WO2009148055A1 - Solid-state image pickup device - Google Patents

Solid-state image pickup device Download PDF

Info

Publication number
WO2009148055A1
WO2009148055A1 PCT/JP2009/060070 JP2009060070W WO2009148055A1 WO 2009148055 A1 WO2009148055 A1 WO 2009148055A1 JP 2009060070 W JP2009060070 W JP 2009060070W WO 2009148055 A1 WO2009148055 A1 WO 2009148055A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
unit
signal
signal output
pixel portion
Prior art date
Application number
PCT/JP2009/060070
Other languages
French (fr)
Japanese (ja)
Inventor
行信 杉山
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2009148055A1 publication Critical patent/WO2009148055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Definitions

  • the present invention relates to a solid-state imaging device.
  • a solid-state imaging device includes a light receiving unit in which a plurality of pixel units each including a photodiode are two-dimensionally arranged, a signal output unit that outputs an electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each pixel unit, And a control unit for controlling the output of an electrical signal by the signal output unit for each pixel unit.
  • the solid-state imaging device can obtain an image of the intensity distribution of the light input to the light receiving unit based on the electrical signal output from the signal output unit.
  • Patent Document 1 discloses a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging.
  • the solid-state imaging device disclosed in Patent Document 1 performs high-resolution imaging by individually outputting an electrical signal for each of a plurality of pixel units included in a light receiving unit.
  • this solid-state imaging device performs low-resolution imaging by adding electrical signals for a certain number of pixel units among a plurality of pixel units included in the light receiving unit. Such a low-resolution imaging operation is called a binning operation.
  • the solid-state imaging device disclosed in Patent Document 1 cannot perform high-speed imaging when switching between high-resolution imaging and low-resolution imaging, for example.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging at high speed.
  • the solid-state imaging device includes (1) I ⁇ J unit regions A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and the light receiving surfaces are M rows.
  • the M ⁇ n pixel regions are two-dimensionally arrayed in n rows a 1,1 ⁇ a M, consist n, each unit region a i, each pixel area in the j a m, n is the first group and the second 1st pixel part Pm, n which is divided into any of a group and contains the photodiode formed in each pixel area am , n included in the 1st group in each unit area Ai, j comprises The photodiodes formed in each pixel region am , n included in the second group in each unit region A i, j are connected to each other in parallel, so that the second pixel portion Q i, j is substantially
  • configured light receiving unit outputs a first electrical signal having a value corresponding to the amount of charges generated in the (2) each
  • M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is 1 These are integers of N or less, i is an integer of 1 or more and I or less, and j is an integer of 1 or more and J or less.
  • the rows and columns for the M ⁇ N pixel regions a 1,1 to a M, N and the rows and columns for the I ⁇ J unit regions A 1,1 to A I, J are different. To do.
  • the light receiving surface of the light receiving unit includes I ⁇ J unit regions A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and M rows and N columns.
  • Each unit region A i, each pixel region a m in j, n is divided into either of the first group and second group, each unit region A i, each pixel region a included in the first group in the j
  • a first pixel portion P m, n including photodiodes individually formed in m, n is configured and formed in each pixel region am , n included in the second group in each unit region A i, j .
  • the photodiodes are connected to each other in parallel to substantially constitute the second pixel portion Q i, j .
  • a first electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each first pixel unit P m, n is output, and the photodiode of each second pixel unit Q i, j
  • the second electric signal having a value corresponding to the amount of electric charge generated in the step is output.
  • the control unit controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n and outputs the second electric signal by the signal output unit for each second pixel unit Q i, j Is controlled.
  • High-speed high-resolution imaging can be performed using the first pixel portion P m, n
  • high-speed low-resolution imaging can be performed using the second pixel portion Q i, j .
  • the solid-state imaging device can perform high-resolution imaging and low-resolution imaging at high speed.
  • FIG. 1 is a diagram illustrating a schematic configuration of a solid-state imaging device 1 according to the present embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment.
  • FIG. 3 is a diagram illustrating a circuit configuration of each of the first pixel unit P m, n and the holding circuit 23 n included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 4 is a diagram illustrating a circuit configuration of the difference calculation circuit 25 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 5 is a diagram illustrating a circuit configuration of each of the second pixel unit Q i, j and the holding circuit 24 j included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of a solid-state imaging device 1 according to the present embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment.
  • FIG. 6 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of the light receiving unit 10 of the solid-state imaging device 1 according to the present embodiment.
  • FIG. 8 is a diagram illustrating a first arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • Figure 9 is a diagram showing a second arrangement example of the first pixel portion P m in the photodetecting section 10 of embodiment included in the solid-state imaging device 1 according to the embodiment, n and the second pixel unit Q i, j.
  • FIG. 8 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of the light receiving unit 10 of the solid-state imaging device
  • FIG. 10 is a diagram illustrating a third arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 11 is a diagram illustrating a layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • 12 is a cross-sectional view taken along the line A-A ′ in the layout example shown in FIG. 11.
  • FIG. 13 is a configuration diagram of a solid-state imaging device 2 according to another embodiment.
  • FIG. 14 shows a fourth arrangement example of the first pixel unit P m, n , the second pixel unit Q i, j, and the third pixel unit R m, n in the light receiving unit 10 included in the solid-state imaging device of the modification.
  • FIG. 15 shows a fifth arrangement example of the first pixel unit P m, n , the second pixel unit Q i, j, and the third pixel unit R m, n in the light receiving unit 10 included in the solid-state imaging device of the modification.
  • FIG. 1 is a diagram showing a schematic configuration of a solid-state imaging device 1 according to the present embodiment.
  • the solid-state imaging device 1 shown in this figure includes a light receiving unit 10, a first signal output circuit 21, a second signal output circuit 22, a first control circuit 31, and a second control circuit 32.
  • the light receiving surface of the light receiving unit 10 includes I ⁇ J unit regions A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and M ⁇ N that is two-dimensionally arranged in M rows and N columns. It consists of N pixel areas a 1,1 to a M, N.
  • the unit area A i, j is located in the i-th row and j-th column, and the pixel area am , n is located in the m-th row and n-th column.
  • Each unit region A i, each pixel region a m in j, n is divided into either of the first group and second group, each unit region A i, each pixel region a included in the first group in the j
  • a first pixel portion P m, n including photodiodes individually formed in m, n is configured and formed in each pixel region am , n included in the second group in each unit region A i, j .
  • the photodiodes are connected to each other in parallel to substantially constitute the second pixel portion Q i, j .
  • Each first pixel unit P m, n has a common configuration, and includes a photodiode that generates an amount of charge corresponding to the amount of incident light.
  • Each of the second pixel portions Q i, j preferably has a common configuration, and includes a photodiode that generates an amount of charge corresponding to the amount of incident light. Details of the light receiving unit 10 will be described later.
  • M and N are integers of 2 or more.
  • I is an integer of 2 or more and less than M
  • J is an integer of 2 or more and less than N
  • m is an integer from 1 to M
  • n is an integer from 1 to N
  • i is an integer from 1 to I
  • j is an integer from 1 to J.
  • I is preferably a divisor of M
  • J is preferably a divisor of N.
  • M and N are 1024
  • I and J are 128.
  • one second pixel portion Q is provided for 8 ⁇ 8 first pixel portions P.
  • the rows and columns for the M ⁇ N pixel regions a 1,1 to a M, N and the rows and columns for the I ⁇ J unit regions A 1,1 to A I, J are different. To do.
  • Each first pixel portion P m, n and each second pixel portion Q i, j may be of the PPS (Passive Pixel Sensor) type, but of the APS (Active Pixel Sensor) type. preferable. That is, each first pixel portion P m, n and each second pixel portion Q i, j include an amplification MOS transistor for inputting the charge generated by the photodiode, and the amplification MOS transistor according to the input charge amount. It is preferable to output an electrical signal.
  • Each first pixel unit P m, n included in the light receiving unit 10 is connected to the first signal output circuit 21.
  • the first signal output circuit 21 outputs a first electric signal having a value corresponding to the amount of charge generated in the photodiode of each first pixel unit P m, n . More specifically, the output terminal of each first pixel unit P m, n in the n-th column is connected to the first signal output circuit 21 by a common readout wiring.
  • the first signal output circuit 21 sequentially inputs data from the first pixel portions P m, n in the m-th row in order from the first row to the M-th row and serially inputs these data to the first row. Output as an electrical signal.
  • the first control circuit 31 controls the output of the first electric signal by the first signal output circuit 21 for each first pixel unit P m, n , and includes a first timing control circuit 41, a first row selection circuit, and so on. 51 and a first column selection circuit 61.
  • the first timing control circuit 41 controls the operation timings of the first signal output circuit 21, the first row selection circuit 51, and the first column selection circuit 61.
  • the first row selection circuit 51 sequentially designates each row in the two-dimensional array of the first pixel portions P 1,1 to P M, N of the light receiving unit 10 under the timing control by the first timing control circuit 41, A predetermined control signal is applied to each designated first pixel portion P m, n in the m-th row , and data is output from each first pixel portion P m, n in the m-th row to the first signal output circuit 21.
  • the first row selection circuit 51 includes an M-stage shift register circuit, and each row can be sequentially designated by an output bit of each stage of the shift register circuit.
  • the first column selection circuit 61 sequentially designates each column in the two-dimensional array of the first pixel portions P 1,1 to P M, N of the light receiving unit 10 under the timing control by the first timing control circuit 41. Then, a control signal indicating the designated nth column is given to the first signal output circuit 21, and data from each of the first pixel portions Pm, n in the mth row is sequentially sent from the first signal output circuit 21 to the first signal output circuit 21. One electrical signal is output.
  • the first column selection circuit 61 includes an N-stage shift register circuit, and each column can be sequentially designated by an output bit of each stage of the shift register circuit.
  • Each second pixel unit Q i, j included in the light receiving unit 10 is connected to the second signal output circuit 22.
  • the second signal output circuit 22 outputs a second electric signal having a value corresponding to the amount of charge generated in the photodiode of each second pixel portion Q i, j . More specifically, the output terminal of each second pixel portion Q i, j in the j-th column is connected to the second signal output circuit 22 by a common readout wiring.
  • the second signal output circuit 22 inputs data from the second pixel portions Q i, j in the i-th row in parallel for the first row to the I-th row in parallel and serially inputs these data to the second row. Output as an electrical signal.
  • the second control circuit 32 controls the output of the second electric signal by the second signal output circuit 22 for each second pixel portion Q i, j , and includes a second timing control circuit 42, a second row selection circuit, and the like. 52 and a second column selection circuit 62.
  • the second timing control circuit 42 controls operation timings of the second signal output circuit 22, the second row selection circuit 52, and the second column selection circuit 62.
  • the second row selection circuit 52 sequentially designates each row in the two-dimensional array of the second pixel portions Q 1,1 to Q I, J of the light receiving unit 10, the i each second pixel portion Q i of rows that specified by giving a predetermined control signal to j, and outputs the second pixel portion Q i of the i-th row, the data from the j to the second signal output circuit 22 .
  • the second row selection circuit 52 includes an I-stage shift register circuit, and each row can be sequentially designated by an output bit of each stage of the shift register circuit.
  • the second column selection circuit 62 sequentially designates each column in the two-dimensional array of the second pixel portions Q 1,1 to Q I, J of the light receiving unit 10 under the timing control by the second timing control circuit 42. Then, a control signal indicating the designated j-th column is given to the second signal output circuit 22, and data from each second pixel portion Q i, j in the i-th row is sequentially sent from the second signal output circuit 22 to the second signal output circuit 22. Two electrical signals are output.
  • the second column selection circuit 62 includes a J-stage shift register circuit, and each column can be sequentially designated by the output bit of each stage of the shift register circuit.
  • the first signal output circuit 21 and the second signal output circuit 22 output a first electric signal having a value corresponding to the amount of charge generated in the photodiode PD of each first pixel unit P m, n , and A signal output unit configured to output a second electric signal having a value corresponding to the amount of charge generated in the photodiode PD of the two-pixel unit Q i, j is configured.
  • the first control circuit 31 and the second control circuit 32 control the output of the first electric signal by the signal output unit for each first pixel unit P m, n and output the signal for each second pixel unit Q i, j.
  • the control part which controls the output of the 2nd electric signal by a part is comprised.
  • the first signal output circuit 21 and the second signal output circuit 22 may have the same configuration except for the difference in the number of data that are input in parallel for each row and output serially.
  • the first row selection circuit 51 and the second row selection circuit 52 may have the same configuration except for the point related to the difference in the number of designated rows.
  • the first column selection circuit 61 and the second column selection circuit 62 may have the same configuration except for the point relating to the difference in the number of designated columns.
  • FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment.
  • the first pixel portion P m, n located in the m-th row and the n-th column is representatively shown, and the second pixel located in the i-th row and the j-th column is shown.
  • Part Q i, j is shown representatively.
  • the connection relationship between the light receiving unit 10 and the first signal output circuit 21 and the connection relationship between the light receiving unit 10 and the first row selection circuit 51 are related to the first pixel unit P m, n. It is shown.
  • connection relationship between the light receiving unit 10 and the second signal output circuit 22 and the connection relationship between the light receiving unit 10 and the second row selection circuit 52 are related to the second pixel unit Q i, j. It is shown.
  • first signal output circuit 21 components related to the first pixel portion P m, n are shown.
  • second signal output circuit 22 components related to the second pixel portion Q i, j are shown.
  • the first signal output circuit 21 includes N holding circuits 23 1 to 23 N , a difference calculation circuit 25 and an AD conversion circuit 27.
  • the N holding circuits 23 1 to 23 N have a common configuration.
  • Each holding circuit 23 n is connected to the output terminal of each first pixel unit P m, n in the n-th column by a common readout wiring Vline1 (n), and any one of these first pixel units Data output from P m, n and input via the read wiring Vline1 (n) is held, and the held data is output to the wirings Hline_s1 and Hline_n1.
  • the difference calculation circuit 25 inputs two data that arrive via the wirings Hline_s1 and Hline_n1, and outputs data corresponding to the difference between the two data to the AD conversion circuit 27.
  • the AD conversion circuit 27 receives the analog data output from the difference calculation circuit 25 and outputs digital data corresponding to the analog data as a first electric signal.
  • the second signal output circuit 22 includes J holding circuits 24 1 to 24 J , a difference calculation circuit 26, and an AD conversion circuit 28.
  • the J holding circuits 24 1 to 24 J have a common configuration.
  • Each holding circuit 24 j is connected to the output terminal of each second pixel portion Q i, j in the j-th column by a common readout wiring Vline2 (j), and any one of these second pixel portions
  • the data output from Q i, j and input via the read wiring Vline2 (j) is held, and the held data is output to the wirings Hline_s2 and Hline_n2.
  • the difference calculation circuit 26 inputs two data arrived via the wirings Hline_s2 and Hline_n2, and outputs data corresponding to the difference between the two data to the AD conversion circuit 28.
  • the AD conversion circuit 28 receives the analog data output from the difference calculation circuit 26, and outputs digital data corresponding to the analog data as a second electric signal.
  • FIG. 3 is a diagram illustrating a circuit configuration of each of the first pixel unit P m, n and the holding circuit 23 n included in the solid-state imaging device 1 according to the present embodiment.
  • the first pixel portion P m, n is shown as a representative
  • the holding circuit 23 n is shown as a representative.
  • Each first pixel portion P m, n is of the APS type, and includes a photodiode PD and five MOS transistors T1 to T5. As shown in this figure, the transistor T1, the transistor T2, and the photodiode PD are connected in series in order, the reference voltage Vb1 is input to the drain terminal of the transistor T1, and the anode terminal of the photodiode PD is grounded. Has been.
  • the transistor T3 and the transistor T4 are connected in series, the reference voltage Vb2 is input to the drain terminal of the transistor T3, and the source terminal of the transistor T4 is connected to the wiring Vline1 (n).
  • a connection point between the transistor T1 and the transistor T2 is connected to the gate terminal of the transistor T3 through the transistor T5.
  • a constant current source is connected to the wiring Vline1 (n).
  • the amplifying transistor T3 outputs an electric signal having a value corresponding to the amount of charge input to the gate terminal.
  • the Reset1 (m) signal is input to the gate terminal of the reset transistor T1, the Trans1 (m) signal is input to the gate terminal of the transfer transistor T2, and the Address1 (m) signal is input to the gate of the output selection transistor T4.
  • the Hold1 (m) signal is input to the terminal of the transistor T5.
  • the Reset1 (m) signal, Trans1 (m) signal, Address1 (m) signal, and Hold1 (m) signal are output from the first row selection circuit 51 under the control of the first timing control circuit 41, and the mth row. Are commonly input to the first pixel portions Pm, n .
  • the Reset1 (m) signal and the Trans1 (m) signal are at a high level, the junction capacitance portion (charge storage portion) of the photodiode PD is discharged, and when the Hold1 (m) signal is also at a high level, the transistor T3 The potential of the gate terminal is reset. After that, when the Reset1 (m) signal, Trans1 (m) signal, and Hold1 (m) signal become low level, the charge generated in the photodiode is accumulated in the junction capacitor.
  • the Hold1 (m) signal is at a low level and the Address1 (m) signal is at a high level, a noise component is output from the first pixel unit Pm , n to the wiring Vline1 (n).
  • Each holding circuit 23 n includes two capacitive elements C 1 , C 2 and four switches SW 11 , SW 12 , SW 21 , SW 22 .
  • the switch SW 11 and the switch SW 12 is provided between the serially connected to the wiring Vline1 (n) and the wiring Hline_s1, one terminal of the capacitance C 1, the switch SW 11 and the switch is connected to the connection point between the SW 12, the other end of the capacitive element C 1 is grounded.
  • the switch SW 21 and the switch SW 22 is provided between the serially connected to the wiring Vline1 (n) and the wiring Hline_n1, one terminal of the capacitance C 2 is between the switch SW 21 and the switch SW 22 is connected to the connection point, the other end of the capacitive element C 2 is grounded.
  • the switch SW 11 opens and closes according to the level of the set_s1 signal supplied from the first column selection circuit 61.
  • the switch SW 21 opens and closes according to the level of the set_n1 signal supplied from the first column selection circuit 61.
  • the set_s1 signal and the set_n1 signal are input in common to the N holding circuits 23 1 to 23 N.
  • the switches SW 12 and SW 22 open and close according to the level of the hshift1 (n) signal supplied from the first column selection circuit 61.
  • the noise component output from the first pixel unit P m, n to the wiring Vline1 (n) when the set_n1 signal changes from the high level to the low level and the switch SW 21 is opened is thereafter It is held as a voltage value out_n1 (n) by the capacitance element C 2.
  • set_s1 signal is first pixel unit P m, the signal component being output from the n wiring Vline1 to (n) when the switch SW 11 is opened in turn from a high level to a low level, thereafter, the voltage by the capacitive element C 1 Stored as value out_s1 (n).
  • the switch SW 12 When hshift1 (n) signal becomes a high level, the switch SW 12 is closed, is output to the voltage value out_s1 (n) is the wiring Hline_s1 that has been held by the capacitor element C 1, The switch SW 22 is closed , voltage value out_n1 that has been held by the capacitor element C 2 (n) is output to the wiring Hline_n1.
  • the difference between the voltage value out_s1 (n) and the voltage value out_n1 (n) represents a voltage value corresponding to the amount of charge generated in the photodiode PD of the first pixel unit Pm , n .
  • FIG. 4 is a diagram illustrating a circuit configuration of the difference calculation circuit 25 included in the solid-state imaging device 1 according to the present embodiment.
  • the difference calculation circuit 25 includes amplifiers A 1 to A 3 , switches SW 1 and SW 2 , and resistors R 1 to R 4 .
  • Inverting input terminal of the amplifier A 3 is connected to the output terminal of the buffer amplifier A 1 via a resistor R 1, and is connected to its own output terminal via the resistor R 3.
  • the non-inverting input terminal of the amplifier A 3 is connected to the output terminal of the buffer amplifier A 2 via the resistor R 2, and is connected to the ground potential via the resistor R 4.
  • the output terminal of the amplifier A 3 is connected to the input terminal of the AD conversion circuit 27.
  • Input terminal of the buffer amplifier A 1 is connected to the N holding circuits 23 1 ⁇ 23 N via the wiring Hline_s1, it is connected to the ground potential via the switch SW 1.
  • the input terminal of the buffer amplifier A 2 is connected to the N holding circuits 23 1 to 23 N through the wiring Hline_n 1 and is connected to the ground potential through the switch SW 2 .
  • the switches SW 1 and SW 2 of the difference calculation circuit 25 are controlled by the hreset1 signal supplied from the first column selection circuit 61 to open and close.
  • the switch SW 1 When the switch SW 1 is closed, the voltage value input to the input terminal of the buffer amplifier A 1 is reset.
  • the switch SW 2 is closed, the voltage value input to the input terminal of the buffer amplifier A 2 is reset.
  • the switch SW 1, SW 2 When the switch SW 1, SW 2 is open, the wiring from one of the holding circuit 23 n of the N holding circuits 23 1 ⁇ 23 N Hline_s1, the voltage value outputted to the Hline_n1 out_s1 (n), out_n1 (n) is input to the input terminals of the buffer amplifiers A 1 and A 2 .
  • the voltage value output from the output terminal of the difference calculation circuit 25 is The difference between the voltage values input through the wiring Hline_s1 and the wiring Hline_n1 is represented, and the noise component is removed.
  • FIG. 5 is a diagram illustrating a circuit configuration of each of the second pixel unit Q i, j and the holding circuit 24 j included in the solid-state imaging device 1 according to the present embodiment.
  • the second pixel portion Q i, j is shown as a representative
  • the holding circuit 24 j is shown as a representative.
  • Each second pixel portion Q i, j has the same configuration as the first pixel portion P m, n and is of the APS system, and includes a photodiode PD and five MOS transistors T1 to T5.
  • the connection relationship between these elements in the second pixel portion Q i, j is the same as the connection relationship in the first pixel portion P m, n .
  • the source terminal of the transistor T4 is connected to the wiring Vline2 (j).
  • a constant current source is connected to the wiring Vline2 (j).
  • the amplifying transistor T3 outputs an electric signal having a value corresponding to the amount of charge input to the gate terminal.
  • the Reset2 (i) signal is input to the gate terminal of the reset transistor T1, the Trans2 (i) signal is input to the gate terminal of the transfer transistor T2, and the Address2 (i) signal is input to the gate of the output selection transistor T4.
  • the Hold2 (i) signal is input to the terminal of the transistor T5.
  • the Reset2 (i) signal, Trans2 (i) signal, Address2 (i) signal, and Hold2 (i) signal are output from the second row selection circuit 52 under the control of the second timing control circuit 42, and the i-th row. Are input in common to each of the second pixel portions Q i, j .
  • the operation of the second pixel unit Q i, j is the same as the operation of the first pixel unit P m, n .
  • Each holding circuit 24 j has the same configuration as the holding circuit 23 n and includes two capacitive elements C 1 and C 2 and four switches SW 11 , SW 12 , SW 21 , and SW 22 .
  • the connection relationship between these elements in the holding circuit 24 j is the same as the connection relationship in the holding circuit 23 n .
  • the switches SW 11 and SW 21 are connected to the wiring Vline2 (j).
  • Switch SW 12 is connected to the wiring Hline_s2.
  • the switch SW 22 is connected to the wiring Hline_n2.
  • the switch SW 11 opens and closes according to the level of the set_s2 signal supplied from the second column selection circuit 62.
  • the switch SW 21 opens and closes according to the level of the set_n2 signal supplied from the second column selection circuit 62.
  • the set_s2 signal and the set_n2 signal are input in common to the J holding circuits 24 1 to 24 J.
  • the switches SW 12 and SW 22 open and close according to the level of the hshift2 (j) signal supplied from the second column selection circuit 62.
  • the operation of the holding circuit 24 j is the same as the operation of the holding circuit 23 n .
  • hshift2 (j) signal becomes a high level
  • the switch SW 12 is closed, the voltage value out_s2 that has been held by the capacitor element C 1 (j) is output to the wiring Hline_s2,
  • the switch SW 22 is closed, capacitor voltage out_n2 which has been held by the element C 2 (j) is output to the wiring Hline_n2.
  • the difference between the voltage value out_s2 (j) and the voltage value out_n2 (j) represents a voltage value corresponding to the amount of charge generated in the photodiode PD of the second pixel unit Q i, j .
  • FIG. 6 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment.
  • the difference calculation circuit 26 has the same configuration as the difference calculation circuit 25, and includes amplifiers A 1 to A 3 , switches SW 1 and SW 2 , and resistors R 1 to R 4 .
  • the connection relationship between these elements in the difference calculation circuit 26 is the same as the connection relationship in the difference calculation circuit 25.
  • Input terminal of the buffer amplifier A 1 is connected to the J hold circuits 24 1 ⁇ 24 J through the wire Hline_s2, is connected to the ground potential via the switch SW 1.
  • Input terminal of the buffer amplifier A 2 is connected to the J hold circuits 24 1 ⁇ 24 J through the wire Hline_n2, is connected to the ground potential via the switch SW 2.
  • the switches SW 1 and SW 2 of the difference calculation circuit 26 are controlled by the hreset2 signal supplied from the second column selection circuit 62 to open and close.
  • the switch SW 1 When the switch SW 1 is closed, the voltage value input to the input terminal of the buffer amplifier A 1 is reset.
  • the switch SW 2 is closed, the voltage value input to the input terminal of the buffer amplifier A 2 is reset.
  • the switch SW 1, SW 2 When the switch SW 1, SW 2 is open, the wiring from any holding circuit 24 j of the J holding circuits 24 1 ⁇ 24 J Hline_s2, the voltage value outputted to the Hline_n2 out_s2 (j), out_n2 (j) is input to the input terminals of the buffer amplifiers A 1 and A 2 .
  • the voltage value output from the output terminal of the difference calculation circuit 26 is The difference between the voltage values input through the wiring Hline_s2 and the wiring Hline_n2 is represented, and the noise component is removed.
  • FIG. 7 is a diagram illustrating a configuration example of the light receiving unit 10 of the solid-state imaging device 1 according to the present embodiment. This figure explains the positional relationship between the unit areas A i, j and the pixel areas am , n on the light receiving surface of the light receiving unit 10. This figure does not explain the shape of each unit area A i, j and each pixel area am , n .
  • the shape of each region is preferably common, but is not necessarily rectangular. First row, second row, third row,... From the bottom, first column, second column, third column,.
  • the light receiving surface of the light receiving unit 10 includes I ⁇ J unit regions A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and M ⁇ N that is two-dimensionally arranged in M rows and N columns. It consists of N pixel areas a 1,1 to a M, N.
  • each unit area A i, j is an area surrounded by a thick line
  • each pixel area am , n is an area surrounded by a thick line or a thin line.
  • the unit area A i, j is located in the i-th row and the j-th column
  • the pixel area am , n is located in the m-th row and the n-th column.
  • each unit region includes 8 ⁇ 8 pixel regions. That is, each unit area A i, j includes 8 ⁇ 8 pixel areas a 8i-7,8j-7 to a 8i, 8j .
  • Each pixel area am , n in each unit area A i, j is divided into either the first group or the second group.
  • pixel areas am , n included in the second group are indicated by hatching.
  • pixel region m is an odd number n is even a m, n is included in the second group.
  • Other pixel regions am , n are included in the first group.
  • the first pixel unit P m, n is configured to include photodiodes individually formed in the pixel regions a m, n included in the first group.
  • photodiodes formed in each pixel area a m, n (16 pixel areas in this example) included in the second group in the unit area A i, j are arranged in parallel. Connected to each other.
  • the second pixel portion Q i, j is configured. includes the case where these pixel areas a m, a photodiode which is formed separately n can be treated in parallel are connected to each other as a substantially single photodiode by a metal wire or the like, the pixel regions a m, The case where the photodiode formed in n is a part of one continuous photodiode and the case where both of these two cases are included are included.
  • the unit regions A i, j preferably have a common configuration.
  • Each first pixel portion P m, n preferably has a common configuration.
  • the second pixel portions Q i, j preferably have a common configuration.
  • FIGS. 8 to 10 are diagrams illustrating examples of the arrangement of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10.
  • each unit region A i, j includes 8 ⁇ 8 pixel regions a 8i-7,8j-7 to a 8i, 8j , and 2 ⁇ 2 units.
  • the range of the region is shown, and the arrangement of the photodiodes PD of the first pixel portion P m, n and the second pixel portion Q i, j in the range is shown.
  • Figure 8 is a diagram showing a first arrangement example of the first pixel portion P m in the photodetecting section 10 of embodiment included in the solid-state imaging device 1 according to the embodiment, n and the second pixel unit Q i, j.
  • the photodiodes of the second pixel portions Q i, j are each of the pixel areas a m, n (m is an odd number) included in the second group in the unit area A i, j .
  • n is an even number (hatched region in the figure)
  • photodiodes individually formed are connected to each other in parallel by the metal wiring L i, j to be substantially configured as one photodiode.
  • a first pixel portion P m, n including a photodiode formed individually is configured.
  • FIG. 9 is a diagram illustrating a second arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • the photodiodes of each second pixel portion Q i, j are connected to each pixel area a m, n (in the figure) included in the second group in the unit area A i, j .
  • the photodiodes individually formed in the hatching region) are connected to each other in parallel by the metal wiring L i, j so as to be substantially configured as one photodiode.
  • a first pixel portion Pm, n including photodiodes formed individually is configured in the pixel region am , n included in the other first group.
  • the second pixel unit Q i, the pixel regions included in the second group constituting the j a m, n is a two by two in each row is two by two in each row.
  • FIG. 10 is a diagram illustrating a third arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • the photodiodes of the second pixel portions Q i, j are each of the pixel areas a m, n (m is an odd number) included in the second group in the unit area A i, j .
  • n is an even number (hatched region in the figure)
  • photodiodes individually formed are connected to each other in parallel by the metal wiring L i, j to be substantially configured as one photodiode.
  • a first pixel portion P m, n including a photodiode formed individually is configured.
  • the first arrangement example shown in FIG. 8 is the same.
  • a color filter is attached to the photodiode PD in the pixel region a m, n (m is an even number or n is an odd number) included in the first group. More specifically, the photodiode PD in the pixel region a m, n (m is an even number and n is an odd number) is provided with a red filter whose center wavelength in the transmission band is in the red wavelength band. The photodiode PD in the pixel region a m, n (m is an even number and n is an even number) is provided with a green filter having a center wavelength of the transmission band in the green wavelength band.
  • the pixel area a m, n (m is an odd number and n odd) in the photodiode PD of the center wavelength of the transmission band is provided with a blue filter on the blue wavelength band. In this way, high-resolution color imaging can be performed using the first pixel portion P m, n configured in the pixel region am , n included in the first group.
  • the arrangement of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 is not limited to these design examples.
  • the photodiodes of the respective second pixel portions Q i, j are configured by connecting photodiodes formed in the respective pixel regions am , n included in the second group in the unit region A i, j to each other in parallel. It only has to be done.
  • the solid-state imaging device 1 according to the present embodiment can perform high-resolution imaging at high speed using the first pixel unit P m, n , and low resolution using the second pixel unit Q i, j. Imaging can be performed at high speed.
  • each first pixel portion P m, n and each second pixel portion Q i, j is of the APS system, high-speed imaging can be performed with high sensitivity and low noise.
  • a first signal output circuit 21 that outputs a first electric signal for each first pixel portion P m, n and a second signal output circuit 22 that outputs a second electric signal for each second pixel portion Q i, j . Since the high-resolution imaging using the first pixel portion P m, n and the low-resolution imaging using the second pixel portion Q i, j can be performed in parallel, High-speed imaging is possible.
  • the first control circuit 31 controls the output of the first electric signal by the first signal output circuit 21 for each first pixel portion P m, n , and the second signal output circuit for each second pixel portion Q i, j .
  • a second control circuit 32 for controlling the output of the second electric signal by 22 separately, so that high-resolution imaging using the first pixel portion P m, n and the second pixel portion Q i, j are used. It becomes easy to perform the low-resolution imaging that has been performed independently of each other.
  • FIG. 11 and FIG. 12 are diagrams showing a layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • the solid-state imaging device 1 according to this embodiment is preferably integrated on a semiconductor substrate, and in that case, for example, has a structure as shown in FIGS.
  • FIG. 11 is a diagram illustrating a layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • 12 is a cross-sectional view taken along the line A-A ′ in the layout example shown in FIG. 11.
  • the diffusion layer 1 is a region of the photodiode PD of each first pixel portion P m, n and a region of the photodiode PD of each second pixel portion Q i, j .
  • the diffusion layer 2 is a source and drain region of the transistors T1 to T5 of each first pixel portion Pm, n and a source and drain region of the transistors T1 to T5 of each second pixel portion Q i, j .
  • the polysilicon is the gate of each of the transistors T1 to T5 of each first pixel portion Pm, n and each second pixel portion Qi , j .
  • the metal wiring is a wiring for connecting the reading wiring Vline1 (n) and the reading wiring Vline2 (j), and the transistor T3 and the transistor T5.
  • the upper layer metal is a wiring L i, j that interconnects a plurality of photosensitive regions in each second pixel portion Q i, j .
  • FIG. 11 illustration of other metal wirings is omitted. Further, in FIG. 12 showing an A-A ′ section in the layout example shown in FIG. 11, illustration of an insulating layer and the like is omitted.
  • the first signal output circuit 21 and the second signal output circuit 22 are provided separately, and the first column selection circuit 61 and the second column selection circuit 62 are provided separately.
  • the signal output unit 20 may be provided instead of the first signal output circuit 21 and the second signal output circuit 22, or the first column selection circuit 61 and the second column A column selection circuit 60 may be provided instead of the selection circuit 62.
  • FIG. 13 is a configuration diagram of a solid-state imaging device 2 according to another embodiment.
  • the solid-state imaging device 2 shown in this figure includes a light receiving unit 10, a signal output unit 20, and a control unit 30.
  • the light receiving unit 10 is the same as described above.
  • the signal output unit 20 has the same configuration as that of the first signal output circuit 21, but the operation differs depending on whether high-resolution imaging is performed or low-resolution imaging.
  • the control unit 30 includes a timing control circuit 40, a first row selection circuit 51, a second row selection circuit 52, and a column selection circuit 60.
  • the timing control circuit 40 controls operation timings of the signal output unit 20, the first row selection circuit 51, the second row selection circuit 52, and the column selection circuit 60.
  • the column selection circuit 60 When high-resolution imaging is performed using the first pixel unit P m, n , the column selection circuit 60 operates in the same manner as the first column selection circuit 61, and the signal output unit 20 is connected to the first signal output circuit 21. The same operation is performed. On the other hand, when low-resolution imaging is performed using the second pixel unit Q i, j , the signal output unit 20 outputs the second electric signal using J holding circuits among the N holding circuits. The column selection circuit 60 controls the signal output unit 20 to perform such an operation.
  • a third pixel unit R m, n including photodiodes individually formed in each pixel region am , n included in the second group in each unit region A i, j is configured. May be.
  • a part of the photodiode of the second pixel portion Q i, j is formed in each pixel region am , n included in the second group in each unit region A i, j , and the third region A photodiode of the pixel portion R m, n is formed.
  • a third electric signal having a value corresponding to the amount of charge generated in the photodiode of each third pixel portion R m, n is output by the signal output portion. Further, the output of the third electric signal by the signal output unit for each third pixel unit R m, n is controlled by the control unit.
  • the output of the third electric signal may be performed by a dedicated third signal output circuit provided separately from the first signal output circuit 21 and the second signal output circuit 22 shown in FIG. May be performed by the first signal output circuit 21 shown in FIG. 13 or may be performed by the signal output unit 20 shown in FIG.
  • the control of the output of the third electric signal may be performed by a dedicated third row selection circuit provided separately from the first row selection circuit 51 and the second row selection circuit 52 shown in FIG. Further, it may be performed by the first row selection circuit 51 shown in FIG.
  • each third pixel portion R m, n also has an amplifying MOS transistor that inputs charges generated by the photodiode to the gate terminal. In addition, it is preferable to output an electrical signal corresponding to the input charge amount from the amplification MOS transistor to the signal output unit.
  • FIG. 14 and FIG. 15 are diagrams showing an arrangement example corresponding to a modification of the third arrangement example shown in FIG. 10, and the first pixel unit P m, n and the second pixel unit in the light receiving unit 10.
  • FIG. 14 and FIG. 15 are diagrams showing an arrangement example corresponding to a modification of the third arrangement example shown in FIG. 10, and the first pixel unit P m, n and the second pixel unit in the light receiving unit 10.
  • An arrangement example in which a third pixel portion R m, n is provided in addition to Q i, j is shown.
  • only one basic region A 1,1 is shown, and the photodiodes of the first pixel portion P m, n , second pixel portion Q i, j and third pixel portion R m, n in that region are shown.
  • the arrangement of the PD is shown.
  • the MOS regions in which the transistors T1 to T5 of the first pixel portion P m, n , the second pixel portion Q i, j and the third pixel portion R m, n are formed are also schematically shown. Show.
  • FIG. 14 shows a fourth arrangement example of the first pixel unit P m, n , the second pixel unit Q i, j, and the third pixel unit R m, n in the light receiving unit 10 included in the solid-state imaging device of the modification.
  • FIG. FIG. 15 shows a fifth arrangement example of the first pixel unit P m, n , the second pixel unit Q i, j and the third pixel unit R m, n in the light receiving unit 10 included in the solid-state imaging device of the modification.
  • FIG. in any of the fourth arrangement example (Fig. 14) and the fifth arrangement example (Fig. 15) the first pixel unit P m, the arrangement and installation of the color filter of n is the same as the third arrangement example (Fig. 10) is there.
  • the photodiodes of the second pixel portion Q1,1 are individually arranged in 16 pixel regions am , n (m is an odd number and n is an even number) included in the second group.
  • the formed photodiodes are connected to each other in parallel by the metal wiring L i, j and are configured substantially as one photodiode.
  • 15 pixel regions excluding the pixel region a 1 , 8 in the lower right corner include a photodiode and transistors T1 to T5 that are individually formed.
  • R m, n is configured.
  • the pixel region a 1, 2 is partially in addition to the third pixel unit R 1, 2 constituting the photodiode of the second pixel portion Q 1, 1, the second pixel in the pixel area a l, 4
  • a third pixel part R 1, 4 is configured, and in the pixel region a 1 , 6 , in addition to a part of the photodiodes of the second pixel part Q 1 , 1
  • the third pixel portion R1,6 is configured.
  • the pixel region a 3 , 2 includes a third pixel portion R 3, 2
  • the pixel region a 3 , 4 includes the second pixel portion Q
  • third pixel portions R 3 and 4 are formed, and the pixel regions a 3 and 6 have a second pixel portion Q 1,1 in addition to a part of the photodiodes. It consists three pixel portion R 3, 6 is the third pixel unit R 3, 8 is formed in addition to a portion of the photodiode of the second pixel portion Q 1, 1 in the pixel region a 3, 8.
  • the pixel region a 5,2 is the third pixel unit R 5,2 in addition to a portion of the photodiode arrangement of the second pixel portion Q 1, 1, the second pixel in the pixel region a 5,4
  • third pixel parts R 5, 4 are configured, and in the pixel regions a 5 , 6 , in addition to a part of the photodiodes of the second pixel part Q 1 , 1
  • the third pixel portion R 5,6 is configured, and the pixel region a 5,8 includes the third pixel portion R 5,8 in addition to a part of the photodiode of the second pixel portion Q 1,1. .
  • the pixel region a 7,2 includes a third pixel portion R 7,2 in addition to a part of the photodiode of the second pixel portion Q 1,1 , and the pixel region a 7,4 includes the second pixel portion Q.
  • a third pixel part R 7,4 is formed, and in the pixel region a 7,6 a second part of the photodiode of the second pixel part Q 1,1 is added.
  • three pixel portion R 7, 6 is configured, the third pixel unit R 7, 8 in addition to a portion of the photodiode of the second pixel portion Q 1, 1 is constructed in the pixel region a 7, 8.
  • the photodiodes of the second pixel portion Q 1,1 are formed in 16 pixel regions a m, n (m is an odd number and n is an even number) included in the second group.
  • the photodiodes are continuous in the inter-column region, and are further connected to each other in parallel by the metal wiring L i, j, so that it is substantially configured as one photodiode.
  • 15 pixel regions excluding the pixel region a 1 , 8 in the lower right corner include a photodiode and transistors T1 to T5 that are individually formed.
  • R m, n is configured.
  • the third pixel portion R m, n is the same as the fourth arrangement example (FIG. 14).
  • the first pixel portion P m, n is included in all the pixel areas a m, n in each basic area A i, j .
  • Any MOS region (transistors T1 to T5) of n , second pixel portion Q i, j and third pixel portion R m, n is provided. Therefore, the MOS regions can be regularly arranged, and the uniformity of the sensitivity of the photodiode can be improved.
  • the first pixel unit P m, n, the second pixel unit Q i, j and the third pixel unit R m by adjusting the n area of the photosensitive region of each photodiode, the first pixel unit P m , n , the sensitivity of the second pixel part Q i, j and the third pixel part R m, n can be adjusted.
  • a plurality of photosensitive regions are connected to each other by wiring L i, j in each second pixel portion Q i, j , but each second pixel portion Q i , j also has one photodiode, the photo-sensitive region of the photo-diode (the region of the diffusion layer 1) is wide, so contact holes are provided at various locations in the photo-sensitive region in order to reduce the resistance. It is preferable to connect with metal wiring.
  • the solid-state imaging device according to the present invention is not limited to the above-described embodiments and configuration examples, and various modifications are possible.
  • the light receiving surface includes I ⁇ J unit areas A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and the light receiving surface.
  • a first pixel unit P m which is divided into any one of the second groups and includes photodiodes individually formed in each pixel region am , n included in the first group in each unit region A i, j .
  • n is configured, and photodiodes formed in each pixel region am , n included in the second group in each unit region A i, j are connected to each other in parallel to substantially form the second pixel portion Q i.
  • j is configured receiving portion, a first electrical signal having a value corresponding to the amount of charges generated in the (2) each of the first pixel unit P m, n photodiode output Rutotomoni, the second pixel unit Q i, a signal output section for outputting a second electrical signal having a value corresponding to the amount of charges generated in the photodiodes of j, (3) each first pixel unit P m, n And a control unit that controls the output of the first electric signal by the signal output unit and controls the output of the second electric signal by the signal output unit for each second pixel unit Q i, j . .
  • M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is 1 These are integers of N or less, i is an integer of 1 or more and I or less, and j is an integer of 1 or more and J or less.
  • M ⁇ N pixels regions a 1,1 ⁇ a M, the rows and columns of the N, I ⁇ J number of unit regions A 1,1 ⁇ A I, the rows and columns of J is different To do.
  • contact holes are provided at various locations in the photosensitive regions of the photodiodes of the second pixel portions Q i, j and these are connected by metal wiring. In this case, even if the photosensitive region of the photodiode of each second pixel portion Q i, j is wide, the resistance can be reduced.
  • each first pixel portion P m, n and each second pixel portion Q i, j include an amplification MOS transistor that inputs charges generated by the photodiode to the gate terminal. It is preferable to output an electric signal corresponding to the input charge amount from the MOS transistor to the signal output unit. In this way, when each first pixel portion P m, n and each second pixel portion Q i, j are of the APS system, high-speed imaging can be performed with high sensitivity and low noise.
  • the signal output unit includes a first signal output circuit that outputs a first electric signal for each first pixel unit P m, n and a second electric signal for each second pixel unit Q i, j . It is preferable to separately have a second signal output circuit that outputs. In this case, since high-resolution imaging using the first pixel unit P m, n and low-resolution imaging using the second pixel unit Q i, j can be performed in parallel, higher-speed imaging is possible. It is.
  • the control unit controls the first control circuit that controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n , and each second pixel unit Q i, j . It is preferable to separately have a second control circuit that controls the output of the second electric signal by the signal output unit. In this case, it becomes easy to perform high-resolution imaging using the first pixel portion P m, n and low-resolution imaging using the second pixel portion Q i, j independently of each other.
  • a color filter is provided in the photodiode of each first pixel unit Pm, n . In this case, high-resolution color imaging can be performed.
  • a third pixel unit R m, n including photodiodes individually formed in each pixel area am , n included in the second group in each unit area A i, j .
  • signal output section the third pixel unit R m, and outputs a third electrical signal having a value corresponding to the amount of charges generated in the n photodiode
  • control unit It is preferable to control the output of the third electric signal by the signal output unit for each third pixel unit R m, n .
  • each pixel area am , n included in the second group in each unit area A i, j is individually added to a part of the photodiode of the second pixel portion Q i, j.
  • a third pixel portion R m, n including the formed photodiode is configured. From the signal output unit, a third electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each third pixel unit R m, n is output.
  • the control unit controls the output of the third electric signal by the signal output unit for each third pixel unit R m, n .
  • each first pixel portion P m, n , each second pixel portion Q i, j, and each third pixel portion R m, n has an amplifying MOS that inputs charges generated in the photodiode to the gate terminal. It is preferable that an electric signal corresponding to the input charge amount is output from the amplifying MOS transistor to the signal output unit.
  • each first pixel portion P m, n , each second pixel portion Q i, j and each third pixel portion R m, n are of the APS system, high sensitivity, low noise, and high speed Imaging can be performed.
  • the present invention can be used as a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging at high speed.
  • 1,2 ... solid-state imaging device 10 ... receiving unit, 20 ... signal output section, 21 ... first signal output circuit, 22 ... second signal output circuit, 23 n ... holding circuit, 24 j ... holding circuit, 25 and 26 ... difference calculation circuit, 27, 28 ... AD conversion circuit, 30 ... control unit, 31 ... first control circuit, 32 ... second control circuit, 40 ... timing control circuit, 41 ... first timing control circuit, 42 ... second Timing control circuit 51 ... first row selection circuit 52 ... second row selection circuit 60 ... column selection circuit 61 ... first column selection circuit 62 ... second column selection circuit A i, j unit region a m, n ... pixel region, P m, n ... first pixel unit, Q i, j ... second pixel unit, R m, n ... third pixel unit.

Abstract

Disclosed is a solid-state image pickup device (1) comprising a photodetection unit (10), first signal output circuit (21), second signal output circuit (22), first control circuit (31) and second control circuit (32). The photodetection surface of the photodetection unit (10) comprises I × J unit regions A1,1-AI,J arranged in two-dimensional fashion in I rows and J columns, M × N pixel regions a1,1-aM,N arranged in two-dimensional fashion in M rows  and  N columns, and the pixel regions am,n in each of the unit regions ai,j are classified into one or other of a first group and second group. A first pixel unit Pm,n is constituted containing photodiodes individually formed in each pixel region am,n contained in the first group in each of the unit regions AI,J. A second pixel unit Qi,j is substantially constituted by mutual parallel connection of the photodiodes formed in each of the pixel regions am,n contained in the second group in each of the unit regions Ai,j. In this way, a solid-state image pickup device can be realised in which high-resolution image pickup and low-resolution image pickup can be rapidly performed.

Description

固体撮像装置Solid-state imaging device
 本発明は、固体撮像装置に関するものである。 The present invention relates to a solid-state imaging device.
 固体撮像装置は、フォトダイオードを各々含む複数の画素部が2次元配列された受光部と、各画素部のフォトダイオードで発生する電荷の量に応じた値の電気信号を出力する信号出力部と、各画素部について信号出力部による電気信号の出力を制御する制御部と、を備える。固体撮像装置は、信号出力部から出力される電気信号に基づいて、受光部に入力される光の強度分布を求め撮像することができる。 A solid-state imaging device includes a light receiving unit in which a plurality of pixel units each including a photodiode are two-dimensionally arranged, a signal output unit that outputs an electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each pixel unit, And a control unit for controlling the output of an electrical signal by the signal output unit for each pixel unit. The solid-state imaging device can obtain an image of the intensity distribution of the light input to the light receiving unit based on the electrical signal output from the signal output unit.
 特許文献1には、高解像度の撮像を行うとともに低解像度の撮像を行うことができる固体撮像装置が開示されている。特許文献1に開示されている固体撮像装置は、受光部に含まれる複数の画素部それぞれについて個別に電気信号を出力することで高解像度の撮像を行う。また、この固体撮像装置は、受光部に含まれる複数の画素部のうちの一定数の画素部についての電気信号を加算することで低解像度の撮像を行う。このような低解像度撮像の動作はビニング動作と呼ばれる。 Patent Document 1 discloses a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging. The solid-state imaging device disclosed in Patent Document 1 performs high-resolution imaging by individually outputting an electrical signal for each of a plurality of pixel units included in a light receiving unit. In addition, this solid-state imaging device performs low-resolution imaging by adding electrical signals for a certain number of pixel units among a plurality of pixel units included in the light receiving unit. Such a low-resolution imaging operation is called a binning operation.
特開2005-277709号公報JP 2005-277709 A
 特許文献1に開示されている固体撮像装置は、例えば高解像度撮像と低解像度撮像とを切り替えて行う場合に高速な撮像を行うことができない。 The solid-state imaging device disclosed in Patent Document 1 cannot perform high-speed imaging when switching between high-resolution imaging and low-resolution imaging, for example.
 本発明は、上記問題点を解消する為になされたものであり、高解像度撮像および低解像度撮像を高速に行うことができる固体撮像装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging at high speed.
 本発明に係る固体撮像装置は、(1)受光面がI行J列に2次元配列されるI×J個の単位領域A1,1~AI,Jからなるとともに、受光面がM行N列に2次元配列されるM×N個の画素領域a1,1~aM,Nからなり、各単位領域Ai,j内の各画素領域am,nが第一群および第二群の何れかに区分され、各単位領域Ai,j内の第一群に含まれる各画素領域am,nに個別に形成されたフォトダイオードを含む第一画素部Pm,nが構成され、各単位領域Ai,j内の第二群に含まれる各画素領域am,nに形成されたフォトダイオードが並列的に互いに接続されて実質的に第二画素部Qi,jが構成される受光部と、(2)各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号を出力するとともに、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号を出力する信号出力部と、(3)各第一画素部Pm,nについて信号出力部による第一電気信号の出力を制御するとともに、各第二画素部Qi,jについて信号出力部による第二電気信号の出力を制御する制御部と、を備えることを特徴とする。 The solid-state imaging device according to the present invention includes (1) I × J unit regions A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and the light receiving surfaces are M rows. the M × n pixel regions are two-dimensionally arrayed in n rows a 1,1 ~ a M, consist n, each unit region a i, each pixel area in the j a m, n is the first group and the second 1st pixel part Pm, n which is divided into any of a group and contains the photodiode formed in each pixel area am , n included in the 1st group in each unit area Ai, j comprises The photodiodes formed in each pixel region am , n included in the second group in each unit region A i, j are connected to each other in parallel, so that the second pixel portion Q i, j is substantially When configured light receiving unit outputs a first electrical signal having a value corresponding to the amount of charges generated in the (2) each of the first pixel unit P m, n photodiodes, each Second pixel unit Q i, a signal output section for outputting a second electrical signal having a value corresponding to the amount of charges generated in the photodiodes of j, by (3) each first pixel unit P m, the signal output section for n A control unit that controls the output of the first electric signal and controls the output of the second electric signal by the signal output unit for each of the second pixel units Q i, j .
 ただし、M,Nは2以上の整数であり、Iは2以上M未満の整数であり、Jは2以上N未満の整数であり、mは1以上M以下の各整数であり、nは1以上N以下の各整数であり、iは1以上I以下の各整数であり、jは1以上J以下の各整数である。なお、M×N個の画素領域a1,1~aM,Nについての行および列と、I×J個の単位領域A1,1~AI,Jについての行および列とは、相違する。 However, M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is 1 These are integers of N or less, i is an integer of 1 or more and I or less, and j is an integer of 1 or more and J or less. The rows and columns for the M × N pixel regions a 1,1 to a M, N and the rows and columns for the I × J unit regions A 1,1 to A I, J are different. To do.
 本発明に係る固体撮像装置では、受光部の受光面は、I行J列に2次元配列されるI×J個の単位領域A1,1~AI,Jからなるとともに、M行N列に2次元配列されるM×N個の画素領域a1,1~aM,Nからなる。各単位領域Ai,j内の各画素領域am,nが第一群および第二群の何れかに区分され、各単位領域Ai,j内の第一群に含まれる各画素領域am,nに個別に形成されたフォトダイオードを含む第一画素部Pm,nが構成され、各単位領域Ai,j内の第二群に含まれる各画素領域am,nに形成されたフォトダイオードが並列的に互いに接続されて実質的に第二画素部Qi,jが構成される。 In the solid-state imaging device according to the present invention, the light receiving surface of the light receiving unit includes I × J unit regions A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and M rows and N columns. Is composed of M × N pixel regions a 1,1 to a M, N that are two-dimensionally arranged in a single array. Each unit region A i, each pixel region a m in j, n is divided into either of the first group and second group, each unit region A i, each pixel region a included in the first group in the j A first pixel portion P m, n including photodiodes individually formed in m, n is configured and formed in each pixel region am , n included in the second group in each unit region A i, j . The photodiodes are connected to each other in parallel to substantially constitute the second pixel portion Q i, j .
 信号出力部から、各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号が出力され、また、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号が出力される。制御部により、各第一画素部Pm,nについて信号出力部による第一電気信号の出力が制御され、また、各第二画素部Qi,jについて信号出力部による第二電気信号の出力が制御される。第一画素部Pm,nを用いて高速の高解像度撮像を行うことが可能であり、また、第二画素部Qi,jを用いて高速の低解像度撮像を行うことが可能である。 From the signal output unit, a first electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each first pixel unit P m, n is output, and the photodiode of each second pixel unit Q i, j The second electric signal having a value corresponding to the amount of electric charge generated in the step is output. The control unit controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n and outputs the second electric signal by the signal output unit for each second pixel unit Q i, j Is controlled. High-speed high-resolution imaging can be performed using the first pixel portion P m, n , and high-speed low-resolution imaging can be performed using the second pixel portion Q i, j .
 本発明に係る固体撮像装置は、高解像度撮像および低解像度撮像を高速に行うことができる。 The solid-state imaging device according to the present invention can perform high-resolution imaging and low-resolution imaging at high speed.
図1は、本実施形態に係る固体撮像装置1の概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a solid-state imaging device 1 according to the present embodiment. 図2は、本実施形態に係る固体撮像装置1の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment. 図3は、本実施形態に係る固体撮像装置1に含まれる第一画素部Pm,nおよび保持回路23それぞれの回路構成を示す図である。FIG. 3 is a diagram illustrating a circuit configuration of each of the first pixel unit P m, n and the holding circuit 23 n included in the solid-state imaging device 1 according to the present embodiment. 図4は、本実施形態に係る固体撮像装置1に含まれる差演算回路25の回路構成を示す図である。FIG. 4 is a diagram illustrating a circuit configuration of the difference calculation circuit 25 included in the solid-state imaging device 1 according to the present embodiment. 図5は、本実施形態に係る固体撮像装置1に含まれる第二画素部Qi,jおよび保持回路24それぞれの回路構成を示す図である。FIG. 5 is a diagram illustrating a circuit configuration of each of the second pixel unit Q i, j and the holding circuit 24 j included in the solid-state imaging device 1 according to the present embodiment. 図6は、本実施形態に係る固体撮像装置1に含まれる差演算回路26の回路構成を示す図である。FIG. 6 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment. 図7は、本実施形態に係る固体撮像装置1の受光部10の構成例を説明する図である。FIG. 7 is a diagram illustrating a configuration example of the light receiving unit 10 of the solid-state imaging device 1 according to the present embodiment. 図8は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第一配置例を示す図である。FIG. 8 is a diagram illustrating a first arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 図9は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第二配置例を示す図である。Figure 9 is a diagram showing a second arrangement example of the first pixel portion P m in the photodetecting section 10 of embodiment included in the solid-state imaging device 1 according to the embodiment, n and the second pixel unit Q i, j. 図10は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第三配置例を示す図である。FIG. 10 is a diagram illustrating a third arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 図11は、本実施形態に係る固体撮像装置1に含まれる受光部10のレイアウト例を示す図である。FIG. 11 is a diagram illustrating a layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 図12は、図11に示したレイアウト例におけるA-A’断面図である。12 is a cross-sectional view taken along the line A-A ′ in the layout example shown in FIG. 11. 図13は、他の実施形態に係る固体撮像装置2の構成図である。FIG. 13 is a configuration diagram of a solid-state imaging device 2 according to another embodiment. 図14は、変形例の固体撮像装置に含まれる受光部10における第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nの第四配置例を示す図である。FIG. 14 shows a fourth arrangement example of the first pixel unit P m, n , the second pixel unit Q i, j, and the third pixel unit R m, n in the light receiving unit 10 included in the solid-state imaging device of the modification. FIG. 図15は、変形例の固体撮像装置に含まれる受光部10における第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nの第五配置例を示す図である。FIG. 15 shows a fifth arrangement example of the first pixel unit P m, n , the second pixel unit Q i, j, and the third pixel unit R m, n in the light receiving unit 10 included in the solid-state imaging device of the modification. FIG.
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本実施形態に係る固体撮像装置1の概略構成を示す図である。この図に示される固体撮像装置1は、受光部10、第一信号出力回路21、第二信号出力回路22、第一制御回路31および第二制御回路32を備える。 FIG. 1 is a diagram showing a schematic configuration of a solid-state imaging device 1 according to the present embodiment. The solid-state imaging device 1 shown in this figure includes a light receiving unit 10, a first signal output circuit 21, a second signal output circuit 22, a first control circuit 31, and a second control circuit 32.
 受光部10の受光面は、I行J列に2次元配列されるI×J個の単位領域A1,1~AI,Jからなるとともに、M行N列に2次元配列されるM×N個の画素領域a1,1~aM,Nからなる。受光部10の受光面において、単位領域Ai,jは第i行第j列に位置し、画素領域am,nは第m行第n列に位置する。各単位領域Ai,j内の各画素領域am,nが第一群および第二群の何れかに区分され、各単位領域Ai,j内の第一群に含まれる各画素領域am,nに個別に形成されたフォトダイオードを含む第一画素部Pm,nが構成され、各単位領域Ai,j内の第二群に含まれる各画素領域am,nに形成されたフォトダイオードが並列的に互いに接続されて実質的に第二画素部Qi,jが構成される。各第一画素部Pm,nは、共通の構成を有していて、入射光量に応じた量の電荷を発生するフォトダイオードを含む。また、各第二画素部Qi,jは、共通の構成を有しているのが好適であり、入射光量に応じた量の電荷を発生するフォトダイオードを含む。受光部10の詳細については後に説明する。 The light receiving surface of the light receiving unit 10 includes I × J unit regions A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and M × N that is two-dimensionally arranged in M rows and N columns. It consists of N pixel areas a 1,1 to a M, N. On the light receiving surface of the light receiving unit 10, the unit area A i, j is located in the i-th row and j-th column, and the pixel area am , n is located in the m-th row and n-th column. Each unit region A i, each pixel region a m in j, n is divided into either of the first group and second group, each unit region A i, each pixel region a included in the first group in the j A first pixel portion P m, n including photodiodes individually formed in m, n is configured and formed in each pixel region am , n included in the second group in each unit region A i, j . The photodiodes are connected to each other in parallel to substantially constitute the second pixel portion Q i, j . Each first pixel unit P m, n has a common configuration, and includes a photodiode that generates an amount of charge corresponding to the amount of incident light. Each of the second pixel portions Q i, j preferably has a common configuration, and includes a photodiode that generates an amount of charge corresponding to the amount of incident light. Details of the light receiving unit 10 will be described later.
 ここで、M,Nは2以上の整数である。Iは2以上M未満の整数であり、Jは2以上N未満の整数である。mは1以上M以下の各整数であり、nは1以上N以下の各整数である。また、iは1以上I以下の各整数であり、jは1以上J以下の各整数である。IはMの約数であるのが好ましく、JはNの約数であるのが好ましい。例えば、M,Nは1024であって、I,Jは128である。この例の場合、8×8個の第一画素部Pに対して1個の第二画素部Qが設けられる。なお、M×N個の画素領域a1,1~aM,Nについての行および列と、I×J個の単位領域A1,1~AI,Jについての行および列とは、相違する。 Here, M and N are integers of 2 or more. I is an integer of 2 or more and less than M, and J is an integer of 2 or more and less than N. m is an integer from 1 to M, and n is an integer from 1 to N. Further, i is an integer from 1 to I, and j is an integer from 1 to J. I is preferably a divisor of M, and J is preferably a divisor of N. For example, M and N are 1024, and I and J are 128. In the case of this example, one second pixel portion Q is provided for 8 × 8 first pixel portions P. The rows and columns for the M × N pixel regions a 1,1 to a M, N and the rows and columns for the I × J unit regions A 1,1 to A I, J are different. To do.
 各第一画素部Pm,nおよび各第二画素部Qi,jは、PPS(Passive Pixel Sensor)方式のものであってもよいが、APS(Active Pixel Sensor)方式のものであるのが好ましい。すなわち、各第一画素部Pm,nおよび各第二画素部Qi,jは、フォトダイオードで発生した電荷を入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を出力するのが好ましい。 Each first pixel portion P m, n and each second pixel portion Q i, j may be of the PPS (Passive Pixel Sensor) type, but of the APS (Active Pixel Sensor) type. preferable. That is, each first pixel portion P m, n and each second pixel portion Q i, j include an amplification MOS transistor for inputting the charge generated by the photodiode, and the amplification MOS transistor according to the input charge amount. It is preferable to output an electrical signal.
 受光部10に含まれる各第一画素部Pm,nは第一信号出力回路21と接続されている。第一信号出力回路21は、各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号を出力する。より具体的には、第n列の各第一画素部Pm,nの出力端は、共通の読出用配線により第一信号出力回路21と接続されている。第一信号出力回路21は、第1行~第M行について順次に、第m行の各第一画素部Pm,nからのデータをパラレルに入力して、これらのデータをシリアルに第一電気信号として出力する。 Each first pixel unit P m, n included in the light receiving unit 10 is connected to the first signal output circuit 21. The first signal output circuit 21 outputs a first electric signal having a value corresponding to the amount of charge generated in the photodiode of each first pixel unit P m, n . More specifically, the output terminal of each first pixel unit P m, n in the n-th column is connected to the first signal output circuit 21 by a common readout wiring. The first signal output circuit 21 sequentially inputs data from the first pixel portions P m, n in the m-th row in order from the first row to the M-th row and serially inputs these data to the first row. Output as an electrical signal.
 第一制御回路31は、各第一画素部Pm,nについて第一信号出力回路21による第一電気信号の出力を制御するものであって、第一タイミング制御回路41,第一行選択回路51および第一列選択回路61を含む。第一タイミング制御回路41は、第一信号出力回路21,第一行選択回路51および第一列選択回路61それぞれの動作タイミングを制御する。 The first control circuit 31 controls the output of the first electric signal by the first signal output circuit 21 for each first pixel unit P m, n , and includes a first timing control circuit 41, a first row selection circuit, and so on. 51 and a first column selection circuit 61. The first timing control circuit 41 controls the operation timings of the first signal output circuit 21, the first row selection circuit 51, and the first column selection circuit 61.
 第一行選択回路51は、第一タイミング制御回路41によるタイミング制御の下に、受光部10の第一画素部P1,1~PM,Nの2次元配列における各行を順次に指定し、その指定した第m行の各第一画素部Pm,nに所定の制御信号を与えて、第m行の各第一画素部Pm,nからデータを第一信号出力回路21へ出力させる。第一行選択回路51は、M段のシフトレジスタ回路を含み、このシフトレジスタ回路の各段の出力ビットにより各行を順次に指定することができる。 The first row selection circuit 51 sequentially designates each row in the two-dimensional array of the first pixel portions P 1,1 to P M, N of the light receiving unit 10 under the timing control by the first timing control circuit 41, A predetermined control signal is applied to each designated first pixel portion P m, n in the m-th row , and data is output from each first pixel portion P m, n in the m-th row to the first signal output circuit 21. . The first row selection circuit 51 includes an M-stage shift register circuit, and each row can be sequentially designated by an output bit of each stage of the shift register circuit.
 第一列選択回路61は、第一タイミング制御回路41によるタイミング制御の下に、受光部10の第一画素部P1,1~PM,Nの2次元配列における各列を順次に指定し、その指定した第n列を指示する制御信号を第一信号出力回路21に与えて、第m行の各第一画素部Pm,nからのデータを順次に第一信号出力回路21から第一電気信号として出力させる。第一列選択回路61は、N段のシフトレジスタ回路を含み、このシフトレジスタ回路の各段の出力ビットにより各列を順次に指定することができる。 The first column selection circuit 61 sequentially designates each column in the two-dimensional array of the first pixel portions P 1,1 to P M, N of the light receiving unit 10 under the timing control by the first timing control circuit 41. Then, a control signal indicating the designated nth column is given to the first signal output circuit 21, and data from each of the first pixel portions Pm, n in the mth row is sequentially sent from the first signal output circuit 21 to the first signal output circuit 21. One electrical signal is output. The first column selection circuit 61 includes an N-stage shift register circuit, and each column can be sequentially designated by an output bit of each stage of the shift register circuit.
 受光部10に含まれる各第二画素部Qi,jは第二信号出力回路22と接続されている。第二信号出力回路22は、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号を出力する。より具体的には、第j列の各第二画素部Qi,jの出力端は、共通の読出用配線により第二信号出力回路22と接続されている。第二信号出力回路22は、第1行~第I行について順次に、第i行の各第二画素部Qi,jからのデータをパラレルに入力して、これらのデータをシリアルに第二電気信号として出力する。 Each second pixel unit Q i, j included in the light receiving unit 10 is connected to the second signal output circuit 22. The second signal output circuit 22 outputs a second electric signal having a value corresponding to the amount of charge generated in the photodiode of each second pixel portion Q i, j . More specifically, the output terminal of each second pixel portion Q i, j in the j-th column is connected to the second signal output circuit 22 by a common readout wiring. The second signal output circuit 22 inputs data from the second pixel portions Q i, j in the i-th row in parallel for the first row to the I-th row in parallel and serially inputs these data to the second row. Output as an electrical signal.
 第二制御回路32は、各第二画素部Qi,jについて第二信号出力回路22による第二電気信号の出力を制御するものであって、第二タイミング制御回路42,第二行選択回路52および第二列選択回路62を含む。第二タイミング制御回路42は、第二信号出力回路22,第二行選択回路52および第二列選択回路62それぞれの動作タイミングを制御する。 The second control circuit 32 controls the output of the second electric signal by the second signal output circuit 22 for each second pixel portion Q i, j , and includes a second timing control circuit 42, a second row selection circuit, and the like. 52 and a second column selection circuit 62. The second timing control circuit 42 controls operation timings of the second signal output circuit 22, the second row selection circuit 52, and the second column selection circuit 62.
 第二行選択回路52は、第二タイミング制御回路42によるタイミング制御の下に、受光部10の第二画素部Q1,1~QI,Jの2次元配列における各行を順次に指定し、その指定した第i行の各第二画素部Qi,jに所定の制御信号を与えて、第i行の各第二画素部Qi,jからデータを第二信号出力回路22へ出力させる。第二行選択回路52は、I段のシフトレジスタ回路を含み、このシフトレジスタ回路の各段の出力ビットにより各行を順次に指定することができる。 Under the timing control by the second timing control circuit 42, the second row selection circuit 52 sequentially designates each row in the two-dimensional array of the second pixel portions Q 1,1 to Q I, J of the light receiving unit 10, the i each second pixel portion Q i of rows that specified by giving a predetermined control signal to j, and outputs the second pixel portion Q i of the i-th row, the data from the j to the second signal output circuit 22 . The second row selection circuit 52 includes an I-stage shift register circuit, and each row can be sequentially designated by an output bit of each stage of the shift register circuit.
 第二列選択回路62は、第二タイミング制御回路42によるタイミング制御の下に、受光部10の第二画素部Q1,1~QI,Jの2次元配列における各列を順次に指定し、その指定した第j列を指示する制御信号を第二信号出力回路22に与えて、第i行の各第二画素部Qi,jからのデータを順次に第二信号出力回路22から第二電気信号として出力させる。第二列選択回路62は、J段のシフトレジスタ回路を含み、このシフトレジスタ回路の各段の出力ビットにより各列を順次に指定することができる。 The second column selection circuit 62 sequentially designates each column in the two-dimensional array of the second pixel portions Q 1,1 to Q I, J of the light receiving unit 10 under the timing control by the second timing control circuit 42. Then, a control signal indicating the designated j-th column is given to the second signal output circuit 22, and data from each second pixel portion Q i, j in the i-th row is sequentially sent from the second signal output circuit 22 to the second signal output circuit 22. Two electrical signals are output. The second column selection circuit 62 includes a J-stage shift register circuit, and each column can be sequentially designated by the output bit of each stage of the shift register circuit.
 第一信号出力回路21および第二信号出力回路22は、各第一画素部Pm,nのフォトダイオードPDで発生する電荷の量に応じた値の第一電気信号を出力するとともに、各第二画素部Qi,jのフォトダイオードPDで発生する電荷の量に応じた値の第二電気信号を出力する信号出力部を構成している。第一制御回路31および第二制御回路32は、各第一画素部Pm,nについて信号出力部による第一電気信号の出力を制御するとともに、各第二画素部Qi,jについて信号出力部による第二電気信号の出力を制御する制御部を構成している。 The first signal output circuit 21 and the second signal output circuit 22 output a first electric signal having a value corresponding to the amount of charge generated in the photodiode PD of each first pixel unit P m, n , and A signal output unit configured to output a second electric signal having a value corresponding to the amount of charge generated in the photodiode PD of the two-pixel unit Q i, j is configured. The first control circuit 31 and the second control circuit 32 control the output of the first electric signal by the signal output unit for each first pixel unit P m, n and output the signal for each second pixel unit Q i, j. The control part which controls the output of the 2nd electric signal by a part is comprised.
 なお、第一信号出力回路21と第二信号出力回路22とは、各行につきパラレルに入力してシリアルに出力するデータの個数の相違に関する点を除いて、同様の構成を有していてもよい。第一行選択回路51と第二行選択回路52とは、指定する行の個数の相違に関する点を除いて、同様の構成を有していてもよい。また、第一列選択回路61と第二列選択回路62とは、指定する列の個数の相違に関する点を除いて、同様の構成を有していてもよい。 The first signal output circuit 21 and the second signal output circuit 22 may have the same configuration except for the difference in the number of data that are input in parallel for each row and output serially. . The first row selection circuit 51 and the second row selection circuit 52 may have the same configuration except for the point related to the difference in the number of designated rows. Further, the first column selection circuit 61 and the second column selection circuit 62 may have the same configuration except for the point relating to the difference in the number of designated columns.
 図2は、本実施形態に係る固体撮像装置1の構成を示す図である。この図では、受光部10については、第m行第n列に位置する第一画素部Pm,nが代表して示されており、また、第i行第j列に位置する第二画素部Qi,jが代表して示されている。受光部10と第一信号出力回路21との間の接続関係、および、受光部10と第一行選択回路51との間の接続関係については、第一画素部Pm,nに関連するものが示されている。受光部10と第二信号出力回路22との間の接続関係、および、受光部10と第二行選択回路52との間の接続関係については、第二画素部Qi,jに関連するものが示されている。第一信号出力回路21については第一画素部Pm,nに関連する構成要素が示されている。また、第二信号出力回路22については第二画素部Qi,jに関連する構成要素が示されている。 FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment. In this figure, for the light receiving unit 10, the first pixel portion P m, n located in the m-th row and the n-th column is representatively shown, and the second pixel located in the i-th row and the j-th column is shown. Part Q i, j is shown representatively. The connection relationship between the light receiving unit 10 and the first signal output circuit 21 and the connection relationship between the light receiving unit 10 and the first row selection circuit 51 are related to the first pixel unit P m, n. It is shown. The connection relationship between the light receiving unit 10 and the second signal output circuit 22 and the connection relationship between the light receiving unit 10 and the second row selection circuit 52 are related to the second pixel unit Q i, j. It is shown. For the first signal output circuit 21, components related to the first pixel portion P m, n are shown. In addition, regarding the second signal output circuit 22, components related to the second pixel portion Q i, j are shown.
 第一信号出力回路21は、N個の保持回路23~23、差演算回路25およびAD変換回路27を含む。N個の保持回路23~23は共通の構成を有する。各保持回路23は、第n列の各第一画素部Pm,nの出力端と共通の読出用配線Vline1(n)により接続されていて、これらのうちの何れかの第一画素部Pm,nから出力されて読出用配線Vline1(n)を経て入力されたデータを保持し、その保持したデータを配線Hline_s1,Hline_n1へ出力する。差演算回路25は、配線Hline_s1,Hline_n1を経て到達する2つのデータを入力して、これら2つのデータの差に応じたデータをAD変換回路27へ出力する。AD変換回路27は、差演算回路25から出力されたアナログデータを入力して、このアナログデータに応じたデジタルデータを第一電気信号として出力する。 The first signal output circuit 21 includes N holding circuits 23 1 to 23 N , a difference calculation circuit 25 and an AD conversion circuit 27. The N holding circuits 23 1 to 23 N have a common configuration. Each holding circuit 23 n is connected to the output terminal of each first pixel unit P m, n in the n-th column by a common readout wiring Vline1 (n), and any one of these first pixel units Data output from P m, n and input via the read wiring Vline1 (n) is held, and the held data is output to the wirings Hline_s1 and Hline_n1. The difference calculation circuit 25 inputs two data that arrive via the wirings Hline_s1 and Hline_n1, and outputs data corresponding to the difference between the two data to the AD conversion circuit 27. The AD conversion circuit 27 receives the analog data output from the difference calculation circuit 25 and outputs digital data corresponding to the analog data as a first electric signal.
 第二信号出力回路22は、J個の保持回路24~24、差演算回路26およびAD変換回路28を含む。J個の保持回路24~24は共通の構成を有する。各保持回路24は、第j列の各第二画素部Qi,jの出力端と共通の読出用配線Vline2(j)により接続されていて、これらのうちの何れかの第二画素部Qi,jから出力されて読出用配線Vline2(j)を経て入力されたデータを保持し、その保持したデータを配線Hline_s2,Hline_n2へ出力する。差演算回路26は、配線Hline_s2,Hline_n2を経て到達する2つのデータを入力して、これら2つのデータの差に応じたデータをAD変換回路28へ出力する。AD変換回路28は、差演算回路26から出力されたアナログデータを入力して、このアナログデータに応じたデジタルデータを第二電気信号として出力する。 The second signal output circuit 22 includes J holding circuits 24 1 to 24 J , a difference calculation circuit 26, and an AD conversion circuit 28. The J holding circuits 24 1 to 24 J have a common configuration. Each holding circuit 24 j is connected to the output terminal of each second pixel portion Q i, j in the j-th column by a common readout wiring Vline2 (j), and any one of these second pixel portions The data output from Q i, j and input via the read wiring Vline2 (j) is held, and the held data is output to the wirings Hline_s2 and Hline_n2. The difference calculation circuit 26 inputs two data arrived via the wirings Hline_s2 and Hline_n2, and outputs data corresponding to the difference between the two data to the AD conversion circuit 28. The AD conversion circuit 28 receives the analog data output from the difference calculation circuit 26, and outputs digital data corresponding to the analog data as a second electric signal.
 図3は、本実施形態に係る固体撮像装置1に含まれる第一画素部Pm,nおよび保持回路23それぞれの回路構成を示す図である。この図では、代表して第一画素部Pm,nが示され、また、代表して保持回路23が示されている。 FIG. 3 is a diagram illustrating a circuit configuration of each of the first pixel unit P m, n and the holding circuit 23 n included in the solid-state imaging device 1 according to the present embodiment. In this figure, the first pixel portion P m, n is shown as a representative, and the holding circuit 23 n is shown as a representative.
 各第一画素部Pm,nは、APS方式のものであって、フォトダイオードPDおよび5個のMOSトランジスタT1~T5を含む。この図に示されるように、トランジスタT1,トランジスタT2およびフォトダイオードPDは順に直列的に接続されていて、基準電圧Vb1がトランジスタT1のドレイン端子に入力され、フォトダイオードPDのアノ-ド端子が接地されている。 Each first pixel portion P m, n is of the APS type, and includes a photodiode PD and five MOS transistors T1 to T5. As shown in this figure, the transistor T1, the transistor T2, and the photodiode PD are connected in series in order, the reference voltage Vb1 is input to the drain terminal of the transistor T1, and the anode terminal of the photodiode PD is grounded. Has been.
 トランジスタT3およびトランジスタT4は直列的に接続されていて、基準電圧Vb2がトランジスタT3のドレイン端子に入力され、トランジスタT4のソース端子が配線Vline1(n)に接続されている。トランジスタT1とトランジスタT2との接続点は、トランジスタT5を介してトランジスタT3のゲート端子に接続されている。また、配線Vline1(n)には定電流源が接続されている。増幅用トランジスタT3は、ゲート端子に入力される電荷の量に応じた値の電気信号を出力する。 The transistor T3 and the transistor T4 are connected in series, the reference voltage Vb2 is input to the drain terminal of the transistor T3, and the source terminal of the transistor T4 is connected to the wiring Vline1 (n). A connection point between the transistor T1 and the transistor T2 is connected to the gate terminal of the transistor T3 through the transistor T5. A constant current source is connected to the wiring Vline1 (n). The amplifying transistor T3 outputs an electric signal having a value corresponding to the amount of charge input to the gate terminal.
 Reset1(m)信号がリセット用のトランジスタT1のゲート端子に入力され、Trans1(m)信号が転送用のトランジスタT2のゲート端子に入力され、Address1(m)信号が出力選択用のトランジスタT4のゲート端子に入力され、また、Hold1(m)信号がトランジスタT5のゲート端子に入力される。これらReset1(m)信号,Trans1(m)信号,Address1(m)信号およびHold1(m)信号は、第一タイミング制御回路41による制御の下に第一行選択回路51から出力され、第m行の各第一画素部Pm,nに対して共通に入力される。 The Reset1 (m) signal is input to the gate terminal of the reset transistor T1, the Trans1 (m) signal is input to the gate terminal of the transfer transistor T2, and the Address1 (m) signal is input to the gate of the output selection transistor T4. The Hold1 (m) signal is input to the terminal of the transistor T5. The Reset1 (m) signal, Trans1 (m) signal, Address1 (m) signal, and Hold1 (m) signal are output from the first row selection circuit 51 under the control of the first timing control circuit 41, and the mth row. Are commonly input to the first pixel portions Pm, n .
 Reset1(m)信号およびTrans1(m)信号がハイレベルであるとき、フォトダイオードPDの接合容量部(電荷蓄積部)が放電され、さらに、Hold1(m)信号もハイレベルであると、トランジスタT3のゲート端子の電位がリセットされる。その後に、Reset1(m)信号,Trans1(m)信号およびHold1(m)信号がローレベルになると、フォトダイオードで発生した電荷は接合容量部に蓄積されていく。Hold1(m)信号がローレベルであって、Address1(m)信号がハイレベルであると、第一画素部Pm,nから配線Vline1(n)へノイズ成分が出力される。そして、Trans1(m)信号,Hold1(m)信号およびAddress1(m)信号がハイレベルになると、フォトダイオードPDの接合容量部に蓄積されている電荷の量に応じた電圧値が配線Vline1(n)へ信号成分として出力される。 When the Reset1 (m) signal and the Trans1 (m) signal are at a high level, the junction capacitance portion (charge storage portion) of the photodiode PD is discharged, and when the Hold1 (m) signal is also at a high level, the transistor T3 The potential of the gate terminal is reset. After that, when the Reset1 (m) signal, Trans1 (m) signal, and Hold1 (m) signal become low level, the charge generated in the photodiode is accumulated in the junction capacitor. When the Hold1 (m) signal is at a low level and the Address1 (m) signal is at a high level, a noise component is output from the first pixel unit Pm , n to the wiring Vline1 (n). When the Trans1 (m) signal, the Hold1 (m) signal, and the Address1 (m) signal become high level, the voltage value corresponding to the amount of charge accumulated in the junction capacitance portion of the photodiode PD is changed to the wiring Vline1 (n ) As a signal component.
 各保持回路23は、2つの容量素子C,C、および、4つのスイッチSW11,SW12,SW21,SW22を含む。この保持回路23では、スイッチSW11およびスイッチSW12は、直列的に接続されて配線Vline1(n)と配線Hline_s1との間に設けられ、容量素子Cの一端は、スイッチSW11とスイッチSW12との間の接続点に接続され、容量素子Cの他端は接地されている。また、スイッチSW21およびスイッチSW22は、直列的に接続されて配線Vline1(n)と配線Hline_n1との間に設けられ、容量素子Cの一端は、スイッチSW21とスイッチSW22との間の接続点に接続され、容量素子Cの他端は接地されている。 Each holding circuit 23 n includes two capacitive elements C 1 , C 2 and four switches SW 11 , SW 12 , SW 21 , SW 22 . In the holding circuit 23 n, the switch SW 11 and the switch SW 12 is provided between the serially connected to the wiring Vline1 (n) and the wiring Hline_s1, one terminal of the capacitance C 1, the switch SW 11 and the switch is connected to the connection point between the SW 12, the other end of the capacitive element C 1 is grounded. The switch SW 21 and the switch SW 22 is provided between the serially connected to the wiring Vline1 (n) and the wiring Hline_n1, one terminal of the capacitance C 2 is between the switch SW 21 and the switch SW 22 is connected to the connection point, the other end of the capacitive element C 2 is grounded.
 この保持回路23では、スイッチSW11は、第一列選択回路61から供給されるset_s1信号のレベルに応じて開閉する。スイッチSW21は、第一列選択回路61から供給されるset_n1信号のレベルに応じて開閉する。set_s1信号およびset_n1信号は、N個の保持回路23~23に対して共通に入力される。スイッチSW12,SW22は、第一列選択回路61から供給されるhshift1(n)信号のレベルに応じて開閉する。 In the holding circuit 23 n , the switch SW 11 opens and closes according to the level of the set_s1 signal supplied from the first column selection circuit 61. The switch SW 21 opens and closes according to the level of the set_n1 signal supplied from the first column selection circuit 61. The set_s1 signal and the set_n1 signal are input in common to the N holding circuits 23 1 to 23 N. The switches SW 12 and SW 22 open and close according to the level of the hshift1 (n) signal supplied from the first column selection circuit 61.
 この保持回路23では、set_n1信号がハイレベルからローレベルに転じてスイッチSW21が開くときに第一画素部Pm,nから配線Vline1(n)へ出力されていたノイズ成分が、それ以降、容量素子Cにより電圧値out_n1(n)として保持される。set_s1信号がハイレベルからローレベルに転じてスイッチSW11が開くときに第一画素部Pm,nから配線Vline1(n)へ出力されていた信号成分が、それ以降、容量素子Cにより電圧値out_s1(n)として保持される。そして、hshift1(n)信号がハイレベルになると、スイッチSW12が閉じて、容量素子Cにより保持されていた電圧値out_s1(n)が配線Hline_s1へ出力され、また、スイッチSW22が閉じて、容量素子Cにより保持されていた電圧値out_n1(n)が配線Hline_n1へ出力される。これら電圧値out_s1(n)と電圧値out_n1(n)との差が、第一画素部Pm,nのフォトダイオードPDで発生した電荷の量に応じた電圧値を表す。 In the holding circuit 23 n , the noise component output from the first pixel unit P m, n to the wiring Vline1 (n) when the set_n1 signal changes from the high level to the low level and the switch SW 21 is opened is thereafter It is held as a voltage value out_n1 (n) by the capacitance element C 2. set_s1 signal is first pixel unit P m, the signal component being output from the n wiring Vline1 to (n) when the switch SW 11 is opened in turn from a high level to a low level, thereafter, the voltage by the capacitive element C 1 Stored as value out_s1 (n). When hshift1 (n) signal becomes a high level, the switch SW 12 is closed, is output to the voltage value out_s1 (n) is the wiring Hline_s1 that has been held by the capacitor element C 1, The switch SW 22 is closed , voltage value out_n1 that has been held by the capacitor element C 2 (n) is output to the wiring Hline_n1. The difference between the voltage value out_s1 (n) and the voltage value out_n1 (n) represents a voltage value corresponding to the amount of charge generated in the photodiode PD of the first pixel unit Pm , n .
 図4は、本実施形態に係る固体撮像装置1に含まれる差演算回路25の回路構成を示す図である。この図に示されるように、差演算回路25は、アンプA~A、スイッチSW,SW、および、抵抗器R~Rを含む。アンプAの反転入力端子は、抵抗器Rを介してバッファアンプAの出力端子と接続され、抵抗器Rを介して自己の出力端子と接続されている。アンプAの非反転入力端子は、抵抗器Rを介してバッファアンプAの出力端子と接続され、抵抗器Rを介して接地電位と接続されている。アンプAの出力端子はAD変換回路27の入力端子と接続されている。バッファアンプAの入力端子は、配線Hline_s1を介してN個の保持回路23~23と接続され、スイッチSWを介して接地電位と接続されている。バッファアンプAの入力端子は、配線Hline_n1を介してN個の保持回路23~23と接続され、スイッチSWを介して接地電位と接続されている。 FIG. 4 is a diagram illustrating a circuit configuration of the difference calculation circuit 25 included in the solid-state imaging device 1 according to the present embodiment. As shown in this figure, the difference calculation circuit 25 includes amplifiers A 1 to A 3 , switches SW 1 and SW 2 , and resistors R 1 to R 4 . Inverting input terminal of the amplifier A 3 is connected to the output terminal of the buffer amplifier A 1 via a resistor R 1, and is connected to its own output terminal via the resistor R 3. The non-inverting input terminal of the amplifier A 3 is connected to the output terminal of the buffer amplifier A 2 via the resistor R 2, and is connected to the ground potential via the resistor R 4. The output terminal of the amplifier A 3 is connected to the input terminal of the AD conversion circuit 27. Input terminal of the buffer amplifier A 1 is connected to the N holding circuits 23 1 ~ 23 N via the wiring Hline_s1, it is connected to the ground potential via the switch SW 1. The input terminal of the buffer amplifier A 2 is connected to the N holding circuits 23 1 to 23 N through the wiring Hline_n 1 and is connected to the ground potential through the switch SW 2 .
 差演算回路25のスイッチSW,SWは、第一列選択回路61から供給されるhreset1信号により制御されて開閉動作する。スイッチSWが閉じることで、バッファアンプAの入力端子に入力される電圧値がリセットされる。スイッチSWが閉じることで、バッファアンプAの入力端子に入力される電圧値がリセットされる。スイッチSW,SWが開いているときに、N個の保持回路23~23のうちの何れかの保持回路23から配線Hline_s1,Hline_n1へ出力された電圧値out_s1(n),out_n1(n)が、バッファアンプA,Aの入力端子に入力される。バッファアンプA,Aそれぞれの増幅率を1とし、4個の抵抗器R~Rそれぞれの抵抗値が互いに等しいとすると、差演算回路25の出力端子から出力される電圧値は、配線Hline_s1および配線Hline_n1それぞれを経て入力される電圧値の差を表し、ノイズ成分が除去されたものとなる。 The switches SW 1 and SW 2 of the difference calculation circuit 25 are controlled by the hreset1 signal supplied from the first column selection circuit 61 to open and close. When the switch SW 1 is closed, the voltage value input to the input terminal of the buffer amplifier A 1 is reset. When the switch SW 2 is closed, the voltage value input to the input terminal of the buffer amplifier A 2 is reset. When the switch SW 1, SW 2 is open, the wiring from one of the holding circuit 23 n of the N holding circuits 23 1 ~ 23 N Hline_s1, the voltage value outputted to the Hline_n1 out_s1 (n), out_n1 (n) is input to the input terminals of the buffer amplifiers A 1 and A 2 . Assuming that the amplification factors of the buffer amplifiers A 1 and A 2 are 1, and the resistance values of the four resistors R 1 to R 4 are equal to each other, the voltage value output from the output terminal of the difference calculation circuit 25 is The difference between the voltage values input through the wiring Hline_s1 and the wiring Hline_n1 is represented, and the noise component is removed.
 図5は、本実施形態に係る固体撮像装置1に含まれる第二画素部Qi,jおよび保持回路24それぞれの回路構成を示す図である。この図では、代表して第二画素部Qi,jが示され、また、代表して保持回路24が示されている。 FIG. 5 is a diagram illustrating a circuit configuration of each of the second pixel unit Q i, j and the holding circuit 24 j included in the solid-state imaging device 1 according to the present embodiment. In this figure, the second pixel portion Q i, j is shown as a representative, and the holding circuit 24 j is shown as a representative.
 各第二画素部Qi,jは、第一画素部Pm,nと同様の構成であり、APS方式のものであって、フォトダイオードPDおよび5個のMOSトランジスタT1~T5を含む。第二画素部Qi,jにおけるこれらの要素の間の接続関係は、第一画素部Pm,nにおける接続関係と同様である。トランジスタT4のソース端子が配線Vline2(j)に接続されている。また、配線Vline2(j)には定電流源が接続されている。増幅用トランジスタT3は、ゲート端子に入力される電荷の量に応じた値の電気信号を出力する。 Each second pixel portion Q i, j has the same configuration as the first pixel portion P m, n and is of the APS system, and includes a photodiode PD and five MOS transistors T1 to T5. The connection relationship between these elements in the second pixel portion Q i, j is the same as the connection relationship in the first pixel portion P m, n . The source terminal of the transistor T4 is connected to the wiring Vline2 (j). A constant current source is connected to the wiring Vline2 (j). The amplifying transistor T3 outputs an electric signal having a value corresponding to the amount of charge input to the gate terminal.
 Reset2(i)信号がリセット用のトランジスタT1のゲート端子に入力され、Trans2(i)信号が転送用のトランジスタT2のゲート端子に入力され、Address2(i)信号が出力選択用のトランジスタT4のゲート端子に入力され、また、Hold2(i)信号がトランジスタT5のゲート端子に入力される。これらReset2(i)信号,Trans2(i)信号,Address2(i)信号およびHold2(i)信号は、第二タイミング制御回路42による制御の下に第二行選択回路52から出力され、第i行の各第二画素部Qi,jに対して共通に入力される。第二画素部Qi,jの動作は、第一画素部Pm,nの動作と同様である。 The Reset2 (i) signal is input to the gate terminal of the reset transistor T1, the Trans2 (i) signal is input to the gate terminal of the transfer transistor T2, and the Address2 (i) signal is input to the gate of the output selection transistor T4. The Hold2 (i) signal is input to the terminal of the transistor T5. The Reset2 (i) signal, Trans2 (i) signal, Address2 (i) signal, and Hold2 (i) signal are output from the second row selection circuit 52 under the control of the second timing control circuit 42, and the i-th row. Are input in common to each of the second pixel portions Q i, j . The operation of the second pixel unit Q i, j is the same as the operation of the first pixel unit P m, n .
 各保持回路24は、保持回路23と同様の構成であり、2つの容量素子C,C、および、4つのスイッチSW11,SW12,SW21,SW22を含む。保持回路24におけるこれらの要素の間の接続関係は、保持回路23における接続関係と同様である。スイッチSW11,SW21は配線Vline2(j)と接続されている。スイッチSW12は配線Hline_s2と接続されている。スイッチSW22は配線Hline_n2と接続されている。 Each holding circuit 24 j has the same configuration as the holding circuit 23 n and includes two capacitive elements C 1 and C 2 and four switches SW 11 , SW 12 , SW 21 , and SW 22 . The connection relationship between these elements in the holding circuit 24 j is the same as the connection relationship in the holding circuit 23 n . The switches SW 11 and SW 21 are connected to the wiring Vline2 (j). Switch SW 12 is connected to the wiring Hline_s2. The switch SW 22 is connected to the wiring Hline_n2.
 この保持回路24では、スイッチSW11は、第二列選択回路62から供給されるset_s2信号のレベルに応じて開閉する。スイッチSW21は、第二列選択回路62から供給されるset_n2信号のレベルに応じて開閉する。set_s2信号およびset_n2信号は、J個の保持回路24~24に対して共通に入力される。スイッチSW12,SW22は、第二列選択回路62から供給されるhshift2(j)信号のレベルに応じて開閉する。 In the holding circuit 24 j , the switch SW 11 opens and closes according to the level of the set_s2 signal supplied from the second column selection circuit 62. The switch SW 21 opens and closes according to the level of the set_n2 signal supplied from the second column selection circuit 62. The set_s2 signal and the set_n2 signal are input in common to the J holding circuits 24 1 to 24 J. The switches SW 12 and SW 22 open and close according to the level of the hshift2 (j) signal supplied from the second column selection circuit 62.
 保持回路24の動作は、保持回路23の動作と同様である。hshift2(j)信号がハイレベルになると、スイッチSW12が閉じて、容量素子Cにより保持されていた電圧値out_s2(j)が配線Hline_s2へ出力され、また、スイッチSW22が閉じて、容量素子Cにより保持されていた電圧値out_n2(j)が配線Hline_n2へ出力される。これら電圧値out_s2(j)と電圧値out_n2(j)との差が、第二画素部Qi,jのフォトダイオードPDで発生した電荷の量に応じた電圧値を表す。 The operation of the holding circuit 24 j is the same as the operation of the holding circuit 23 n . When hshift2 (j) signal becomes a high level, the switch SW 12 is closed, the voltage value out_s2 that has been held by the capacitor element C 1 (j) is output to the wiring Hline_s2, The switch SW 22 is closed, capacitor voltage out_n2 which has been held by the element C 2 (j) is output to the wiring Hline_n2. The difference between the voltage value out_s2 (j) and the voltage value out_n2 (j) represents a voltage value corresponding to the amount of charge generated in the photodiode PD of the second pixel unit Q i, j .
 図6は、本実施形態に係る固体撮像装置1に含まれる差演算回路26の回路構成を示す図である。差演算回路26は、差演算回路25と同様の構成であり、アンプA~A、スイッチSW,SW、および、抵抗器R~Rを含む。差演算回路26におけるこれらの要素の間の接続関係は、差演算回路25における接続関係と同様である。バッファアンプAの入力端子は、配線Hline_s2を介してJ個の保持回路24~24と接続され、スイッチSWを介して接地電位と接続されている。バッファアンプAの入力端子は、配線Hline_n2を介してJ個の保持回路24~24と接続され、スイッチSWを介して接地電位と接続されている。 FIG. 6 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment. The difference calculation circuit 26 has the same configuration as the difference calculation circuit 25, and includes amplifiers A 1 to A 3 , switches SW 1 and SW 2 , and resistors R 1 to R 4 . The connection relationship between these elements in the difference calculation circuit 26 is the same as the connection relationship in the difference calculation circuit 25. Input terminal of the buffer amplifier A 1 is connected to the J hold circuits 24 1 ~ 24 J through the wire Hline_s2, is connected to the ground potential via the switch SW 1. Input terminal of the buffer amplifier A 2 is connected to the J hold circuits 24 1 ~ 24 J through the wire Hline_n2, is connected to the ground potential via the switch SW 2.
 差演算回路26のスイッチSW,SWは、第二列選択回路62から供給されるhreset2信号により制御されて開閉動作する。スイッチSWが閉じることで、バッファアンプAの入力端子に入力される電圧値がリセットされる。スイッチSWが閉じることで、バッファアンプAの入力端子に入力される電圧値がリセットされる。スイッチSW,SWが開いているときに、J個の保持回路24~24のうちの何れかの保持回路24から配線Hline_s2,Hline_n2へ出力された電圧値out_s2(j),out_n2(j)が、バッファアンプA,Aの入力端子に入力される。バッファアンプA,Aそれぞれの増幅率を1とし、4個の抵抗器R~Rそれぞれの抵抗値が互いに等しいとすると、差演算回路26の出力端子から出力される電圧値は、配線Hline_s2および配線Hline_n2それぞれを経て入力される電圧値の差を表し、ノイズ成分が除去されたものとなる。 The switches SW 1 and SW 2 of the difference calculation circuit 26 are controlled by the hreset2 signal supplied from the second column selection circuit 62 to open and close. When the switch SW 1 is closed, the voltage value input to the input terminal of the buffer amplifier A 1 is reset. When the switch SW 2 is closed, the voltage value input to the input terminal of the buffer amplifier A 2 is reset. When the switch SW 1, SW 2 is open, the wiring from any holding circuit 24 j of the J holding circuits 24 1 ~ 24 J Hline_s2, the voltage value outputted to the Hline_n2 out_s2 (j), out_n2 (j) is input to the input terminals of the buffer amplifiers A 1 and A 2 . Assuming that the amplification factors of the buffer amplifiers A 1 and A 2 are 1, and the resistance values of the four resistors R 1 to R 4 are equal to each other, the voltage value output from the output terminal of the difference calculation circuit 26 is The difference between the voltage values input through the wiring Hline_s2 and the wiring Hline_n2 is represented, and the noise component is removed.
 図7は、本実施形態に係る固体撮像装置1の受光部10の構成例を説明する図である。この図は、受光部10の受光面における各単位領域Ai,jおよび各画素領域am,nの配置関係説明するものである。なお、この図は、各単位領域Ai,jおよび各画素領域am,nの形状を説明するものではない。各領域の形状は、共通であるのが好ましいが、必ずしも矩形である必要はない。下から順に第1行,第2行,第3行,・・・とし、左から順に第1列,第2列,第3列,・・・とする。 FIG. 7 is a diagram illustrating a configuration example of the light receiving unit 10 of the solid-state imaging device 1 according to the present embodiment. This figure explains the positional relationship between the unit areas A i, j and the pixel areas am , n on the light receiving surface of the light receiving unit 10. This figure does not explain the shape of each unit area A i, j and each pixel area am , n . The shape of each region is preferably common, but is not necessarily rectangular. First row, second row, third row,... From the bottom, first column, second column, third column,.
 受光部10の受光面は、I行J列に2次元配列されるI×J個の単位領域A1,1~AI,Jからなるとともに、M行N列に2次元配列されるM×N個の画素領域a1,1~aM,Nからなる。この図において、各単位領域Ai,jは太線で囲われた領域であり、各画素領域am,nは太線または細線で囲われた領域である。単位領域Ai,jは第i行第j列に位置し、画素領域am,nは第m行第n列に位置する。各単位領域には8×8個の画素領域が含まれるとする。すなわち、各単位領域Ai,jには8×8個の画素領域a8i-7,8j-7~a8i,8jが含まれる。 The light receiving surface of the light receiving unit 10 includes I × J unit regions A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and M × N that is two-dimensionally arranged in M rows and N columns. It consists of N pixel areas a 1,1 to a M, N. In this figure, each unit area A i, j is an area surrounded by a thick line, and each pixel area am , n is an area surrounded by a thick line or a thin line. The unit area A i, j is located in the i-th row and the j-th column, and the pixel area am , n is located in the m-th row and the n-th column. Assume that each unit region includes 8 × 8 pixel regions. That is, each unit area A i, j includes 8 × 8 pixel areas a 8i-7,8j-7 to a 8i, 8j .
 各単位領域Ai,j内の各画素領域am,nが第一群および第二群の何れかに区分される。この図では、第二群に含まれる画素領域am,nはハッチングで示されている。mが奇数であってnが偶数である画素領域am,nは第二群に含まれる。その他の画素領域am,nは第一群に含まれる。第一画素部Pm,nは、第一群に含まれる画素領域am,nに個別に形成されたフォトダイオードを含んで構成される。第二画素部Qi,jは、単位領域Ai,j内の第二群に含まれる各画素領域am,n(この例では16個の画素領域)に形成されたフォトダイオードが並列的に互いに接続されて構成される。 Each pixel area am , n in each unit area A i, j is divided into either the first group or the second group. In this figure, pixel areas am , n included in the second group are indicated by hatching. pixel region m is an odd number n is even a m, n is included in the second group. Other pixel regions am , n are included in the first group. The first pixel unit P m, n is configured to include photodiodes individually formed in the pixel regions a m, n included in the first group. In the second pixel portion Q i, j , photodiodes formed in each pixel area a m, n (16 pixel areas in this example) included in the second group in the unit area A i, j are arranged in parallel. Connected to each other.
 なお、単位領域Ai,j内の第二群に含まれる各画素領域am,nに形成されたフォトダイオードが並列的に互いに接続されて第二画素部Qi,jが構成されるとは、これらの画素領域am,nに個別に形成されたフォトダイオードがメタル配線等により並列的に互いに接続されて実質的に1つのフォトダイオードとして扱われ得る場合と、これら画素領域am,nに形成されたフォトダイオードが1つの連続したフォトダイオードの一部である場合と、これら2つの場合の双方を含む場合とを含む。各単位領域Ai,j内の構成は共通であるのが好ましい。各第一画素部Pm,nは共通の構成を有しているのが好ましい。また、各第二画素部Qi,jは共通の構成を有しているのが好ましい。 In addition, when the photodiodes formed in each pixel region am , n included in the second group in the unit region A i, j are connected to each other in parallel, the second pixel portion Q i, j is configured. includes the case where these pixel areas a m, a photodiode which is formed separately n can be treated in parallel are connected to each other as a substantially single photodiode by a metal wire or the like, the pixel regions a m, The case where the photodiode formed in n is a part of one continuous photodiode and the case where both of these two cases are included are included. The unit regions A i, j preferably have a common configuration. Each first pixel portion P m, n preferably has a common configuration. The second pixel portions Q i, j preferably have a common configuration.
 図8~図10それぞれは、受光部10における第一画素部Pm,nおよび第二画素部Qi,jの配置例を示す図である。これらの図では、図7と同様に各単位領域Ai,jには8×8個の画素領域a8i-7,8j-7~a8i,8jが含まれるとして、2×2個の単位領域の範囲を示し、その範囲における第一画素部Pm,nおよび第二画素部Qi,jそれぞれのフォトダイオードPDの配置を示している。 FIGS. 8 to 10 are diagrams illustrating examples of the arrangement of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10. In these drawings, as in FIG. 7, it is assumed that each unit region A i, j includes 8 × 8 pixel regions a 8i-7,8j-7 to a 8i, 8j , and 2 × 2 units. The range of the region is shown, and the arrangement of the photodiodes PD of the first pixel portion P m, n and the second pixel portion Q i, j in the range is shown.
 図8は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第一配置例を示す図である。この図に示される第一配置例では、各第二画素部Qi,jのフォトダイオードは、単位領域Ai,j内の第二群に含まれる各画素領域am,n(mが奇数かつnが偶数。図中のハッチング領域)に個別に形成されたフォトダイオードがメタル配線Li,jにより並列的に互いに接続されて実質的に1つのフォトダイオードとして構成される。その他の第一群に含まれる画素領域am,n(mが偶数またはnが奇数)には、個別に形成されたフォトダイオードを含む第一画素部Pm,nが構成される。 Figure 8 is a diagram showing a first arrangement example of the first pixel portion P m in the photodetecting section 10 of embodiment included in the solid-state imaging device 1 according to the embodiment, n and the second pixel unit Q i, j. In the first arrangement example shown in this figure, the photodiodes of the second pixel portions Q i, j are each of the pixel areas a m, n (m is an odd number) included in the second group in the unit area A i, j . In addition, n is an even number (hatched region in the figure), and photodiodes individually formed are connected to each other in parallel by the metal wiring L i, j to be substantially configured as one photodiode. In the other pixel region a m, n (m is an even number or n is an odd number) included in the first group, a first pixel portion P m, n including a photodiode formed individually is configured.
 図9は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第二配置例を示す図である。この図に示される第二配置例では、各第二画素部Qi,jのフォトダイオードは、単位領域Ai,j内の第二群に含まれる各画素領域am,n(図中のハッチング領域)に個別に形成されたフォトダイオードがメタル配線Li,jにより並列的に互いに接続されて実質的に1つのフォトダイオードとして構成される。その他の第一群に含まれる画素領域am,nには、個別に形成されたフォトダイオードを含む第一画素部Pm,nが構成される。第二配置例では、第二画素部Qi,jを構成する第二群に含まれる各画素領域am,nは、各行で2個ずつであり、各列で2個ずつである。 FIG. 9 is a diagram illustrating a second arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. In the second arrangement example shown in this drawing, the photodiodes of each second pixel portion Q i, j are connected to each pixel area a m, n (in the figure) included in the second group in the unit area A i, j . The photodiodes individually formed in the hatching region) are connected to each other in parallel by the metal wiring L i, j so as to be substantially configured as one photodiode. In the pixel region am , n included in the other first group, a first pixel portion Pm, n including photodiodes formed individually is configured. In a second arrangement example, the second pixel unit Q i, the pixel regions included in the second group constituting the j a m, n is a two by two in each row is two by two in each row.
 図10は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第三配置例を示す図である。この図に示される第三配置例では、各第二画素部Qi,jのフォトダイオードは、単位領域Ai,j内の第二群に含まれる各画素領域am,n(mが奇数かつnが偶数。図中のハッチング領域)に個別に形成されたフォトダイオードがメタル配線Li,jにより並列的に互いに接続されて実質的に1つのフォトダイオードとして構成される。その他の第一群に含まれる画素領域am,n(mが偶数またはnが奇数)には、個別に形成されたフォトダイオードを含む第一画素部Pm,nが構成される。この点までは、図8に示された第一配置例と同様である。 FIG. 10 is a diagram illustrating a third arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. In the third arrangement example shown in this figure, the photodiodes of the second pixel portions Q i, j are each of the pixel areas a m, n (m is an odd number) included in the second group in the unit area A i, j . In addition, n is an even number (hatched region in the figure), and photodiodes individually formed are connected to each other in parallel by the metal wiring L i, j to be substantially configured as one photodiode. In the other pixel region a m, n (m is an even number or n is an odd number) included in the first group, a first pixel portion P m, n including a photodiode formed individually is configured. Up to this point, the first arrangement example shown in FIG. 8 is the same.
 図10に示される第三配置例では特に、第一群に含まれる画素領域am,n(mが偶数またはnが奇数)のフォトダイオードPDにはカラーフィルタが貼り付けられている。より具体的には、画素領域am,n(mが偶数かつnが奇数)のフォトダイオードPDには、透過帯域の中心波長が赤色の波長帯域にある赤色フィルタが設けられている。画素領域am,n(mが偶数かつnが偶数)のフォトダイオードPDには、透過帯域の中心波長が緑色の波長帯域にある緑色フィルタが設けられている。また、画素領域am,n(mが奇数かつnが奇数)のフォトダイオードPDには、透過帯域の中心波長が青色の波長帯域にある青色フィルタが設けられている。このようにすることで、第一群に含まれる画素領域am,nに構成される第一画素部Pm,nを用いて高解像度のカラー撮像をすることができる。 In the third arrangement example shown in FIG. 10 in particular, a color filter is attached to the photodiode PD in the pixel region a m, n (m is an even number or n is an odd number) included in the first group. More specifically, the photodiode PD in the pixel region a m, n (m is an even number and n is an odd number) is provided with a red filter whose center wavelength in the transmission band is in the red wavelength band. The photodiode PD in the pixel region a m, n (m is an even number and n is an even number) is provided with a green filter having a center wavelength of the transmission band in the green wavelength band. The pixel area a m, n (m is an odd number and n odd) in the photodiode PD of the center wavelength of the transmission band is provided with a blue filter on the blue wavelength band. In this way, high-resolution color imaging can be performed using the first pixel portion P m, n configured in the pixel region am , n included in the first group.
 受光部10における第一画素部Pm,nおよび第二画素部Qi,jの配置は、これらの設計例に限られるものではない。各第二画素部Qi,jのフォトダイオードは、単位領域Ai,j内の第二群に含まれる各画素領域am,nに形成されたフォトダイオードが並列的に互いに接続されて構成されればよい。これにより、本実施形態に係る固体撮像装置1は、第一画素部Pm,nを用いて高解像度撮像を高速に行うことができるとともに、第二画素部Qi,jを用いて低解像度撮像を高速に行うことができる。 The arrangement of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 is not limited to these design examples. The photodiodes of the respective second pixel portions Q i, j are configured by connecting photodiodes formed in the respective pixel regions am , n included in the second group in the unit region A i, j to each other in parallel. It only has to be done. As a result, the solid-state imaging device 1 according to the present embodiment can perform high-resolution imaging at high speed using the first pixel unit P m, n , and low resolution using the second pixel unit Q i, j. Imaging can be performed at high speed.
 また、各第一画素部Pm,nおよび各第二画素部Qi,jがAPS方式のものである場合には、高感度かつ低ノイズで高速撮像を行なうことができる。 In addition, when each first pixel portion P m, n and each second pixel portion Q i, j is of the APS system, high-speed imaging can be performed with high sensitivity and low noise.
 また、各第一画素部Pm,nについて第一電気信号を出力する第一信号出力回路21と、各第二画素部Qi,jについて第二電気信号を出力する第二信号出力回路22と、を別個に設けることにより、第一画素部Pm,nを用いた高解像度撮像と第二画素部Qi,jを用いた低解像度撮像とを並列的に行うことができるので、更に高速撮像が可能である。 In addition, a first signal output circuit 21 that outputs a first electric signal for each first pixel portion P m, n and a second signal output circuit 22 that outputs a second electric signal for each second pixel portion Q i, j . Since the high-resolution imaging using the first pixel portion P m, n and the low-resolution imaging using the second pixel portion Q i, j can be performed in parallel, High-speed imaging is possible.
 また、各第一画素部Pm,nについて第一信号出力回路21による第一電気信号の出力を制御する第一制御回路31と、各第二画素部Qi,jについて第二信号出力回路22による第二電気信号の出力を制御する第二制御回路32と、を別個に設けることにより、第一画素部Pm,nを用いた高解像度撮像と第二画素部Qi,jを用いた低解像度撮像とを互いに独立に行うことが容易となる。 The first control circuit 31 controls the output of the first electric signal by the first signal output circuit 21 for each first pixel portion P m, n , and the second signal output circuit for each second pixel portion Q i, j . And a second control circuit 32 for controlling the output of the second electric signal by 22 separately, so that high-resolution imaging using the first pixel portion P m, n and the second pixel portion Q i, j are used. It becomes easy to perform the low-resolution imaging that has been performed independently of each other.
 図11および図12は、本実施形態に係る固体撮像装置1に含まれる受光部10のレイアウト例を示す図である。本実施形態に係る固体撮像装置1は、半導体基板上に集積化されているのが好適であり、その場合に例えば図11および図12に示されるような構造を有する。図11は、本実施形態に係る固体撮像装置1に含まれる受光部10のレイアウト例を示す図である。図12は、図11に示したレイアウト例におけるA-A’断面図である。 FIG. 11 and FIG. 12 are diagrams showing a layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. The solid-state imaging device 1 according to this embodiment is preferably integrated on a semiconductor substrate, and in that case, for example, has a structure as shown in FIGS. FIG. 11 is a diagram illustrating a layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 12 is a cross-sectional view taken along the line A-A ′ in the layout example shown in FIG. 11.
 これらの図に示されるレイアウト例では、拡散層1は、各第一画素部Pm,nのフォトダイオードPDの領域ならびに各第二画素部Qi,jのフォトダイオードPDの領域である。拡散層2は、各第一画素部Pm,nのトランジスタT1~T5のソースおよびドレインの領域ならびに各第二画素部Qi,jのトランジスタT1~T5のソースおよびドレインの領域である。ポリシリコンは、各第一画素部Pm,nおよび各第二画素部Qi,jそれぞれのトランジスタT1~T5のゲートである。また、メタル配線は、読出用配線Vline1(n)および読出用配線Vline2(j)、ならびに、トランジスタT3とトランジスタT5とを接続する配線である。上層メタルは、各第二画素部Qi,jにおいて複数の光感応領域を相互に接続する配線Li,jである。 In the layout examples shown in these drawings, the diffusion layer 1 is a region of the photodiode PD of each first pixel portion P m, n and a region of the photodiode PD of each second pixel portion Q i, j . The diffusion layer 2 is a source and drain region of the transistors T1 to T5 of each first pixel portion Pm, n and a source and drain region of the transistors T1 to T5 of each second pixel portion Q i, j . The polysilicon is the gate of each of the transistors T1 to T5 of each first pixel portion Pm, n and each second pixel portion Qi , j . The metal wiring is a wiring for connecting the reading wiring Vline1 (n) and the reading wiring Vline2 (j), and the transistor T3 and the transistor T5. The upper layer metal is a wiring L i, j that interconnects a plurality of photosensitive regions in each second pixel portion Q i, j .
 なお、図11では、その他のメタル配線は図示が省略されている。また、図11に示したレイアウト例におけるA-A’断面を示す図12では、絶縁層等の図示が省略されている。 In FIG. 11, illustration of other metal wirings is omitted. Further, in FIG. 12 showing an A-A ′ section in the layout example shown in FIG. 11, illustration of an insulating layer and the like is omitted.
 上記実施形態では、第一信号出力回路21と第二信号出力回路22とが別個に設けられ、また、第一列選択回路61と第二列選択回路62とが別個に設けられた。しかし、図13に示される構成のように、第一信号出力回路21および第二信号出力回路22に替えて信号出力部20が設けられてもよいし、第一列選択回路61および第二列選択回路62に替えて列選択回路60が設けられてもよい。 In the above embodiment, the first signal output circuit 21 and the second signal output circuit 22 are provided separately, and the first column selection circuit 61 and the second column selection circuit 62 are provided separately. However, as in the configuration shown in FIG. 13, the signal output unit 20 may be provided instead of the first signal output circuit 21 and the second signal output circuit 22, or the first column selection circuit 61 and the second column A column selection circuit 60 may be provided instead of the selection circuit 62.
 図13は、他の実施形態に係る固体撮像装置2の構成図である。この図に示される固体撮像装置2は、受光部10、信号出力部20および制御部30を備える。受光部10は、これまで説明したものと同様のものである。信号出力部20は、第一信号出力回路21と同様の構成を有するが、高解像度撮像を行う場合と低解像度撮像を行う場合とで動作が相違する。制御部30は、タイミング制御回路40、第一行選択回路51、第二行選択回路52および列選択回路60を含む。タイミング制御回路40は、信号出力部20、第一行選択回路51、第二行選択回路52および列選択回路60それぞれの動作タイミングを制御する。 FIG. 13 is a configuration diagram of a solid-state imaging device 2 according to another embodiment. The solid-state imaging device 2 shown in this figure includes a light receiving unit 10, a signal output unit 20, and a control unit 30. The light receiving unit 10 is the same as described above. The signal output unit 20 has the same configuration as that of the first signal output circuit 21, but the operation differs depending on whether high-resolution imaging is performed or low-resolution imaging. The control unit 30 includes a timing control circuit 40, a first row selection circuit 51, a second row selection circuit 52, and a column selection circuit 60. The timing control circuit 40 controls operation timings of the signal output unit 20, the first row selection circuit 51, the second row selection circuit 52, and the column selection circuit 60.
 第一画素部Pm,nを用いて高解像度撮像を行う場合には、列選択回路60は第一列選択回路61と同様の動作をし、信号出力部20は第一信号出力回路21と同様の動作をする。一方、第二画素部Qi,jを用いて低解像度撮像を行う場合には、信号出力部20は、N個の保持回路のうちのJ個の保持回路を用いて第二電気信号を出力し、列選択回路60は、信号出力部20がそのような動作をするよう制御する。 When high-resolution imaging is performed using the first pixel unit P m, n , the column selection circuit 60 operates in the same manner as the first column selection circuit 61, and the signal output unit 20 is connected to the first signal output circuit 21. The same operation is performed. On the other hand, when low-resolution imaging is performed using the second pixel unit Q i, j , the signal output unit 20 outputs the second electric signal using J holding circuits among the N holding circuits. The column selection circuit 60 controls the signal output unit 20 to perform such an operation.
 また、受光部10において、各単位領域Ai,j内の第二群に含まれる各画素領域am,nに個別に形成されたフォトダイオードを含む第三画素部Rm,nが構成されてもよい。この場合、各単位領域Ai,j内の第二群に含まれる各画素領域am,nには、第二画素部Qi,jのフォトダイオードの一部が形成されるとともに、第三画素部Rm,nのフォトダイオードが形成される。そして、各第三画素部Rm,nのフォトダイオードで発生する電荷の量に応じた値の第三電気信号が信号出力部により出力される。また、各第三画素部Rm,nについて信号出力部による第三電気信号の出力が制御部により制御される。 In the light receiving unit 10, a third pixel unit R m, n including photodiodes individually formed in each pixel region am , n included in the second group in each unit region A i, j is configured. May be. In this case, a part of the photodiode of the second pixel portion Q i, j is formed in each pixel region am , n included in the second group in each unit region A i, j , and the third region A photodiode of the pixel portion R m, n is formed. Then, a third electric signal having a value corresponding to the amount of charge generated in the photodiode of each third pixel portion R m, n is output by the signal output portion. Further, the output of the third electric signal by the signal output unit for each third pixel unit R m, n is controlled by the control unit.
 第三電気信号の出力は、図1に示された第一信号出力回路21および第二信号出力回路22とは別に設けられた専用の第三信号出力回路により行われてもよいし、図1に示された第一信号出力回路21により行われてもよいし、また、図13に示された信号出力部20により行われてもよい。第三電気信号の出力の制御は、図1に示された第一行選択回路51および第二行選択回路52とは別に設けられた専用の第三行選択回路により行われてもよいし、また、図1に示された第一行選択回路51により行われてもよい。 The output of the third electric signal may be performed by a dedicated third signal output circuit provided separately from the first signal output circuit 21 and the second signal output circuit 22 shown in FIG. May be performed by the first signal output circuit 21 shown in FIG. 13 or may be performed by the signal output unit 20 shown in FIG. The control of the output of the third electric signal may be performed by a dedicated third row selection circuit provided separately from the first row selection circuit 51 and the second row selection circuit 52 shown in FIG. Further, it may be performed by the first row selection circuit 51 shown in FIG.
 各第一画素部Pm,nおよび各第二画素部Qi,jだけでなく各第三画素部Rm,nも、フォトダイオードで発生した電荷をゲート端子に入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を信号出力部へ出力するのが好適である。 In addition to each first pixel portion P m, n and each second pixel portion Q i, j , each third pixel portion R m, n also has an amplifying MOS transistor that inputs charges generated by the photodiode to the gate terminal. In addition, it is preferable to output an electrical signal corresponding to the input charge amount from the amplification MOS transistor to the signal output unit.
 図14および図15それぞれは、図10に示された第三配置例の変形例に相当する配置例を示す図であって、受光部10において第一画素部Pm,nおよび第二画素部Qi,jに加えて第三画素部Rm,nが設けられた配置例を示す。これらの図では、1つの基本領域A1,1についてのみ示し、その領域における第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nそれぞれのフォトダイオードPDの配置を示している。また、これらの図では、第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nそれぞれのトランジスタT1~T5が形成されるMOS領域をも模式的に示している。 FIG. 14 and FIG. 15 are diagrams showing an arrangement example corresponding to a modification of the third arrangement example shown in FIG. 10, and the first pixel unit P m, n and the second pixel unit in the light receiving unit 10. An arrangement example in which a third pixel portion R m, n is provided in addition to Q i, j is shown. In these drawings, only one basic region A 1,1 is shown, and the photodiodes of the first pixel portion P m, n , second pixel portion Q i, j and third pixel portion R m, n in that region are shown. The arrangement of the PD is shown. In these figures, the MOS regions in which the transistors T1 to T5 of the first pixel portion P m, n , the second pixel portion Q i, j and the third pixel portion R m, n are formed are also schematically shown. Show.
 図14は、変形例の固体撮像装置に含まれる受光部10における第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nの第四配置例を示す図である。また、図15は、変形例の固体撮像装置に含まれる受光部10における第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nの第五配置例を示す図である。第四配置例(図14)および第五配置例(図15)の何れにおいても、第一画素部Pm,nの配置およびカラーフィルタの設置については第三配置例(図10)と同様である。 FIG. 14 shows a fourth arrangement example of the first pixel unit P m, n , the second pixel unit Q i, j, and the third pixel unit R m, n in the light receiving unit 10 included in the solid-state imaging device of the modification. FIG. FIG. 15 shows a fifth arrangement example of the first pixel unit P m, n , the second pixel unit Q i, j and the third pixel unit R m, n in the light receiving unit 10 included in the solid-state imaging device of the modification. FIG. In any of the fourth arrangement example (Fig. 14) and the fifth arrangement example (Fig. 15), the first pixel unit P m, the arrangement and installation of the color filter of n is the same as the third arrangement example (Fig. 10) is there.
 第四配置例(図14)では、第二画素部Q1,1のフォトダイオードは、第二群に含まれる16個の画素領域am,n(mが奇数かつnが偶数)に個別に形成されたフォトダイオードがメタル配線Li,jにより並列的に互いに接続されて実質的に1つのフォトダイオードとして構成される。第二画素部Q1,1に含まれるトランジスタT1~T5は、第二群に含まれる右下隅の画素領域a1,8に設けられる。第二群に含まれる16個の画素領域のうち右下隅の画素領域a1,8を除く15個の画素領域には、個別に形成されたフォトダイオードおよびトランジスタT1~T5を含む第三画素部Rm,nが構成されている。 In the fourth arrangement example (FIG. 14), the photodiodes of the second pixel portion Q1,1 are individually arranged in 16 pixel regions am , n (m is an odd number and n is an even number) included in the second group. The formed photodiodes are connected to each other in parallel by the metal wiring L i, j and are configured substantially as one photodiode. The transistors T1 ~ T5 included in the second pixel unit Q 1, 1, provided in the pixel area a l, 8 in the lower-right corner that is included in the second group. Of the 16 pixel regions included in the second group, 15 pixel regions excluding the pixel region a 1 , 8 in the lower right corner include a photodiode and transistors T1 to T5 that are individually formed. R m, n is configured.
 すなわち、画素領域a1,2には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R1,2が構成され、画素領域a1,4には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R1,4が構成され、画素領域a1,6には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R1,6が構成される。画素領域a3,2には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R3,2が構成され、画素領域a3,4には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R3,4が構成され、画素領域a3,6には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R3,6が構成され、画素領域a3,8には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R3,8が構成される。 That is, the pixel region a 1, 2 is partially in addition to the third pixel unit R 1, 2 constituting the photodiode of the second pixel portion Q 1, 1, the second pixel in the pixel area a l, 4 In addition to a part of the photodiodes of the parts Q 1 , 1, a third pixel part R 1, 4 is configured, and in the pixel region a 1 , 6 , in addition to a part of the photodiodes of the second pixel part Q 1 , 1 Thus, the third pixel portion R1,6 is configured. In addition to a part of the photodiodes of the second pixel portion Q 1 , 1 , the pixel region a 3 , 2 includes a third pixel portion R 3, 2 , and the pixel region a 3 , 4 includes the second pixel portion Q In addition to a part of the first and first photodiodes, third pixel portions R 3 and 4 are formed, and the pixel regions a 3 and 6 have a second pixel portion Q 1,1 in addition to a part of the photodiodes. It consists three pixel portion R 3, 6 is the third pixel unit R 3, 8 is formed in addition to a portion of the photodiode of the second pixel portion Q 1, 1 in the pixel region a 3, 8.
 また、画素領域a5,2には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R5,2が構成され、画素領域a5,4には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R5,4が構成され、画素領域a5,6には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R5,6が構成され、画素領域a5,8には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R5,8が構成される。画素領域a7,2には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R7,2が構成され、画素領域a7,4には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R7,4が構成され、画素領域a7,6には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R7,6が構成され、画素領域a7,8には第二画素部Q1,1のフォトダイオードの一部に加えて第三画素部R7,8が構成される。 Also, the pixel region a 5,2 is the third pixel unit R 5,2 in addition to a portion of the photodiode arrangement of the second pixel portion Q 1, 1, the second pixel in the pixel region a 5,4 In addition to a part of the photodiodes of the parts Q 1 , 1 , third pixel parts R 5, 4 are configured, and in the pixel regions a 5 , 6 , in addition to a part of the photodiodes of the second pixel part Q 1 , 1 The third pixel portion R 5,6 is configured, and the pixel region a 5,8 includes the third pixel portion R 5,8 in addition to a part of the photodiode of the second pixel portion Q 1,1. . The pixel region a 7,2 includes a third pixel portion R 7,2 in addition to a part of the photodiode of the second pixel portion Q 1,1 , and the pixel region a 7,4 includes the second pixel portion Q. In addition to a part of the first and first photodiodes, a third pixel part R 7,4 is formed, and in the pixel region a 7,6 a second part of the photodiode of the second pixel part Q 1,1 is added. three pixel portion R 7, 6 is configured, the third pixel unit R 7, 8 in addition to a portion of the photodiode of the second pixel portion Q 1, 1 is constructed in the pixel region a 7, 8.
 第五配置例(図15)では、第二画素部Q1,1のフォトダイオードは、第二群に含まれる16個の画素領域am,n(mが奇数かつnが偶数)に形成されたフォトダイオードが列間領域で連続していて、さらにこれらがメタル配線Li,jにより並列的に互いに接続されて、実質的に1つのフォトダイオードとして構成される。第二画素部Q1,1に含まれるトランジスタT1~T5は、第二群に含まれる右下隅の画素領域a1,8に設けられる。第二群に含まれる16個の画素領域のうち右下隅の画素領域a1,8を除く15個の画素領域には、個別に形成されたフォトダイオードおよびトランジスタT1~T5を含む第三画素部Rm,nが構成されている。第三画素部Rm,nについては、第四配置例(図14)と同様である。 In the fifth arrangement example (FIG. 15), the photodiodes of the second pixel portion Q 1,1 are formed in 16 pixel regions a m, n (m is an odd number and n is an even number) included in the second group. The photodiodes are continuous in the inter-column region, and are further connected to each other in parallel by the metal wiring L i, j, so that it is substantially configured as one photodiode. The transistors T1 ~ T5 included in the second pixel unit Q 1, 1, provided in the pixel area a l, 8 in the lower-right corner that is included in the second group. Of the 16 pixel regions included in the second group, 15 pixel regions excluding the pixel region a 1 , 8 in the lower right corner include a photodiode and transistors T1 to T5 that are individually formed. R m, n is configured. The third pixel portion R m, n is the same as the fourth arrangement example (FIG. 14).
 このように、第四配置例(図14)および第五配置例(図15)それぞれでは、各基本領域Ai,j内の全ての画素領域am,nに、第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nの何れかのMOS領域(トランジスタT1~T5)が設けられる。したがって、MOS領域を規則正しく配置することが可能となり、フォトダイオードの感度のユニフォミティを改善することができる。なお、第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nそれぞれのフォトダイオードの光感応領域の面積を調整することで、第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nそれぞれの感度を調整することができる。 Thus, in each of the fourth arrangement example (FIG. 14) and the fifth arrangement example (FIG. 15), the first pixel portion P m, n is included in all the pixel areas a m, n in each basic area A i, j . Any MOS region (transistors T1 to T5) of n , second pixel portion Q i, j and third pixel portion R m, n is provided. Therefore, the MOS regions can be regularly arranged, and the uniformity of the sensitivity of the photodiode can be improved. Incidentally, the first pixel unit P m, n, the second pixel unit Q i, j and the third pixel unit R m, by adjusting the n area of the photosensitive region of each photodiode, the first pixel unit P m , n , the sensitivity of the second pixel part Q i, j and the third pixel part R m, n can be adjusted.
 なお、第五配置例(図15)では、各第二画素部Qi,jにおいて複数の光感応領域を配線Li,jで相互に接続するものであるが、各第二画素部Qi,jが1つのフォトダイオードを有する場合にも、そのフォトダイオードの光感応領域(拡散層1の領域)が広いので、その抵抗を小さくするために、その光感応領域の各所にコンタクトホールを設けてメタル配線で接続するのが好適である。 In the fifth arrangement example (FIG. 15), a plurality of photosensitive regions are connected to each other by wiring L i, j in each second pixel portion Q i, j , but each second pixel portion Q i , j also has one photodiode, the photo-sensitive region of the photo-diode (the region of the diffusion layer 1) is wide, so contact holes are provided at various locations in the photo-sensitive region in order to reduce the resistance. It is preferable to connect with metal wiring.
 本発明による固体撮像装置は、上記実施形態及び構成例に限られるものではなく、様々な変形が可能である。 The solid-state imaging device according to the present invention is not limited to the above-described embodiments and configuration examples, and various modifications are possible.
 ここで、上記実施形態による固体撮像装置では、(1)受光面がI行J列に2次元配列されるI×J個の単位領域A1,1~AI,Jからなるとともに、受光面がM行N列に2次元配列されるM×N個の画素領域a1,1~aM,Nからなり、各単位領域Ai,j内の各画素領域am,nが第一群および第二群の何れかに区分され、各単位領域Ai,j内の第一群に含まれる各画素領域am,nに個別に形成されたフォトダイオードを含む第一画素部Pm,nが構成され、各単位領域Ai,j内の第二群に含まれる各画素領域am,nに形成されたフォトダイオードが並列的に互いに接続されて実質的に第二画素部Qi,jが構成される受光部と、(2)各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号を出力するとともに、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号を出力する信号出力部と、(3)各第一画素部Pm,nについて信号出力部による第一電気信号の出力を制御するとともに、各第二画素部Qi,jについて信号出力部による第二電気信号の出力を制御する制御部と、を備える構成を用いている。 Here, in the solid-state imaging device according to the above embodiment, (1) the light receiving surface includes I × J unit areas A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and the light receiving surface. Consists of M × N pixel regions a 1,1 to a M, N that are two-dimensionally arranged in M rows and N columns, and each pixel region a m, n in each unit region A i, j is a first group. And a first pixel unit P m, which is divided into any one of the second groups and includes photodiodes individually formed in each pixel region am , n included in the first group in each unit region A i, j . n is configured, and photodiodes formed in each pixel region am , n included in the second group in each unit region A i, j are connected to each other in parallel to substantially form the second pixel portion Q i. , and j is configured receiving portion, a first electrical signal having a value corresponding to the amount of charges generated in the (2) each of the first pixel unit P m, n photodiode output Rutotomoni, the second pixel unit Q i, a signal output section for outputting a second electrical signal having a value corresponding to the amount of charges generated in the photodiodes of j, (3) each first pixel unit P m, n And a control unit that controls the output of the first electric signal by the signal output unit and controls the output of the second electric signal by the signal output unit for each second pixel unit Q i, j . .
 ただし、M,Nは2以上の整数であり、Iは2以上M未満の整数であり、Jは2以上N未満の整数であり、mは1以上M以下の各整数であり、nは1以上N以下の各整数であり、iは1以上I以下の各整数であり、jは1以上J以下の各整数である。なお、M×N個の画素領域a1,1~aM,Nについての行および列と、I×J個の単位領域A1,1~AI,Jについての行および列とは、相違する。 However, M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is 1 These are integers of N or less, i is an integer of 1 or more and I or less, and j is an integer of 1 or more and J or less. Incidentally, M × N pixels regions a 1,1 ~ a M, the rows and columns of the N, I × J number of unit regions A 1,1 ~ A I, the rows and columns of J is different To do.
 上記構成による固体撮像装置では、各第二画素部Qi,jのフォトダイオードの光感応領域の各所にコンタクトホールが設けられて、これらがメタル配線で接続されているのが好適である。この場合には、各第二画素部Qi,jのフォトダイオードの光感応領域が広くても、その抵抗を小さくすることができる。 In the solid-state imaging device having the above-described configuration, it is preferable that contact holes are provided at various locations in the photosensitive regions of the photodiodes of the second pixel portions Q i, j and these are connected by metal wiring. In this case, even if the photosensitive region of the photodiode of each second pixel portion Q i, j is wide, the resistance can be reduced.
 また、固体撮像装置では、各第一画素部Pm,nおよび各第二画素部Qi,jは、フォトダイオードで発生した電荷をゲート端子に入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を信号出力部へ出力するのが好適である。このように各第一画素部Pm,nおよび各第二画素部Qi,jがAPS方式のものである場合には、高感度かつ低ノイズで高速撮像を行なうことができる。 In the solid-state imaging device, each first pixel portion P m, n and each second pixel portion Q i, j include an amplification MOS transistor that inputs charges generated by the photodiode to the gate terminal. It is preferable to output an electric signal corresponding to the input charge amount from the MOS transistor to the signal output unit. In this way, when each first pixel portion P m, n and each second pixel portion Q i, j are of the APS system, high-speed imaging can be performed with high sensitivity and low noise.
 また、固体撮像装置では、信号出力部は、各第一画素部Pm,nについて第一電気信号を出力する第一信号出力回路と、各第二画素部Qi,jについて第二電気信号を出力する第二信号出力回路と、を別個に有するのが好適である。この場合には、第一画素部Pm,nを用いた高解像度撮像と第二画素部Qi,jを用いた低解像度撮像とを並列的に行うことができるので、更に高速撮像が可能である。 In the solid-state imaging device, the signal output unit includes a first signal output circuit that outputs a first electric signal for each first pixel unit P m, n and a second electric signal for each second pixel unit Q i, j . It is preferable to separately have a second signal output circuit that outputs. In this case, since high-resolution imaging using the first pixel unit P m, n and low-resolution imaging using the second pixel unit Q i, j can be performed in parallel, higher-speed imaging is possible. It is.
 また、固体撮像装置では、制御部は、各第一画素部Pm,nについて信号出力部による第一電気信号の出力を制御する第一制御回路と、各第二画素部Qi,jについて信号出力部による第二電気信号の出力を制御する第二制御回路と、を別個に有するのが好適である。この場合には、第一画素部Pm,nを用いた高解像度撮像と第二画素部Qi,jを用いた低解像度撮像とを互いに独立に行うことが容易となる。 In the solid-state imaging device, the control unit controls the first control circuit that controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n , and each second pixel unit Q i, j . It is preferable to separately have a second control circuit that controls the output of the second electric signal by the signal output unit. In this case, it becomes easy to perform high-resolution imaging using the first pixel portion P m, n and low-resolution imaging using the second pixel portion Q i, j independently of each other.
 また、固体撮像装置では、各第一画素部Pm,nのフォトダイオードにカラーフィルタが設けられているのが好適である。この場合には、高解像度のカラー撮像をすることができる。 In the solid-state imaging device, it is preferable that a color filter is provided in the photodiode of each first pixel unit Pm, n . In this case, high-resolution color imaging can be performed.
 また、固体撮像装置では、(1)各単位領域Ai,j内の第二群に含まれる各画素領域am,nに個別に形成されたフォトダイオードを含む第三画素部Rm,nが構成され、(2)信号出力部が、各第三画素部Rm,nのフォトダイオードで発生する電荷の量に応じた値の第三電気信号を出力し、(3)制御部が、各第三画素部Rm,nについて信号出力部による第三電気信号の出力を制御するのが好適である。 In the solid-state imaging device, (1) a third pixel unit R m, n including photodiodes individually formed in each pixel area am , n included in the second group in each unit area A i, j . There is constructed, (2) signal output section, the third pixel unit R m, and outputs a third electrical signal having a value corresponding to the amount of charges generated in the n photodiode, (3) control unit, It is preferable to control the output of the third electric signal by the signal output unit for each third pixel unit R m, n .
 この場合には、各単位領域Ai,j内の第二群に含まれる各画素領域am,nには、第二画素部Qi,jのフォトダイオードの一部に加えて、個別に形成されたフォトダイオードを含む第三画素部Rm,nが構成される。信号出力部から、各第三画素部Rm,nのフォトダイオードで発生する電荷の量に応じた値の第三電気信号が出力される。制御部により、各第三画素部Rm,nについて信号出力部による第三電気信号の出力が制御される。第一画素部Pm,n,第二画素部Qi,jおよび第三画素部Rm,nの何れかを用いて撮像することで、様々な感度または解像度の撮像をすることができる。 In this case, each pixel area am , n included in the second group in each unit area A i, j is individually added to a part of the photodiode of the second pixel portion Q i, j. A third pixel portion R m, n including the formed photodiode is configured. From the signal output unit, a third electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each third pixel unit R m, n is output. The control unit controls the output of the third electric signal by the signal output unit for each third pixel unit R m, n . By imaging using any one of the first pixel unit P m, n , the second pixel unit Q i, j, and the third pixel unit R m, n , imaging with various sensitivities or resolutions can be performed.
 この場合に、各第一画素部Pm,n,各第二画素部Qi,jおよび各第三画素部Rm,nは、フォトダイオードで発生した電荷をゲート端子に入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を信号出力部へ出力するのが好適である。このように各第一画素部Pm,n,各第二画素部Qi,jおよび各第三画素部Rm,nがAPS方式のものである場合には、高感度かつ低ノイズで高速撮像を行なうことができる。 In this case, each first pixel portion P m, n , each second pixel portion Q i, j, and each third pixel portion R m, n has an amplifying MOS that inputs charges generated in the photodiode to the gate terminal. It is preferable that an electric signal corresponding to the input charge amount is output from the amplifying MOS transistor to the signal output unit. Thus, when each first pixel portion P m, n , each second pixel portion Q i, j and each third pixel portion R m, n are of the APS system, high sensitivity, low noise, and high speed Imaging can be performed.
 本発明は、高解像度撮像および低解像度撮像を高速に行うことができる固体撮像装置として利用可能である。 The present invention can be used as a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging at high speed.
 1,2…固体撮像装置、10…受光部、20…信号出力部、21…第一信号出力回路、22…第二信号出力回路、23…保持回路、24…保持回路、25,26…差演算回路、27,28…AD変換回路、30…制御部、31…第一制御回路、32…第二制御回路、40…タイミング制御回路、41…第一タイミング制御回路、42…第二タイミング制御回路、51…第一行選択回路、52…第二行選択回路、60…列選択回路、61…第一列選択回路、62…第二列選択回路、Ai,j…単位領域、am,n…画素領域、Pm,n…第一画素部、Qi,j…第二画素部、Rm,n…第三画素部。 1,2 ... solid-state imaging device, 10 ... receiving unit, 20 ... signal output section, 21 ... first signal output circuit, 22 ... second signal output circuit, 23 n ... holding circuit, 24 j ... holding circuit, 25 and 26 ... difference calculation circuit, 27, 28 ... AD conversion circuit, 30 ... control unit, 31 ... first control circuit, 32 ... second control circuit, 40 ... timing control circuit, 41 ... first timing control circuit, 42 ... second Timing control circuit 51 ... first row selection circuit 52 ... second row selection circuit 60 ... column selection circuit 61 ... first column selection circuit 62 ... second column selection circuit A i, j unit region a m, n ... pixel region, P m, n ... first pixel unit, Q i, j ... second pixel unit, R m, n ... third pixel unit.

Claims (8)

  1.  受光面がI行J列に2次元配列されるI×J個の単位領域A1,1~AI,Jからなるとともに、前記受光面がM行N列に2次元配列されるM×N個の画素領域a1,1~aM,Nからなり、各単位領域Ai,j内の各画素領域am,nが第一群および第二群の何れかに区分され、各単位領域Ai,j内の第一群に含まれる各画素領域am,nに個別に形成されたフォトダイオードを含む第一画素部Pm,nが構成され、各単位領域Ai,j内の第二群に含まれる各画素領域am,nに形成されたフォトダイオードが並列的に互いに接続されて実質的に第二画素部Qi,jが構成される受光部と、
     各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号を出力するとともに、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号を出力する信号出力部と、
     各第一画素部Pm,nについて前記信号出力部による前記第一電気信号の出力を制御するとともに、各第二画素部Qi,jについて前記信号出力部による前記第二電気信号の出力を制御する制御部と、
     を備えることを特徴とする固体撮像装置(ただし、M,Nは2以上の整数、Iは2以上M未満の整数、Jは2以上N未満の整数、mは1以上M以下の各整数、nは1以上N以下の各整数、iは1以上I以下の各整数、jは1以上J以下の各整数)。
    The light receiving surface is made up of I × J unit areas A 1,1 to A I, J that are two-dimensionally arranged in I rows and J columns, and the light receiving surface is two-dimensionally arranged in M rows and N columns. Each pixel region a 1,1 to a M, N and each pixel region a m, n in each unit region A i, j is divided into either the first group or the second group, and each unit region A first pixel portion P m, n including photodiodes individually formed in each pixel region am , n included in the first group in A i, j is configured, and each unit region A i, j A light receiving section in which photodiodes formed in each pixel area am , n included in the second group are connected to each other in parallel to substantially form a second pixel section Q i, j ;
    The first electric signal having a value corresponding to the amount of charge generated in the photodiodes of the first pixel portions P m, n is output, and the amount of charge generated in the photodiodes of the second pixel portions Q i, j A signal output unit for outputting a second electric signal having a value corresponding to
    For each first pixel portion P m, n , the output of the first electric signal by the signal output portion is controlled, and for each second pixel portion Q i, j , the second electric signal is output by the signal output portion. A control unit to control;
    (Wherein M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, n is an integer of 1 to N, i is an integer of 1 to I, and j is an integer of 1 to J).
  2.  各第二画素部Qi,jのフォトダイオードの光感応領域の各所にコンタクトホールが設けられて、これらがメタル配線で接続されている、ことを特徴とする請求項1に記載の固体撮像装置。 2. The solid-state imaging device according to claim 1, wherein contact holes are provided at various locations in the photosensitive region of the photodiode of each second pixel portion Q i, j , and these are connected by metal wiring. .
  3.  各第一画素部Pm,nおよび各第二画素部Qi,jが、フォトダイオードで発生した電荷をゲート端子に入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を前記信号出力部へ出力する、ことを特徴とする請求項1または2に記載の固体撮像装置。 Each first pixel portion P m, n and each second pixel portion Q i, j include an amplifying MOS transistor that inputs the charge generated by the photodiode to the gate terminal, and the amount of input charge from this amplifying MOS transistor The solid-state imaging device according to claim 1, wherein a corresponding electrical signal is output to the signal output unit.
  4.  前記信号出力部が、各第一画素部Pm,nについて前記第一電気信号を出力する第一信号出力回路と、各第二画素部Qi,jについて前記第二電気信号を出力する第二信号出力回路と、を別個に有する、ことを特徴とする請求項1~3のいずれか一項に記載の固体撮像装置。 The signal output unit outputs a first signal output circuit for outputting the first electric signal for each first pixel unit P m, n and a second signal for outputting the second electric signal for each second pixel unit Q i, j . The solid-state imaging device according to any one of claims 1 to 3, further comprising a two-signal output circuit.
  5.  前記制御部が、各第一画素部Pm,nについて前記信号出力部による前記第一電気信号の出力を制御する第一制御回路と、各第二画素部Qi,jについて前記信号出力部による前記第二電気信号の出力を制御する第二制御回路と、を別個に有する、ことを特徴とする請求項1~4のいずれか一項に記載の固体撮像装置。 The control unit controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n , and the signal output unit for each second pixel unit Q i, j 5. The solid-state imaging device according to claim 1, further comprising a second control circuit that controls output of the second electric signal according to 1.
  6.  各第一画素部Pm,nのフォトダイオードにカラーフィルタが設けられていることを特徴とする請求項1~5のいずれか一項に記載の固体撮像装置。 6. The solid-state imaging device according to claim 1, wherein a color filter is provided in the photodiode of each first pixel portion P m, n .
  7.  各単位領域Ai,j内の第二群に含まれる各画素領域am,nに個別に形成されたフォトダイオードを含む第三画素部Rm,nが構成され、
     前記信号出力部が、各第三画素部Rm,nのフォトダイオードで発生する電荷の量に応じた値の第三電気信号を出力し、
     前記制御部が、各第三画素部Rm,nについて前記信号出力部による前記第三電気信号の出力を制御する、
     ことを特徴とする請求項1~6のいずれか一項に記載の固体撮像装置。
    A third pixel portion R m, n including photodiodes individually formed in each pixel region a m, n included in the second group in each unit region A i, j is configured,
    The signal output unit outputs a third electric signal having a value corresponding to the amount of charge generated in the photodiode of each third pixel unit R m, n ;
    The control unit controls the output of the third electric signal by the signal output unit for each third pixel unit R m, n ;
    The solid-state imaging device according to any one of claims 1 to 6, wherein
  8.  各第一画素部Pm,n,各第二画素部Qi,jおよび各第三画素部Rm,nが、フォトダイオードで発生した電荷をゲート端子に入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を前記信号出力部へ出力する、ことを特徴とする請求項7に記載の固体撮像装置。 Each first pixel portion P m, n , each second pixel portion Q i, j, and each third pixel portion R m, n includes an amplifying MOS transistor that inputs the charge generated by the photodiode to the gate terminal, The solid-state imaging device according to claim 7, wherein an electric signal corresponding to an input charge amount is output from the amplification MOS transistor to the signal output unit.
PCT/JP2009/060070 2008-06-06 2009-06-02 Solid-state image pickup device WO2009148055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-149579 2008-06-06
JP2008149579A JP2009296451A (en) 2008-06-06 2008-06-06 Solid-state imaging apparatus

Publications (1)

Publication Number Publication Date
WO2009148055A1 true WO2009148055A1 (en) 2009-12-10

Family

ID=41398129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060070 WO2009148055A1 (en) 2008-06-06 2009-06-02 Solid-state image pickup device

Country Status (2)

Country Link
JP (1) JP2009296451A (en)
WO (1) WO2009148055A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999321B2 (en) * 2017-07-31 2022-01-18 東京エレクトロン株式会社 Inspection equipment, inspection method and storage medium
WO2019146316A1 (en) 2018-01-24 2019-08-01 ソニーセミコンダクタソリューションズ株式会社 Imaging device and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243553A (en) * 1997-12-26 1999-09-07 Canon Inc Color image-pickup device, image signal reading method, image-pickup element, image processor, image system and recording medium
JP2005039742A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Solid state image pickup device
JP2007281995A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243553A (en) * 1997-12-26 1999-09-07 Canon Inc Color image-pickup device, image signal reading method, image-pickup element, image processor, image system and recording medium
JP2005039742A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Solid state image pickup device
JP2007281995A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus

Also Published As

Publication number Publication date
JP2009296451A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US9900482B2 (en) Solid-state imaging element and camera system
US7538804B2 (en) Solid state image pick-up device and image pick-up system
US8023025B2 (en) Photoelectric conversion apparatus and image pickup system using the same
KR101204571B1 (en) Solid-state imaging device, method for driving the same and camera
KR101398289B1 (en) Solid-state imaging device, imaging apparatus and camera
KR101045117B1 (en) Solid-state imaging device
JP4721380B2 (en) Solid-state imaging device and imaging system
US8319166B2 (en) Solid-state image pick-up device and pixel signal readout method having dual potential well, dual transfer gate electrode and dual floating-diffusion region for separately transferring and storing charges respectively
US9077922B2 (en) Solid state image pickup device having a capacitor structure made up of a plurality of capacitors
EP3627556B1 (en) Solid-state image sensor and image-capturing device
US7429722B2 (en) Pattern layout of CMOS image sensor
US8487232B2 (en) Solid state image sensor adapted to remove noise
JP6670451B2 (en) Solid-state imaging device, signal processing method, and electronic device
KR20160137953A (en) Solid-state imaging element and imaging device
JP4678583B2 (en) Solid-state imaging device
KR101580754B1 (en) Solid state imaging device
US7432964B2 (en) Solid-state imaging device with plural CDS circuits per column sharing a capacitor and/or clamping transistor
JPWO2007108129A1 (en) Solid-state image sensor
WO2009148055A1 (en) Solid-state image pickup device
EP1874044B1 (en) Solid state imaging device
KR101580753B1 (en) Solid-state imaging device
US6580455B1 (en) High definition image sensor
JP6769349B2 (en) Solid-state image sensor and image sensor
WO2009148054A1 (en) Solid state imaging device
US7518759B2 (en) Readout system for a CMOS-based image sensor array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758322

Country of ref document: EP

Kind code of ref document: A1