73 is installed so as to exchange heat between the pyrolysis gas generated in the thermal decomposition apparatus 1 and cold water flowing in the heat exchange pipeline 73.
  • a decomposition apparatus side return pipe line 74 extends from the decomposition apparatus side heat exchange line 73.
  • an oxidizer side heat exchange line 76 extends from the oxidizer side supply pipe 75, and this heat exchange line 76 spirals from the lower side of the apparatus 2 toward the upper side of the catalytic oxidizer 2. It is wound around.
  • the heat exchange line 76 is installed so as to exchange heat between the pyrolysis gas introduced into the oxidizer 2 and the cold water flowing in the heat exchange line 76.
  • An oxidizer-side return conduit 77 extends from the decomposition device-side cooling conduit 73. Further, the return pipeline 74 and the return pipeline 77 merge as a single pipeline 78.
  • This pipe line 78 extends to the heat supply target 200, and forms a heat supply pipe line 78 for supplying heat to the heat supply target 200.
  • the material of the pipe lines 71 to 78 is a metal that can withstand the temperature of the heat medium (fluid) flowing through the pipe lines 71 to 78, and in particular, the heat exchange is performed on the decomposition device side where heat exchange is performed.
  • the pipe 73 and the oxidizer side heat exchange pipe 76 are preferably composed of copper pipes having high thermal conductivity among metals because of the necessity of efficiently transferring heat from the equipment side to the pipe side.
  • the heat exchange pipes are installed in both the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2, so that the heat component gas of both the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 is reduced.
  • the configuration of the heat supply system is not limited to this. That is, by providing a heat exchange line only in one of the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2, the heat of the pyrolysis gas inside the apparatus provided with the heat exchange line is used to generate heat. It is also possible to supply heat to the supply target 200.
  • the heat exchange pipes 73 and 76 are wound around the outside of the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2, respectively, but the pipes 73 and 76 are not limited to such a configuration. These may be installed inside the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2, respectively. In such a case, since the pipeline is directly exposed to the pyrolysis gas, use a pipeline with higher heat resistance and better corrosion resistance than when installing a pipeline outside the device. It is necessary to do.
  • heat is supplied to the heat supply target 200 as follows using the pipes arranged in the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 as described above.
  • cold water such as tap water is introduced into the cold water introduction pipe 71 from the outside of the organic matter decomposition apparatus 100.
  • the introduced cold water flows into the decomposition apparatus side supply line 72 and the oxidizer side supply line 75 through branch lines.
  • the cold water which flows through the decomposition device side supply pipeline 72 flows into the decomposition device side heat exchange pipeline 73.
  • heat exchange is performed between the cold water and the pyrolysis gas in the thermal decomposition apparatus 1, and the temperature of the cold water rises (becomes hot water).
  • the water (hot water) in the decomposition apparatus side heat exchange pipe 73 that has risen in temperature after heat exchange flows through the decomposition apparatus side return pipe 74.
  • the cold water flowing through the oxidizer side supply pipeline 75 flows into the oxidizer side heat exchange pipeline 76.
  • the oxidizer side heat exchange pipeline 76 heat exchange is performed between the cold water and the pyrolysis gas introduced into the catalytic oxidizer 2, and the temperature of the cold water rises (becomes hot water).
  • the hot water in the oxidizer side heat exchange pipe 76 that has finished the heat exchange flows through the oxidizer side return pipe 77.
  • the hot water flowing through the return pipes 74 and 77 join together and flow through the heat supply pipe 78 and is supplied to the heat supply target 200 connected to the heat supply pipe 78.
  • the heat of the pyrolysis gas generated in the pyrolysis apparatus 1 and the heat of the pyrolysis gas introduced into the catalytic oxidation apparatus 2 can be supplied to the heat supply target 200.
  • the heat supply target 200 includes, for example, a steam turbine (power generation), a hot water pool, a greenhouse, a snow melting device, etc., but is introduced into the pyrolysis gas generated in the pyrolysis device 1 and the catalytic oxidation device 2. As long as the heat of the pyrolysis gas can be used, the heat supply target 200 is not limited to these.
  • the heat medium for supplying heat to the heat supply target 200 has been described as hot water, but the heat medium is not limited to hot water, and may be steam or hot air.
  • the heat supply system 70 is appropriately provided with a feed water pump to pressurize the heat medium, and the temperature of the pyrolysis gas in the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 is adjusted to increase the temperature in the heat exchange lines 73 and 76. It is possible to generate the steam and supply the generated steam to the heat supply target 200. Furthermore, if the blower fan is installed in the pipes 74, 77, 78 after adjusting the humidity of the steam in the return pipes 74, 77 and the heat supply pipe 78 and drying it, the dry hot air is supplied with heat.
  • the hot water can be supplied to a hot water pool, a greenhouse, heating, a snow melting device, and the like.
  • warm air can be supplied to a greenhouse, heating, a snow melting device, and the like, and steam can be supplied to a steam turbine (power generation).

Abstract

An apparatus (100) for treating organic substances which includes a pyrolyzer (1) in which an organic feedstock is pyrolyzed and further includes an oxidation catalyst device (2) and a neutralizing/cleaning device (3) in each of which a pyrolysis gas generated by the pyrolysis is treated.  The pyrolyzer (1) has a ceramic layer (28) inside the pyrolyzer (1) and a decomposition-gas passing pipe (61) which is disposed under the ceramic layer (28) and which enables a pyrolysis gas generated by pyrolysis in the pyrolyzer (1) to pass through the whole of a material layer residing in the pyrolyzer (1).  The decomposition-gas passing pipe (61) has, formed in lateral sides or the lower side thereof, decomposition-gas blowing openings (62) for blowing the pyrolysis gas introduced through a decomposition-gas introduction pipe (68) toward the ceramic layer (28).  The pyrolyzer (1) has, formed in an upper part thereof, a pressure control part (51) which is open to the air and serves to control the pressure of the pyrolysis gas present in the pyrolyzer (1).

Description

熱分解装置及びこれを具えた有機物処理装置Thermal decomposition apparatus and organic matter processing apparatus provided with the same
 本発明は、有機廃棄物を熱分解する際に発生したガスを処理するための熱分解装置及びこれを具えた有機物処理装置に関する。 The present invention relates to a thermal decomposition apparatus for processing a gas generated when pyrolyzing organic waste and an organic substance processing apparatus including the same.
 有機廃棄物の処理は、焼却炉にて廃棄物を焼却することが一般的に行われている。しかしながら、このような方法では、焼却時にダイオキシンや二酸化炭素を発生させるため、最近では熱分解反応を用いて有機廃棄物の処理がなされるようになっている。都市ごみなどに代表される有機廃棄物を還元雰囲気下で熱分解することによって、廃棄物を完全燃焼させて、ダイオキシンや炭酸ガスの発生を抑制するようにした有機廃棄物の処理装置や、さらには、この熱分解工程で生じる熱や、水、発生したガスの冷却によって生じた木酢液等の資源を再利用するシステムが、数多く開発されている。 Organic waste is generally incinerated in an incinerator. However, in such a method, dioxins and carbon dioxide are generated at the time of incineration, and recently, organic waste is treated using a thermal decomposition reaction. Organic waste treatment equipment, which is designed to suppress the generation of dioxins and carbon dioxide by completely combusting the waste by thermally decomposing organic waste represented by municipal waste in a reducing atmosphere. Many systems have been developed to reuse resources such as heat generated in this pyrolysis process, water, and pyroligneous acid produced by cooling the generated gas.
 特開2004-307237号公報(特許文献1)には、このような熱分解反応を用いて有機廃棄物を処理してセラミックスを生成する装置が記載されている。
特開2004-307237号公報
Japanese Patent Laid-Open No. 2004-307237 (Patent Document 1) describes an apparatus for producing ceramics by treating organic waste using such a thermal decomposition reaction.
JP 2004-307237 A
 また、熱分解反応を用いたこのような有機物処理装置では、原料有機物を炭化物とガス成分とに分解して、炭化物からセラミックスを生成する一方で、ガス成分を触媒酸化装置を用いて酸化させたり、酸化させたガスをアルカリ中和洗浄装置を用いて中和洗浄する処理を行っているものもある。 In such an organic matter processing apparatus using a thermal decomposition reaction, the raw organic substance is decomposed into a carbide and a gas component to produce ceramics from the carbide, while the gas component is oxidized using a catalytic oxidation device. In some cases, the oxidized gas is neutralized and washed using an alkali neutralization washing apparatus.
 しかしながら、このような熱分解装置では、熱分解処理によって発生した熱分解ガスの温度の低下が問題となっている。これは、熱分解ガスを触媒酸化装置を用いて酸化させる際に、触媒酸化装置の触媒の機能が低下して、触媒の寿命が短くなるためである。一方、触媒酸化装置で酸化させたガスをアルカリ中和洗浄装置に導入する際には、導入するガスの温度を低くしてアルカリ中和洗浄装置にかかる負荷を軽減させるのが好ましい。このよな課題に加えて、熱分解を利用することにより炭酸ガスの発生を抑制した上で、熱分解の工程で生じる熱エネルギを有効に利用する必要性が近年益々高まっている。 However, in such a thermal decomposition apparatus, a decrease in the temperature of the thermal decomposition gas generated by the thermal decomposition treatment is a problem. This is because when the pyrolysis gas is oxidized using a catalytic oxidation apparatus, the function of the catalyst of the catalytic oxidation apparatus is lowered and the life of the catalyst is shortened. On the other hand, when the gas oxidized by the catalytic oxidation apparatus is introduced into the alkali neutralization cleaning apparatus, it is preferable to reduce the load on the alkali neutralization cleaning apparatus by lowering the temperature of the introduced gas. In addition to such problems, in recent years, there has been an increasing need to effectively use the thermal energy generated in the pyrolysis process after suppressing the generation of carbon dioxide gas by utilizing pyrolysis.
 上記のような課題に鑑みて、本発明は、有機廃棄物の熱分解により発生する熱分解ガスを触媒酸化装置やアルカリ中和洗浄装置で処理する際のこれらの装置へ負荷を軽減できる熱分解装置及びこれを具えた有機物処理装置を提供することを目的とする。 In view of the problems as described above, the present invention is a pyrolysis capable of reducing the load on these apparatuses when the pyrolysis gas generated by the pyrolysis of organic waste is processed by a catalytic oxidation apparatus or an alkali neutralization cleaning apparatus. It is an object of the present invention to provide an apparatus and an organic matter processing apparatus including the apparatus.
 前記課題を解決するために本発明に係る熱分解装置は、原料有機物を熱分解させるための熱分解装置であって、原料有機物の熱分解により熱分解装置内に形成される材料層(例えば、実施形態におけるセラミックス層28)に含まれる無機物に酸素を結合させて無機酸化物(セラミックス)を生成するためのセラミックス生成手段(例えば、実施形態における空気導入管65、空気導入口66、ファン34)と、熱分解装置内の材料層の下方に配置され、熱分解装置内での熱分解により発生した熱分解ガスを熱分解装置内に溜まった材料層の全面にわたって通過させる分解ガス通過手段(例えば、実施形態における分解ガス通過管61)と、を有しており、分解ガス通過手段に熱分解装置内の上方に溜まった熱分解ガスを導入するよう構成されている。 In order to solve the above problems, a thermal decomposition apparatus according to the present invention is a thermal decomposition apparatus for thermally decomposing a raw material organic material, and a material layer (for example, Ceramics generation means (for example, air introduction pipe 65, air introduction port 66, fan 34 in the embodiment) for producing an inorganic oxide (ceramics) by bonding oxygen to the inorganic substance contained in the ceramic layer 28) in the embodiment. And a decomposition gas passage means (for example, a gas decomposition means that is disposed below the material layer in the pyrolysis apparatus and allows the pyrolysis gas generated by the pyrolysis in the pyrolysis apparatus to pass over the entire surface of the material layer accumulated in the pyrolysis apparatus (for example, The cracking gas passage pipe 61) in the embodiment, and the cracking gas passage means is configured to introduce the pyrolysis gas accumulated above in the pyrolysis device into the cracking gas passage means It has been.
 また、上記構成の熱分解装置において、熱分解装置の上部と分解ガス通過手段とを連通させる分解ガス導入手段(例えば、実施形態における分解ガス導入管63,68、ファン33)が設けられており、熱分解装置内の上方に溜まった熱分解ガスが、分解ガス導入手段に吸い込まれて分解ガス導入手段を通して分解ガス通過手段に導入されることにより、材料層を通過するよう構成されているのが好ましい。 Further, the pyrolysis apparatus having the above-described configuration is provided with cracking gas introduction means (for example, cracking gas introduction pipes 63 and 68 and fan 33 in the embodiment) for communicating the upper part of the pyrolysis apparatus with the cracking gas passage means. The pyrolysis gas accumulated above in the pyrolysis apparatus is sucked into the cracking gas introduction means and introduced into the cracking gas passage means through the cracking gas introduction means, so that it passes through the material layer. Is preferred.
 さらに、上記構成の熱分解装置において、分解ガス通過手段が格子状に形成された管状部材から成り、分解ガス通過手段の側面もしくは下面に、分解ガス導入手段によって導入された熱分解ガスを材料層に向けて吹き出させるための分解ガス吹出口が形成されているのが好ましい。 Furthermore, in the thermal decomposition apparatus having the above-described configuration, the cracked gas passage means is formed of a tubular member formed in a lattice shape, and the pyrolysis gas introduced by the cracked gas introduction means is formed on the side surface or lower surface of the cracked gas passage means as a material layer. It is preferable that a cracked gas outlet is formed to blow out toward the bottom.
 また、上記構成の熱分解装置において、熱分解装置内部の熱分解ガスの圧力調整を行なうための大気開放された圧力調整手段(例えば、実施形態における圧力調整部51)が設けられているのが好ましい。 In the thermal decomposition apparatus having the above-described configuration, pressure adjustment means that is open to the atmosphere (for example, the pressure adjustment unit 51 in the embodiment) for adjusting the pressure of the pyrolysis gas inside the thermal decomposition apparatus is provided. preferable.
 さらに、上記構成の熱分解装置において、熱分解装置に熱媒体を供給する熱媒体供給管路と、熱媒体供給管路に接続され、熱分解装置で発生する熱分解ガスと熱媒体との熱交換が行われる熱交換管路と、熱交換管路に接続され、熱交換管路で熱交換した熱媒体を熱供給対象(例えば、温水プール、暖房、融雪装置)に送出することにより熱分解装置内部の熱を熱供給対象に供給し得る熱供給管路と、を有する熱供給システムを具えていてもよい。 Furthermore, in the thermal decomposition apparatus having the above-described configuration, a heat medium supply pipe that supplies a heat medium to the thermal decomposition apparatus, and heat generated by the thermal decomposition gas and the heat medium that is connected to the heat medium supply pipe and is generated in the thermal decomposition apparatus. The heat exchange pipe line to be exchanged and the heat medium that is connected to the heat exchange pipe line and exchanges heat in the heat exchange pipe line is sent to a heat supply target (for example, a hot water pool, heating, a snow melting device) for thermal decomposition. You may provide the heat supply system which has a heat supply line which can supply the heat inside a device to a heat supply object.
 また、上記構成の熱分解装置において、熱供給対象が、蒸気タービン(発電)、温水プール、温室、暖房、融雪装置等であるのが好ましい。 In the thermal decomposition apparatus having the above-described configuration, it is preferable that the heat supply target is a steam turbine (power generation), a hot water pool, a greenhouse, heating, a snow melting apparatus, or the like.
 さらに、前記課題を解決するために本発明に係る有機物処理装置は、熱分解装置と、熱分解装置における熱分解によって発生した熱分解ガスを処理するためのガス処理装置と、を具える有機物処理装置であって、ガス処理装置が、熱分解装置で熱分解したガス成分を酸化させる手段(例えば、実施形態における触媒酸化装置2)と、酸化させる手段にガス管路(例えば、実施形態におけるダクト13b)を介して連通し酸化させたガスを中和洗浄する手段(例えば、実施形態における乾溜ガス洗浄スクラバ17)とを具えており、ガス管路と分解ガス通過手段とを連通させる酸化ガス導入手段が設けられており、ガス処理装置により酸化処理された熱分解ガスが、酸化ガス導入手段に吸い込まれて酸化ガス導入手段を通して分解ガス通過手段に導入されることにより、材料層を通過するよう構成されている。 Furthermore, in order to solve the above-mentioned problem, an organic matter processing apparatus according to the present invention comprises a pyrolysis apparatus and a gas treatment apparatus for treating a pyrolysis gas generated by thermal decomposition in the pyrolysis apparatus. An apparatus, in which a gas processing apparatus oxidizes a gas component thermally decomposed by a thermal decomposition apparatus (for example, the catalytic oxidation apparatus 2 in the embodiment), and a gas pipeline (for example, a duct in the embodiment) to oxidize the apparatus. 13b) is provided with a means for neutralizing and cleaning the oxidized gas (for example, the dry distillation gas cleaning scrubber 17 in the embodiment), and an oxidizing gas introduction for connecting the gas line with the cracked gas passage means. The pyrolysis gas oxidized by the gas processing device is sucked into the oxidizing gas introducing means and passed through the oxidizing gas introducing means. By being introduced into, and is configured so as to pass through the material layer.
 また、上記構成の有機物処理装置において、熱分解装置の下部に、材料層に生成したセラミックスを熱分解装置の外に出すためのセラミックス取出口が形成されており、熱分解装置外部におけるセラミックス取出口周辺に、セラミックス回収箱52(図3参照)に溜まったセラミックスが飛散するのを防止するためのセラミックス吸引手段(例えば、実施形態における吸引ファン54)が設けられているのが好ましい。また、このセラミックス吸引手段は、セラミックス回収箱52に溜まったセラミックスを回収するためのものであってもよい。 Further, in the organic matter processing apparatus having the above-described configuration, a ceramic outlet for taking out the ceramic generated in the material layer from the thermal decomposition apparatus is formed below the thermal decomposition apparatus. It is preferable that ceramic suction means (for example, a suction fan 54 in the embodiment) for preventing the ceramics collected in the ceramic recovery box 52 (see FIG. 3) from scattering is provided around the periphery. Further, the ceramic suction means may be for recovering ceramics accumulated in the ceramic recovery box 52.
 さらに、上記構成の有機物処理装置において、ガス管路もしくは中和洗浄する手段に、空気を取り入れるための大気開放された空気取入手段(例えば、実施形態における空気取入部55)が設けられているのが好ましい。 Furthermore, in the organic matter processing apparatus having the above-described configuration, an air intake means that is open to the atmosphere for taking in air (for example, the air intake section 55 in the embodiment) is provided in the gas pipeline or the neutralization cleaning means. Is preferred.
 また、前記課題を解決するために本発明に係る有機物処理装置に設けられた熱供給システムは、熱分解装置及び酸化させる手段の少なくとも一方に熱媒体を供給する熱媒体供給管路と、熱媒体供給管路に接続され、熱分解装置で発生する熱分解ガス及び酸化させる手段に導入される熱分解ガスの少なくとも一方と熱媒体との熱交換が行われる熱交換管路と、熱交換管路に接続され、熱交換管路で熱交換した熱媒体を熱供給対象(例えば、温水プール、暖房、融雪装置)に送出することにより熱分解装置内部及び酸化させる手段内部の少なくとも一方の熱を熱供給対象に供給し得る熱供給管路と、を具える。 In order to solve the above problems, the heat supply system provided in the organic matter processing apparatus according to the present invention includes a heat medium supply pipe for supplying a heat medium to at least one of the thermal decomposition apparatus and the oxidizing means, and a heat medium. A heat exchange line connected to the supply line, in which heat exchange between at least one of the pyrolysis gas generated in the pyrolysis apparatus and the pyrolysis gas introduced into the oxidizing means and the heat medium is performed; and a heat exchange line The heat medium that is connected to the heat exchange line and exchanges heat in the heat exchange pipeline is sent to a heat supply target (for example, a hot water pool, heating, snow melting device) to heat at least one of the heat in the pyrolysis device and the oxidation means. And a heat supply line that can be supplied to the supply object.
 また、上記構成の有機物処理装置において、熱交換管路が熱分解装置に設けられた分解装置側熱交換管路であり、分解装置側熱交換管路において、熱分解装置内の熱分解により発生する熱分解ガスと熱媒体との熱交換が行われるのが好ましい。 Further, in the organic matter processing apparatus configured as described above, the heat exchange pipe is a cracker-side heat exchange pipe provided in the pyrolyzer, and is generated by thermal decomposition in the pyrolyzer in the cracker-side heat exchange pipe. Preferably, heat exchange between the pyrolysis gas and the heat medium is performed.
 さらに、上記構成の有機物処理装置において、熱交換管路が酸化させる手段に設けられた酸化装置側熱交換管路であり、酸化装置側熱交換管路において、熱分解装置から酸化させる手段に導入される熱分解ガスと熱媒体との熱交換が行われてもよい。 Furthermore, in the organic matter processing apparatus having the above-described configuration, the oxidation apparatus side heat exchange pipe provided in the means for oxidizing the heat exchange pipe, and introduced into the means for oxidizing from the thermal decomposition apparatus in the oxidation apparatus side heat exchange pipe The heat exchange between the pyrolysis gas and the heat medium may be performed.
 また、上記構成の有機物処理装置において、熱供給対象が、蒸気タービン(発電)、温水プール、温室、暖房、融雪装置等であるのが好ましい。 In the organic matter processing apparatus having the above-described configuration, the heat supply target is preferably a steam turbine (power generation), a hot water pool, a greenhouse, heating, a snow melting apparatus, or the like.
 本発明の熱分解装置及びこれを具えた有機物処理装置によれば、有機物処理装置を構成する熱分解装置内での熱分解により発生した熱分解ガスを熱分解装置内に溜まった材料層に通過させる分解ガス通過手段が設けられている。分解ガス通過手段は、導入された熱分解ガスが材料層の全面にわたって通過するよう構成されている。このような構成により、熱分解装置内の熱分解ガスが材料層を通過する際に、汚染されている熱分解ガスに含まれている炭化水素系のガスがろ過されて炭化水素成分の少ない清浄な熱分解ガスを熱分解装置の下流側に設けられたガス処理装置に導入することができる。これにより、ガス処理装置が熱分解ガスを処理する際の負荷を軽減することができる。また、高温で熱分解が行われているセラミック等を通過することで熱分解ガスの温度が上がり、ガス処理装置を構成する触媒酸化装置の触媒の機能を高め、触媒の寿命を上げることができる。 According to the thermal decomposition apparatus of the present invention and the organic matter processing apparatus having the same, the pyrolysis gas generated by the thermal decomposition in the thermal decomposition apparatus constituting the organic matter treatment apparatus passes through the material layer accumulated in the thermal decomposition apparatus. A cracked gas passage means is provided. The cracked gas passage means is configured such that the introduced pyrolyzed gas passes over the entire surface of the material layer. With such a configuration, when the pyrolysis gas in the pyrolysis apparatus passes through the material layer, the hydrocarbon-based gas contained in the contaminated pyrolysis gas is filtered to clean the hydrocarbon component with less hydrocarbon components. It is possible to introduce an appropriate pyrolysis gas into a gas processing apparatus provided on the downstream side of the pyrolysis apparatus. Thereby, the load at the time of a gas processing apparatus processing pyrolysis gas can be reduced. Moreover, the temperature of the pyrolysis gas rises by passing through ceramics and the like that are pyrolyzed at a high temperature, the function of the catalyst of the catalytic oxidation apparatus constituting the gas processing apparatus can be improved, and the life of the catalyst can be increased. .
 特に、熱分解ガスの上部と分解ガス通過手段とを連通させる分解ガス導入手段を熱分解装置に設けることで、熱分解装置内の上方に溜まった熱分解ガスを当該分解ガス導入手段を通して分解ガス通過手段に導入して、材料層に通過させることが可能である。また特に、分解ガス通過手段を格子状に形成した上で分解ガス通過手段に分解ガス吹出口を設ければ、材料層の全面にわたって熱分解ガスを通過させることが可能であり、材料層の一部にのみ熱分解ガスを通過させる場合よりも、より多くのセラミックを熱分解ガスの温度を上げるのに利用できるため、効果的に熱分解ガスの温度を上げることができる。 In particular, by providing the pyrolysis apparatus with a cracking gas introducing means for communicating the upper part of the pyrolysis gas with the cracking gas passage means, the pyrolysis gas accumulated above in the pyrolysis apparatus is passed through the cracking gas introducing means. It can be introduced into the passage means and passed through the material layer. In particular, if the cracked gas passage means is formed in a lattice and the cracked gas passage means is provided with a cracked gas outlet, the pyrolysis gas can pass through the entire surface of the material layer. Since more ceramic can be used to raise the temperature of the pyrolysis gas than when the pyrolysis gas is allowed to pass through only the part, the temperature of the pyrolysis gas can be effectively increased.
 また、熱分解装置が、原料有機物の熱分解により内部に発生する熱分解ガスの圧力調整を行なうための大気開放された圧力調整手段を有する。このため、通常は負圧の状態である熱分解装置の内圧が、大気圧よりも高まった場合には、熱分解装置内部のガスが圧力調整手段を通して外部に排出される。従って、熱分解装置内の温度が上昇することで原料が引火した場合であっても、圧力調整手段が安全弁として機能するため、ガスの急激な熱膨張による爆発を防止することが可能である。 Also, the thermal decomposition apparatus has pressure adjustment means that is open to the atmosphere for adjusting the pressure of the pyrolysis gas generated inside due to the thermal decomposition of the raw organic material. For this reason, when the internal pressure of the pyrolysis apparatus, which is normally in a negative pressure state, is higher than the atmospheric pressure, the gas inside the pyrolysis apparatus is discharged outside through the pressure adjusting means. Therefore, even when the raw material is ignited due to an increase in the temperature in the thermal decomposition apparatus, the pressure adjusting means functions as a safety valve, so that it is possible to prevent an explosion due to rapid thermal expansion of the gas.
 また、本発明に係る有機物処理装置は、熱分解装置と、熱分解装置における熱分解によって発生した熱分解ガスを処理するためのガス処理装置とで構成され、ガス処理装置を構成するガス成分を酸化させる手段とガスを中和洗浄する手段とがガス管路で連通している。そして、このガス管路と分解ガス通過手段とを連通させる酸化ガス導入手段が設けられている。このような構成により、ガス処理装置により酸化処理された熱分解ガスの一部を、当該酸化ガス導入手段を通して分解ガス通過手段に導入することができる。これにより、酸化処理された高温の熱分解ガスが熱分解装置に導入され、熱分解装置内の温度を高めることで熱分解装置内で行われる熱分解を促進することが可能である。 The organic matter processing apparatus according to the present invention includes a pyrolysis apparatus and a gas processing apparatus for processing a pyrolysis gas generated by pyrolysis in the pyrolysis apparatus, and the gas components constituting the gas processing apparatus are The means for oxidizing and the means for neutralizing and cleaning the gas communicate with each other through a gas line. An oxidizing gas introducing means is provided for communicating the gas pipe line with the cracked gas passage means. With such a configuration, a part of the pyrolysis gas oxidized by the gas processing apparatus can be introduced into the cracked gas passage means through the oxidizing gas introduction means. Thereby, the high-temperature pyrolysis gas subjected to the oxidation treatment is introduced into the pyrolysis apparatus, and it is possible to promote the thermal decomposition performed in the pyrolysis apparatus by increasing the temperature in the pyrolysis apparatus.
 さらに、熱分解装置の下部のセラミックス取出口周辺に、セラミックス回収箱52(図3参照)に溜まったセラミックスが飛散するのを防止するためのセラミックス吸引手段が設けられている。このため、セラミックス回収時のセラミックスの粉塵の舞い上がりが抑えられ、セラミックスの回収作業に従事する作業者の作業環境を改善することができる。また、セラミックス吸引手段を使用すればセラミックス回収箱52に溜まったセラミックス粉を吸引して所望の場所に回収することもできる。 Further, ceramic suction means for preventing the ceramic accumulated in the ceramic recovery box 52 (see FIG. 3) from scattering around the ceramic outlet in the lower part of the thermal decomposition apparatus is provided. For this reason, the rise of the dust of the ceramics at the time of ceramics collection is suppressed, and the working environment of the worker engaged in the ceramics collection work can be improved. Further, if ceramic suction means is used, the ceramic powder collected in the ceramic collection box 52 can be sucked and collected in a desired place.
 また、ガス処理装置を構成するガス成分を酸化させる手段とガスを中和洗浄する手段とを連通するガス管路、もしくは中和洗浄する手段の上部に、中和洗浄する手段に空気を導入するための大気開放された空気取入手段が設けられているため、中和洗浄する手段内部を流れる乾留ガスが冷却される。これにより、中和洗浄する手段で使用されるアルカリ中和洗浄剤に溶解する熱分解ガスの溶解率を上げることができる。さらには、空気取入手段を通って中和洗浄する手段内に導入された外気によって乾留ガスを希釈することができる。これにより、中和洗浄する手段におけるアルカリ中和洗浄の負荷を軽減させる上、脱臭されたガスを中和洗浄する手段の外部に排気することができる。 In addition, air is introduced into the neutralization cleaning means on the gas pipe that communicates the means for oxidizing the gas components constituting the gas processing apparatus and the neutralization cleaning means, or above the neutralization cleaning means. Therefore, the dry distillation gas flowing inside the neutralizing and cleaning means is cooled. Thereby, the dissolution rate of the pyrolysis gas dissolved in the alkali neutralization detergent used in the neutralization washing means can be increased. Furthermore, the dry distillation gas can be diluted with the outside air introduced into the neutralization washing means through the air intake means. Thereby, the load of alkali neutralization washing in the neutralization washing means can be reduced, and the deodorized gas can be exhausted to the outside of the neutralization washing means.
 また、本発明の熱分解装置及びこれを具えた有機物処理装置に熱供給システムを設けることにより、蒸気タービン(発電)、暖房といった熱供給対象に熱を供給するために、本発明の有機物処理装置における熱分解で発生する熱を有効に利用することで、エネルギの無駄使いを無くして省エネルギに貢献し得る。また、熱供給対象に熱を供給するための熱源として、有機廃棄物の熱分解によって発生する熱を利用することで、燃料を燃焼させた場合とは異なり炭酸ガスが発生せず、環境に配慮することが可能である。 Moreover, in order to supply heat to heat supply objects, such as a steam turbine (electric power generation) and heating, by providing the thermal decomposition apparatus of this invention and the organic substance processing apparatus provided with this, the organic substance processing apparatus of this invention By effectively using the heat generated by the thermal decomposition in the energy, it is possible to eliminate energy waste and contribute to energy saving. In addition, by using the heat generated by the thermal decomposition of organic waste as a heat source for supplying heat to the heat supply target, unlike the case where fuel is burned, carbon dioxide gas is not generated, giving consideration to the environment. Is possible.
図1は、本発明の有機物処理装置の概略図を示す。FIG. 1 shows a schematic view of an organic matter processing apparatus of the present invention. 図2は、本発明の有機物処理装置を構成する熱分解装置の概略図を示す。FIG. 2 is a schematic view of a thermal decomposition apparatus constituting the organic matter processing apparatus of the present invention. 図3は、本発明の有機物処理装置を構成する熱分解装置等の概略図を示す。FIG. 3 shows a schematic diagram of a thermal decomposition apparatus and the like constituting the organic matter processing apparatus of the present invention. 図4は、上記熱分解装置に設けられた空気導入管周辺を表す平面図である。FIG. 4 is a plan view showing the periphery of the air introduction pipe provided in the thermal decomposition apparatus. 図5(a)は、上記空気導入管の平面図で、図5(b)は、その側面図である。Fig.5 (a) is a top view of the said air introduction pipe | tube, FIG.5 (b) is the side view. 図6は、本発明の第2の実施の形態を説明するための概略図である。FIG. 6 is a schematic diagram for explaining a second embodiment of the present invention.
符号の説明Explanation of symbols
1 熱分解装置
2 酸化触媒装置(ガス処理装置)
3 アルカリ中和洗浄装置(ガス処理装置)
4 固液分離装置
12 セラミックス取出口
13a ダクト
13b ダクト(ガス管路)
16 シャワー式散水器
17 乾溜ガス洗浄スクラバ
24 未処理層(材料層)
25 乾燥層(材料層)
26 炭化層(材料層)
27 灰化層(材料層)
28 セラミックス層(材料層)
33 ファン(分解ガス導入手段)
34 ファン(セラミックス生成手段)
51 圧力調整部(圧力調整手段)
52 セラミックス回収箱
53 セラミックス回収管
54 吸引ファン(セラミックス回収手段)
55 空気取入部(空気取入手段)
61 分解ガス通過管(分解ガス通過手段)
62 分解ガス吹出口
63 分解ガス導入管(分解ガス導入手段)
64 酸化ガス導入管(酸化ガス導入手段)
65 空気導入管(セラミックス生成手段)
66 空気導入口(セラミックス生成手段)
67 開口
68 分解ガス導入管(分解ガス導入手段)
70 熱供給システム
71 冷水導入管路
72 分解装置側供給管路
73,76 熱交換管路
74,77 戻し管路
75 酸化装置側供給管路
78 熱供給管路
100 有機物処理装置
200 熱供給対象
1 Thermal decomposition equipment 2 Oxidation catalyst equipment (gas treatment equipment)
3 Alkali neutralization cleaning equipment (gas treatment equipment)
4 Solid-liquid separator 12 Ceramic outlet 13a Duct 13b Duct (gas pipe line)
16 Shower type sprinkler 17 Distilled gas cleaning scrubber 24 Untreated layer (material layer)
25 Drying layer (material layer)
26 Carbonized layer (material layer)
27 Ashing layer (material layer)
28 Ceramics layer (material layer)
33 Fan (means for introducing cracked gas)
34 Fan (ceramics generation means)
51 Pressure adjusting part (pressure adjusting means)
52 Ceramics recovery box 53 Ceramics recovery tube 54 Suction fan (ceramics recovery means)
55 Air intake part (Air intake means)
61 Cracking gas passage pipe (cracking gas passage means)
62 Decomposition gas outlet 63 Decomposition gas introduction pipe (decomposition gas introduction means)
64 Oxidizing gas introduction pipe (oxidizing gas introduction means)
65 Air introduction pipe (ceramics generation means)
66 Air inlet (ceramics generation means)
67 Opening 68 Decomposition gas introduction pipe (decomposition gas introduction means)
70 Heat supply system 71 Cold water introduction line 72 Decomposition apparatus side supply lines 73 and 76 Heat exchange lines 74 and 77 Return line 75 Oxidation apparatus side supply line 78 Heat supply line 100 Organic substance processing apparatus 200 Heat supply target
 以下に、図面を参照して本発明の熱分解装置及びこれを具えた有機物処理装置の実施例を説明する。 Hereinafter, embodiments of the thermal decomposition apparatus of the present invention and an organic matter processing apparatus having the same will be described with reference to the drawings.
 図1に、本発明に係る有機物処理装置の一実施例の概略図を示す。 FIG. 1 shows a schematic diagram of an embodiment of an organic matter processing apparatus according to the present invention.
 本実施例では、ごみ等の産業廃棄物を原料有機物として有機物処理を行い、原料中に含まれる無機物からセラミックスを生成する。なお、原料として産業廃棄物に限らず、蓄糞等どのようなものであってもよい。 In the present embodiment, the organic matter is treated by using industrial waste such as garbage as the raw material organic material, and ceramics are generated from the inorganic material contained in the raw material. The raw material is not limited to industrial waste, and any material such as feces can be used.
 本実施例に係る有機物処理装置100は、熱分解装置1と、熱分解装置1内で発生した熱分解ガスを酸化触媒を使用して酸化する触媒酸化装置2と、酸化触媒で処理後の残留ガスを中和するアルカリ中和洗浄装置3と、アルカリ中和洗浄装置3における中和洗浄処理工程で出た排水を真空状態で固体成分と液体成分とに分離する固液分離装置4と、を具える。 The organic matter processing apparatus 100 according to the present embodiment includes a thermal decomposition apparatus 1, a catalytic oxidation apparatus 2 that oxidizes a thermal decomposition gas generated in the thermal decomposition apparatus 1 using an oxidation catalyst, and a residual after treatment with the oxidation catalyst. An alkali neutralization washing device 3 for neutralizing the gas, and a solid-liquid separation device 4 for separating the waste water discharged in the neutralization washing treatment step in the alkali neutralization washing device 3 into a solid component and a liquid component in a vacuum state. Have.
 原料投入口から投入された原料は、熱分解装置1において熱分解されて、炭化物とガス成分とに分離される。熱分解装置1では、この炭化物を更に酸化処理して、セラミックスを生成する。一方、熱分解装置1で分離したガス成分は、酸化触媒装置2、中和洗浄装置3、及び固液分離装置4の順で処理を行い、固液分離装置4で分離した固体成分を熱分解装置1に投入して熱分解装置1で再利用するようにしている。 The raw material input from the raw material input port is thermally decomposed in the thermal decomposition apparatus 1 and separated into carbide and gas components. In the thermal decomposition apparatus 1, the carbide is further oxidized to produce ceramics. On the other hand, the gas components separated by the thermal decomposition apparatus 1 are processed in the order of the oxidation catalyst apparatus 2, the neutralization washing apparatus 3, and the solid-liquid separation apparatus 4, and the solid components separated by the solid-liquid separation apparatus 4 are pyrolyzed. It is put into the apparatus 1 and reused in the thermal decomposition apparatus 1.
 図2に、熱分解装置1の概略図を示す。 FIG. 2 shows a schematic diagram of the thermal decomposition apparatus 1.
 熱分解装置1は、上部に原料投入口11と、下部にセラミックス取出口12と、反応ガス(熱分解ガス)収集用開口13とを具える。なお、原料投入口11及びセラミックス取出口12は、これらを閉じることによって、熱分解装置1内を気密に保ち得るように構成されている。反応ガス収集用開口13は、ダクト13aを介して触媒酸化装置2と連通しており、熱分解装置1内で発生した熱分解ガスは、ダクト13aを介して触媒酸化装置2に導入され、この触媒酸化装置2において酸化触媒を用いて熱分解ガスを酸化する処理が行われる。 The pyrolysis apparatus 1 includes a raw material inlet 11 at the top, a ceramic outlet 12 at the bottom, and a reaction gas (pyrolysis gas) collection opening 13. In addition, the raw material inlet 11 and the ceramics outlet 12 are comprised so that the inside of the thermal decomposition apparatus 1 can be kept airtight by closing these. The reaction gas collection opening 13 communicates with the catalytic oxidation device 2 through a duct 13a, and the pyrolysis gas generated in the thermal decomposition device 1 is introduced into the catalytic oxidation device 2 through the duct 13a. In the catalytic oxidation apparatus 2, a process for oxidizing the pyrolysis gas using an oxidation catalyst is performed.
 次に、熱分解装置1におけるセラミックス生成工程を説明する。 Next, the ceramic production process in the thermal decomposition apparatus 1 will be described.
 熱分解装置1の稼働初期工程において、原料投入口11から原料となる有機廃棄物を投入し、原料投入口11及びセラミックス取出口12を閉じて密閉する。熱分解装置内の温度は、ファン31によって熱分解装置1内に送られるヒータ14からの熱、又は原料自身の有する熱量を消費することによって上昇する。 In the initial operation process of the thermal decomposition apparatus 1, organic waste as a raw material is input from the raw material input port 11, and the raw material input port 11 and the ceramic outlet 12 are closed and sealed. The temperature in the thermal decomposition apparatus rises by consuming the heat from the heater 14 sent into the thermal decomposition apparatus 1 by the fan 31 or the heat amount of the raw material itself.
 熱分解装置1内の温度は、ヒータ14の熱によって400℃以上に上昇しているため、熱分解装置1内で原料の熱分解が開始する。原材料としては、例えば、紙、木、ビニル類(塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン等を材料とするもの)、食品残渣、畜糞、人糞等が好適である。 Since the temperature in the thermal decomposition apparatus 1 has risen to 400 ° C. or more due to the heat of the heater 14, thermal decomposition of the raw material starts in the thermal decomposition apparatus 1. Suitable raw materials include, for example, paper, wood, vinyls (those made of vinyl chloride, polyethylene, polypropylene, polystyrene, etc.), food residues, animal dung, human dung, and the like.
 上記燃焼、及び熱分解によって発生した熱分解ガスは、煙状となり、反応ガス収集用開口13からダクト13aを介して触媒酸化装置2に流れていく。 The pyrolysis gas generated by the combustion and pyrolysis becomes smoke and flows from the reaction gas collection opening 13 to the catalytic oxidation apparatus 2 through the duct 13a.
 熱分解装置1は密閉されているため内部が還元雰囲気に保たれており、熱分解装置1内の温度が上昇しても、原料が発火することはない。 Since the thermal decomposition apparatus 1 is hermetically sealed, the inside is maintained in a reducing atmosphere, and even if the temperature in the thermal decomposition apparatus 1 rises, the raw material does not ignite.
 すなわち、熱分解装置1内では、原料として投入した有機物自らの有する熱量を利用して熱分解が行われる。熱分解が進むと、熱分解によって生じる乾溜ガスと蒸気はタールとして装置内壁に付着し、積層後炭化し、剥離して未処理層24の上に落下する。 That is, in the thermal decomposition apparatus 1, thermal decomposition is performed by using the amount of heat of the organic substance itself input as a raw material. As pyrolysis proceeds, dry distillation gas and vapor generated by pyrolysis adhere to the inner wall of the apparatus as tar, carbonize after lamination, peel off, and fall onto the untreated layer 24.
 未処理層24の熱分解が進むと、未処理層24は乾燥層25となり、乾燥層25の表面から乾燥に伴う蒸気が発生する。 As the thermal decomposition of the untreated layer 24 proceeds, the untreated layer 24 becomes a dry layer 25, and steam accompanying the drying is generated from the surface of the dry layer 25.
 乾燥層25の熱分解が更に進むと、乾燥層25から乾溜ガスが発生して、原料中に含まれている炭素成分及び微量の無機成分以外の成分がガスとして蒸散する。乾燥層25に残った炭素成分は、熱分解装置1の下部に溜まり炭化層26を形成する。炭化層26の熱分解が更に進むと、この炭素成分もガスとなって蒸散して、最終的に、原料中に含まれている無機成分のみが残留し、灰化層27が形成される。ここで、炭化層26と灰化層27との間に微量の酸素を送り込む(図3の空気導入管65を参照)と、この無機成分が微量の酸素と結合して、無機酸化物、つまりセラミックス28粉末として熱分解装置1の底部に残留することになる。このセラミックス28は熱分解装置1の下部あるいは底部に設けたセラミックス取出口12から出して、様々な用途において利用する。 When the thermal decomposition of the dry layer 25 further proceeds, a dry distillation gas is generated from the dry layer 25, and components other than the carbon component and a small amount of inorganic components contained in the raw material are evaporated as gas. The carbon component remaining in the dry layer 25 accumulates in the lower part of the thermal decomposition apparatus 1 to form a carbonized layer 26. When the thermal decomposition of the carbonized layer 26 further proceeds, this carbon component is also vaporized to evaporate, and finally, only the inorganic component contained in the raw material remains, and the ashed layer 27 is formed. Here, when a small amount of oxygen is sent between the carbonized layer 26 and the ashing layer 27 (see the air introduction pipe 65 in FIG. 3), this inorganic component is combined with a small amount of oxygen to form an inorganic oxide, that is, The ceramic 28 powder remains on the bottom of the thermal decomposition apparatus 1. The ceramic 28 is taken out from the ceramic outlet 12 provided at the bottom or bottom of the thermal decomposition apparatus 1 and used in various applications.
 セラミックス取出口12の直下には、セラミックス回収箱52が設置されており(図3参照)、セラミックス取出口12を通って熱分解装置1から落下するセラミックス粉を貯留することができる。また、セラミックス回収箱52からは、セラミックス回収用のセラミックス回収管53(図3参照)が所望の場所に向けて延びている。セラミックス回収管53には、後述するように、セラミックス回収箱52に溜まったセラミック粉が飛散するのを防止するための吸引ファン54が設けられている。 A ceramics collection box 52 is installed immediately below the ceramics outlet 12 (see FIG. 3), and ceramic powder falling from the thermal decomposition apparatus 1 through the ceramics outlet 12 can be stored. From the ceramic collection box 52, a ceramic collection pipe 53 (see FIG. 3) for collecting ceramics extends toward a desired location. As will be described later, the ceramic recovery tube 53 is provided with a suction fan 54 for preventing the ceramic powder accumulated in the ceramic recovery box 52 from scattering.
 次に、上述のセラミックス生成工程に伴って発生するガスの処理工程について説明する。 Next, a process for treating gas generated in the ceramics production process described above will be described.
 熱分解により発生した熱分解ガスは、反応ガス収集用開口13からダクト13aを介して触媒酸化装置2に導入される。触媒酸化装置2に導入された熱分解ガスは、触媒ケース15を通り、ここで炭化水素系のガスが酸化され、二酸化炭素と水になる。この触媒酸化工程により、上記熱分解工程で発生した熱分解ガスは約9割程度減少し、上記触媒酸化で処理した後の残留ガスは、塩素や硫黄、窒素といった元素を含むガスになる。酸化触媒としては、Pt、Cr、Cu、Mn等の金属、又はAl等の酸化金属等を用いることができる。 The pyrolysis gas generated by the pyrolysis is introduced from the reaction gas collection opening 13 into the catalytic oxidation apparatus 2 through the duct 13a. The pyrolysis gas introduced into the catalytic oxidation apparatus 2 passes through the catalyst case 15, where the hydrocarbon-based gas is oxidized into carbon dioxide and water. By this catalytic oxidation step, the pyrolysis gas generated in the thermal decomposition step is reduced by about 90%, and the residual gas after the treatment by the catalytic oxidation becomes a gas containing elements such as chlorine, sulfur and nitrogen. As the oxidation catalyst, metals such as Pt, Cr, Cu, and Mn, or metal oxides such as Al 2 O 3 can be used.
 次いで、これらの残留ガスはダクト13bを介してアルカリ中和洗浄装置3に送られ、中和洗浄される。アルカリ中和洗浄装置3は、乾溜ガス洗浄スクラバ17と、循環ボックス18と、薬液注入タンク19とから成る。熱分解装置1で発生した熱分解ガスを触媒酸化装置2を通してからアルカリ中和洗浄装置に送るようにしたのは、アルカリ中和洗浄の前に触媒酸化処理により熱分解ガスを大幅に減少させることで、アルカリ中和洗浄装置3にかかる負荷を軽減した方が、ガス処理の効率がよいためである。薬液注入タンク19からアルカリ中和洗浄剤が循環ボックス18に導入され、前記循環ボックス18を介して乾溜ガス洗浄スクラバ17に設けられているシャワー式散水器16から散水される。散水され、アルカリ洗浄工程に供されたアルカリ中和洗浄剤は、前記スクラバ17の底部に溜まり、再度循環ボックス18に戻された後、再び前記散水器18から散水され、アルカリ中和洗浄装置3内を循環する。好ましいアルカリ中和洗浄剤としては、苛性ソーダ等が挙げられる。この中和洗浄工程で、塩素や硫黄、窒素といった元素を含有するガス、すなわち酸性ガスが中和され、水や塩等が生成される。 Next, these residual gases are sent to the alkali neutralization cleaning device 3 through the duct 13b and neutralized and cleaned. The alkali neutralization cleaning device 3 includes a dry distillation gas cleaning scrubber 17, a circulation box 18, and a chemical solution injection tank 19. The reason why the pyrolysis gas generated in the pyrolysis apparatus 1 is sent to the alkali neutralization washing apparatus after passing through the catalyst oxidation apparatus 2 is to greatly reduce the pyrolysis gas by catalytic oxidation treatment before the alkali neutralization washing. This is because the efficiency of gas treatment is better when the load applied to the alkali neutralization washing apparatus 3 is reduced. An alkali neutralized cleaning agent is introduced into the circulation box 18 from the chemical solution injection tank 19, and water is sprinkled from the shower-type sprinkler 16 provided in the dry distillation gas cleaning scrubber 17 through the circulation box 18. The alkali neutralized detergent that has been sprinkled and subjected to the alkali cleaning step is accumulated at the bottom of the scrubber 17 and returned to the circulation box 18 again, and then sprinkled from the sprinkler 18 again. Circulate inside. Preferred examples of the alkali neutralizing detergent include caustic soda. In this neutralization cleaning step, a gas containing an element such as chlorine, sulfur, or nitrogen, that is, an acid gas is neutralized, and water, salt, or the like is generated.
 アルカリ中和洗浄処理3で使用した排水は、循環ボックス18から固液分離装置4に送られ、固液分離される。繰り返し使用するために排水を定期的に固液分離装置4に送り、新しいアルカリ中和洗浄剤を使用することによって、アルカリ中和洗浄装置3の洗浄効率を上げることができる。 The waste water used in the alkali neutralization cleaning process 3 is sent from the circulation box 18 to the solid-liquid separation device 4 and separated into solid and liquid. By periodically sending waste water to the solid-liquid separation device 4 for repeated use and using a new alkali neutralization cleaning agent, the cleaning efficiency of the alkali neutralization cleaning device 3 can be increased.
 固液分離装置4は、真空タンク内に配置した蒸散部20と、蒸留部21とからなる。中和洗浄装置3から送られてきた排水は、蒸散部20において蒸散させることによって、ガスと固形分を含む液体になる。ガスは更に蒸留部21へ送られた後に図示しないクーリングタワーを通ることによって冷却されて蒸留水となり、中和洗浄装置3の循環ボックス18にリサイクルして再利用する。固形分を含む液体は、更に液体と固体に分離し、固体は熱分解装置1へ戻して、新たな原材料と共に再度熱分解される。液体は、固液分離装置4の蒸散部20に戻され、中和洗浄装置3から送られてくる排水と共に再度蒸散・蒸留されて固液分離される。なお、このように分離した液体を、蒸留して冷却した後、アルカリ中和洗浄装置3に戻し、アルカリ中和洗浄剤と共にアルカリ中和洗浄工程で再利用される。従って、排水は、装置外に出ることがない。 The solid-liquid separator 4 includes a transpiration unit 20 and a distillation unit 21 arranged in a vacuum tank. The wastewater sent from the neutralization cleaning device 3 is evaporated in the transpiration unit 20 to become a liquid containing gas and solids. The gas is further sent to the distillation unit 21 and then cooled by passing through a cooling tower (not shown) to be distilled water, which is recycled to the circulation box 18 of the neutralization cleaning device 3 and reused. The liquid containing the solid content is further separated into a liquid and a solid, and the solid is returned to the thermal decomposition apparatus 1 and again thermally decomposed together with new raw materials. The liquid is returned to the transpiration unit 20 of the solid-liquid separation device 4, and transpiration / distilled again together with the wastewater sent from the neutralization washing device 3 to separate the liquid. In addition, after distilling and cooling the liquid separated in this way, it returns to the alkali neutralization washing | cleaning apparatus 3, and is reused in an alkali neutralization washing | cleaning process with an alkali neutralization washing | cleaning agent. Accordingly, the drainage does not go out of the apparatus.
 ここで、有機物処理装置100の構造について、図3乃至図5を参照してさらに詳しく説明する。 Here, the structure of the organic matter processing apparatus 100 will be described in more detail with reference to FIGS.
 図3に示すように、熱分解装置1の側面上部には、水平に突出する圧力調整部51が設けられている。この圧力調整部51は、管状の部材であり、熱分解装置1の内部をその外部に対して大気開放するよう構成されている。触媒酸化装置2とアルカリ中和洗浄装置3とを連通するダクト13bに設置されているファン32(図1参照)により、熱分解装置1内で発生する熱分解ガスが触媒酸化装置2に向けて引かれるため、熱分解装置1内部は負圧となる。しかしながら、外気が圧力調整部51を通して熱分解装置1に導入されるため、熱分解装置1内部の圧力は、通常はほぼ大気圧に近い負圧に保たれる。特に、圧力調整部51は、熱分解装置1の内圧が上昇した場合の安全弁として有用であり、熱分解装置1内の温度が上昇することで原料が引火した場合であっても、熱分解ガスを圧力調整部51を通して外部に逃がすことで熱分解ガスの急激な熱膨張による爆発を防止することが可能である。 As shown in FIG. 3, a pressure adjusting unit 51 that protrudes horizontally is provided on the upper side of the thermal decomposition apparatus 1. The pressure adjusting unit 51 is a tubular member, and is configured to open the inside of the thermal decomposition apparatus 1 to the atmosphere. Pyrolysis gas generated in the thermal decomposition apparatus 1 is directed toward the catalytic oxidation apparatus 2 by a fan 32 (see FIG. 1) installed in a duct 13b that communicates the catalytic oxidation apparatus 2 and the alkali neutralization cleaning apparatus 3. Therefore, the inside of the thermal decomposition apparatus 1 becomes a negative pressure. However, since the outside air is introduced into the thermal decomposition apparatus 1 through the pressure adjusting unit 51, the pressure inside the thermal decomposition apparatus 1 is normally kept at a negative pressure that is almost close to atmospheric pressure. In particular, the pressure adjusting unit 51 is useful as a safety valve when the internal pressure of the thermal decomposition apparatus 1 is increased, and even when the raw material is ignited due to an increase in the temperature in the thermal decomposition apparatus 1, the pyrolysis gas is used. Can be prevented from exploding due to rapid thermal expansion of the pyrolysis gas.
 熱分解装置1の下部には、原料有機物の熱分解により内部に生成する無機物に空気中の酸素を結合させて無機酸化物(セラミックス)を生成するために、外部の空気を熱分解装置1の内部に送り込むための空気導入口66が略等間隔に複数形成されている。空気導入口66には、熱分解装置1の外部に通じる空気導入管65が接続されており、空気導入管65にはファン34が設置されている。このような構成により、ファン34を作動させることで、外部の空気を空気導入口66を介して熱分解装置1内に送り込むことが可能である。 In the lower part of the thermal decomposition apparatus 1, in order to produce inorganic oxides (ceramics) by combining oxygen in the air with inorganic substances generated inside by thermal decomposition of the raw organic materials, external air is passed through the thermal decomposition apparatus 1. A plurality of air inlets 66 for feeding into the interior are formed at substantially equal intervals. An air introduction pipe 65 communicating with the outside of the thermal decomposition apparatus 1 is connected to the air introduction port 66, and the fan 34 is installed in the air introduction pipe 65. With such a configuration, by operating the fan 34, it is possible to send external air into the thermal decomposition apparatus 1 through the air inlet 66.
 ファン34の作動により空気導入管65に導入された空気は、複数の空気導入口66を介して熱分解装置1内の下部に入り、上方に流れ、セラミック層28、灰化層27、炭化層26、乾燥層25及び未処理層24の順にこれらの層を通過する。空気導入口66を複数設けることで、熱分解装置1の外部から空気導入口66を介して導入された空気がこれらの層の全面にわたって均一に通過するため、セラミックスが生成する場所に偏りがなく均質なセラミックスが一様に生成し、結果として生成するセラミックスの純度を高めることができる。 The air introduced into the air introduction pipe 65 by the operation of the fan 34 enters the lower part in the thermal decomposition apparatus 1 through the plurality of air introduction ports 66 and flows upward, and the ceramic layer 28, the ashing layer 27, and the carbonized layer. 26, the dried layer 25 and the untreated layer 24 are passed through these layers in this order. By providing a plurality of air introduction ports 66, air introduced from the outside of the thermal decomposition apparatus 1 via the air introduction ports 66 passes uniformly over the entire surface of these layers, so that there is no bias in the place where ceramics are generated. Homogeneous ceramics are uniformly produced, and as a result, the purity of the produced ceramics can be increased.
 また、熱分解装置1内の下部であって、材料層(セラミックス層28)の下方には、熱分解装置1内に溜まった材料層に熱分解ガスを通過させるための分解ガス通過管61が設けられている。図4の平面図、図5(a)の平面図及び図5(b)の側面図に示すように、この分解ガス通過管61は、熱分解装置1内の下部に平面視格子状に配置された複数の管状部材61,61,・・・から成り、熱分解装置1内の下部に溜まった無機物(灰化層27)に熱分解ガスを通過させるよう構成されている。この分解ガス通過管61の側部もしくは下部には、分解ガス通過管61内を流れる空気を無機物に噴射するための略円形の分解ガス吹出口62が複数箇所形成されている。 Further, a decomposition gas passage pipe 61 for allowing the pyrolysis gas to pass through the material layer accumulated in the pyrolysis device 1 is provided in the lower part of the pyrolysis device 1 and below the material layer (ceramic layer 28). Is provided. As shown in the plan view of FIG. 4, the plan view of FIG. 5A, and the side view of FIG. 5B, the cracked gas passage pipe 61 is arranged in a lattice shape in a plan view at the lower part in the thermal decomposition apparatus 1. Are composed of a plurality of tubular members 61, 61,... Configured to allow the pyrolysis gas to pass through the inorganic substance (the ashing layer 27) accumulated in the lower portion of the pyrolysis apparatus 1. A plurality of substantially circular cracked gas outlets 62 for injecting the air flowing through the cracked gas passage pipe 61 onto the inorganic substance are formed at a side portion or a lower portion of the cracked gas passage pipe 61.
 分解ガス通過管61は、外径約50mmの管が紙面横方向に4本、縦方向に6本、200mm程度の等間隔で並んだ円形の分解ガス通過管61と、横方向に2本設けられた断面矩形状の分解ガス通過管61とからなる1組の分解ガス導入管が、熱分解装置1内に左右設置されたもので構成される。分解ガス吹出口62は、2mm程度の径を有しており、250mm程度の間隔で計120個程度設けられている。なお、分解ガス通過管61及び分解ガス吹出口62の寸法、数は、必ずしもこれらの寸法に限られない。分解ガス通過管61は、例えば、ステンレス鋼、又は配管用炭素鋼を材質とするのが好ましい。また、分解ガス通過管61は、上記のように縦横に形成された格子状に限らず、横方向にのみ形成したものや、縦方向にのみ形成したものであってもよい。 The cracked gas passage pipe 61 is provided with a circular cracked gas passage pipe 61 in which four pipes having an outer diameter of about 50 mm are arranged in the horizontal direction on the paper surface, six in the vertical direction, and approximately 200 mm, and two in the horizontal direction. A set of cracked gas introduction pipes composed of the cracked gas passage pipe 61 having a rectangular cross section is configured to be installed in the thermal cracking apparatus 1 on the left and right sides. The cracked gas outlet 62 has a diameter of about 2 mm, and a total of about 120 pieces are provided at intervals of about 250 mm. The dimensions and number of the cracked gas passage pipe 61 and the cracked gas outlet 62 are not necessarily limited to these dimensions. The cracked gas passage pipe 61 is preferably made of, for example, stainless steel or carbon steel for piping. Further, the cracked gas passage pipe 61 is not limited to the lattice shape formed vertically and horizontally as described above, and may be formed only in the horizontal direction or formed only in the vertical direction.
 図4に示すように、熱分解装置1の外部には、複数の分解ガス導入管68,68が設置されている。それぞれの分解ガス導入管68は、熱分解装置1内に左右1組設置された分解ガス通過管61のそれぞれと、耐熱レンガ等で構成された熱分解装置1の壁部の中を通って連通している(熱分解装置1の壁部の中を通る分解ガス導入管68を、図4において各々点線で示す)。 As shown in FIG. 4, a plurality of cracked gas introduction pipes 68 and 68 are installed outside the thermal decomposition apparatus 1. Each cracked gas introduction pipe 68 communicates with each of the cracked gas passage pipes 61 installed on the left and right in the pyrolyzer 1 and through the wall of the pyrolyzer 1 composed of heat-resistant bricks or the like. (The cracked gas introduction pipes 68 passing through the walls of the thermal decomposition apparatus 1 are indicated by dotted lines in FIG. 4).
 複数の分解ガス導入管68,68の上流側は、合流して一本の導入管となり、さらにその上流側には、図3に示すファン33が設置されている。さらに、ファン33の上流側は、分解ガス導入管63を介して熱分解装置1の上面に形成された開口67に接続される一方で、酸化ガス導入管64を介して触媒酸化装置2の下流側のダクト13bにも接続されている。また、導入管63,64内を流れる熱分解ガスの温度が外気により低下するのを防止するため、ガス導入管63,64の外側は、いずれも保温、断熱のための断熱材(図示せず)で覆われている。なお、図3に示すように、ファン33の上流側を、熱分解装置1の上面及びダクト13bの双方に接続してもよいし、熱分解装置1の上面及びダクト13bのうちのいずれか一方に接続してもよい。 The upstream side of the plurality of cracked gas introduction pipes 68, 68 merge to form one introduction pipe, and further, the fan 33 shown in FIG. Further, the upstream side of the fan 33 is connected to an opening 67 formed on the upper surface of the thermal decomposition apparatus 1 via a cracked gas introduction pipe 63, while being downstream of the catalyst oxidation apparatus 2 via an oxidizing gas introduction pipe 64. It is also connected to the side duct 13b. Further, in order to prevent the temperature of the pyrolysis gas flowing through the introduction pipes 63 and 64 from being lowered by the outside air, the outside of the gas introduction pipes 63 and 64 is both a heat insulating material (not shown) for heat insulation and heat insulation. ). As shown in FIG. 3, the upstream side of the fan 33 may be connected to both the upper surface of the thermal decomposition apparatus 1 and the duct 13b, or one of the upper surface of the thermal decomposition apparatus 1 and the duct 13b. You may connect to.
 このような構成により、以下に説明するようにして分解ガス通過管61に熱分解ガスを流すことができる。このような構成においてファン33の作動により、熱分解装置1内上部に溜まっている、セラミックス層等24~28と比較して温度の低い熱分解ガスが、開口67を通って分解ガス導入管63に導入される。そして、熱分解ガスは、分解ガス導入管63内を流れ、それぞれの分解ガス導入管68,68を経由して分解ガス通過管61に導入される。分解ガス通過管61を流れる熱分解ガスは、分解ガス吹出口62から外に吹き出されて上方に流れる。上方に流れる過程で、熱分解ガスは、下から順に、セラミック層28、灰化層27、炭化層26、乾燥層25及び未処理層24を通過する(これらの層24~28は、図3には図示していない)。これらの層を通過した熱分解ガスは、開口67を介して再び分解ガス導入管63に導入されるか、又はダクト13aを通って触媒酸化装置2に導入される。このようにして熱分解ガスが材料層を通過することで、熱分解ガスが上記のような層を通過する過程で熱分解ガスに含まれている炭化水素系のガスがろ過される。このため、ダクト13aを通って炭化水素成分の少ない比較的清浄な熱分解ガスを触媒酸化装置2に導入することができ、触媒酸化装置2や乾留ガス清浄スクラバ17への負荷を軽減することができる。 Such a configuration allows the pyrolysis gas to flow through the cracking gas passage pipe 61 as described below. In such a configuration, the operation of the fan 33 causes the pyrolysis gas having a lower temperature than that of the ceramic layers 24 to 28 accumulated in the upper portion of the pyrolysis apparatus 1 to pass through the opening 67 and enter the cracked gas introduction pipe 63. To be introduced. The pyrolysis gas flows in the cracking gas introduction pipe 63 and is introduced into the cracking gas passage pipe 61 via the cracking gas introduction pipes 68 and 68. The pyrolysis gas flowing through the cracked gas passage pipe 61 is blown out from the cracked gas outlet 62 and flows upward. In the process of flowing upward, the pyrolysis gas passes through the ceramic layer 28, the ashing layer 27, the carbonized layer 26, the dry layer 25 and the untreated layer 24 in order from the bottom (these layers 24 to 28 are shown in FIG. 3). Not shown). The pyrolysis gas that has passed through these layers is again introduced into the cracking gas introduction pipe 63 through the opening 67, or is introduced into the catalytic oxidation apparatus 2 through the duct 13a. As the pyrolysis gas passes through the material layer in this way, the hydrocarbon-based gas contained in the pyrolysis gas is filtered in the process in which the pyrolysis gas passes through the layers as described above. Therefore, a relatively clean pyrolysis gas having a small hydrocarbon component can be introduced into the catalytic oxidation device 2 through the duct 13a, and the load on the catalytic oxidation device 2 and the dry distillation gas cleaning scrubber 17 can be reduced. it can.
 さらに、約500℃~約680℃の温度で熱分解及び無機物への酸素の結合が行われているセラミック層28等に熱分解ガスを通過させることで、熱分解ガスの温度を上げることが可能である。このように熱分解ガスの温度を上げることで、触媒酸化装置2における触媒の機能を高め、さらには触媒の寿命を上げることができる。これは、熱分解装置1で発生した熱分解ガスを燃焼処理するのではなく、触媒酸化装置2に導入して酸化処理を行うような構成となっている本処理装置にとって特に有用である。 Furthermore, it is possible to raise the temperature of the pyrolysis gas by allowing the pyrolysis gas to pass through the ceramic layer 28 etc. where pyrolysis and oxygen bonding to inorganic substances are performed at a temperature of about 500 ° C. to about 680 ° C. It is. By increasing the temperature of the pyrolysis gas in this way, the function of the catalyst in the catalytic oxidation apparatus 2 can be enhanced, and further the life of the catalyst can be increased. This is particularly useful for the present processing apparatus configured to introduce the catalytic cracking apparatus 2 to perform the oxidation treatment, instead of subjecting the pyrolysis gas generated in the thermal decomposition apparatus 1 to combustion treatment.
 また、ファン33の作動により、触媒酸化装置2における触媒酸化工程で処理した後の酸化ガスとしての熱分解ガスの一部が、酸化ガス導入管64を通ってそれぞれの分解ガス導入管68,68に導入される。このようにして導入された熱分解ガスは、分解ガス導入管63を通って導入された熱分解ガスと同様に、分解ガス吹出口62から外に吹き出されて熱分解装置1内を上方に流れる。 In addition, by the operation of the fan 33, a part of the pyrolysis gas as the oxidizing gas after being processed in the catalytic oxidation step in the catalytic oxidation device 2 passes through the oxidizing gas introduction pipe 64 to the respective decomposition gas introduction pipes 68 and 68. To be introduced. The pyrolysis gas thus introduced is blown out from the cracking gas outlet 62 and flows upward in the pyrolysis apparatus 1 in the same manner as the pyrolysis gas introduced through the cracking gas introduction pipe 63. .
 このため、触媒酸化装置2で処理した後の酸化残留ガスとしての熱分解ガスは、同様にセラミック層28、灰化層27、炭化層26、乾燥層25及び未処理層24の順にこれらの層を通過する。これらの層を通過した熱分解ガスは、開口67を介して分解ガス導入管63に導入されるか、又はダクト13aを通って触媒酸化装置2に導入される。 For this reason, the pyrolysis gas as the oxidation residual gas after being processed by the catalytic oxidation apparatus 2 is similarly composed of these layers in the order of the ceramic layer 28, the ashing layer 27, the carbonized layer 26, the dry layer 25, and the untreated layer 24. Pass through. The pyrolysis gas that has passed through these layers is introduced into the cracking gas introduction pipe 63 through the opening 67 or introduced into the catalytic oxidation apparatus 2 through the duct 13a.
 酸化ガス導入管64に熱分解ガスの一部を導入することによって得られる効果は、触媒酸化装置2で処理された高温の熱分解ガスを熱分解装置1の側に送ることで熱分解装置1内の温度を高め、熱分解装置1内で行われる熱分解を促進し得ることである。 The effect obtained by introducing a part of the pyrolysis gas into the oxidizing gas introduction pipe 64 is that the high-temperature pyrolysis gas treated by the catalytic oxidation apparatus 2 is sent to the pyrolysis apparatus 1 side to cause the pyrolysis apparatus 1. It is possible to increase the temperature inside and promote the thermal decomposition performed in the thermal decomposition apparatus 1.
 また、熱分解装置1の下部あるいは底部に設けられたセラミックス取出口12の周辺には、粉塵吸引装置が設けられている。この粉塵吸引装置は、例えば、図3に示すように、セラミックス回収箱52から延びるセラミックス回収管53上に設けられている吸引ファン54であるのが好ましい。このような構成により、吸引ファン54を作動させればセラミックス回収箱52に堆積したセラミックス粉末が飛散するのを防止することができる。このため、熱分解装置1の周辺でセラミックスの回収作業に従事する作業者の作業環境を改善することができる。すなわち、本処理装置は、作業の安全性をも考慮したものとなっている。なお、吸引ファン54を作動させればセラミックス回収箱52に堆積したセラミックス粉末をセラミックス回収管53を通して所望の場所に回収することも可能である。 Further, a dust suction device is provided around the ceramic outlet 12 provided at the bottom or bottom of the thermal decomposition apparatus 1. The dust suction device is preferably a suction fan 54 provided on a ceramic recovery pipe 53 extending from the ceramic recovery box 52, as shown in FIG. With such a configuration, if the suction fan 54 is operated, the ceramic powder accumulated in the ceramic recovery box 52 can be prevented from scattering. For this reason, the working environment of the worker engaged in the ceramics collecting work around the pyrolysis apparatus 1 can be improved. That is, this processing apparatus also considers the safety of work. If the suction fan 54 is operated, the ceramic powder accumulated in the ceramic recovery box 52 can be recovered to a desired place through the ceramic recovery tube 53.
 また、図3に示すように、触媒酸化装置2とアルカリ中和洗浄装置3の乾留ガス洗浄スクラバ17とを連通させるダクト13bであって、酸化ガス導入管64よりも下流側には、上部に突出する空気取入部55が設けられている。この空気取入部55は、管状の部材で構成されており、ダクト13bの内部がその外部に対して開放されているため、ダクト13b内に外部の空気を導入させることができる。なお、空気取入部55を、ダクト13bに設ける代わりに乾留ガス洗浄スクラバ17の上部に設けてもよい。 Further, as shown in FIG. 3, the duct 13b communicates the catalytic oxidation apparatus 2 and the dry distillation gas cleaning scrubber 17 of the alkali neutralization cleaning apparatus 3, and is located at the upper part on the downstream side of the oxidizing gas introduction pipe 64. A protruding air intake 55 is provided. The air intake portion 55 is formed of a tubular member, and since the inside of the duct 13b is open to the outside, external air can be introduced into the duct 13b. In addition, you may provide the air intake part 55 in the upper part of the dry distillation gas washing scrubber 17 instead of providing in the duct 13b.
 このような空気取入部55を設けることにより、以下のような2つの効果が得られる。すなわち、空気取入部55を介して乾留ガス洗浄スクラバ17内に外気を導入することで、乾留ガス洗浄スクラバ17内部の乾留ガスが冷却される。これにより、乾留ガス洗浄スクラバ17のシャワー式散水器16から散水されるアルカリ中和洗浄剤に溶解する乾留ガスの溶解率を上げることができる。このような溶解率の上昇のほか、もう1つの効果は、空気取入部55を通って乾留ガス洗浄スクラバ17内に導入された外気によって酸性の乾留ガスが希釈されることである。これにより、乾留ガス洗浄スクラバ17におけるアルカリ中和洗浄の負荷を軽減させる上、脱臭されたガスを乾留ガス洗浄スクラバ17の側面上部に設けられた排気部56から乾留ガス洗浄スクラバ17の外部に排気することができる。 By providing such an air intake 55, the following two effects can be obtained. That is, by introducing outside air into the dry distillation gas cleaning scrubber 17 through the air intake 55, the dry distillation gas inside the dry distillation gas cleaning scrubber 17 is cooled. Thereby, the dissolution rate of the dry distillation gas which melt | dissolves in the alkali neutralization cleaning agent sprayed from the shower type water sprinkler 16 of the dry distillation gas washing scrubber 17 can be raised. In addition to the increase in the dissolution rate, another effect is that the acidic dry distillation gas is diluted by the outside air introduced into the dry distillation gas cleaning scrubber 17 through the air intake portion 55. Thus, the load of alkali neutralization cleaning in the dry distillation gas cleaning scrubber 17 is reduced, and the deodorized gas is exhausted from the exhaust unit 56 provided on the upper side of the dry distillation gas cleaning scrubber 17 to the outside of the dry distillation gas cleaning scrubber 17. can do.
 ここで、図6を参照して本発明の第2の実施形態を説明する。本実施形態の有機物処理装置100は、当該有機物処理装置100で発生する熱を外部の熱供給対象200に供給可能な熱供給システム70を具えている。本実施形態の熱分解装置1及び触媒酸化装置2の構成は、上記実施例1の熱分解装置1及び触媒酸化装置2と同じであるため、ここでは実施例1と異なる部分を中心に説明する。 Here, a second embodiment of the present invention will be described with reference to FIG. The organic matter processing apparatus 100 of this embodiment includes a heat supply system 70 that can supply heat generated by the organic matter processing apparatus 100 to an external heat supply target 200. Since the configurations of the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 of the present embodiment are the same as those of the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 of the above-mentioned Example 1, here, the description will focus on parts that are different from the Example 1. .
 本発明に係る熱供給システム70は、管路71~78から成る複数の管路を具えている。冷水導入管路71は、図示しない冷水供給源から供給される熱媒体としての冷水を導入する。冷水は、水道水、貯留水の他、熱供給対象200に供給された後に戻された循環水であってもよい。導入管路71からは、熱分解装置1の側に冷水を供給するための分解装置側供給管路72が一方に分岐して熱分解装置1の側に延びている一方で、触媒酸化装置2の側に冷却水を供給するための酸化装置側供給管路75が他方に分岐して触媒酸化装置2の側に延びている。 The heat supply system 70 according to the present invention includes a plurality of pipelines composed of pipelines 71-78. The cold water introduction pipe line 71 introduces cold water as a heat medium supplied from a cold water supply source (not shown). The cold water may be circulating water returned after being supplied to the heat supply target 200 in addition to tap water and stored water. From the introduction pipe 71, a cracking apparatus side supply pipe 72 for supplying cold water to the pyrolysis apparatus 1 side branches to one side and extends to the pyrolysis apparatus 1, while the catalytic oxidation apparatus 2 An oxidizer side supply pipe 75 for supplying cooling water to the first side branches to the other side and extends to the catalyst oxidizer 2 side.
 分解装置側供給管路72から延びる分解装置側熱交換管路73は、熱分解装置1の外側を装置1の下部から上部に向かって螺旋状に巻かれている。熱交換管路73は、熱分解装置1内に発生する熱分解ガスと熱交換管路73内を流れる冷水との熱交換を行うよう設置されている。また、分解装置側熱交換管路73からは分解装置側戻し管路74が延びている。一方、酸化装置側供給管路75からは酸化装置側熱交換管路76が延びており、この熱交換管路76は、触媒酸化装置2の外側を装置2の下部から上部に向かって螺旋状に巻かれている。熱交換管路76は、酸化装置2に導入された熱分解ガスと熱交換管路76内を流れる冷水との熱交換を行うよう設置されている。また、分解装置側冷却管路73からは酸化装置側戻し管路77が延びている。さらに、戻し管路74及び戻し管路77は一本の管路78として合流する。この管路78は熱供給対象200に延びており、熱供給対象200に熱を供給するための熱供給管路78を成す。 The decomposition apparatus side heat exchange line 73 extending from the decomposition apparatus side supply line 72 is spirally wound on the outside of the thermal decomposition apparatus 1 from the lower part to the upper part of the apparatus 1. The heat exchange pipeline 73 is installed so as to exchange heat between the pyrolysis gas generated in the thermal decomposition apparatus 1 and cold water flowing in the heat exchange pipeline 73. Further, a decomposition apparatus side return pipe line 74 extends from the decomposition apparatus side heat exchange line 73. On the other hand, an oxidizer side heat exchange line 76 extends from the oxidizer side supply pipe 75, and this heat exchange line 76 spirals from the lower side of the apparatus 2 toward the upper side of the catalytic oxidizer 2. It is wound around. The heat exchange line 76 is installed so as to exchange heat between the pyrolysis gas introduced into the oxidizer 2 and the cold water flowing in the heat exchange line 76. An oxidizer-side return conduit 77 extends from the decomposition device-side cooling conduit 73. Further, the return pipeline 74 and the return pipeline 77 merge as a single pipeline 78. This pipe line 78 extends to the heat supply target 200, and forms a heat supply pipe line 78 for supplying heat to the heat supply target 200.
 なお、管路71~78の材質は、これらの管路71~78内を流れる熱媒体(流体)の温度に耐え得るような金属であるが、特に、熱交換が行われる分解装置側熱交換管路73及び酸化装置側熱交換管路76は、装置側から管路側に効率よく熱を移動させる必要性から金属の中でも熱伝導率が高い銅管で構成するのが好適である。 The material of the pipe lines 71 to 78 is a metal that can withstand the temperature of the heat medium (fluid) flowing through the pipe lines 71 to 78, and in particular, the heat exchange is performed on the decomposition device side where heat exchange is performed. The pipe 73 and the oxidizer side heat exchange pipe 76 are preferably composed of copper pipes having high thermal conductivity among metals because of the necessity of efficiently transferring heat from the equipment side to the pipe side.
 また、本実施例は図6に示すように、熱交換管路を熱分解装置1及び触媒酸化装置2の双方に設置することで、熱分解装置1及び触媒酸化装置2双方の熱分ガスの熱を利用する構成であるが、熱供給システムの構成はこれに限らない。すなわち、熱分解装置1及び触媒酸化装置2のうちいずれか一方のみに熱交換管路を設けることで、熱交換管路を設けた方の装置内部の熱分解ガスの熱を利用して、熱供給対象200に熱を供給することも可能である。 In addition, as shown in FIG. 6, in this embodiment, the heat exchange pipes are installed in both the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2, so that the heat component gas of both the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 is reduced. Although the configuration uses heat, the configuration of the heat supply system is not limited to this. That is, by providing a heat exchange line only in one of the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2, the heat of the pyrolysis gas inside the apparatus provided with the heat exchange line is used to generate heat. It is also possible to supply heat to the supply target 200.
 さらに、上記の構成では、熱交換管路73,76は、それぞれ熱分解装置1及び触媒酸化装置2の外側に巻かれていたが、当該管路73,76は、このような構成に限られず、それぞれ熱分解装置1及び触媒酸化装置2の内部に設置してもよい。このような場合には、管路が熱分解ガスに直接曝されるため、装置の外部に管路を設置する場合と比較して、耐熱性が高く且つ耐腐食性が良好な管路を使用することを要する。 Furthermore, in the above configuration, the heat exchange pipes 73 and 76 are wound around the outside of the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2, respectively, but the pipes 73 and 76 are not limited to such a configuration. These may be installed inside the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2, respectively. In such a case, since the pipeline is directly exposed to the pyrolysis gas, use a pipeline with higher heat resistance and better corrosion resistance than when installing a pipeline outside the device. It is necessary to do.
 本実施例では、上記のようにして熱分解装置1及び触媒酸化装置2に配設された管路を利用し、以下のようにして熱供給対象200に熱を供給する。 In the present embodiment, heat is supplied to the heat supply target 200 as follows using the pipes arranged in the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 as described above.
 まず、水道水等の冷水が、有機物分解装置100の外部から冷水導入管路71に導入される。導入された冷水は、分岐する管路により、分解装置側供給管路72及び酸化装置側供給管路75にそれぞれ流入する。そして、分解装置側供給管路72を流れる冷水は、分解装置側熱交換管路73に流入する。分解装置側熱交換管路73では、冷水と熱分解装置1内の熱分解ガスとの間で熱交換が行われ、冷水の温度が上昇する(温水となる)。熱交換を終えて温度上昇した分解装置側熱交換管路73の水(温水)は、分解装置側戻し管路74を流れる。 First, cold water such as tap water is introduced into the cold water introduction pipe 71 from the outside of the organic matter decomposition apparatus 100. The introduced cold water flows into the decomposition apparatus side supply line 72 and the oxidizer side supply line 75 through branch lines. And the cold water which flows through the decomposition device side supply pipeline 72 flows into the decomposition device side heat exchange pipeline 73. In the decomposition apparatus side heat exchange pipe 73, heat exchange is performed between the cold water and the pyrolysis gas in the thermal decomposition apparatus 1, and the temperature of the cold water rises (becomes hot water). The water (hot water) in the decomposition apparatus side heat exchange pipe 73 that has risen in temperature after heat exchange flows through the decomposition apparatus side return pipe 74.
 一方、酸化装置側供給管路75を流れる冷水は、酸化装置側熱交換管路76に流入する。酸化装置側熱交換管路76では、冷水と触媒酸化装置2に導入された熱分解ガスとの間で熱交換が行われ、冷水の温度が上昇する(温水となる)。熱交換を終えた酸化装置側熱交換管路76の温水は、酸化装置側戻し管路77を流れる。 On the other hand, the cold water flowing through the oxidizer side supply pipeline 75 flows into the oxidizer side heat exchange pipeline 76. In the oxidizer side heat exchange pipeline 76, heat exchange is performed between the cold water and the pyrolysis gas introduced into the catalytic oxidizer 2, and the temperature of the cold water rises (becomes hot water). The hot water in the oxidizer side heat exchange pipe 76 that has finished the heat exchange flows through the oxidizer side return pipe 77.
 戻し管路74,77をそれぞれ流れる温水は、合流して熱供給管路78を流れ、熱供給管路78に接続された熱供給対象200に供給される。このようにして、熱分解装置1内に発生した熱分解ガス及び触媒酸化装置2内に導入された熱分解ガスの熱を熱供給対象200に供給することができる。 The hot water flowing through the return pipes 74 and 77 join together and flow through the heat supply pipe 78 and is supplied to the heat supply target 200 connected to the heat supply pipe 78. In this way, the heat of the pyrolysis gas generated in the pyrolysis apparatus 1 and the heat of the pyrolysis gas introduced into the catalytic oxidation apparatus 2 can be supplied to the heat supply target 200.
 なお、熱供給対象200として、例えば、蒸気タービン(発電)、温水プール、温室、融雪装置等が挙げられるが、熱分解装置1内に発生した熱分解ガス及び触媒酸化装置2内に導入された熱分解ガスの熱を利用し得るものであれば、熱供給対象200はこれらに限定されない。 The heat supply target 200 includes, for example, a steam turbine (power generation), a hot water pool, a greenhouse, a snow melting device, etc., but is introduced into the pyrolysis gas generated in the pyrolysis device 1 and the catalytic oxidation device 2. As long as the heat of the pyrolysis gas can be used, the heat supply target 200 is not limited to these.
 また、上記の説明では、熱供給対象200に熱を供給するための熱媒体を温水として説明したが、当該熱媒体は温水に限られず、蒸気、又は温風であってもよい。熱供給システム70に適宜給水ポンプを設けて熱媒体を加圧した上で、熱分解装置1及び触媒酸化装置2内の熱分解ガスの温度を調節することにより熱交換管路73,76で高温の蒸気を発生させ、発生した蒸気を熱供給対象200に送気することが可能である。さらに、戻し管路74,77及び熱供給管路78内の蒸気の湿度を調節して乾燥させた上で管路74,77,78に送風ファンを設置すれば、乾いた温風を熱供給対象に供給することも可能である。なお、温水は、温水プール、温室、暖房、融雪装置等に供給可能である。一方、温風は、温室、暖房、融雪装置等に供給可能であり、蒸気は、蒸気タービン(発電)に供給可能である。 Further, in the above description, the heat medium for supplying heat to the heat supply target 200 has been described as hot water, but the heat medium is not limited to hot water, and may be steam or hot air. The heat supply system 70 is appropriately provided with a feed water pump to pressurize the heat medium, and the temperature of the pyrolysis gas in the thermal decomposition apparatus 1 and the catalytic oxidation apparatus 2 is adjusted to increase the temperature in the heat exchange lines 73 and 76. It is possible to generate the steam and supply the generated steam to the heat supply target 200. Furthermore, if the blower fan is installed in the pipes 74, 77, 78 after adjusting the humidity of the steam in the return pipes 74, 77 and the heat supply pipe 78 and drying it, the dry hot air is supplied with heat. It is also possible to supply the subject. The hot water can be supplied to a hot water pool, a greenhouse, heating, a snow melting device, and the like. On the other hand, warm air can be supplied to a greenhouse, heating, a snow melting device, and the like, and steam can be supplied to a steam turbine (power generation).

Claims (13)

  1.  原料有機物を熱分解させるための熱分解装置であって、
     原料有機物の熱分解により前記熱分解装置内に形成される材料層に含まれる無機物に酸素を結合させて無機酸化物(セラミックス)を生成するためのセラミックス生成手段と、前記熱分解装置内の前記材料層の下方に配置され、前記熱分解装置内での熱分解により発生した熱分解ガスを前記熱分解装置内に溜まった前記材料層の全面にわたって通過させる分解ガス通過手段と、を有しており、
     前記分解ガス通過手段に前記熱分解装置内の上方に溜まった熱分解ガスを導入するよう構成されていることを特徴とする熱分解装置。
    A thermal decomposition apparatus for thermally decomposing raw organic materials,
    Ceramics generation means for generating an inorganic oxide (ceramics) by combining oxygen with inorganic substances contained in a material layer formed in the thermal decomposition apparatus by thermal decomposition of the raw organic material, and the above-mentioned in the thermal decomposition apparatus A cracking gas passage means disposed below the material layer and allowing the pyrolysis gas generated by the pyrolysis in the pyrolyzer to pass over the entire surface of the material layer accumulated in the pyrolyzer. And
    A thermal decomposition apparatus configured to introduce the thermal decomposition gas accumulated above in the thermal decomposition apparatus into the decomposition gas passage means.
  2.  前記熱分解装置の上部と前記分解ガス通過手段とを連通させる分解ガス導入手段が設けられており、
     前記熱分解装置内の上方に溜まった熱分解ガスが、前記分解ガス導入手段に吸い込まれて前記分解ガス導入手段を通して前記分解ガス通過手段に導入されることにより、前記材料層を通過するよう構成されていることを特徴とする請求項1に記載の熱分解装置。
    A cracking gas introducing means for communicating the upper part of the thermal decomposition apparatus and the cracking gas passage means is provided;
    The pyrolysis gas accumulated above in the pyrolysis apparatus is sucked into the crack gas introduction means and introduced into the crack gas passage means through the crack gas introduction means so as to pass through the material layer. The thermal decomposition apparatus according to claim 1, wherein
  3.  前記分解ガス通過手段が格子状に形成された管状部材から成り、
     前記分解ガス通過手段の側面もしくは下面に、前記分解ガス導入手段によって導入された熱分解ガスを前記材料層に向けて吹き出させるための分解ガス吹出口が形成されていることを特徴とする請求項1又は2に記載の熱分解装置。
    The cracked gas passage means comprises a tubular member formed in a lattice shape,
    The cracked gas outlet for blowing the pyrolyzed gas introduced by the cracked gas introducing means toward the material layer is formed on a side surface or a lower surface of the cracked gas passage means. The thermal decomposition apparatus according to 1 or 2.
  4.  前記熱分解装置内部の熱分解ガスの圧力調整を行なうための大気開放された圧力調整手段が設けられていることを特徴とする請求項1から3のいずれか1項に記載の熱分解装置。 The thermal decomposition apparatus according to any one of claims 1 to 3, further comprising pressure adjustment means that is open to the atmosphere for adjusting the pressure of the pyrolysis gas inside the thermal decomposition apparatus.
  5.  前記熱分解装置に熱媒体を供給する熱媒体供給管路と、
     前記熱媒体供給管路に接続され、前記熱分解装置で発生する熱分解ガスと前記熱媒体との熱交換が行われる熱交換管路と、
     前記熱交換管路に接続され、前記熱交換管路で熱交換した前記熱媒体を熱供給対象に送出することにより前記熱分解装置内部の熱を前記熱供給対象に供給し得る熱供給管路と、
    を有する熱供給システムを具えることを特徴とする請求項1から4のいずれか1項に記載の熱分解装置。
    A heat medium supply pipe for supplying a heat medium to the thermal decomposition apparatus;
    A heat exchange line connected to the heat medium supply line, in which heat exchange between the heat decomposition gas generated in the heat decomposition apparatus and the heat medium is performed;
    A heat supply pipe connected to the heat exchange pipe and capable of supplying heat inside the thermal decomposition apparatus to the heat supply target by sending the heat medium heat-exchanged in the heat exchange pipe to the heat supply target When,
    5. The thermal decomposition apparatus according to claim 1, further comprising a heat supply system including:
  6.  前記熱供給対象が、蒸気タービン(発電)、温水プール、温室、暖房、融雪装置等であることを特徴とする請求項5に記載の熱分解装置。 The thermal decomposition apparatus according to claim 5, wherein the heat supply target is a steam turbine (power generation), a hot water pool, a greenhouse, heating, a snow melting apparatus, or the like.
  7.  前記熱分解装置と、前記熱分解装置における熱分解によって発生した熱分解ガスを処理するためのガス処理装置と、を具える有機物処理装置であって、
     前記ガス処理装置が、前記熱分解装置で熱分解したガス成分を酸化させる手段と、前記酸化させる手段にガス管路を介して連通し前記酸化させたガスを中和洗浄する手段とを具えており、
     前記ガス管路と前記分解ガス通過手段とを連通させる酸化ガス導入手段が設けられており、
     前記ガス処理装置により酸化処理された熱分解ガスが、前記酸化ガス導入手段に吸い込まれて前記酸化ガス導入手段を通して前記分解ガス通過手段に導入されることにより、前記材料層を通過するよう構成されていることを特徴とする有機物処理装置。
    An organic matter processing apparatus comprising: the thermal decomposition apparatus; and a gas processing apparatus for processing a pyrolysis gas generated by thermal decomposition in the thermal decomposition apparatus,
    The gas processing apparatus comprises means for oxidizing a gas component thermally decomposed by the thermal decomposition apparatus and means for neutralizing and cleaning the oxidized gas in communication with the means for oxidation via a gas pipe. And
    An oxidizing gas introducing means for communicating the gas pipe line with the cracked gas passage means is provided;
    The pyrolysis gas oxidized by the gas processing apparatus is sucked into the oxidizing gas introduction means and introduced into the decomposition gas passage means through the oxidizing gas introduction means, thereby passing through the material layer. An organic matter processing apparatus characterized by comprising:
  8.  前記熱分解装置の下部に、前記材料層に生成したセラミックスを前記熱分解装置の外に出すためのセラミックス取出口が形成されており、
     前記熱分解装置外部における前記セラミックス取出口周辺に、セラミックス吸引手段が設けられていることを特徴とする請求項7に記載の有機物処理装置。
    A ceramic outlet for taking out the ceramic produced in the material layer out of the pyrolyzer is formed at the bottom of the pyrolyzer,
    8. The organic substance processing apparatus according to claim 7, wherein ceramic suction means is provided around the ceramic outlet outside the thermal decomposition apparatus.
  9.  前記ガス管路もしくは前記中和洗浄する手段に、空気を取り入れるための大気開放された空気取入手段が設けられていることを特徴とする請求項7又は8に記載の有機物処理装置。 9. The organic matter processing apparatus according to claim 7 or 8, wherein the gas pipe or the neutralization cleaning means is provided with an air intake means that is open to the atmosphere for taking in air.
  10.  前記熱分解装置及び前記酸化させる手段の少なくとも一方に熱媒体を供給する熱媒体供給管路と、
     前記熱媒体供給管路に接続され、前記熱分解装置で発生する熱分解ガス及び前記酸化させる手段に導入される熱分解ガスの少なくとも一方と前記熱媒体との熱交換が行われる熱交換管路と、
     前記熱交換管路に接続され、前記熱交換管路で熱交換した前記熱媒体を熱供給対象に送出することにより前記熱分解装置内部及び前記酸化させる手段内部の少なくとも一方の熱を前記熱供給対象に供給し得る熱供給管路と、
    を有する熱供給システムを具えることを特徴とする請求項7乃至9のいずれか1項に記載の有機物処理装置。
    A heat medium supply pipe for supplying a heat medium to at least one of the thermal decomposition apparatus and the means for oxidizing;
    A heat exchange pipe connected to the heat medium supply pipe and performing heat exchange between the heat medium and at least one of the pyrolysis gas generated in the pyrolysis apparatus and the pyrolysis gas introduced into the oxidizing means. When,
    By supplying the heat medium connected to the heat exchange pipe and exchanging heat in the heat exchange pipe to a heat supply target, at least one heat inside the thermal decomposition apparatus and inside the means for oxidizing is supplied to the heat. A heat supply line that can be supplied to the object;
    The organic matter processing apparatus according to claim 7, further comprising a heat supply system including:
  11.  前記熱交換管路が前記熱分解装置に設けられた分解装置側熱交換管路であり、
     前記分解装置側熱交換管路において、前記熱分解装置内の熱分解により発生する熱分解ガスと前記熱媒体との熱交換が行われることを特徴とする請求項10に記載の有機物処理装置。
    The heat exchange line is a decomposition apparatus side heat exchange line provided in the thermal decomposition apparatus;
    11. The organic matter processing apparatus according to claim 10, wherein heat exchange is performed between the thermal decomposition gas generated by thermal decomposition in the thermal decomposition apparatus and the heat medium in the decomposition apparatus side heat exchange pipeline.
  12.  前記熱交換管路が前記酸化させる手段に設けられた酸化装置側熱交換管路であり、
     前記酸化装置側熱交換管路において、前記熱分解装置から前記酸化させる手段に導入される熱分解ガスと前記熱媒体との熱交換が行われることを特徴とする請求項10に記載の有機物処理装置。
    The heat exchange line is an oxidizer side heat exchange line provided in the means for oxidizing,
    11. The organic matter treatment according to claim 10, wherein heat exchange is performed between the thermal decomposition gas introduced into the oxidation means from the thermal decomposition apparatus and the heat medium in the oxidation apparatus side heat exchange pipe. apparatus.
  13.  前記熱供給対象が、蒸気タービン(発電)、温水プール、温室、暖房、融雪装置等であることを特徴とする請求項10から12のいずれか1項に記載の有機物処理装置。 The organic matter processing apparatus according to any one of claims 10 to 12, wherein the heat supply target is a steam turbine (power generation), a hot water pool, a greenhouse, heating, a snow melting apparatus, or the like.
PCT/JP2009/002707 2008-06-13 2009-06-15 Pyrolyzer and organic-substance treatment apparatus equipped therewith WO2009150857A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008155259 2008-06-13
JP2008-155259 2008-06-13
JP2009112818A JP2010017702A (en) 2008-06-13 2009-05-07 Pyrolyzer and organic-substance treatment apparatus equipped therewith
JP2009-112818 2009-05-07

Publications (1)

Publication Number Publication Date
WO2009150857A1 true WO2009150857A1 (en) 2009-12-17

Family

ID=41416570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002707 WO2009150857A1 (en) 2008-06-13 2009-06-15 Pyrolyzer and organic-substance treatment apparatus equipped therewith

Country Status (2)

Country Link
JP (1) JP2010017702A (en)
WO (1) WO2009150857A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810959A (en) * 2020-07-02 2020-10-23 浙江双屿实业有限公司 Organic solid waste treatment energy conversion device
CN115069058A (en) * 2022-07-20 2022-09-20 广西绿健环保科技有限公司 Pyrolysis oven catalytic system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101890278B (en) * 2010-07-01 2015-07-15 陈有添 Environment-friendly waste gas purification method
CN105126590A (en) * 2015-09-22 2015-12-09 贺成功 Moxa smoke treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112956A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp Gasification method for biomass
JP2006507108A (en) * 2002-07-31 2006-03-02 スタッズビク インコーポレイテッド In-drum pyrolysis system
JP2006225483A (en) * 2005-02-16 2006-08-31 Nippon Steel Corp Method for carbonizing biomass
WO2008081598A1 (en) * 2006-12-28 2008-07-10 N.M.G Environmental Development Co., Ltd. Method for disposal of organic waste material and apparatus for the method
WO2009048182A2 (en) * 2008-01-17 2009-04-16 Environmental Science Co., Ltd. Livestock feces treatment method and livestock feces utilization method, organic material treatment method and organic material utilization method, and building material and architectural structure constructed by using the building material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149556A (en) * 2002-10-28 2004-05-27 Nishinippon Environmental Energy Co Inc Method for gasifying biomass and gasifying apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507108A (en) * 2002-07-31 2006-03-02 スタッズビク インコーポレイテッド In-drum pyrolysis system
JP2005112956A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp Gasification method for biomass
JP2006225483A (en) * 2005-02-16 2006-08-31 Nippon Steel Corp Method for carbonizing biomass
WO2008081598A1 (en) * 2006-12-28 2008-07-10 N.M.G Environmental Development Co., Ltd. Method for disposal of organic waste material and apparatus for the method
WO2009048182A2 (en) * 2008-01-17 2009-04-16 Environmental Science Co., Ltd. Livestock feces treatment method and livestock feces utilization method, organic material treatment method and organic material utilization method, and building material and architectural structure constructed by using the building material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810959A (en) * 2020-07-02 2020-10-23 浙江双屿实业有限公司 Organic solid waste treatment energy conversion device
CN115069058A (en) * 2022-07-20 2022-09-20 广西绿健环保科技有限公司 Pyrolysis oven catalytic system

Also Published As

Publication number Publication date
JP2010017702A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5815503B2 (en) Method and apparatus for gasifying organic waste
US9446376B2 (en) Apparatus for pyrolysis using molten metal
KR100949037B1 (en) Eliminating apparatus of effluent gas comes from an organic waste
JP5220162B2 (en) Waste pyrolysis equipment
WO2009150857A1 (en) Pyrolyzer and organic-substance treatment apparatus equipped therewith
JP2009066588A (en) Waste treatment apparatus and method
KR100897521B1 (en) Recycling equipment and methode of waste electric wire
JP2008272720A (en) Polluted soil treatment system using waste heat
JP3957737B1 (en) Combustion system for flame-retardant high-viscosity waste such as PCB
JP2005180880A (en) Waste thermal decomposition treatment device and thermal decomposition treatment control system
JPH11333247A (en) Method and apparatus for detoxication of semiconductor production exhaust gas
KR101448434B1 (en) The cinerator apparatus for ashes
JP2015224795A (en) Generator for fuel gas from organic materials and utilization of heat of same
CN113124411A (en) Fluorine-containing hazardous waste treatment process
JP2009203474A (en) Heat treatment device and pyrolytic method
KR101008491B1 (en) Incinerating system of liquid waste from chemical cleaning of nuclear steam generator and method thereof
JP2009139087A (en) Control method of waste thermal decomposition apparatus
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
JP2007032999A (en) Incineration system
RU2135895C1 (en) Domestic waste combustion plant
JP7165234B2 (en) Waste treatment furnace and treatment equipment having it
JPH10311515A (en) Refuse incinerating and melting equipment
JP2001286727A (en) Method and equipment for treating exhaust gas
KR101425922B1 (en) Waste water traetment equipment and waste water traetment method using thereof
JP2006023052A (en) Exhaust gas processing method for ash melting furnace, and processing facility therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.02.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09762288

Country of ref document: EP

Kind code of ref document: A1