WO2009148054A1 - Solid state imaging device - Google Patents

Solid state imaging device Download PDF

Info

Publication number
WO2009148054A1
WO2009148054A1 PCT/JP2009/060066 JP2009060066W WO2009148054A1 WO 2009148054 A1 WO2009148054 A1 WO 2009148054A1 JP 2009060066 W JP2009060066 W JP 2009060066W WO 2009148054 A1 WO2009148054 A1 WO 2009148054A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
signal
circuit
unit
output
Prior art date
Application number
PCT/JP2009/060066
Other languages
French (fr)
Japanese (ja)
Inventor
行信 杉山
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2009148054A1 publication Critical patent/WO2009148054A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present invention relates to a solid-state imaging device.
  • a solid-state imaging device includes a light receiving unit in which a plurality of pixel units each including a photodiode are two-dimensionally arranged, a signal output unit that outputs an electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each pixel unit, And a control unit for controlling the output of an electrical signal by the signal output unit for each pixel unit.
  • the solid-state imaging device can obtain an image of the intensity distribution of the light input to the light receiving unit based on the electrical signal output from the signal output unit.
  • Patent Document 1 discloses a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging.
  • the solid-state imaging device disclosed in Patent Document 1 performs high-resolution imaging by individually outputting an electrical signal for each of a plurality of pixel units included in a light receiving unit.
  • this solid-state imaging device performs low-resolution imaging by adding electrical signals for a certain number of pixel units among a plurality of pixel units included in the light receiving unit. Such a low-resolution imaging operation is called a binning operation.
  • the solid-state imaging device disclosed in Patent Document 1 cannot perform high-speed imaging when switching between high-resolution imaging and low-resolution imaging, for example.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging at high speed.
  • the solid-state imaging device includes (1) M ⁇ N first pixel portions P 1,1 to P M, N that are two-dimensionally arranged in M rows and N columns and each include a photodiode.
  • the light receiving portion having I ⁇ J second pixel portions Q 1,1 to Q I, J
  • a signal output unit that outputs a first electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each second pixel unit Q i, j
  • a control unit for controlling the output of the first electric signal by the signal output unit for each first pixel unit P m, n and for controlling the output of the second electric signal by the signal output unit for each second pixel unit Q i, j And.
  • a region in which the photodiodes of the M ⁇ N first pixel portions P 1,1 to P M, N in which the photodiodes of the second pixel portions Q i, j are two-dimensionally arranged are provided, and Are provided in different regions continuously over the length of a plurality of rows or a plurality of columns in the two-dimensional array.
  • M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is 1 These are integers of N or less, i is an integer of 1 or more and I or less, and j is an integer of 1 or more and J or less. Note that the rows and columns for the M ⁇ N first pixel portions P 1,1 to P M, N and the rows and columns for the I ⁇ J second pixel portions Q 1,1 to Q I, J are shown. Is different.
  • each of the I ⁇ J second pixel units Q 1,1 to Q I, J has two-dimensionally arranged M ⁇ N first pixels. Are provided continuously in a region different from the region where the photodiodes of the parts P 1,1 to P M, N are provided over a length corresponding to a plurality of rows or a plurality of columns in the two-dimensional array. Yes.
  • a first electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each first pixel unit P m, n is output, and the photodiode of each second pixel unit Q i, j
  • the second electric signal having a value corresponding to the amount of electric charge generated in the step is output.
  • the control unit controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n and outputs the second electric signal by the signal output unit for each second pixel unit Q i, j Is controlled.
  • High-speed high-resolution imaging can be performed using the first pixel portion P m, n
  • high-speed low-resolution imaging can be performed using the second pixel portion Q i, j .
  • the solid-state imaging device can perform high-resolution imaging and low-resolution imaging at high speed.
  • FIG. 1 is a diagram illustrating a schematic configuration of a solid-state imaging device 1 according to the present embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment.
  • FIG. 3 is a diagram illustrating a circuit configuration of each of the first pixel unit P m, n and the holding circuit 23 n included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 4 is a diagram illustrating a circuit configuration of the difference calculation circuit 25 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 5 is a diagram illustrating a circuit configuration of each of the second pixel unit Q i, j and the holding circuit 24 j included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of a solid-state imaging device 1 according to the present embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment.
  • FIG. 6 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 7 is a diagram illustrating a first arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 8 is a diagram illustrating a second arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 7 is a diagram illustrating a first arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 8 is a diagram illustrating a second arrangement example of the first pixel unit P m, n and the second pixel unit Q i
  • FIG. 9 is a diagram illustrating a third arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 10 is a diagram illustrating a first layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 11 is a cross-sectional view taken along the line A-A ′ in the first layout example shown in FIG. 10.
  • FIG. 12 is a diagram illustrating a second layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 13 is a configuration diagram of a solid-state imaging device 2 according to another embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a solid-state imaging device 1 according to the present embodiment.
  • the solid-state imaging device 1 shown in this figure includes a light receiving unit 10, a first signal output circuit 21, a second signal output circuit 22, a first control circuit 31, and a second control circuit 32.
  • the light receiving unit 10 includes M ⁇ N first pixel units P 1,1 to P M, N and I ⁇ J second pixel units Q 1,1 to Q I, J.
  • the M ⁇ N first pixel portions P 1,1 to P M, N have a common configuration and are two-dimensionally arranged in M rows and N columns.
  • Each first pixel portion P m, n includes a photodiode that generates an amount of charge corresponding to the amount of incident light, and is located in the mth row and the nth column.
  • the I ⁇ J second pixel portions Q 1,1 to Q I, J have a common configuration and are two-dimensionally arranged in I rows and J columns.
  • Each second pixel portion Q i, j includes a photodiode that generates an amount of charge corresponding to the amount of incident light, and is located in the i-th row and j-th column. Details of the light receiving unit 10 will be described later.
  • M and N are integers of 2 or more.
  • I is an integer of 2 or more and less than M
  • J is an integer of 2 or more and less than N
  • m is an integer from 1 to M
  • n is an integer from 1 to N
  • i is an integer from 1 to I
  • j is an integer from 1 to J.
  • I is preferably a divisor of M
  • J is preferably a divisor of N.
  • M and N are 1024
  • I and J are 128.
  • one second pixel portion Q is provided for 8 ⁇ 8 first pixel portions P. Note that the rows and columns for the M ⁇ N first pixel portions P 1,1 to P M, N and the rows and columns for the I ⁇ J second pixel portions Q 1,1 to Q I, J are shown. Is different.
  • the photodiodes of the second pixel portions Q i, j are different from the regions where the photodiodes of the M ⁇ N first pixel portions P 1,1 to P M, N arranged two-dimensionally are provided.
  • the region is continuously provided over a length corresponding to a plurality of rows or a plurality of columns in the two-dimensional array.
  • Each first pixel portion P m, n and each second pixel portion Q i, j may be of the PPS (Passive Pixel Sensor) type, but of the APS (Active Pixel Sensor) type. preferable. That is, each first pixel portion P m, n and each second pixel portion Q i, j include an amplification MOS transistor for inputting the charge generated by the photodiode, and the amplification MOS transistor according to the input charge amount. It is preferable to output an electrical signal.
  • Each first pixel unit P m, n included in the light receiving unit 10 is connected to the first signal output circuit 21.
  • the first signal output circuit 21 outputs a first electric signal having a value corresponding to the amount of charge generated in the photodiode of each first pixel unit P m, n . More specifically, the output terminals of the M first pixel portions P 1, n to P M, n in the n-th column are connected to the first signal output circuit 21 by a common readout wiring.
  • the first signal output circuit 21 sequentially inputs data from each of the N first pixel portions P m, 1 to P m, N in the m-th row in order for the first to M-th rows, These N pieces of data are serially output as the first electric signal.
  • the first control circuit 31 controls the output of the first electric signal by the first signal output circuit 21 for each first pixel unit P m, n , and includes a first timing control circuit 41, a first row selection circuit, and so on. 51 and a first column selection circuit 61.
  • the first timing control circuit 41 controls the operation timings of the first signal output circuit 21, the first row selection circuit 51, and the first column selection circuit 61.
  • the first row selection circuit 51 selects each row in the two-dimensional array of M ⁇ N first pixel portions P 1,1 to P M, N of the light receiving unit 10. Sequentially specified, a predetermined control signal is given to each of the N first pixel portions P m, 1 to P m, N in the designated m-th row, and the N first pixel portions P in the m-th row Data is output from each of m, 1 to P m, N to the first signal output circuit 21.
  • the first row selection circuit 51 includes an M-stage shift register circuit, and each row can be sequentially designated by an output bit of each stage of the shift register circuit.
  • the first column selection circuit 61 is configured so that each column in the two-dimensional array of M ⁇ N first pixel units P 1,1 to P M, N of the light receiving unit 10. Are sequentially designated, and a control signal indicating the designated n-th column is supplied to the first signal output circuit 21, and each of the N first pixel portions P m, 1 to P m, N in the m- th row is designated. Are sequentially output from the first signal output circuit 21 as the first electric signal.
  • the first column selection circuit 61 includes an N-stage shift register circuit, and each column can be sequentially designated by an output bit of each stage of the shift register circuit.
  • Each second pixel unit Q i, j included in the light receiving unit 10 is connected to the second signal output circuit 22.
  • the second signal output circuit 22 outputs a second electric signal having a value corresponding to the amount of charge generated in the photodiode of each second pixel portion Q i, j . More specifically, the output terminals of the I second pixel portions Q 1, j 1 to Q I, j in the j-th column are connected to the second signal output circuit 22 by a common readout wiring.
  • the second signal output circuit 22 inputs data from each of the J second pixel portions Q i, 1 to Q i, J in the i-th row in parallel for the first row to the I-th row in parallel, These J pieces of data are serially output as the second electric signal.
  • the second control circuit 32 controls the output of the second electric signal by the second signal output circuit 22 for each second pixel portion Q i, j , and includes a second timing control circuit 42, a second row selection circuit, and the like. 52 and a second column selection circuit 62.
  • the second timing control circuit 42 controls operation timings of the second signal output circuit 22, the second row selection circuit 52, and the second column selection circuit 62.
  • the second row selection circuit 52 selects each row in the two-dimensional array of I ⁇ J second pixel portions Q 1,1 to Q I, J of the light receiving unit 10 under the timing control by the second timing control circuit 42.
  • a predetermined control signal is given to each of the J second pixel portions Q i, 1 to Q i, J in the designated i-th row in order, and the J second pixel portions Q in the i- th row are designated.
  • Data is output from each of i, 1 to Q i, J to the second signal output circuit 22.
  • the second row selection circuit 52 includes an I-stage shift register circuit, and each row can be sequentially designated by an output bit of each stage of the shift register circuit.
  • the second column selection circuit 62 is configured so that each column in the two-dimensional array of I ⁇ J second pixel portions Q 1,1 to Q I, J of the light receiving unit 10. Are sequentially designated, and a control signal indicating the designated j-th column is given to the second signal output circuit 22, and from each of the J second pixel portions Q i, 1 to Q i, J in the i-th row. Are sequentially output from the second signal output circuit 22 as a second electric signal.
  • the second column selection circuit 62 includes a J-stage shift register circuit, and each column can be sequentially designated by the output bit of each stage of the shift register circuit.
  • the first signal output circuit 21 and the second signal output circuit 22 output a first electric signal having a value corresponding to the amount of charge generated in the photodiode PD of each first pixel unit P m, n , and A signal output unit configured to output a second electric signal having a value corresponding to the amount of charge generated in the photodiode PD of the two-pixel unit Q i, j is configured.
  • the first control circuit 31 and the second control circuit 32 control the output of the first electric signal by the signal output unit for each first pixel unit P m, n and output the signal for each second pixel unit Q i, j.
  • the control part which controls the output of the 2nd electric signal by a part is comprised.
  • the first signal output circuit 21 and the second signal output circuit 22 may have the same configuration except for the difference in the number of data that are input in parallel for each row and output serially.
  • the first row selection circuit 51 and the second row selection circuit 52 may have the same configuration except for the point related to the difference in the number of designated rows.
  • the first column selection circuit 61 and the second column selection circuit 62 may have the same configuration except for the point relating to the difference in the number of designated columns.
  • FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment.
  • the light receiving unit 10 is represented by the first pixel unit P m, n located in the m-th row and the n-th column among the M ⁇ N first pixel units P 1,1 to P M, N.
  • the second pixel portion Q i, j located in the i-th row and j-th column of the I ⁇ J second pixel portions Q 1,1 to Q I, J is representative. Is shown.
  • the connection relationship between the light receiving unit 10 and the first signal output circuit 21 and the connection relationship between the light receiving unit 10 and the first row selection circuit 51 are related to the first pixel unit P m, n. It is shown.
  • connection relationship between the light receiving unit 10 and the second signal output circuit 22 and the connection relationship between the light receiving unit 10 and the second row selection circuit 52 are related to the second pixel unit Q i, j. It is shown.
  • first signal output circuit 21 components related to the first pixel portion P m, n are shown.
  • second signal output circuit 22 components related to the second pixel portion Q i, j are shown.
  • the first signal output circuit 21 includes N holding circuits 23 1 to 23 N , a difference calculation circuit 25 and an AD conversion circuit 27.
  • the N holding circuits 23 1 to 23 N have a common configuration.
  • Each holding circuit 23 n is connected to an output terminal of each of the M first pixel portions P 1, n to P M, n in the n-th column by a common readout wiring Vline1 (n).
  • the data output from any one of the first pixel portions P m, n and input via the readout wiring Vline1 (n) is held, and the held data is output to the wirings Hline_s1 and Hline_n1.
  • the difference calculation circuit 25 inputs two data that arrive via the wirings Hline_s1 and Hline_n1, and outputs data corresponding to the difference between the two data to the AD conversion circuit 27.
  • the AD conversion circuit 27 receives the analog data output from the difference calculation circuit 25 and outputs digital data corresponding to the analog data as a first electric signal.
  • the second signal output circuit 22 includes J holding circuits 24 1 to 24 J , a difference calculation circuit 26, and an AD conversion circuit 28.
  • the J holding circuits 24 1 to 24 J have a common configuration.
  • Each holding circuit 24 j is connected to an output terminal of each of the I second pixel portions Q 1, j to Q I, j in the j-th column by a common readout wiring Vline2 (j).
  • the data output from any one of the second pixel portions Q i, j and input via the readout wiring Vline2 (j) is stored, and the stored data is output to the wirings Hline_s2 and Hline_n2.
  • the difference calculation circuit 26 inputs two data arrived via the wirings Hline_s2 and Hline_n2, and outputs data corresponding to the difference between the two data to the AD conversion circuit 28.
  • the AD conversion circuit 28 receives the analog data output from the difference calculation circuit 26, and outputs digital data corresponding to the analog data as a second electric signal.
  • FIG. 3 is a diagram illustrating a circuit configuration of each of the first pixel unit P m, n and the holding circuit 23 n included in the solid-state imaging device 1 according to the present embodiment.
  • the first pixel portion P m, n is shown as a representative of the M ⁇ N first pixel portions P 1,1 to P M, N and the N holding circuits 23 1 to 23 N are represented.
  • the holding circuit 23 n is shown as a representative.
  • Each first pixel portion P m, n is of the APS type, and includes a photodiode PD and five MOS transistors T1 to T5. As shown in this figure, the transistor T1, the transistor T2, and the photodiode PD are connected in series in order, the reference voltage Vb1 is input to the drain terminal of the transistor T1, and the anode terminal of the photodiode PD is grounded. Has been.
  • the transistor T3 and the transistor T4 are connected in series, the reference voltage Vb2 is input to the drain terminal of the transistor T3, and the source terminal of the transistor T4 is connected to the wiring Vline1 (n).
  • a connection point between the transistor T1 and the transistor T2 is connected to the gate terminal of the transistor T3 through the transistor T5.
  • a constant current source is connected to the wiring Vline1 (n).
  • the amplifying transistor T3 outputs an electric signal having a value corresponding to the amount of charge input to the gate terminal.
  • the Reset1 (m) signal is input to the gate terminal of the reset transistor T1, the Trans1 (m) signal is input to the gate terminal of the transfer transistor T2, and the Address1 (m) signal is input to the gate of the output selection transistor T4.
  • the Hold1 (m) signal is input to the terminal of the transistor T5.
  • the Reset1 (m) signal, Trans1 (m) signal, Address1 (m) signal, and Hold1 (m) signal are output from the first row selection circuit 51 under the control of the first timing control circuit 41, and the mth row. Are commonly input to the N first pixel portions P m, 1 to P m, N.
  • the Reset1 (m) signal and the Trans1 (m) signal are at a high level, the junction capacitance portion (charge storage portion) of the photodiode PD is discharged, and when the Hold1 (m) signal is also at a high level, the transistor T3 The potential of the gate terminal is reset. After that, when the Reset1 (m) signal, Trans1 (m) signal, and Hold1 (m) signal become low level, the charge generated in the photodiode is accumulated in the junction capacitor.
  • the Hold1 (m) signal is at a low level and the Address1 (m) signal is at a high level, a noise component is output from the first pixel unit Pm , n to the wiring Vline1 (n).
  • Each holding circuit 23 n includes two capacitive elements C 1 , C 2 and four switches SW 11 , SW 12 , SW 21 , SW 22 .
  • the switch SW 11 and the switch SW 12 is provided between the serially connected to the wiring Vline1 (n) and the wiring Hline_s1, one terminal of the capacitance C 1, the switch SW 11 and the switch is connected to the connection point between the SW 12, the other end of the capacitive element C 1 is grounded.
  • the switch SW 21 and the switch SW 22 is provided between the serially connected to the wiring Vline1 (n) and the wiring Hline_n1, one terminal of the capacitance C 2 is between the switch SW 21 and the switch SW 22 is connected to the connection point, the other end of the capacitive element C 2 is grounded.
  • the switch SW 11 opens and closes according to the level of the set_s1 signal supplied from the first column selection circuit 61.
  • the switch SW 21 opens and closes according to the level of the set_n1 signal supplied from the first column selection circuit 61.
  • the set_s1 signal and the set_n1 signal are input in common to the N holding circuits 23 1 to 23 N.
  • the switches SW 12 and SW 22 open and close according to the level of the hshift1 (n) signal supplied from the first column selection circuit 61.
  • the noise component output from the first pixel unit P m, n to the wiring Vline1 (n) when the set_n1 signal changes from the high level to the low level and the switch SW 21 is opened is thereafter It is held as a voltage value out_n1 (n) by the capacitance element C 2.
  • set_s1 signal is first pixel unit P m, the signal component being output from the n wiring Vline1 to (n) when the switch SW 11 is opened in turn from a high level to a low level, thereafter, the voltage by the capacitive element C 1 Stored as value out_s1 (n).
  • the switch SW 12 When hshift1 (n) signal becomes a high level, the switch SW 12 is closed, is output to the voltage value out_s1 (n) is the wiring Hline_s1 that has been held by the capacitor element C 1, The switch SW 22 is closed , voltage value out_n1 that has been held by the capacitor element C 2 (n) is output to the wiring Hline_n1.
  • the difference between the voltage value out_s1 (n) and the voltage value out_n1 (n) represents a voltage value corresponding to the amount of charge generated in the photodiode PD of the first pixel unit Pm , n .
  • FIG. 4 is a diagram illustrating a circuit configuration of the difference calculation circuit 25 included in the solid-state imaging device 1 according to the present embodiment.
  • the difference calculation circuit 25 includes amplifiers A 1 to A 3 , switches SW 1 and SW 2 , and resistors R 1 to R 4 .
  • Inverting input terminal of the amplifier A 3 is connected to the output terminal of the buffer amplifier A 1 via a resistor R 1, and is connected to its own output terminal via the resistor R 3.
  • the non-inverting input terminal of the amplifier A 3 is connected to the output terminal of the buffer amplifier A 2 via the resistor R 2, and is connected to the ground potential via the resistor R 4.
  • the output terminal of the amplifier A 3 is connected to the input terminal of the AD conversion circuit 27.
  • Input terminal of the buffer amplifier A 1 is connected to the N holding circuits 23 1 ⁇ 23 N via the wiring Hline_s1, it is connected to the ground potential via the switch SW 1.
  • the input terminal of the buffer amplifier A 2 is connected to the N holding circuits 23 1 to 23 N through the wiring Hline_n 1 and is connected to the ground potential through the switch SW 2 .
  • the switches SW 1 and SW 2 of the difference calculation circuit 25 are controlled by the hreset1 signal supplied from the first column selection circuit 61 to open and close.
  • the switch SW 1 When the switch SW 1 is closed, the voltage value input to the input terminal of the buffer amplifier A 1 is reset.
  • the switch SW 2 is closed, the voltage value input to the input terminal of the buffer amplifier A 2 is reset.
  • the switch SW 1, SW 2 When the switch SW 1, SW 2 is open, the wiring from one of the holding circuit 23 n of the N holding circuits 23 1 ⁇ 23 N Hline_s1, the voltage value outputted to the Hline_n1 out_s1 (n), out_n1 (n) is input to the input terminals of the buffer amplifiers A 1 and A 2 .
  • the voltage value output from the output terminal of the difference calculation circuit 25 is The difference between the voltage values input through the wiring Hline_s1 and the wiring Hline_n1 is represented, and the noise component is removed.
  • FIG. 5 is a diagram illustrating a circuit configuration of each of the second pixel unit Q i, j and the holding circuit 24 j included in the solid-state imaging device 1 according to the present embodiment.
  • the second pixel portion Q i, j is representatively shown among the I ⁇ J second pixel portions Q 1,1 to Q I, J , and the J holding circuits 24 1 to 24 J Of these, the holding circuit 24 j is shown as a representative.
  • Each second pixel portion Q i, j has the same configuration as the first pixel portion P m, n and is of the APS system, and includes a photodiode PD and five MOS transistors T1 to T5.
  • the connection relationship between these elements in the second pixel portion Q i, j is the same as the connection relationship in the first pixel portion P m, n .
  • the source terminal of the transistor T4 is connected to the wiring Vline2 (j).
  • a constant current source is connected to the wiring Vline2 (j).
  • the amplifying transistor T3 outputs an electric signal having a value corresponding to the amount of charge input to the gate terminal.
  • the Reset2 (i) signal is input to the gate terminal of the reset transistor T1, the Trans2 (i) signal is input to the gate terminal of the transfer transistor T2, and the Address2 (i) signal is input to the gate of the output selection transistor T4.
  • the Hold2 (i) signal is input to the terminal of the transistor T5.
  • the Reset2 (i) signal, Trans2 (i) signal, Address2 (i) signal, and Hold2 (i) signal are output from the second row selection circuit 52 under the control of the second timing control circuit 42, and the i-th row.
  • the operation of the second pixel unit Q i, j is the same as the operation of the first pixel unit P m, n .
  • Each holding circuit 24 j has the same configuration as the holding circuit 23 n and includes two capacitive elements C 1 and C 2 and four switches SW 11 , SW 12 , SW 21 , and SW 22 .
  • the connection relationship between these elements in the holding circuit 24 j is the same as the connection relationship in the holding circuit 23 n .
  • the switches SW 11 and SW 21 are connected to the wiring Vline2 (j).
  • Switch SW 12 is connected to the wiring Hline_s2.
  • the switch SW 22 is connected to the wiring Hline_n2.
  • the switch SW 11 opens and closes according to the level of the set_s2 signal supplied from the second column selection circuit 62.
  • the switch SW 21 opens and closes according to the level of the set_n2 signal supplied from the second column selection circuit 62.
  • the set_s2 signal and the set_n2 signal are input in common to the J holding circuits 24 1 to 24 J.
  • the switches SW 12 and SW 22 open and close according to the level of the hshift2 (j) signal supplied from the second column selection circuit 62.
  • the operation of the holding circuit 24 j is the same as the operation of the holding circuit 23 n .
  • hshift2 (j) signal becomes a high level
  • the switch SW 12 is closed, the voltage value out_s2 that has been held by the capacitor element C 1 (j) is output to the wiring Hline_s2,
  • the switch SW 22 is closed, capacitor voltage out_n2 which has been held by the element C 2 (j) is output to the wiring Hline_n2.
  • the difference between the voltage value out_s2 (j) and the voltage value out_n2 (j) represents a voltage value corresponding to the amount of charge generated in the photodiode PD of the second pixel unit Q i, j .
  • FIG. 6 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment.
  • the difference calculation circuit 26 has the same configuration as the difference calculation circuit 25, and includes amplifiers A 1 to A 3 , switches SW 1 and SW 2 , and resistors R 1 to R 4 .
  • the connection relationship between these elements in the difference calculation circuit 26 is the same as the connection relationship in the difference calculation circuit 25.
  • Input terminal of the buffer amplifier A 1 is connected to the J hold circuits 24 1 ⁇ 24 J through the wire Hline_s2, is connected to the ground potential via the switch SW 1.
  • Input terminal of the buffer amplifier A 2 is connected to the J hold circuits 24 1 ⁇ 24 J through the wire Hline_n2, is connected to the ground potential via the switch SW 2.
  • the switches SW 1 and SW 2 of the difference calculation circuit 26 are controlled by the hreset2 signal supplied from the second column selection circuit 62 to open and close.
  • the switch SW 1 When the switch SW 1 is closed, the voltage value input to the input terminal of the buffer amplifier A 1 is reset.
  • the switch SW 2 is closed, the voltage value input to the input terminal of the buffer amplifier A 2 is reset.
  • the switch SW 1, SW 2 When the switch SW 1, SW 2 is open, the wiring from any holding circuit 24 j of the J holding circuits 24 1 ⁇ 24 J Hline_s2, the voltage value outputted to the Hline_n2 out_s2 (j), out_n2 (j) is input to the input terminals of the buffer amplifiers A 1 and A 2 .
  • the voltage value output from the output terminal of the difference calculation circuit 26 is The difference between the voltage values input through the wiring Hline_s2 and the wiring Hline_n2 is represented, and the noise component is removed.
  • FIG. 7 to FIG. 9 are diagrams showing examples of arrangement of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10.
  • the range of 8 ⁇ 8 first pixel portions P m, n is defined as a unit region, and the range of 2 ⁇ 2 unit regions is shown.
  • the arrangement of the photodiodes PD of m, n and the second pixel portion Q i, j is shown.
  • the range of 8 ⁇ 24 first pixel portions P m, n is a unit region, and the range of 2 ⁇ 2 unit regions is shown, and the first pixel portion P m, n in the range is shown .
  • FIG. 7 is a diagram illustrating a first arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • the photodiode PD of each second pixel portion Q i, j includes 8 ⁇ 8 first pixel portions P 8i-7,8j-7 to P 8i, 8j, respectively. It is arranged in the surrounding continuous area (between rows, between columns and around).
  • FIG. 8 is a diagram illustrating a second arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • the photodiode PD of each second pixel portion Q i, j is arranged in each row of 8 ⁇ 8 first pixel portions P 8i-7,8j-7 to P 8i, 8j . 8 have photosensitive regions (PN junction regions) arranged continuously over the length of eight rows, and these eight photosensitive regions are formed by wirings L i, j. They are connected to each other, and eight photodiodes are connected in parallel.
  • the photodiode PD of each second pixel portion Q i, j includes 8 ⁇ 8 first pixel portions P 8i-7, 8j-7 to P 8i, 8j has eight photosensitive regions (PN junction regions) arranged continuously over the length of eight rows on one side of each column of 8j , and these eight photosensitive regions are connected by wiring. They may be connected to each other so that eight photodiodes are connected in parallel.
  • FIG. 9 is a diagram illustrating a third arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • a color filter is attached to the photodiode PD of each first pixel portion Pm, n .
  • the photodiodes PD of the first pixel unit P m, 3k-2 , the first pixel unit P m, 3k-1 and the first pixel unit P m, 3k are provided with color filters having different center wavelengths in the transmission band. It has been.
  • the photodiode PD of the first pixel unit Pm, 3k-2 is provided with a red filter whose transmission band center wavelength is in the red wavelength band.
  • the photodiode PD of the first pixel unit P m, 3k ⁇ 1 is provided with a green filter whose center wavelength in the transmission band is in the green wavelength band.
  • the photodiode PD of the first pixel unit P m, 3k is provided with a blue filter whose transmission band has a center wavelength in the blue wavelength band.
  • k is a natural number.
  • the photodiode PD of each second pixel portion Q i, j is 24 columns on one side of each row of the 8 ⁇ 24 first pixel portions P 8i-7,24j-23 to P 8i, 24j . It has eight photosensitive regions (PN junction regions) arranged continuously over the length, and these eight photosensitive regions are connected to each other by wirings L i, j. The photodiodes are connected in parallel. In this way, high-resolution color imaging can be performed using M ⁇ N first pixel portions P 1,1 to P M, N.
  • the arrangement of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 is not limited to these design examples.
  • the photodiodes of the second pixel portions Q i, j are different from the regions where the photodiodes of the M ⁇ N first pixel portions P 1,1 to P M, N arranged two-dimensionally are provided. It suffices if the region is provided continuously over the length of a plurality of rows or a plurality of columns in the two-dimensional array.
  • the solid-state imaging device 1 can perform high-resolution imaging at high speed using the M ⁇ N first pixel portions P 1,1 to P M, N , and I ⁇ J Low resolution imaging can be performed at high speed using the second pixel portions Q 1,1 to Q I, J.
  • each first pixel portion P m, n and each second pixel portion Q i, j is of the APS system, high-speed imaging can be performed with high sensitivity and low noise.
  • a first signal output circuit 21 that outputs a first electric signal for each first pixel portion P m, n and a second signal output circuit 22 that outputs a second electric signal for each second pixel portion Q i, j . Since the high-resolution imaging using the first pixel portion P m, n and the low-resolution imaging using the second pixel portion Q i, j can be performed in parallel, High-speed imaging is possible.
  • the first control circuit 31 controls the output of the first electric signal by the first signal output circuit 21 for each first pixel portion P m, n , and the second signal output circuit for each second pixel portion Q i, j .
  • a second control circuit 32 for controlling the output of the second electric signal by 22 separately, so that high-resolution imaging using the first pixel portion P m, n and the second pixel portion Q i, j are used. It becomes easy to perform the low-resolution imaging that has been performed independently of each other.
  • FIGS. 10 to 12 are diagrams showing layout examples of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • the solid-state imaging device 1 according to this embodiment is preferably integrated on a semiconductor substrate, and in that case, for example, has a structure as shown in FIGS.
  • FIG. 10 is a diagram illustrating a first layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • FIG. 11 is a cross-sectional view taken along the line A-A ′ in the first layout example shown in FIG. 10.
  • FIG. 12 is a diagram illustrating a second layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
  • the diffusion layer 1 is formed in the region of the photodiode PD of each first pixel portion Pm, n and the region of the photodiode PD of each second pixel portion Q i, j. is there.
  • the diffusion layer 2 is a source and drain region of the transistors T1 to T5 of each first pixel portion Pm, n and a source and drain region of the transistors T1 to T5 of each second pixel portion Q i, j .
  • the polysilicon is the gate of each of the transistors T1 to T5 of each first pixel portion Pm, n and each second pixel portion Qi , j .
  • the metal wiring is a wiring for connecting the reading wiring Vline1 (n) and the reading wiring Vline2 (j), and the transistor T3 and the transistor T5.
  • the upper layer metal in FIG. 12 is a wiring L i, j that connects a plurality of photosensitive regions to each other in each second pixel portion Q i, j .
  • FIG. 10 and FIG. 12 the other metal wirings are not shown. Further, in FIG. 11 showing an AA ′ cross section in the first layout example shown in FIG. 10, illustration of an insulating layer and the like is omitted.
  • each of the second pixel section Q i, wiring a plurality of photosensitive regions in j L i, but is intended to be connected to each other by j, the second pixel unit Q i, j is Even in the case of having one photodiode, the photosensitive region of the photodiode (the region of the diffusion layer 1) is wide. Therefore, in order to reduce the resistance, contact holes are provided at various locations in the photosensitive region and metal wiring is provided. It is preferable to connect with.
  • the first signal output circuit 21 and the second signal output circuit 22 are provided separately, and the first column selection circuit 61 and the second column selection circuit 62 are provided separately.
  • the signal output unit 20 may be provided instead of the first signal output circuit 21 and the second signal output circuit 22, or the first column selection circuit 61 and the second column A column selection circuit 60 may be provided instead of the selection circuit 62.
  • FIG. 13 is a configuration diagram of a solid-state imaging device 2 according to another embodiment.
  • the solid-state imaging device 2 shown in this figure includes a light receiving unit 10, a signal output unit 20, and a control unit 30.
  • the light receiving unit 10 is the same as described above.
  • the signal output unit 20 has the same configuration as that of the first signal output circuit 21, but the operation differs depending on whether high-resolution imaging is performed or low-resolution imaging.
  • the control unit 30 includes a timing control circuit 40, a first row selection circuit 51, a second row selection circuit 52, and a column selection circuit 60.
  • the timing control circuit 40 controls operation timings of the signal output unit 20, the first row selection circuit 51, the second row selection circuit 52, and the column selection circuit 60.
  • the column selection circuit 60 When high-resolution imaging is performed using M ⁇ N first pixel portions P 1,1 to P M, N , the column selection circuit 60 performs the same operation as the first column selection circuit 61 and outputs a signal.
  • the unit 20 operates in the same manner as the first signal output circuit 21.
  • the signal output unit 20 holds J of the N holding circuits. The second electrical signal is output using the circuit, and the column selection circuit 60 controls the signal output unit 20 to perform such an operation.
  • the solid-state imaging device according to the present invention is not limited to the above-described embodiments and configuration examples, and various modifications are possible.
  • the solid-state imaging device has (1) M ⁇ N first pixel portions P 1,1 to P M, N each two-dimensionally arranged in M rows and N columns and including photodiodes.
  • a light receiving portion having I ⁇ J second pixel portions Q 1,1 to Q I, J each including a photodiode, and (2) charge generated in the photodiode of each first pixel portion P m, n
  • a signal output unit that outputs a first electric signal having a value corresponding to the amount and outputting a second electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each second pixel unit Q i, j ; (3) Controlling the output of the first electric signal by the signal output unit for each first pixel unit P m, n and controlling the output of the second electric signal by the signal output unit for each second pixel unit Q i, j
  • the control part which comprises is used.
  • a region in which the photodiodes of the M ⁇ N first pixel portions P 1,1 to P M, N in which the photodiodes of the second pixel portions Q i, j are two-dimensionally arranged are provided, and Uses a configuration in which different regions are continuously provided over a length corresponding to a plurality of rows or a plurality of columns in the two-dimensional array.
  • M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is 1 These are integers of N or less, i is an integer of 1 or more and I or less, and j is an integer of 1 or more and J or less. Note that the rows and columns for the M ⁇ N first pixel portions P 1,1 to P M, N and the rows and columns for the I ⁇ J second pixel portions Q 1,1 to Q I, J are shown. Is different.
  • contact holes are provided at various locations in the photosensitive regions of the photodiodes of the second pixel portions Q i, j and these are connected by metal wiring. In this case, even if the photosensitive region of the photodiode of each second pixel portion Q i, j is wide, the resistance can be reduced.
  • each first pixel portion P m, n and each second pixel portion Q i, j include an amplification MOS transistor that inputs charges generated by the photodiode to the gate terminal. It is preferable to output an electric signal corresponding to the input charge amount from the MOS transistor to the signal output unit. In this way, when each first pixel portion P m, n and each second pixel portion Q i, j are of the APS system, high-speed imaging can be performed with high sensitivity and low noise.
  • the signal output unit includes a first signal output circuit that outputs a first electric signal for each first pixel unit P m, n and a second electric signal for each second pixel unit Q i, j . It is preferable to separately have a second signal output circuit that outputs. In this case, since high-resolution imaging using the first pixel unit P m, n and low-resolution imaging using the second pixel unit Q i, j can be performed in parallel, higher-speed imaging is possible. It is.
  • the control unit controls the first control circuit that controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n , and each second pixel unit Q i, j . It is preferable to separately have a second control circuit that controls the output of the second electric signal by the signal output unit. In this case, it becomes easy to perform high-resolution imaging using the first pixel portion P m, n and low-resolution imaging using the second pixel portion Q i, j independently of each other.
  • a color filter is provided in the photodiode of each first pixel unit Pm, n . In this case, high-resolution color imaging can be performed.
  • the present invention can be used as a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging at high speed.
  • 1,2 ... solid-state imaging device 10 ... receiving unit, 20 ... signal output section, 21 ... first signal output circuit, 22 ... second signal output circuit, 23 n ... holding circuit, 24 j ... holding circuit, 25 and 26 ... difference calculation circuit, 27, 28 ... AD conversion circuit, 30 ... control unit, 31 ... first control circuit, 32 ... second control circuit, 40 ... timing control circuit, 41 ... first timing control circuit, 42 ... second Timing control circuit 51 ... first row selection circuit 52 ... second row selection circuit 60 ... column selection circuit 61 ... first column selection circuit 62 ... second column selection circuit Pm, n ... first pixel Part, Q i, j ... second pixel part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

A solid state imaging device (1) includes: a light reception unit (10), a first signal output circuit (21), a second signal output circuit (22), a first control circuit (31), and a second control circuit (32).  The light reception unit (10) has M × N first pixel units P1,1 to PM,N containing photodiodes arranged two-dimensionally in M rows and N columns and I × J second pixel units Q1,1 to QI,J each containing photodiodes.  The photodiodes of each of the second pixel units QI,J are continuously arranged over a plurality of rows or columns in the two-dimensional arrangement in a region different from the region where the photodiodes of the M × N first pixel units P1,1 to PM,N are arranged two-dimensionally.  This can realize a solid state imaging device which can perform a high-resolution imaging and a low-resolution imaging at a high speed.

Description

固体撮像装置Solid-state imaging device
 本発明は、固体撮像装置に関するものである。 The present invention relates to a solid-state imaging device.
 固体撮像装置は、フォトダイオードを各々含む複数の画素部が2次元配列された受光部と、各画素部のフォトダイオードで発生する電荷の量に応じた値の電気信号を出力する信号出力部と、各画素部について信号出力部による電気信号の出力を制御する制御部と、を備える。固体撮像装置は、信号出力部から出力される電気信号に基づいて、受光部に入力される光の強度分布を求め撮像することができる。 A solid-state imaging device includes a light receiving unit in which a plurality of pixel units each including a photodiode are two-dimensionally arranged, a signal output unit that outputs an electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each pixel unit, And a control unit for controlling the output of an electrical signal by the signal output unit for each pixel unit. The solid-state imaging device can obtain an image of the intensity distribution of the light input to the light receiving unit based on the electrical signal output from the signal output unit.
 特許文献1には、高解像度の撮像を行うとともに低解像度の撮像を行うことができる固体撮像装置が開示されている。特許文献1に開示されている固体撮像装置は、受光部に含まれる複数の画素部それぞれについて個別に電気信号を出力することで高解像度の撮像を行う。また、この固体撮像装置は、受光部に含まれる複数の画素部のうちの一定数の画素部についての電気信号を加算することで低解像度の撮像を行う。このような低解像度撮像の動作はビニング動作と呼ばれる。 Patent Document 1 discloses a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging. The solid-state imaging device disclosed in Patent Document 1 performs high-resolution imaging by individually outputting an electrical signal for each of a plurality of pixel units included in a light receiving unit. In addition, this solid-state imaging device performs low-resolution imaging by adding electrical signals for a certain number of pixel units among a plurality of pixel units included in the light receiving unit. Such a low-resolution imaging operation is called a binning operation.
特開2005-277709号公報JP 2005-277709 A
 特許文献1に開示されている固体撮像装置は、例えば高解像度撮像と低解像度撮像とを切り替えて行う場合に高速な撮像を行うことができない。 The solid-state imaging device disclosed in Patent Document 1 cannot perform high-speed imaging when switching between high-resolution imaging and low-resolution imaging, for example.
 本発明は、上記問題点を解消する為になされたものであり、高解像度撮像および低解像度撮像を高速に行うことができる固体撮像装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging at high speed.
 本発明に係る固体撮像装置は、(1)M行N列に2次元配列されフォトダイオードを各々含むM×N個の第一画素部P1,1~PM,Nを有するとともに、フォトダイオードを各々含むI×J個の第二画素部Q1,1~QI,Jを有する受光部と、(2)各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号を出力するとともに、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号を出力する信号出力部と、(3)各第一画素部Pm,nについて信号出力部による第一電気信号の出力を制御するとともに、各第二画素部Qi,jについて信号出力部による第二電気信号の出力を制御する制御部と、を備えることを特徴とする。さらに、各第二画素部Qi,jのフォトダイオードが、2次元配列されたM×N個の第一画素部P1,1~PM,Nそれぞれのフォトダイオードが設けられている領域とは異なる領域に、当該2次元配列における複数行分または複数列分の長さに亘って連続して設けられていることを特徴とする。 The solid-state imaging device according to the present invention includes (1) M × N first pixel portions P 1,1 to P M, N that are two-dimensionally arranged in M rows and N columns and each include a photodiode. In accordance with the amount of charge generated in the photodiode of each of the first pixel portions P m, n and (2) the light receiving portion having I × J second pixel portions Q 1,1 to Q I, J A signal output unit that outputs a first electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each second pixel unit Q i, j , and (3) A control unit for controlling the output of the first electric signal by the signal output unit for each first pixel unit P m, n and for controlling the output of the second electric signal by the signal output unit for each second pixel unit Q i, j And. Further, a region in which the photodiodes of the M × N first pixel portions P 1,1 to P M, N in which the photodiodes of the second pixel portions Q i, j are two-dimensionally arranged are provided, and Are provided in different regions continuously over the length of a plurality of rows or a plurality of columns in the two-dimensional array.
 ただし、M,Nは2以上の整数であり、Iは2以上M未満の整数であり、Jは2以上N未満の整数であり、mは1以上M以下の各整数であり、nは1以上N以下の各整数であり、iは1以上I以下の各整数であり、jは1以上J以下の各整数である。なお、M×N個の第一画素部P1,1~PM,Nについての行および列と、I×J個の第二画素部Q1,1~QI,Jについての行および列とは、相違する。 However, M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is 1 These are integers of N or less, i is an integer of 1 or more and I or less, and j is an integer of 1 or more and J or less. Note that the rows and columns for the M × N first pixel portions P 1,1 to P M, N and the rows and columns for the I × J second pixel portions Q 1,1 to Q I, J are shown. Is different.
 本発明に係る固体撮像装置では、受光部において、I×J個の第二画素部Q1,1~QI,Jそれぞれのフォトダイオードは、2次元配列されたM×N個の第一画素部P1,1~PM,Nそれぞれのフォトダイオードが設けられている領域とは異なる領域に、当該2次元配列における複数行分または複数列分の長さに亘って連続して設けられている。 In the solid-state imaging device according to the present invention, in the light receiving unit, each of the I × J second pixel units Q 1,1 to Q I, J has two-dimensionally arranged M × N first pixels. Are provided continuously in a region different from the region where the photodiodes of the parts P 1,1 to P M, N are provided over a length corresponding to a plurality of rows or a plurality of columns in the two-dimensional array. Yes.
 信号出力部から、各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号が出力され、また、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号が出力される。制御部により、各第一画素部Pm,nについて信号出力部による第一電気信号の出力が制御され、また、各第二画素部Qi,jについて信号出力部による第二電気信号の出力が制御される。第一画素部Pm,nを用いて高速の高解像度撮像を行うことが可能であり、また、第二画素部Qi,jを用いて高速の低解像度撮像を行うことが可能である。 From the signal output unit, a first electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each first pixel unit P m, n is output, and the photodiode of each second pixel unit Q i, j The second electric signal having a value corresponding to the amount of electric charge generated in the step is output. The control unit controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n and outputs the second electric signal by the signal output unit for each second pixel unit Q i, j Is controlled. High-speed high-resolution imaging can be performed using the first pixel portion P m, n , and high-speed low-resolution imaging can be performed using the second pixel portion Q i, j .
 本発明に係る固体撮像装置は、高解像度撮像および低解像度撮像を高速に行うことができる。 The solid-state imaging device according to the present invention can perform high-resolution imaging and low-resolution imaging at high speed.
図1は、本実施形態に係る固体撮像装置1の概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a solid-state imaging device 1 according to the present embodiment. 図2は、本実施形態に係る固体撮像装置1の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment. 図3は、本実施形態に係る固体撮像装置1に含まれる第一画素部Pm,nおよび保持回路23それぞれの回路構成を示す図である。FIG. 3 is a diagram illustrating a circuit configuration of each of the first pixel unit P m, n and the holding circuit 23 n included in the solid-state imaging device 1 according to the present embodiment. 図4は、本実施形態に係る固体撮像装置1に含まれる差演算回路25の回路構成を示す図である。FIG. 4 is a diagram illustrating a circuit configuration of the difference calculation circuit 25 included in the solid-state imaging device 1 according to the present embodiment. 図5は、本実施形態に係る固体撮像装置1に含まれる第二画素部Qi,jおよび保持回路24それぞれの回路構成を示す図である。FIG. 5 is a diagram illustrating a circuit configuration of each of the second pixel unit Q i, j and the holding circuit 24 j included in the solid-state imaging device 1 according to the present embodiment. 図6は、本実施形態に係る固体撮像装置1に含まれる差演算回路26の回路構成を示す図である。FIG. 6 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment. 図7は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第一配置例を示す図である。FIG. 7 is a diagram illustrating a first arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 図8は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第二配置例を示す図である。FIG. 8 is a diagram illustrating a second arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 図9は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第三配置例を示す図である。FIG. 9 is a diagram illustrating a third arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 図10は、本実施形態に係る固体撮像装置1に含まれる受光部10の第一レイアウト例を示す図である。FIG. 10 is a diagram illustrating a first layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 図11は、図10に示した第一レイアウト例におけるA-A’断面図である。FIG. 11 is a cross-sectional view taken along the line A-A ′ in the first layout example shown in FIG. 10. 図12は、本実施形態に係る固体撮像装置1に含まれる受光部10の第二レイアウト例を示す図である。FIG. 12 is a diagram illustrating a second layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. 図13は、他の実施形態に係る固体撮像装置2の構成図である。FIG. 13 is a configuration diagram of a solid-state imaging device 2 according to another embodiment.
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本実施形態に係る固体撮像装置1の概略構成を示す図である。この図に示される固体撮像装置1は、受光部10、第一信号出力回路21、第二信号出力回路22、第一制御回路31および第二制御回路32を備える。 FIG. 1 is a diagram showing a schematic configuration of a solid-state imaging device 1 according to the present embodiment. The solid-state imaging device 1 shown in this figure includes a light receiving unit 10, a first signal output circuit 21, a second signal output circuit 22, a first control circuit 31, and a second control circuit 32.
 受光部10は、M×N個の第一画素部P1,1~PM,NおよびI×J個の第二画素部Q1,1~QI,Jを有する。M×N個の第一画素部P1,1~PM,Nは、共通の構成を有していて、M行N列に2次元配列されている。各第一画素部Pm,nは、入射光量に応じた量の電荷を発生するフォトダイオードを含み、第m行第n列に位置している。I×J個の第二画素部Q1,1~QI,Jは、共通の構成を有していて、I行J列に2次元配列されている。各第二画素部Qi,jは、入射光量に応じた量の電荷を発生するフォトダイオードを含み、第i行第j列に位置している。受光部10の詳細については後に説明する。 The light receiving unit 10 includes M × N first pixel units P 1,1 to P M, N and I × J second pixel units Q 1,1 to Q I, J. The M × N first pixel portions P 1,1 to P M, N have a common configuration and are two-dimensionally arranged in M rows and N columns. Each first pixel portion P m, n includes a photodiode that generates an amount of charge corresponding to the amount of incident light, and is located in the mth row and the nth column. The I × J second pixel portions Q 1,1 to Q I, J have a common configuration and are two-dimensionally arranged in I rows and J columns. Each second pixel portion Q i, j includes a photodiode that generates an amount of charge corresponding to the amount of incident light, and is located in the i-th row and j-th column. Details of the light receiving unit 10 will be described later.
 ここで、M,Nは2以上の整数である。Iは2以上M未満の整数であり、Jは2以上N未満の整数である。mは1以上M以下の各整数であり、nは1以上N以下の各整数である。また、iは1以上I以下の各整数であり、jは1以上J以下の各整数である。IはMの約数であるのが好ましく、JはNの約数であるのが好ましい。例えば、M,Nは1024であって、I,Jは128である。この例の場合、8×8個の第一画素部Pに対して1個の第二画素部Qが設けられる。なお、M×N個の第一画素部P1,1~PM,Nについての行および列と、I×J個の第二画素部Q1,1~QI,Jについての行および列とは、相違する。 Here, M and N are integers of 2 or more. I is an integer of 2 or more and less than M, and J is an integer of 2 or more and less than N. m is an integer from 1 to M, and n is an integer from 1 to N. Further, i is an integer from 1 to I, and j is an integer from 1 to J. I is preferably a divisor of M, and J is preferably a divisor of N. For example, M and N are 1024, and I and J are 128. In the case of this example, one second pixel portion Q is provided for 8 × 8 first pixel portions P. Note that the rows and columns for the M × N first pixel portions P 1,1 to P M, N and the rows and columns for the I × J second pixel portions Q 1,1 to Q I, J are shown. Is different.
 各第二画素部Qi,jのフォトダイオードは、2次元配列されたM×N個の第一画素部P1,1~PM,Nそれぞれのフォトダイオードが設けられている領域とは異なる領域に、当該2次元配列における複数行分または複数列分の長さに亘って連続して設けられている。 The photodiodes of the second pixel portions Q i, j are different from the regions where the photodiodes of the M × N first pixel portions P 1,1 to P M, N arranged two-dimensionally are provided. The region is continuously provided over a length corresponding to a plurality of rows or a plurality of columns in the two-dimensional array.
 各第一画素部Pm,nおよび各第二画素部Qi,jは、PPS(Passive Pixel Sensor)方式のものであってもよいが、APS(Active Pixel Sensor)方式のものであるのが好ましい。すなわち、各第一画素部Pm,nおよび各第二画素部Qi,jは、フォトダイオードで発生した電荷を入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を出力するのが好ましい。 Each first pixel portion P m, n and each second pixel portion Q i, j may be of the PPS (Passive Pixel Sensor) type, but of the APS (Active Pixel Sensor) type. preferable. That is, each first pixel portion P m, n and each second pixel portion Q i, j include an amplification MOS transistor for inputting the charge generated by the photodiode, and the amplification MOS transistor according to the input charge amount. It is preferable to output an electrical signal.
 受光部10に含まれる各第一画素部Pm,nは第一信号出力回路21と接続されている。第一信号出力回路21は、各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号を出力する。より具体的には、第n列のM個の第一画素部P1,n~PM,nそれぞれの出力端は、共通の読出用配線により第一信号出力回路21と接続されている。第一信号出力回路21は、第1行~第M行について順次に、第m行のN個の第一画素部Pm,1~Pm,Nそれぞれからのデータをパラレルに入力して、これらN個のデータをシリアルに第一電気信号として出力する。 Each first pixel unit P m, n included in the light receiving unit 10 is connected to the first signal output circuit 21. The first signal output circuit 21 outputs a first electric signal having a value corresponding to the amount of charge generated in the photodiode of each first pixel unit P m, n . More specifically, the output terminals of the M first pixel portions P 1, n to P M, n in the n-th column are connected to the first signal output circuit 21 by a common readout wiring. The first signal output circuit 21 sequentially inputs data from each of the N first pixel portions P m, 1 to P m, N in the m-th row in order for the first to M-th rows, These N pieces of data are serially output as the first electric signal.
 第一制御回路31は、各第一画素部Pm,nについて第一信号出力回路21による第一電気信号の出力を制御するものであって、第一タイミング制御回路41,第一行選択回路51および第一列選択回路61を含む。第一タイミング制御回路41は、第一信号出力回路21,第一行選択回路51および第一列選択回路61それぞれの動作タイミングを制御する。 The first control circuit 31 controls the output of the first electric signal by the first signal output circuit 21 for each first pixel unit P m, n , and includes a first timing control circuit 41, a first row selection circuit, and so on. 51 and a first column selection circuit 61. The first timing control circuit 41 controls the operation timings of the first signal output circuit 21, the first row selection circuit 51, and the first column selection circuit 61.
 第一行選択回路51は、第一タイミング制御回路41によるタイミング制御の下に、受光部10のM×N個の第一画素部P1,1~PM,Nの2次元配列における各行を順次に指定し、その指定した第m行のN個の第一画素部Pm,1~Pm,Nそれぞれに所定の制御信号を与えて、第m行のN個の第一画素部Pm,1~Pm,Nそれぞれからデータを第一信号出力回路21へ出力させる。第一行選択回路51は、M段のシフトレジスタ回路を含み、このシフトレジスタ回路の各段の出力ビットにより各行を順次に指定することができる。 Under the timing control by the first timing control circuit 41, the first row selection circuit 51 selects each row in the two-dimensional array of M × N first pixel portions P 1,1 to P M, N of the light receiving unit 10. Sequentially specified, a predetermined control signal is given to each of the N first pixel portions P m, 1 to P m, N in the designated m-th row, and the N first pixel portions P in the m-th row Data is output from each of m, 1 to P m, N to the first signal output circuit 21. The first row selection circuit 51 includes an M-stage shift register circuit, and each row can be sequentially designated by an output bit of each stage of the shift register circuit.
 第一列選択回路61は、第一タイミング制御回路41によるタイミング制御の下に、受光部10のM×N個の第一画素部P1,1~PM,Nの2次元配列における各列を順次に指定し、その指定した第n列を指示する制御信号を第一信号出力回路21に与えて、第m行のN個の第一画素部Pm,1~Pm,Nそれぞれからのデータを順次に第一信号出力回路21から第一電気信号として出力させる。第一列選択回路61は、N段のシフトレジスタ回路を含み、このシフトレジスタ回路の各段の出力ビットにより各列を順次に指定することができる。 Under the timing control by the first timing control circuit 41, the first column selection circuit 61 is configured so that each column in the two-dimensional array of M × N first pixel units P 1,1 to P M, N of the light receiving unit 10. Are sequentially designated, and a control signal indicating the designated n-th column is supplied to the first signal output circuit 21, and each of the N first pixel portions P m, 1 to P m, N in the m- th row is designated. Are sequentially output from the first signal output circuit 21 as the first electric signal. The first column selection circuit 61 includes an N-stage shift register circuit, and each column can be sequentially designated by an output bit of each stage of the shift register circuit.
 受光部10に含まれる各第二画素部Qi,jは第二信号出力回路22と接続されている。第二信号出力回路22は、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号を出力する。より具体的には、第j列のI個の第二画素部Q1,j~QI,jそれぞれの出力端は、共通の読出用配線により第二信号出力回路22と接続されている。第二信号出力回路22は、第1行~第I行について順次に、第i行のJ個の第二画素部Qi,1~Qi,Jそれぞれからのデータをパラレルに入力して、これらJ個のデータをシリアルに第二電気信号として出力する。 Each second pixel unit Q i, j included in the light receiving unit 10 is connected to the second signal output circuit 22. The second signal output circuit 22 outputs a second electric signal having a value corresponding to the amount of charge generated in the photodiode of each second pixel portion Q i, j . More specifically, the output terminals of the I second pixel portions Q 1, j 1 to Q I, j in the j-th column are connected to the second signal output circuit 22 by a common readout wiring. The second signal output circuit 22 inputs data from each of the J second pixel portions Q i, 1 to Q i, J in the i-th row in parallel for the first row to the I-th row in parallel, These J pieces of data are serially output as the second electric signal.
 第二制御回路32は、各第二画素部Qi,jについて第二信号出力回路22による第二電気信号の出力を制御するものであって、第二タイミング制御回路42,第二行選択回路52および第二列選択回路62を含む。第二タイミング制御回路42は、第二信号出力回路22,第二行選択回路52および第二列選択回路62それぞれの動作タイミングを制御する。 The second control circuit 32 controls the output of the second electric signal by the second signal output circuit 22 for each second pixel portion Q i, j , and includes a second timing control circuit 42, a second row selection circuit, and the like. 52 and a second column selection circuit 62. The second timing control circuit 42 controls operation timings of the second signal output circuit 22, the second row selection circuit 52, and the second column selection circuit 62.
 第二行選択回路52は、第二タイミング制御回路42によるタイミング制御の下に、受光部10のI×J個の第二画素部Q1,1~QI,Jの2次元配列における各行を順次に指定し、その指定した第i行のJ個の第二画素部Qi,1~Qi,Jそれぞれに所定の制御信号を与えて、第i行のJ個の第二画素部Qi,1~Qi,Jそれぞれからデータを第二信号出力回路22へ出力させる。第二行選択回路52は、I段のシフトレジスタ回路を含み、このシフトレジスタ回路の各段の出力ビットにより各行を順次に指定することができる。 The second row selection circuit 52 selects each row in the two-dimensional array of I × J second pixel portions Q 1,1 to Q I, J of the light receiving unit 10 under the timing control by the second timing control circuit 42. A predetermined control signal is given to each of the J second pixel portions Q i, 1 to Q i, J in the designated i-th row in order, and the J second pixel portions Q in the i- th row are designated. Data is output from each of i, 1 to Q i, J to the second signal output circuit 22. The second row selection circuit 52 includes an I-stage shift register circuit, and each row can be sequentially designated by an output bit of each stage of the shift register circuit.
 第二列選択回路62は、第二タイミング制御回路42によるタイミング制御の下に、受光部10のI×J個の第二画素部Q1,1~QI,Jの2次元配列における各列を順次に指定し、その指定した第j列を指示する制御信号を第二信号出力回路22に与えて、第i行のJ個の第二画素部Qi,1~Qi,Jそれぞれからのデータを順次に第二信号出力回路22から第二電気信号として出力させる。第二列選択回路62は、J段のシフトレジスタ回路を含み、このシフトレジスタ回路の各段の出力ビットにより各列を順次に指定することができる。 Under the timing control by the second timing control circuit 42, the second column selection circuit 62 is configured so that each column in the two-dimensional array of I × J second pixel portions Q 1,1 to Q I, J of the light receiving unit 10. Are sequentially designated, and a control signal indicating the designated j-th column is given to the second signal output circuit 22, and from each of the J second pixel portions Q i, 1 to Q i, J in the i-th row. Are sequentially output from the second signal output circuit 22 as a second electric signal. The second column selection circuit 62 includes a J-stage shift register circuit, and each column can be sequentially designated by the output bit of each stage of the shift register circuit.
 第一信号出力回路21および第二信号出力回路22は、各第一画素部Pm,nのフォトダイオードPDで発生する電荷の量に応じた値の第一電気信号を出力するとともに、各第二画素部Qi,jのフォトダイオードPDで発生する電荷の量に応じた値の第二電気信号を出力する信号出力部を構成している。第一制御回路31および第二制御回路32は、各第一画素部Pm,nについて信号出力部による第一電気信号の出力を制御するとともに、各第二画素部Qi,jについて信号出力部による第二電気信号の出力を制御する制御部を構成している。 The first signal output circuit 21 and the second signal output circuit 22 output a first electric signal having a value corresponding to the amount of charge generated in the photodiode PD of each first pixel unit P m, n , and A signal output unit configured to output a second electric signal having a value corresponding to the amount of charge generated in the photodiode PD of the two-pixel unit Q i, j is configured. The first control circuit 31 and the second control circuit 32 control the output of the first electric signal by the signal output unit for each first pixel unit P m, n and output the signal for each second pixel unit Q i, j. The control part which controls the output of the 2nd electric signal by a part is comprised.
 なお、第一信号出力回路21と第二信号出力回路22とは、各行につきパラレルに入力してシリアルに出力するデータの個数の相違に関する点を除いて、同様の構成を有していてもよい。第一行選択回路51と第二行選択回路52とは、指定する行の個数の相違に関する点を除いて、同様の構成を有していてもよい。また、第一列選択回路61と第二列選択回路62とは、指定する列の個数の相違に関する点を除いて、同様の構成を有していてもよい。 The first signal output circuit 21 and the second signal output circuit 22 may have the same configuration except for the difference in the number of data that are input in parallel for each row and output serially. . The first row selection circuit 51 and the second row selection circuit 52 may have the same configuration except for the point related to the difference in the number of designated rows. Further, the first column selection circuit 61 and the second column selection circuit 62 may have the same configuration except for the point relating to the difference in the number of designated columns.
 図2は、本実施形態に係る固体撮像装置1の構成を示す図である。この図では、受光部10については、M×N個の第一画素部P1,1~PM,Nのうちの第m行第n列に位置する第一画素部Pm,nが代表して示されており、また、I×J個の第二画素部Q1,1~QI,Jのうちの第i行第j列に位置する第二画素部Qi,jが代表して示されている。受光部10と第一信号出力回路21との間の接続関係、および、受光部10と第一行選択回路51との間の接続関係については、第一画素部Pm,nに関連するものが示されている。受光部10と第二信号出力回路22との間の接続関係、および、受光部10と第二行選択回路52との間の接続関係については、第二画素部Qi,jに関連するものが示されている。第一信号出力回路21については第一画素部Pm,nに関連する構成要素が示されている。また、第二信号出力回路22については第二画素部Qi,jに関連する構成要素が示されている。 FIG. 2 is a diagram illustrating a configuration of the solid-state imaging device 1 according to the present embodiment. In this figure, the light receiving unit 10 is represented by the first pixel unit P m, n located in the m-th row and the n-th column among the M × N first pixel units P 1,1 to P M, N. The second pixel portion Q i, j located in the i-th row and j-th column of the I × J second pixel portions Q 1,1 to Q I, J is representative. Is shown. The connection relationship between the light receiving unit 10 and the first signal output circuit 21 and the connection relationship between the light receiving unit 10 and the first row selection circuit 51 are related to the first pixel unit P m, n. It is shown. The connection relationship between the light receiving unit 10 and the second signal output circuit 22 and the connection relationship between the light receiving unit 10 and the second row selection circuit 52 are related to the second pixel unit Q i, j. It is shown. For the first signal output circuit 21, components related to the first pixel portion P m, n are shown. In addition, regarding the second signal output circuit 22, components related to the second pixel portion Q i, j are shown.
 第一信号出力回路21は、N個の保持回路23~23、差演算回路25およびAD変換回路27を含む。N個の保持回路23~23は共通の構成を有する。各保持回路23は、第n列のM個の第一画素部P1,n~PM,nそれぞれの出力端と共通の読出用配線Vline1(n)により接続されていて、これらのうちの何れかの第一画素部Pm,nから出力されて読出用配線Vline1(n)を経て入力されたデータを保持し、その保持したデータを配線Hline_s1,Hline_n1へ出力する。差演算回路25は、配線Hline_s1,Hline_n1を経て到達する2つのデータを入力して、これら2つのデータの差に応じたデータをAD変換回路27へ出力する。AD変換回路27は、差演算回路25から出力されたアナログデータを入力して、このアナログデータに応じたデジタルデータを第一電気信号として出力する。 The first signal output circuit 21 includes N holding circuits 23 1 to 23 N , a difference calculation circuit 25 and an AD conversion circuit 27. The N holding circuits 23 1 to 23 N have a common configuration. Each holding circuit 23 n is connected to an output terminal of each of the M first pixel portions P 1, n to P M, n in the n-th column by a common readout wiring Vline1 (n). The data output from any one of the first pixel portions P m, n and input via the readout wiring Vline1 (n) is held, and the held data is output to the wirings Hline_s1 and Hline_n1. The difference calculation circuit 25 inputs two data that arrive via the wirings Hline_s1 and Hline_n1, and outputs data corresponding to the difference between the two data to the AD conversion circuit 27. The AD conversion circuit 27 receives the analog data output from the difference calculation circuit 25 and outputs digital data corresponding to the analog data as a first electric signal.
 第二信号出力回路22は、J個の保持回路24~24、差演算回路26およびAD変換回路28を含む。J個の保持回路24~24は共通の構成を有する。各保持回路24は、第j列のI個の第二画素部Q1,j~QI,jそれぞれの出力端と共通の読出用配線Vline2(j)により接続されていて、これらのうちの何れかの第二画素部Qi,jから出力されて読出用配線Vline2(j)を経て入力されたデータを保持し、その保持したデータを配線Hline_s2,Hline_n2へ出力する。差演算回路26は、配線Hline_s2,Hline_n2を経て到達する2つのデータを入力して、これら2つのデータの差に応じたデータをAD変換回路28へ出力する。AD変換回路28は、差演算回路26から出力されたアナログデータを入力して、このアナログデータに応じたデジタルデータを第二電気信号として出力する。 The second signal output circuit 22 includes J holding circuits 24 1 to 24 J , a difference calculation circuit 26, and an AD conversion circuit 28. The J holding circuits 24 1 to 24 J have a common configuration. Each holding circuit 24 j is connected to an output terminal of each of the I second pixel portions Q 1, j to Q I, j in the j-th column by a common readout wiring Vline2 (j). The data output from any one of the second pixel portions Q i, j and input via the readout wiring Vline2 (j) is stored, and the stored data is output to the wirings Hline_s2 and Hline_n2. The difference calculation circuit 26 inputs two data arrived via the wirings Hline_s2 and Hline_n2, and outputs data corresponding to the difference between the two data to the AD conversion circuit 28. The AD conversion circuit 28 receives the analog data output from the difference calculation circuit 26, and outputs digital data corresponding to the analog data as a second electric signal.
 図3は、本実施形態に係る固体撮像装置1に含まれる第一画素部Pm,nおよび保持回路23それぞれの回路構成を示す図である。この図では、M×N個の第一画素部P1,1~PM,Nのうち代表して第一画素部Pm,nが示され、N個の保持回路23~23のうち代表して保持回路23が示されている。 FIG. 3 is a diagram illustrating a circuit configuration of each of the first pixel unit P m, n and the holding circuit 23 n included in the solid-state imaging device 1 according to the present embodiment. In this figure, the first pixel portion P m, n is shown as a representative of the M × N first pixel portions P 1,1 to P M, N and the N holding circuits 23 1 to 23 N are represented. Of these, the holding circuit 23 n is shown as a representative.
 各第一画素部Pm,nは、APS方式のものであって、フォトダイオードPDおよび5個のMOSトランジスタT1~T5を含む。この図に示されるように、トランジスタT1,トランジスタT2およびフォトダイオードPDは順に直列的に接続されていて、基準電圧Vb1がトランジスタT1のドレイン端子に入力され、フォトダイオードPDのアノ-ド端子が接地されている。 Each first pixel portion P m, n is of the APS type, and includes a photodiode PD and five MOS transistors T1 to T5. As shown in this figure, the transistor T1, the transistor T2, and the photodiode PD are connected in series in order, the reference voltage Vb1 is input to the drain terminal of the transistor T1, and the anode terminal of the photodiode PD is grounded. Has been.
 トランジスタT3およびトランジスタT4は直列的に接続されていて、基準電圧Vb2がトランジスタT3のドレイン端子に入力され、トランジスタT4のソース端子が配線Vline1(n)に接続されている。トランジスタT1とトランジスタT2との接続点は、トランジスタT5を介してトランジスタT3のゲート端子に接続されている。また、配線Vline1(n)には定電流源が接続されている。増幅用トランジスタT3は、ゲート端子に入力される電荷の量に応じた値の電気信号を出力する。 The transistor T3 and the transistor T4 are connected in series, the reference voltage Vb2 is input to the drain terminal of the transistor T3, and the source terminal of the transistor T4 is connected to the wiring Vline1 (n). A connection point between the transistor T1 and the transistor T2 is connected to the gate terminal of the transistor T3 through the transistor T5. A constant current source is connected to the wiring Vline1 (n). The amplifying transistor T3 outputs an electric signal having a value corresponding to the amount of charge input to the gate terminal.
 Reset1(m)信号がリセット用のトランジスタT1のゲート端子に入力され、Trans1(m)信号が転送用のトランジスタT2のゲート端子に入力され、Address1(m)信号が出力選択用のトランジスタT4のゲート端子に入力され、また、Hold1(m)信号がトランジスタT5のゲート端子に入力される。これらReset1(m)信号,Trans1(m)信号,Address1(m)信号およびHold1(m)信号は、第一タイミング制御回路41による制御の下に第一行選択回路51から出力され、第m行のN個の第一画素部Pm,1~Pm,Nに対して共通に入力される。 The Reset1 (m) signal is input to the gate terminal of the reset transistor T1, the Trans1 (m) signal is input to the gate terminal of the transfer transistor T2, and the Address1 (m) signal is input to the gate of the output selection transistor T4. The Hold1 (m) signal is input to the terminal of the transistor T5. The Reset1 (m) signal, Trans1 (m) signal, Address1 (m) signal, and Hold1 (m) signal are output from the first row selection circuit 51 under the control of the first timing control circuit 41, and the mth row. Are commonly input to the N first pixel portions P m, 1 to P m, N.
 Reset1(m)信号およびTrans1(m)信号がハイレベルであるとき、フォトダイオードPDの接合容量部(電荷蓄積部)が放電され、さらに、Hold1(m)信号もハイレベルであると、トランジスタT3のゲート端子の電位がリセットされる。その後に、Reset1(m)信号,Trans1(m)信号およびHold1(m)信号がローレベルになると、フォトダイオードで発生した電荷は接合容量部に蓄積されていく。Hold1(m)信号がローレベルであって、Address1(m)信号がハイレベルであると、第一画素部Pm,nから配線Vline1(n)へノイズ成分が出力される。そして、Trans1(m)信号,Hold1(m)信号およびAddress1(m)信号がハイレベルになると、フォトダイオードPDの接合容量部に蓄積されている電荷の量に応じた電圧値が配線Vline1(n)へ信号成分として出力される。 When the Reset1 (m) signal and the Trans1 (m) signal are at a high level, the junction capacitance portion (charge storage portion) of the photodiode PD is discharged, and when the Hold1 (m) signal is also at a high level, the transistor T3 The potential of the gate terminal is reset. After that, when the Reset1 (m) signal, Trans1 (m) signal, and Hold1 (m) signal become low level, the charge generated in the photodiode is accumulated in the junction capacitor. When the Hold1 (m) signal is at a low level and the Address1 (m) signal is at a high level, a noise component is output from the first pixel unit Pm , n to the wiring Vline1 (n). When the Trans1 (m) signal, the Hold1 (m) signal, and the Address1 (m) signal become high level, the voltage value corresponding to the amount of charge accumulated in the junction capacitance portion of the photodiode PD is changed to the wiring Vline1 (n ) As a signal component.
 各保持回路23は、2つの容量素子C,C、および、4つのスイッチSW11,SW12,SW21,SW22を含む。この保持回路23では、スイッチSW11およびスイッチSW12は、直列的に接続されて配線Vline1(n)と配線Hline_s1との間に設けられ、容量素子Cの一端は、スイッチSW11とスイッチSW12との間の接続点に接続され、容量素子Cの他端は接地されている。また、スイッチSW21およびスイッチSW22は、直列的に接続されて配線Vline1(n)と配線Hline_n1との間に設けられ、容量素子Cの一端は、スイッチSW21とスイッチSW22との間の接続点に接続され、容量素子Cの他端は接地されている。 Each holding circuit 23 n includes two capacitive elements C 1 , C 2 and four switches SW 11 , SW 12 , SW 21 , SW 22 . In the holding circuit 23 n, the switch SW 11 and the switch SW 12 is provided between the serially connected to the wiring Vline1 (n) and the wiring Hline_s1, one terminal of the capacitance C 1, the switch SW 11 and the switch is connected to the connection point between the SW 12, the other end of the capacitive element C 1 is grounded. The switch SW 21 and the switch SW 22 is provided between the serially connected to the wiring Vline1 (n) and the wiring Hline_n1, one terminal of the capacitance C 2 is between the switch SW 21 and the switch SW 22 is connected to the connection point, the other end of the capacitive element C 2 is grounded.
 この保持回路23では、スイッチSW11は、第一列選択回路61から供給されるset_s1信号のレベルに応じて開閉する。スイッチSW21は、第一列選択回路61から供給されるset_n1信号のレベルに応じて開閉する。set_s1信号およびset_n1信号は、N個の保持回路23~23に対して共通に入力される。スイッチSW12,SW22は、第一列選択回路61から供給されるhshift1(n)信号のレベルに応じて開閉する。 In the holding circuit 23 n , the switch SW 11 opens and closes according to the level of the set_s1 signal supplied from the first column selection circuit 61. The switch SW 21 opens and closes according to the level of the set_n1 signal supplied from the first column selection circuit 61. The set_s1 signal and the set_n1 signal are input in common to the N holding circuits 23 1 to 23 N. The switches SW 12 and SW 22 open and close according to the level of the hshift1 (n) signal supplied from the first column selection circuit 61.
 この保持回路23では、set_n1信号がハイレベルからローレベルに転じてスイッチSW21が開くときに第一画素部Pm,nから配線Vline1(n)へ出力されていたノイズ成分が、それ以降、容量素子Cにより電圧値out_n1(n)として保持される。set_s1信号がハイレベルからローレベルに転じてスイッチSW11が開くときに第一画素部Pm,nから配線Vline1(n)へ出力されていた信号成分が、それ以降、容量素子Cにより電圧値out_s1(n)として保持される。そして、hshift1(n)信号がハイレベルになると、スイッチSW12が閉じて、容量素子Cにより保持されていた電圧値out_s1(n)が配線Hline_s1へ出力され、また、スイッチSW22が閉じて、容量素子Cにより保持されていた電圧値out_n1(n)が配線Hline_n1へ出力される。これら電圧値out_s1(n)と電圧値out_n1(n)との差が、第一画素部Pm,nのフォトダイオードPDで発生した電荷の量に応じた電圧値を表す。 In the holding circuit 23 n , the noise component output from the first pixel unit P m, n to the wiring Vline1 (n) when the set_n1 signal changes from the high level to the low level and the switch SW 21 is opened is thereafter It is held as a voltage value out_n1 (n) by the capacitance element C 2. set_s1 signal is first pixel unit P m, the signal component being output from the n wiring Vline1 to (n) when the switch SW 11 is opened in turn from a high level to a low level, thereafter, the voltage by the capacitive element C 1 Stored as value out_s1 (n). When hshift1 (n) signal becomes a high level, the switch SW 12 is closed, is output to the voltage value out_s1 (n) is the wiring Hline_s1 that has been held by the capacitor element C 1, The switch SW 22 is closed , voltage value out_n1 that has been held by the capacitor element C 2 (n) is output to the wiring Hline_n1. The difference between the voltage value out_s1 (n) and the voltage value out_n1 (n) represents a voltage value corresponding to the amount of charge generated in the photodiode PD of the first pixel unit Pm , n .
 図4は、本実施形態に係る固体撮像装置1に含まれる差演算回路25の回路構成を示す図である。この図に示されるように、差演算回路25は、アンプA~A、スイッチSW,SW、および、抵抗器R~Rを含む。アンプAの反転入力端子は、抵抗器Rを介してバッファアンプAの出力端子と接続され、抵抗器Rを介して自己の出力端子と接続されている。アンプAの非反転入力端子は、抵抗器Rを介してバッファアンプAの出力端子と接続され、抵抗器Rを介して接地電位と接続されている。アンプAの出力端子はAD変換回路27の入力端子と接続されている。バッファアンプAの入力端子は、配線Hline_s1を介してN個の保持回路23~23と接続され、スイッチSWを介して接地電位と接続されている。バッファアンプAの入力端子は、配線Hline_n1を介してN個の保持回路23~23と接続され、スイッチSWを介して接地電位と接続されている。 FIG. 4 is a diagram illustrating a circuit configuration of the difference calculation circuit 25 included in the solid-state imaging device 1 according to the present embodiment. As shown in this figure, the difference calculation circuit 25 includes amplifiers A 1 to A 3 , switches SW 1 and SW 2 , and resistors R 1 to R 4 . Inverting input terminal of the amplifier A 3 is connected to the output terminal of the buffer amplifier A 1 via a resistor R 1, and is connected to its own output terminal via the resistor R 3. The non-inverting input terminal of the amplifier A 3 is connected to the output terminal of the buffer amplifier A 2 via the resistor R 2, and is connected to the ground potential via the resistor R 4. The output terminal of the amplifier A 3 is connected to the input terminal of the AD conversion circuit 27. Input terminal of the buffer amplifier A 1 is connected to the N holding circuits 23 1 ~ 23 N via the wiring Hline_s1, it is connected to the ground potential via the switch SW 1. The input terminal of the buffer amplifier A 2 is connected to the N holding circuits 23 1 to 23 N through the wiring Hline_n 1 and is connected to the ground potential through the switch SW 2 .
 差演算回路25のスイッチSW,SWは、第一列選択回路61から供給されるhreset1信号により制御されて開閉動作する。スイッチSWが閉じることで、バッファアンプAの入力端子に入力される電圧値がリセットされる。スイッチSWが閉じることで、バッファアンプAの入力端子に入力される電圧値がリセットされる。スイッチSW,SWが開いているときに、N個の保持回路23~23のうちの何れかの保持回路23から配線Hline_s1,Hline_n1へ出力された電圧値out_s1(n),out_n1(n)が、バッファアンプA,Aの入力端子に入力される。バッファアンプA,Aそれぞれの増幅率を1とし、4個の抵抗器R~Rそれぞれの抵抗値が互いに等しいとすると、差演算回路25の出力端子から出力される電圧値は、配線Hline_s1および配線Hline_n1それぞれを経て入力される電圧値の差を表し、ノイズ成分が除去されたものとなる。 The switches SW 1 and SW 2 of the difference calculation circuit 25 are controlled by the hreset1 signal supplied from the first column selection circuit 61 to open and close. When the switch SW 1 is closed, the voltage value input to the input terminal of the buffer amplifier A 1 is reset. When the switch SW 2 is closed, the voltage value input to the input terminal of the buffer amplifier A 2 is reset. When the switch SW 1, SW 2 is open, the wiring from one of the holding circuit 23 n of the N holding circuits 23 1 ~ 23 N Hline_s1, the voltage value outputted to the Hline_n1 out_s1 (n), out_n1 (n) is input to the input terminals of the buffer amplifiers A 1 and A 2 . Assuming that the amplification factors of the buffer amplifiers A 1 and A 2 are 1, and the resistance values of the four resistors R 1 to R 4 are equal to each other, the voltage value output from the output terminal of the difference calculation circuit 25 is The difference between the voltage values input through the wiring Hline_s1 and the wiring Hline_n1 is represented, and the noise component is removed.
 図5は、本実施形態に係る固体撮像装置1に含まれる第二画素部Qi,jおよび保持回路24それぞれの回路構成を示す図である。この図では、I×J個の第二画素部Q1,1~QI,Jのうち代表して第二画素部Qi,jが示され、J個の保持回路24~24のうち代表して保持回路24が示されている。 FIG. 5 is a diagram illustrating a circuit configuration of each of the second pixel unit Q i, j and the holding circuit 24 j included in the solid-state imaging device 1 according to the present embodiment. In this figure, the second pixel portion Q i, j is representatively shown among the I × J second pixel portions Q 1,1 to Q I, J , and the J holding circuits 24 1 to 24 J Of these, the holding circuit 24 j is shown as a representative.
 各第二画素部Qi,jは、第一画素部Pm,nと同様の構成であり、APS方式のものであって、フォトダイオードPDおよび5個のMOSトランジスタT1~T5を含む。第二画素部Qi,jにおけるこれらの要素の間の接続関係は、第一画素部Pm,nにおける接続関係と同様である。トランジスタT4のソース端子が配線Vline2(j)に接続されている。また、配線Vline2(j)には定電流源が接続されている。増幅用トランジスタT3は、ゲート端子に入力される電荷の量に応じた値の電気信号を出力する。 Each second pixel portion Q i, j has the same configuration as the first pixel portion P m, n and is of the APS system, and includes a photodiode PD and five MOS transistors T1 to T5. The connection relationship between these elements in the second pixel portion Q i, j is the same as the connection relationship in the first pixel portion P m, n . The source terminal of the transistor T4 is connected to the wiring Vline2 (j). A constant current source is connected to the wiring Vline2 (j). The amplifying transistor T3 outputs an electric signal having a value corresponding to the amount of charge input to the gate terminal.
 Reset2(i)信号がリセット用のトランジスタT1のゲート端子に入力され、Trans2(i)信号が転送用のトランジスタT2のゲート端子に入力され、Address2(i)信号が出力選択用のトランジスタT4のゲート端子に入力され、また、Hold2(i)信号がトランジスタT5のゲート端子に入力される。これらReset2(i)信号,Trans2(i)信号,Address2(i)信号およびHold2(i)信号は、第二タイミング制御回路42による制御の下に第二行選択回路52から出力され、第i行のJ個の第二画素部Qi,1~Qi,Jに対して共通に入力される。第二画素部Qi,jの動作は、第一画素部Pm,nの動作と同様である。 The Reset2 (i) signal is input to the gate terminal of the reset transistor T1, the Trans2 (i) signal is input to the gate terminal of the transfer transistor T2, and the Address2 (i) signal is input to the gate of the output selection transistor T4. The Hold2 (i) signal is input to the terminal of the transistor T5. The Reset2 (i) signal, Trans2 (i) signal, Address2 (i) signal, and Hold2 (i) signal are output from the second row selection circuit 52 under the control of the second timing control circuit 42, and the i-th row. Are commonly input to the J second pixel portions Q i, 1 to Q i, J. The operation of the second pixel unit Q i, j is the same as the operation of the first pixel unit P m, n .
 各保持回路24は、保持回路23と同様の構成であり、2つの容量素子C,C、および、4つのスイッチSW11,SW12,SW21,SW22を含む。保持回路24におけるこれらの要素の間の接続関係は、保持回路23における接続関係と同様である。スイッチSW11,SW21は配線Vline2(j)と接続されている。スイッチSW12は配線Hline_s2と接続されている。スイッチSW22は配線Hline_n2と接続されている。 Each holding circuit 24 j has the same configuration as the holding circuit 23 n and includes two capacitive elements C 1 and C 2 and four switches SW 11 , SW 12 , SW 21 , and SW 22 . The connection relationship between these elements in the holding circuit 24 j is the same as the connection relationship in the holding circuit 23 n . The switches SW 11 and SW 21 are connected to the wiring Vline2 (j). Switch SW 12 is connected to the wiring Hline_s2. The switch SW 22 is connected to the wiring Hline_n2.
 この保持回路24では、スイッチSW11は、第二列選択回路62から供給されるset_s2信号のレベルに応じて開閉する。スイッチSW21は、第二列選択回路62から供給されるset_n2信号のレベルに応じて開閉する。set_s2信号およびset_n2信号は、J個の保持回路24~24に対して共通に入力される。スイッチSW12,SW22は、第二列選択回路62から供給されるhshift2(j)信号のレベルに応じて開閉する。 In the holding circuit 24 j , the switch SW 11 opens and closes according to the level of the set_s2 signal supplied from the second column selection circuit 62. The switch SW 21 opens and closes according to the level of the set_n2 signal supplied from the second column selection circuit 62. The set_s2 signal and the set_n2 signal are input in common to the J holding circuits 24 1 to 24 J. The switches SW 12 and SW 22 open and close according to the level of the hshift2 (j) signal supplied from the second column selection circuit 62.
 保持回路24の動作は、保持回路23の動作と同様である。hshift2(j)信号がハイレベルになると、スイッチSW12が閉じて、容量素子Cにより保持されていた電圧値out_s2(j)が配線Hline_s2へ出力され、また、スイッチSW22が閉じて、容量素子Cにより保持されていた電圧値out_n2(j)が配線Hline_n2へ出力される。これら電圧値out_s2(j)と電圧値out_n2(j)との差が、第二画素部Qi,jのフォトダイオードPDで発生した電荷の量に応じた電圧値を表す。 The operation of the holding circuit 24 j is the same as the operation of the holding circuit 23 n . When hshift2 (j) signal becomes a high level, the switch SW 12 is closed, the voltage value out_s2 that has been held by the capacitor element C 1 (j) is output to the wiring Hline_s2, The switch SW 22 is closed, capacitor voltage out_n2 which has been held by the element C 2 (j) is output to the wiring Hline_n2. The difference between the voltage value out_s2 (j) and the voltage value out_n2 (j) represents a voltage value corresponding to the amount of charge generated in the photodiode PD of the second pixel unit Q i, j .
 図6は、本実施形態に係る固体撮像装置1に含まれる差演算回路26の回路構成を示す図である。差演算回路26は、差演算回路25と同様の構成であり、アンプA~A、スイッチSW,SW、および、抵抗器R~Rを含む。差演算回路26におけるこれらの要素の間の接続関係は、差演算回路25における接続関係と同様である。バッファアンプAの入力端子は、配線Hline_s2を介してJ個の保持回路24~24と接続され、スイッチSWを介して接地電位と接続されている。バッファアンプAの入力端子は、配線Hline_n2を介してJ個の保持回路24~24と接続され、スイッチSWを介して接地電位と接続されている。 FIG. 6 is a diagram illustrating a circuit configuration of the difference calculation circuit 26 included in the solid-state imaging device 1 according to the present embodiment. The difference calculation circuit 26 has the same configuration as the difference calculation circuit 25, and includes amplifiers A 1 to A 3 , switches SW 1 and SW 2 , and resistors R 1 to R 4 . The connection relationship between these elements in the difference calculation circuit 26 is the same as the connection relationship in the difference calculation circuit 25. Input terminal of the buffer amplifier A 1 is connected to the J hold circuits 24 1 ~ 24 J through the wire Hline_s2, is connected to the ground potential via the switch SW 1. Input terminal of the buffer amplifier A 2 is connected to the J hold circuits 24 1 ~ 24 J through the wire Hline_n2, is connected to the ground potential via the switch SW 2.
 差演算回路26のスイッチSW,SWは、第二列選択回路62から供給されるhreset2信号により制御されて開閉動作する。スイッチSWが閉じることで、バッファアンプAの入力端子に入力される電圧値がリセットされる。スイッチSWが閉じることで、バッファアンプAの入力端子に入力される電圧値がリセットされる。スイッチSW,SWが開いているときに、J個の保持回路24~24のうちの何れかの保持回路24から配線Hline_s2,Hline_n2へ出力された電圧値out_s2(j),out_n2(j)が、バッファアンプA,Aの入力端子に入力される。バッファアンプA,Aそれぞれの増幅率を1とし、4個の抵抗器R~Rそれぞれの抵抗値が互いに等しいとすると、差演算回路26の出力端子から出力される電圧値は、配線Hline_s2および配線Hline_n2それぞれを経て入力される電圧値の差を表し、ノイズ成分が除去されたものとなる。 The switches SW 1 and SW 2 of the difference calculation circuit 26 are controlled by the hreset2 signal supplied from the second column selection circuit 62 to open and close. When the switch SW 1 is closed, the voltage value input to the input terminal of the buffer amplifier A 1 is reset. When the switch SW 2 is closed, the voltage value input to the input terminal of the buffer amplifier A 2 is reset. When the switch SW 1, SW 2 is open, the wiring from any holding circuit 24 j of the J holding circuits 24 1 ~ 24 J Hline_s2, the voltage value outputted to the Hline_n2 out_s2 (j), out_n2 (j) is input to the input terminals of the buffer amplifiers A 1 and A 2 . Assuming that the amplification factors of the buffer amplifiers A 1 and A 2 are 1, and the resistance values of the four resistors R 1 to R 4 are equal to each other, the voltage value output from the output terminal of the difference calculation circuit 26 is The difference between the voltage values input through the wiring Hline_s2 and the wiring Hline_n2 is represented, and the noise component is removed.
 図7~図9それぞれは、受光部10における第一画素部Pm,nおよび第二画素部Qi,jの配置例を示す図である。図7および図8それぞれでは、8×8個の第一画素部Pm,nの範囲を単位領域とし、2×2個の単位領域の範囲を示していて、その範囲における第一画素部Pm,nおよび第二画素部Qi,jそれぞれのフォトダイオードPDの配置を示している。また、図9では、8×24個の第一画素部Pm,nの範囲を単位領域とし、2×2個の単位領域の範囲を示していて、その範囲における第一画素部Pm,nおよび第二画素部Qi,jそれぞれのフォトダイオードPDの配置を示している。受光部10では、このような単位領域が2次元配列されている。また、各図において、第一画素部Pm,nの2次元配列において、下から順に第1行,第2行,第3行,・・・とし、また、左から順に第1列,第2列,第3列,・・・とする。 FIG. 7 to FIG. 9 are diagrams showing examples of arrangement of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10. In each of FIGS. 7 and 8, the range of 8 × 8 first pixel portions P m, n is defined as a unit region, and the range of 2 × 2 unit regions is shown. The arrangement of the photodiodes PD of m, n and the second pixel portion Q i, j is shown. In FIG. 9, the range of 8 × 24 first pixel portions P m, n is a unit region, and the range of 2 × 2 unit regions is shown, and the first pixel portion P m, n in the range is shown . The arrangement of the photodiodes PD of n and the second pixel part Q i, j is shown. In the light receiving unit 10, such unit regions are two-dimensionally arranged. In each figure, in the two-dimensional array of the first pixel portion P m, n , the first row, the second row, the third row,... 2 columns, 3rd column,...
 図7は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第一配置例を示す図である。この図に示される第一配置例では、各第二画素部Qi,jのフォトダイオードPDは、8×8個の第一画素部P8i-7,8j-7~P8i,8jそれぞれを囲む連続する領域(行間、列間および周囲)に配置されている。 FIG. 7 is a diagram illustrating a first arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. In the first arrangement example shown in this figure, the photodiode PD of each second pixel portion Q i, j includes 8 × 8 first pixel portions P 8i-7,8j-7 to P 8i, 8j, respectively. It is arranged in the surrounding continuous area (between rows, between columns and around).
 図8は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第二配置例を示す図である。この図に示される第二配置例では、各第二画素部Qi,jのフォトダイオードPDは、8×8個の第一画素部P8i-7,8j-7~P8i,8jの各行の一方の側に8列分の長さに亘って連続して配置されている8個の光感応領域(PN接合領域)を有し、これら8個の光感応領域が配線Li,jにより相互に接続されていて、8個のフォトダイオードが並列接続された形態となっている。なお、この図に示された配置例に替えて、各第二画素部Qi,jのフォトダイオードPDは、8×8個の第一画素部P8i-7,8j-7~P8i,8jの各列の一方の側に8行分の長さに亘って連続して配置されている8個の光感応領域(PN接合領域)を有し、これら8個の光感応領域が配線により相互に接続されていて、8個のフォトダイオードが並列接続された形態となっていてもよい。 FIG. 8 is a diagram illustrating a second arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. In the second arrangement example shown in this figure, the photodiode PD of each second pixel portion Q i, j is arranged in each row of 8 × 8 first pixel portions P 8i-7,8j-7 to P 8i, 8j . 8 have photosensitive regions (PN junction regions) arranged continuously over the length of eight rows, and these eight photosensitive regions are formed by wirings L i, j. They are connected to each other, and eight photodiodes are connected in parallel. Note that, instead of the arrangement example shown in this figure, the photodiode PD of each second pixel portion Q i, j includes 8 × 8 first pixel portions P 8i-7, 8j-7 to P 8i, 8j has eight photosensitive regions (PN junction regions) arranged continuously over the length of eight rows on one side of each column of 8j , and these eight photosensitive regions are connected by wiring. They may be connected to each other so that eight photodiodes are connected in parallel.
 図9は、本実施形態に係る固体撮像装置1に含まれる受光部10における第一画素部Pm,nおよび第二画素部Qi,jの第三配置例を示す図である。この図に示される第三配置例では、各第一画素部Pm,nのフォトダイオードPDにはカラーフィルタが貼り付けられている。第一画素部Pm,3k-2,第一画素部Pm,3k-1および第一画素部Pm,3kそれぞれのフォトダイオードPDには、透過帯域の中心波長が互いに異なるカラーフィルタが設けられている。より具体的には、第一画素部Pm,3k-2のフォトダイオードPDには、透過帯域の中心波長が赤色の波長帯域にある赤色フィルタが設けられている。第一画素部Pm,3k-1のフォトダイオードPDには、透過帯域の中心波長が緑色の波長帯域にある緑色フィルタが設けられている。また、第一画素部Pm,3kのフォトダイオードPDには、透過帯域の中心波長が青色の波長帯域にある青色フィルタが設けられている。ここで、kは自然数である。そして、各第二画素部Qi,jのフォトダイオードPDは、8×24個の第一画素部P8i-7,24j-23~P8i,24jの各行の一方の側に24列分の長さに亘って連続して配置されている8個の光感応領域(PN接合領域)を有し、これら8個の光感応領域が配線Li,jにより相互に接続されていて、8個のフォトダイオードが並列接続された形態となっている。このようにすることで、M×N個の第一画素部P1,1~PM,Nを用いて高解像度のカラー撮像をすることができる。 FIG. 9 is a diagram illustrating a third arrangement example of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. In the third arrangement example shown in this drawing, a color filter is attached to the photodiode PD of each first pixel portion Pm, n . The photodiodes PD of the first pixel unit P m, 3k-2 , the first pixel unit P m, 3k-1 and the first pixel unit P m, 3k are provided with color filters having different center wavelengths in the transmission band. It has been. More specifically, the photodiode PD of the first pixel unit Pm, 3k-2 is provided with a red filter whose transmission band center wavelength is in the red wavelength band. The photodiode PD of the first pixel unit P m, 3k−1 is provided with a green filter whose center wavelength in the transmission band is in the green wavelength band. The photodiode PD of the first pixel unit P m, 3k is provided with a blue filter whose transmission band has a center wavelength in the blue wavelength band. Here, k is a natural number. The photodiode PD of each second pixel portion Q i, j is 24 columns on one side of each row of the 8 × 24 first pixel portions P 8i-7,24j-23 to P 8i, 24j . It has eight photosensitive regions (PN junction regions) arranged continuously over the length, and these eight photosensitive regions are connected to each other by wirings L i, j. The photodiodes are connected in parallel. In this way, high-resolution color imaging can be performed using M × N first pixel portions P 1,1 to P M, N.
 受光部10における第一画素部Pm,nおよび第二画素部Qi,jの配置は、これらの設計例に限られるものではない。各第二画素部Qi,jのフォトダイオードは、2次元配列されたM×N個の第一画素部P1,1~PM,Nそれぞれのフォトダイオードが設けられている領域とは異なる領域に、当該2次元配列における複数行分または複数列分の長さに亘って連続して設けられていればよい。これにより、本実施形態に係る固体撮像装置1は、M×N個の第一画素部P1,1~PM,Nを用いて高解像度撮像を高速に行うことができるとともに、I×J個の第二画素部Q1,1~QI,Jを用いて低解像度撮像を高速に行うことができる。 The arrangement of the first pixel unit P m, n and the second pixel unit Q i, j in the light receiving unit 10 is not limited to these design examples. The photodiodes of the second pixel portions Q i, j are different from the regions where the photodiodes of the M × N first pixel portions P 1,1 to P M, N arranged two-dimensionally are provided. It suffices if the region is provided continuously over the length of a plurality of rows or a plurality of columns in the two-dimensional array. Thereby, the solid-state imaging device 1 according to the present embodiment can perform high-resolution imaging at high speed using the M × N first pixel portions P 1,1 to P M, N , and I × J Low resolution imaging can be performed at high speed using the second pixel portions Q 1,1 to Q I, J.
 また、各第一画素部Pm,nおよび各第二画素部Qi,jがAPS方式のものである場合には、高感度かつ低ノイズで高速撮像を行なうことができる。 In addition, when each first pixel portion P m, n and each second pixel portion Q i, j is of the APS system, high-speed imaging can be performed with high sensitivity and low noise.
 また、各第一画素部Pm,nについて第一電気信号を出力する第一信号出力回路21と、各第二画素部Qi,jについて第二電気信号を出力する第二信号出力回路22と、を別個に設けることにより、第一画素部Pm,nを用いた高解像度撮像と第二画素部Qi,jを用いた低解像度撮像とを並列的に行うことができるので、更に高速撮像が可能である。 In addition, a first signal output circuit 21 that outputs a first electric signal for each first pixel portion P m, n and a second signal output circuit 22 that outputs a second electric signal for each second pixel portion Q i, j . Since the high-resolution imaging using the first pixel portion P m, n and the low-resolution imaging using the second pixel portion Q i, j can be performed in parallel, High-speed imaging is possible.
 また、各第一画素部Pm,nについて第一信号出力回路21による第一電気信号の出力を制御する第一制御回路31と、各第二画素部Qi,jについて第二信号出力回路22による第二電気信号の出力を制御する第二制御回路32と、を別個に設けることにより、第一画素部Pm,nを用いた高解像度撮像と第二画素部Qi,jを用いた低解像度撮像とを互いに独立に行うことが容易となる。 The first control circuit 31 controls the output of the first electric signal by the first signal output circuit 21 for each first pixel portion P m, n , and the second signal output circuit for each second pixel portion Q i, j . And a second control circuit 32 for controlling the output of the second electric signal by 22 separately, so that high-resolution imaging using the first pixel portion P m, n and the second pixel portion Q i, j are used. It becomes easy to perform the low-resolution imaging that has been performed independently of each other.
 図10~図12は、本実施形態に係る固体撮像装置1に含まれる受光部10のレイアウト例を示す図である。本実施形態に係る固体撮像装置1は、半導体基板上に集積化されているのが好適であり、その場合に例えば図10~図12に示されるような構造を有する。図10は、本実施形態に係る固体撮像装置1に含まれる受光部10の第一レイアウト例を示す図である。図11は、図10に示した第一レイアウト例におけるA-A’断面図である。また、図12は、本実施形態に係る固体撮像装置1に含まれる受光部10の第二レイアウト例を示す図である。 10 to 12 are diagrams showing layout examples of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. The solid-state imaging device 1 according to this embodiment is preferably integrated on a semiconductor substrate, and in that case, for example, has a structure as shown in FIGS. FIG. 10 is a diagram illustrating a first layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment. FIG. 11 is a cross-sectional view taken along the line A-A ′ in the first layout example shown in FIG. 10. FIG. 12 is a diagram illustrating a second layout example of the light receiving unit 10 included in the solid-state imaging device 1 according to the present embodiment.
 図10および図12それぞれに示されるレイアウト例では、拡散層1は、各第一画素部Pm,nのフォトダイオードPDの領域ならびに各第二画素部Qi,jのフォトダイオードPDの領域である。拡散層2は、各第一画素部Pm,nのトランジスタT1~T5のソースおよびドレインの領域ならびに各第二画素部Qi,jのトランジスタT1~T5のソースおよびドレインの領域である。ポリシリコンは、各第一画素部Pm,nおよび各第二画素部Qi,jそれぞれのトランジスタT1~T5のゲートである。また、メタル配線は、読出用配線Vline1(n)および読出用配線Vline2(j)、ならびに、トランジスタT3とトランジスタT5とを接続する配線である。図12における上層メタルは、各第二画素部Qi,jにおいて複数の光感応領域を相互に接続する配線Li,jである。 In the layout examples shown in FIGS. 10 and 12, respectively, the diffusion layer 1 is formed in the region of the photodiode PD of each first pixel portion Pm, n and the region of the photodiode PD of each second pixel portion Q i, j. is there. The diffusion layer 2 is a source and drain region of the transistors T1 to T5 of each first pixel portion Pm, n and a source and drain region of the transistors T1 to T5 of each second pixel portion Q i, j . The polysilicon is the gate of each of the transistors T1 to T5 of each first pixel portion Pm, n and each second pixel portion Qi , j . The metal wiring is a wiring for connecting the reading wiring Vline1 (n) and the reading wiring Vline2 (j), and the transistor T3 and the transistor T5. The upper layer metal in FIG. 12 is a wiring L i, j that connects a plurality of photosensitive regions to each other in each second pixel portion Q i, j .
 なお、図10および図12では、その他のメタル配線は図示が省略されている。また、図10に示した第一レイアウト例におけるA-A'断面を示す図11では、絶縁層等の図示が省略されている。 In FIG. 10 and FIG. 12, the other metal wirings are not shown. Further, in FIG. 11 showing an AA ′ cross section in the first layout example shown in FIG. 10, illustration of an insulating layer and the like is omitted.
 図12に示されたレイアウト例は各第二画素部Qi,jにおいて複数の光感応領域を配線Li,jで相互に接続するものであるが、各第二画素部Qi,jが1つのフォトダイオードを有する場合にも、そのフォトダイオードの光感応領域(拡散層1の領域)が広いので、その抵抗を小さくするために、その光感応領域の各所にコンタクトホールを設けてメタル配線で接続するのが好適である。 Layout example shown in Figure 12 each of the second pixel section Q i, wiring a plurality of photosensitive regions in j L i, but is intended to be connected to each other by j, the second pixel unit Q i, j is Even in the case of having one photodiode, the photosensitive region of the photodiode (the region of the diffusion layer 1) is wide. Therefore, in order to reduce the resistance, contact holes are provided at various locations in the photosensitive region and metal wiring is provided. It is preferable to connect with.
 上記実施形態では、第一信号出力回路21と第二信号出力回路22とが別個に設けられ、また、第一列選択回路61と第二列選択回路62とが別個に設けられた。しかし、図13に示される構成のように、第一信号出力回路21および第二信号出力回路22に替えて信号出力部20が設けられてもよいし、第一列選択回路61および第二列選択回路62に替えて列選択回路60が設けられてもよい。 In the above embodiment, the first signal output circuit 21 and the second signal output circuit 22 are provided separately, and the first column selection circuit 61 and the second column selection circuit 62 are provided separately. However, as in the configuration shown in FIG. 13, the signal output unit 20 may be provided instead of the first signal output circuit 21 and the second signal output circuit 22, or the first column selection circuit 61 and the second column A column selection circuit 60 may be provided instead of the selection circuit 62.
 図13は、他の実施形態に係る固体撮像装置2の構成図である。この図に示される固体撮像装置2は、受光部10、信号出力部20および制御部30を備える。受光部10は、これまで説明したものと同様のものである。信号出力部20は、第一信号出力回路21と同様の構成を有するが、高解像度撮像を行う場合と低解像度撮像を行う場合とで動作が相違する。制御部30は、タイミング制御回路40、第一行選択回路51、第二行選択回路52および列選択回路60を含む。タイミング制御回路40は、信号出力部20、第一行選択回路51、第二行選択回路52および列選択回路60それぞれの動作タイミングを制御する。 FIG. 13 is a configuration diagram of a solid-state imaging device 2 according to another embodiment. The solid-state imaging device 2 shown in this figure includes a light receiving unit 10, a signal output unit 20, and a control unit 30. The light receiving unit 10 is the same as described above. The signal output unit 20 has the same configuration as that of the first signal output circuit 21, but the operation differs depending on whether high-resolution imaging is performed or low-resolution imaging. The control unit 30 includes a timing control circuit 40, a first row selection circuit 51, a second row selection circuit 52, and a column selection circuit 60. The timing control circuit 40 controls operation timings of the signal output unit 20, the first row selection circuit 51, the second row selection circuit 52, and the column selection circuit 60.
 M×N個の第一画素部P1,1~PM,Nを用いて高解像度撮像を行う場合には、列選択回路60は第一列選択回路61と同様の動作をし、信号出力部20は第一信号出力回路21と同様の動作をする。一方、I×J個の第二画素部Q1,1~QI,Jを用いて低解像度撮像を行う場合には、信号出力部20は、N個の保持回路のうちのJ個の保持回路を用いて第二電気信号を出力し、列選択回路60は、信号出力部20がそのような動作をするよう制御する。 When high-resolution imaging is performed using M × N first pixel portions P 1,1 to P M, N , the column selection circuit 60 performs the same operation as the first column selection circuit 61 and outputs a signal. The unit 20 operates in the same manner as the first signal output circuit 21. On the other hand, when low-resolution imaging is performed using the I × J second pixel portions Q 1,1 to Q I, J , the signal output unit 20 holds J of the N holding circuits. The second electrical signal is output using the circuit, and the column selection circuit 60 controls the signal output unit 20 to perform such an operation.
 本発明による固体撮像装置は、上記実施形態及び構成例に限られるものではなく、様々な変形が可能である。 The solid-state imaging device according to the present invention is not limited to the above-described embodiments and configuration examples, and various modifications are possible.
 ここで、上記実施形態による固体撮像装置では、(1)M行N列に2次元配列されフォトダイオードを各々含むM×N個の第一画素部P1,1~PM,Nを有するともに、フォトダイオードを各々含むI×J個の第二画素部Q1,1~QI,Jを有する受光部と、(2)各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号を出力するとともに、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号を出力する信号出力部と、(3)各第一画素部Pm,nについて信号出力部による第一電気信号の出力を制御するとともに、各第二画素部Qi,jについて信号出力部による第二電気信号の出力を制御する制御部と、を備える構成を用いている。さらに、各第二画素部Qi,jのフォトダイオードが、2次元配列されたM×N個の第一画素部P1,1~PM,Nそれぞれのフォトダイオードが設けられている領域とは異なる領域に、当該2次元配列における複数行分または複数列分の長さに亘って連続して設けられている構成を用いている。 Here, the solid-state imaging device according to the above embodiment has (1) M × N first pixel portions P 1,1 to P M, N each two-dimensionally arranged in M rows and N columns and including photodiodes. A light receiving portion having I × J second pixel portions Q 1,1 to Q I, J each including a photodiode, and (2) charge generated in the photodiode of each first pixel portion P m, n A signal output unit that outputs a first electric signal having a value corresponding to the amount and outputting a second electric signal having a value corresponding to the amount of electric charge generated in the photodiode of each second pixel unit Q i, j ; (3) Controlling the output of the first electric signal by the signal output unit for each first pixel unit P m, n and controlling the output of the second electric signal by the signal output unit for each second pixel unit Q i, j The control part which comprises is used. Further, a region in which the photodiodes of the M × N first pixel portions P 1,1 to P M, N in which the photodiodes of the second pixel portions Q i, j are two-dimensionally arranged are provided, and Uses a configuration in which different regions are continuously provided over a length corresponding to a plurality of rows or a plurality of columns in the two-dimensional array.
 ただし、M,Nは2以上の整数であり、Iは2以上M未満の整数であり、Jは2以上N未満の整数であり、mは1以上M以下の各整数であり、nは1以上N以下の各整数であり、iは1以上I以下の各整数であり、jは1以上J以下の各整数である。なお、M×N個の第一画素部P1,1~PM,Nについての行および列と、I×J個の第二画素部Q1,1~QI,Jについての行および列とは、相違する。 However, M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is 1 These are integers of N or less, i is an integer of 1 or more and I or less, and j is an integer of 1 or more and J or less. Note that the rows and columns for the M × N first pixel portions P 1,1 to P M, N and the rows and columns for the I × J second pixel portions Q 1,1 to Q I, J are shown. Is different.
 上記構成による固体撮像装置では、各第二画素部Qi,jのフォトダイオードの光感応領域の各所にコンタクトホールが設けられて、これらがメタル配線で接続されているのが好適である。この場合には、各第二画素部Qi,jのフォトダイオードの光感応領域が広くても、その抵抗を小さくすることができる。 In the solid-state imaging device having the above-described configuration, it is preferable that contact holes are provided at various locations in the photosensitive regions of the photodiodes of the second pixel portions Q i, j and these are connected by metal wiring. In this case, even if the photosensitive region of the photodiode of each second pixel portion Q i, j is wide, the resistance can be reduced.
 また、固体撮像装置では、各第一画素部Pm,nおよび各第二画素部Qi,jは、フォトダイオードで発生した電荷をゲート端子に入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を信号出力部へ出力するのが好適である。このように各第一画素部Pm,nおよび各第二画素部Qi,jがAPS方式のものである場合には、高感度かつ低ノイズで高速撮像を行なうことができる。 In the solid-state imaging device, each first pixel portion P m, n and each second pixel portion Q i, j include an amplification MOS transistor that inputs charges generated by the photodiode to the gate terminal. It is preferable to output an electric signal corresponding to the input charge amount from the MOS transistor to the signal output unit. In this way, when each first pixel portion P m, n and each second pixel portion Q i, j are of the APS system, high-speed imaging can be performed with high sensitivity and low noise.
 また、固体撮像装置では、信号出力部は、各第一画素部Pm,nについて第一電気信号を出力する第一信号出力回路と、各第二画素部Qi,jについて第二電気信号を出力する第二信号出力回路と、を別個に有するのが好適である。この場合には、第一画素部Pm,nを用いた高解像度撮像と第二画素部Qi,jを用いた低解像度撮像とを並列的に行うことができるので、更に高速撮像が可能である。 In the solid-state imaging device, the signal output unit includes a first signal output circuit that outputs a first electric signal for each first pixel unit P m, n and a second electric signal for each second pixel unit Q i, j . It is preferable to separately have a second signal output circuit that outputs. In this case, since high-resolution imaging using the first pixel unit P m, n and low-resolution imaging using the second pixel unit Q i, j can be performed in parallel, higher-speed imaging is possible. It is.
 また、固体撮像装置では、制御部は、各第一画素部Pm,nについて信号出力部による第一電気信号の出力を制御する第一制御回路と、各第二画素部Qi,jについて信号出力部による第二電気信号の出力を制御する第二制御回路と、を別個に有するのが好適である。この場合には、第一画素部Pm,nを用いた高解像度撮像と第二画素部Qi,jを用いた低解像度撮像とを互いに独立に行うことが容易となる。 In the solid-state imaging device, the control unit controls the first control circuit that controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n , and each second pixel unit Q i, j . It is preferable to separately have a second control circuit that controls the output of the second electric signal by the signal output unit. In this case, it becomes easy to perform high-resolution imaging using the first pixel portion P m, n and low-resolution imaging using the second pixel portion Q i, j independently of each other.
 また、固体撮像装置では、各第一画素部Pm,nのフォトダイオードにカラーフィルタが設けられているのが好適である。この場合には、高解像度のカラー撮像をすることができる。 In the solid-state imaging device, it is preferable that a color filter is provided in the photodiode of each first pixel unit Pm, n . In this case, high-resolution color imaging can be performed.
 本発明は、高解像度撮像および低解像度撮像を高速に行うことができる固体撮像装置として利用可能である。 The present invention can be used as a solid-state imaging device capable of performing high-resolution imaging and low-resolution imaging at high speed.
 1,2…固体撮像装置、10…受光部、20…信号出力部、21…第一信号出力回路、22…第二信号出力回路、23…保持回路、24…保持回路、25,26…差演算回路、27,28…AD変換回路、30…制御部、31…第一制御回路、32…第二制御回路、40…タイミング制御回路、41…第一タイミング制御回路、42…第二タイミング制御回路、51…第一行選択回路、52…第二行選択回路、60…列選択回路、61…第一列選択回路、62…第二列選択回路、Pm,n…第一画素部、Qi,j…第二画素部。 1,2 ... solid-state imaging device, 10 ... receiving unit, 20 ... signal output section, 21 ... first signal output circuit, 22 ... second signal output circuit, 23 n ... holding circuit, 24 j ... holding circuit, 25 and 26 ... difference calculation circuit, 27, 28 ... AD conversion circuit, 30 ... control unit, 31 ... first control circuit, 32 ... second control circuit, 40 ... timing control circuit, 41 ... first timing control circuit, 42 ... second Timing control circuit 51 ... first row selection circuit 52 ... second row selection circuit 60 ... column selection circuit 61 ... first column selection circuit 62 ... second column selection circuit Pm, n ... first pixel Part, Q i, j ... second pixel part.

Claims (6)

  1.  M行N列に2次元配列されフォトダイオードを各々含むM×N個の第一画素部P1,1~PM,Nを有するとともに、フォトダイオードを各々含むI×J個の第二画素部Q1,1~QI,Jを有する受光部と、
     各第一画素部Pm,nのフォトダイオードで発生する電荷の量に応じた値の第一電気信号を出力するとともに、各第二画素部Qi,jのフォトダイオードで発生する電荷の量に応じた値の第二電気信号を出力する信号出力部と、
     各第一画素部Pm,nについて前記信号出力部による前記第一電気信号の出力を制御するとともに、各第二画素部Qi,jについて前記信号出力部による前記第二電気信号の出力を制御する制御部と、
     を備え、
     各第二画素部Qi,jのフォトダイオードが、2次元配列されたM×N個の第一画素部P1,1~PM,Nそれぞれのフォトダイオードが設けられている領域とは異なる領域に、当該2次元配列における複数行分または複数列分の長さに亘って連続して設けられている、
     ことを特徴とする固体撮像装置(ただし、M,Nは2以上の整数、Iは2以上M未満の整数、Jは2以上N未満の整数、mは1以上M以下の各整数、nは1以上N以下の各整数、iは1以上I以下の各整数、jは1以上J以下の各整数)。
    I × J second pixel portions each having M × N first pixel portions P 1,1 to P M, N that are two-dimensionally arranged in M rows and N columns and each include a photodiode. A light receiving portion having Q 1,1 to Q I, J ;
    The first electric signal having a value corresponding to the amount of charge generated in the photodiodes of the first pixel portions P m, n is output, and the amount of charge generated in the photodiodes of the second pixel portions Q i, j A signal output unit for outputting a second electric signal having a value corresponding to
    For each first pixel portion P m, n , the output of the first electric signal by the signal output portion is controlled, and for each second pixel portion Q i, j , the second electric signal is output by the signal output portion. A control unit to control;
    With
    The photodiodes of the second pixel portions Q i, j are different from the regions where the M × N first pixel portions P 1,1 to P M, N of the two-dimensionally arranged photodiodes are provided. The region is continuously provided over a length corresponding to a plurality of rows or a plurality of columns in the two-dimensional array.
    Solid-state imaging device (where M and N are integers of 2 or more, I is an integer of 2 or more and less than M, J is an integer of 2 or more and less than N, m is an integer of 1 or more and M or less, and n is Each integer of 1 to N, i is an integer of 1 to I, and j is an integer of 1 to J).
  2.  各第二画素部Qi,jのフォトダイオードの光感応領域の各所にコンタクトホールが設けられて、これらがメタル配線で接続されている、ことを特徴とする請求項1に記載の固体撮像装置。 2. The solid-state imaging device according to claim 1, wherein contact holes are provided at various locations in the photosensitive region of the photodiode of each second pixel portion Q i, j , and these are connected by metal wiring. .
  3.  各第一画素部Pm,nおよび各第二画素部Qi,jが、フォトダイオードで発生した電荷をゲート端子に入力する増幅用MOSトランジスタを含み、この増幅用MOSトランジスタから入力電荷量に応じた電気信号を前記信号出力部へ出力する、ことを特徴とする請求項1または2に記載の固体撮像装置。 Each first pixel portion P m, n and each second pixel portion Q i, j include an amplifying MOS transistor that inputs the charge generated by the photodiode to the gate terminal, and the amount of input charge from this amplifying MOS transistor The solid-state imaging device according to claim 1, wherein a corresponding electrical signal is output to the signal output unit.
  4.  前記信号出力部が、各第一画素部Pm,nについて前記第一電気信号を出力する第一信号出力回路と、各第二画素部Qi,jについて前記第二電気信号を出力する第二信号出力回路と、を別個に有する、ことを特徴とする請求項1~3のいずれか一項に記載の固体撮像装置。 The signal output unit outputs a first signal output circuit for outputting the first electric signal for each first pixel unit P m, n and a second signal for outputting the second electric signal for each second pixel unit Q i, j . The solid-state imaging device according to any one of claims 1 to 3, further comprising a two-signal output circuit.
  5.  前記制御部が、各第一画素部Pm,nについて前記信号出力部による前記第一電気信号の出力を制御する第一制御回路と、各第二画素部Qi,jについて前記信号出力部による前記第二電気信号の出力を制御する第二制御回路と、を別個に有する、ことを特徴とする請求項1~4のいずれか一項に記載の固体撮像装置。 The control unit controls the output of the first electric signal by the signal output unit for each first pixel unit P m, n , and the signal output unit for each second pixel unit Q i, j 5. The solid-state imaging device according to claim 1, further comprising a second control circuit that controls output of the second electric signal according to 1.
  6.  各第一画素部Pm,nのフォトダイオードにカラーフィルタが設けられていることを特徴とする請求項1~5のいずれか一項に記載の固体撮像装置。 6. The solid-state imaging device according to claim 1, wherein a color filter is provided in the photodiode of each first pixel portion P m, n .
PCT/JP2009/060066 2008-06-06 2009-06-02 Solid state imaging device WO2009148054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008149605A JP2009295876A (en) 2008-06-06 2008-06-06 Solid-state imaging device
JP2008-149605 2008-06-06

Publications (1)

Publication Number Publication Date
WO2009148054A1 true WO2009148054A1 (en) 2009-12-10

Family

ID=41398128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060066 WO2009148054A1 (en) 2008-06-06 2009-06-02 Solid state imaging device

Country Status (2)

Country Link
JP (1) JP2009295876A (en)
WO (1) WO2009148054A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665900B (en) 2009-12-25 2015-03-04 东曹株式会社 Hydrogenation catalyst, process for production thereof, and use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282793A (en) * 1985-10-07 1987-04-16 Hitachi Ltd Solid-state image pickup element
JPH1075397A (en) * 1996-08-30 1998-03-17 Honda Motor Co Ltd Semiconductor image sensor
JP2002026304A (en) * 2000-07-03 2002-01-25 Sony Corp Solid-state image pickup element
JP2003189316A (en) * 2001-12-19 2003-07-04 Minolta Co Ltd Imaging sensor
JP2006032913A (en) * 2004-06-17 2006-02-02 Pentax Corp Solid-state imaging device
JP2007097693A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Resolution variable x-ray imaging device and x-ray ct apparatus
JP2007184904A (en) * 2005-12-30 2007-07-19 Internatl Business Mach Corp <Ibm> Pixel array, imaging sensor including the pixel array and digital camera including the imaging sensor
JP2007333464A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Two-wavelength image sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282793A (en) * 1985-10-07 1987-04-16 Hitachi Ltd Solid-state image pickup element
JPH1075397A (en) * 1996-08-30 1998-03-17 Honda Motor Co Ltd Semiconductor image sensor
JP2002026304A (en) * 2000-07-03 2002-01-25 Sony Corp Solid-state image pickup element
JP2003189316A (en) * 2001-12-19 2003-07-04 Minolta Co Ltd Imaging sensor
JP2006032913A (en) * 2004-06-17 2006-02-02 Pentax Corp Solid-state imaging device
JP2007097693A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Resolution variable x-ray imaging device and x-ray ct apparatus
JP2007184904A (en) * 2005-12-30 2007-07-19 Internatl Business Mach Corp <Ibm> Pixel array, imaging sensor including the pixel array and digital camera including the imaging sensor
JP2007333464A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Two-wavelength image sensor

Also Published As

Publication number Publication date
JP2009295876A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US11765473B2 (en) Solid-state image sensor and image-capturing device
US7375748B2 (en) Differential readout from pixels in CMOS sensor
US8772695B2 (en) Image sensor arrangement
US20160198106A1 (en) Solid state image pickup device
KR101595687B1 (en) Solid-state image capture device
US8487232B2 (en) Solid state image sensor adapted to remove noise
JP4878123B2 (en) Solid-state imaging device
KR20040080337A (en) Solid-state imaging device
KR20110109891A (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
JP5235814B2 (en) Solid-state imaging device
WO2006130519A2 (en) Shared amplifier pixel with matched coupling capacitances
US7679663B2 (en) Photodetection apparatus
JP4678583B2 (en) Solid-state imaging device
KR101580754B1 (en) Solid state imaging device
EP1874044B1 (en) Solid state imaging device
JP2004286576A (en) Photodetector
KR101580753B1 (en) Solid-state imaging device
JPWO2007108129A1 (en) Solid-state image sensor
WO2009148055A1 (en) Solid-state image pickup device
WO2009148054A1 (en) Solid state imaging device
CN114650060B (en) Column amplifier capacitor switching circuit for adjusting analog gain
WO2013046579A1 (en) Solid-state image pickup device, drive method thereof and image pickup device
JP2009141838A (en) Imaging element
JP2007019681A (en) Method of driving solid-state imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758321

Country of ref document: EP

Kind code of ref document: A1