WO2009144996A1 - 太陽電池、太陽電池の製造方法および太陽電池モジュール - Google Patents

太陽電池、太陽電池の製造方法および太陽電池モジュール Download PDF

Info

Publication number
WO2009144996A1
WO2009144996A1 PCT/JP2009/055620 JP2009055620W WO2009144996A1 WO 2009144996 A1 WO2009144996 A1 WO 2009144996A1 JP 2009055620 W JP2009055620 W JP 2009055620W WO 2009144996 A1 WO2009144996 A1 WO 2009144996A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
solar battery
solar
wiring
Prior art date
Application number
PCT/JP2009/055620
Other languages
English (en)
French (fr)
Inventor
康志 舩越
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US12/995,381 priority Critical patent/US20110114179A1/en
Priority to EP09754504A priority patent/EP2284907A4/en
Publication of WO2009144996A1 publication Critical patent/WO2009144996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell, a method for manufacturing a solar cell, and a solar cell module, and more particularly, to a solar cell, a method for manufacturing a solar cell, and a solar cell module that can improve the characteristics by suppressing the resistance of an electrode low.
  • a pn junction is formed by diffusing a reverse conductivity type impurity on a light receiving surface of a single-crystal or polycrystalline single-conductive silicon substrate, and electrodes are formed on the light receiving surface and the back surface of the silicon substrate, respectively. Things have traditionally been mainstream.
  • a solar cell in which an output layer having a high concentration of impurities of the same conductivity type is formed on the back surface of one conductivity type silicon substrate to increase the output by the back surface field effect is also common.
  • a back electrode type solar cell has also been developed in which a p-electrode and an n-electrode are formed on the back surface of the silicon substrate without forming electrodes on the light-receiving surface (Patent Document 1 (Japanese Patent Publication No. 2006-523025)). reference).
  • Patent Document 1 Japanese Patent Publication No. 2006-523025
  • the back electrode type solar cell since there is generally no electrode on the light receiving surface, there is no shadow loss due to the electrode, and it is possible to obtain a higher output than a solar cell having electrodes on the light receiving surface and the back surface of the silicon substrate. Be expected. Special table 2006-523025
  • an electrode formed by firing which is generally used in solar cells, is mainly composed of metal powder. Therefore, when the processing temperature during electrode formation is lowered, the metal powder is sufficiently melted. In addition, since glass frit is added to make good contact with the silicon substrate, the resistivity of the electrode itself increases. On the other hand, when glass frit is not added to reduce the resistivity of the electrode itself, the contact resistance with the silicon substrate becomes very large. Therefore, both the resistivity and the contact resistance of the electrode itself are reduced by low-temperature treatment. It was very difficult to make it small.
  • the back electrode type solar cell as described in Patent Document 1, since the p + layer, the n + layer, the p electrode, and the n electrode exist on the back surface, the structure is complicated.
  • the p-electrode and n-electrode bus bar electrodes must be provided at both ends of the back surface in order to be connected in series with the adjacent back-surface electrode type solar cells when the solar cell module is manufactured. For this reason, since the length of the finger electrode has to be approximately the same as the width of the silicon substrate, the amount of current flowing per finger electrode increases, and resistance loss at the finger electrode tends to occur. . Therefore, in the back electrode type solar cell, it is necessary to suppress the resistance of the electrode lower than that of a general solar cell having electrodes on the light receiving surface and the back surface of the silicon substrate.
  • an object of the present invention is to provide a solar cell, a method for manufacturing a solar cell, and a solar cell module capable of improving the characteristics while suppressing the influence even when the resistance of the electrode is large.
  • the present invention includes a solar battery cell having an electrode having a contact resistance with a silicon substrate of 70 m ⁇ ⁇ cm 2 or less, and a conductive member for electrically connecting to the electrode of the solar battery cell.
  • the main component of the electrode is preferably Ag, Ni, Cu or Al.
  • the thickness of the electrode is preferably 20 ⁇ m or less.
  • the electrode formation pattern when the electrode formation pattern and the conductive member formation pattern are electrically connected, the electrode formation pattern is substantially the same as the conductive member formation pattern. The overlapping pattern is preferred.
  • the conductive member is preferably a wiring board including an insulating base material and wirings installed on the insulating base material.
  • the main component of the wiring is preferably Ag, Ni, Cu or Al.
  • the width of the electrode is preferably smaller than the width of the wiring on the wiring board.
  • the solar cell of the present invention it is preferable that the solar cell has both the p-electrode and the n-electrode formed on the back side of the silicon substrate.
  • the electrode is preferably a fired electrode.
  • the present invention is a method for producing any one of the above solar cells, wherein the electrode paste is formed by firing the electrode paste after printing the electrode paste mainly composed of metal powder. It is.
  • the electrode paste preferably contains a metal powder, a solvent, a thickener, and a glass frit having a softening point of 450 ° C. or lower.
  • the electrode paste is preferably baked by baking the electrode paste at a temperature of 550 ° C. or lower.
  • the present invention is a method for manufacturing any one of the above solar cells, and is a method for manufacturing a solar cell in which electrodes are formed by electrolytic plating, electroless plating, or vacuum deposition.
  • the present invention is a solar cell module in which any of the above solar cells is sealed with a sealing material.
  • the present invention it is possible to provide a solar cell, a method for manufacturing a solar cell, and a solar cell module capable of improving the characteristics while suppressing the resistance of the electrode to be low.
  • (A)-(e) is typical sectional drawing illustrating an example of the manufacturing method of the solar cell module of this invention.
  • (A)-(c) is a typical top view which shows an example of the pattern of the electrode of the photovoltaic cell used for this invention. It is a typical top view of an example of the wiring board used for the present invention. It is typical sectional drawing of an example of the solar cell of this invention. F. of the solar battery cell used in the present invention. F. It is a figure which shows the correlation with contact resistance of an electrode.
  • (A)-(e) is typical sectional drawing illustrating another example of the manufacturing method of the solar cell module of this invention.
  • (A) And (b) is a schematic diagram illustrating an example of the method of measuring the characteristic of a photovoltaic cell
  • (a) is a schematic plan view before connecting an interconnector to the electrode of a photovoltaic cell
  • B) is typical sectional drawing after connecting an interconnector to the electrode of a photovoltaic cell.
  • (A)-(c) is a schematic diagram illustrating an example of a method for measuring characteristics of a solar cell, and (a) is a schematic plan view of a solar cell before a wiring board is connected.
  • (B) is a typical top view of the wiring board before connecting to a photovoltaic cell,
  • (c) is after the wiring board shown in (b) is connected to the photovoltaic cell shown in (a). It is typical sectional drawing of a solar cell.
  • ap + layer 3 formed by diffusing p type impurities on the back surface of an n type silicon substrate 1 and an n + layer formed by diffusing n type impurities. 4 is formed.
  • a passivation film having a contact hole which is an opening formed so that a part of the surface of the p + layer 3 is exposed on the back surface of the silicon substrate 1 and a part of the surface of the n + layer 4 is exposed. 5 is formed.
  • An antireflection film 2 is formed on the light receiving surface of the silicon substrate 1.
  • each of the antireflection film 2, the p + layer 3, the n + layer 4 and the passivation film 5 can be formed by a conventionally known method.
  • the p + layer 3 and the n + layer 4 are alternately arranged in a line extending linearly from the front side to the back side of the paper surface of FIG. It is not a thing.
  • the contact holes provided in the passivation film 5 can be formed on the p + layer 3 and the n + layer 4 in a dot shape or a line shape, for example.
  • the contact hole can be easily formed by, for example, printing a paste capable of etching the passivation film 5 on the passivation film 5 in the shape of the contact hole and heating.
  • the electrode paste is printed so as to fill the contact hole of the passivation film 5 on the back surface of the silicon substrate 1, and the electrode paste is baked to form the p + layer 3.
  • a p electrode 7 in contact with the n electrode 8 and an n electrode 8 in contact with the n + layer 4 are formed.
  • the main component of the electrode paste is preferably a metal powder of Ag, Ni, Cu or Al.
  • the “main component” means a component that occupies 50% by mass or more of the electrode paste.
  • said electrode paste contains a glass frit whose solvent, a thickener, and a softening point are 450 degrees C or less with said metal powder.
  • the electrode paste is preferably fired at a temperature of 550 ° C. or lower, more preferably 450 ° C. or lower.
  • the electrode paste is made of a metal powder of Ag, Ni, Cu or Al as a main component, and a glass frit having a softening point of 450 ° C. or lower is used, so that the electrode paste is excellent with the silicon substrate 1 even at a low temperature firing of 550 ° C. or lower. Electrodes (p electrode 7 and n electrode 8) from which contacts can be obtained can be obtained.
  • a good contact means that the contact resistance is 70 m ⁇ ⁇ cm 2 or less, preferably 50 m ⁇ ⁇ cm 2 or less.
  • FF fill factor
  • a dot shape as shown in the schematic plan view of FIG. 2A, a line shape as shown in FIG. 2B, and a shape of FIG. It can be formed in a comb shape as shown.
  • the p-electrode 7 and the n-electrode 8 need only have good contact with the silicon substrate 1, so that the cross-sectional area of the electrode is increased in order to reduce the resistance of the electrode as in the prior art. There is no need.
  • the electrode paste is preferably printed to a width that covers the contact hole thinly. In this case, the amount of expensive electrode paste used tends to be reduced.
  • the electrode paste may be thinly printed.
  • Printing by various printing methods such as inkjet printing, offset printing, letterpress printing, and intaglio printing, which are difficult to form into a film, is also possible. That is, in the present invention, printing by a method superior to fine line pattern printing as compared with screen printing such as ink jet printing enables thinning of the electrode along with thinning of the electrode, and the amount of electrode paste used. The tendency that can be reduced becomes larger.
  • the p electrode 7 is formed on the wiring substrate provided with the p wiring 9 and the n wiring 10 respectively corresponding to the p electrode 7 and the n electrode 8 of the solar battery cell.
  • the solar battery cell is installed such that the n electrode 8 is installed on the n wiring 10. Thereby, the solar cell of this invention is produced.
  • the electrical connection between the p-electrode 7 and the p-wiring 9 and the electrical connection between the n-electrode 8 and the n-wiring 10 may be performed by a connecting material such as solder or conductive adhesive, for example.
  • a connecting material such as solder or conductive adhesive
  • it may be performed only by physical pressure bonding using vacuum pressure bonding in a sealing step with a sealing material later.
  • the pattern of the formation of the electrode of the solar battery cell is electrically connected to the pattern of the formation of the wiring of the wiring board, the pattern of the formation of the solar battery cell electrode is substantially the same as the pattern of the wiring formation of the wiring board. It is preferable that the patterns overlap each other.
  • a wiring board like the structure shown, for example in the schematic plan view of FIG. 3 can be used.
  • the wiring substrate a substrate provided with wiring including the p wiring 9 and the n wiring 10 on the insulating base material 11 can be used.
  • a slit 17 as shown in FIG. 3 may be formed in the wiring of the wiring board, or a connection wiring 18 that electrically connects the p wiring 9 and the n wiring 10 may be formed. Good.
  • the main component of the wiring including the p wiring 9 and the n wiring 10 is preferably Ag, Ni, Cu, or Al.
  • a flexible insulating base material including at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyimide, and ethylene vinyl acetate can be used. .
  • the electrode of the solar battery cell only needs to obtain a good contact with the wiring of the wiring board. Therefore, from the viewpoint of reducing the amount of electrode paste used, a range that does not affect the characteristics of the solar battery. Thus, it is preferable that the surface area of the electrode of the solar battery cell is small.
  • the wiring substrate has a larger wiring surface area from the viewpoint of sufficiently reducing the series resistance in order to collect the electricity collected from the solar cells. Therefore, for example, as shown in the schematic cross-sectional view of FIG. 4, it is preferable that the wiring width D1 of the wiring board is wider than the width D2 of the electrode of the solar battery cell.
  • the solar cells installed on the wiring substrate are sealed with a light-transmitting sealing material 13, a light-transmitting member 12 such as glass, and a weather-resistant base material 14.
  • the solar cell module is completed by attaching the terminal box 15 and the frame 16 as shown in FIG. As described above, F.I. F. Can produce a solar cell module of 0.75 or more.
  • the difference in the electrode paste is mainly expressed as the difference in the resistivity of the solar cell electrode and the contact resistance between the electrode and the silicon substrate. Furthermore, by evaluating the characteristics of the solar cell by installing the solar cell thus produced on a wiring board having a sufficiently low wiring resistance and the same shape as the electrode of the solar cell, Since the resistance of the electrode of the solar battery cell can be ignored, the contact resistance of the electrode of the solar battery cell and the F.F. F. You can see the correlation.
  • the value calculated by the TLM method is used as the contact resistance of the electrode of the solar battery cell to the silicon substrate.
  • the electrode paste in order to maintain a high carrier lifetime in the silicon substrate, the electrode paste is fired at a temperature of 550 ° C. or lower, so that the electrode paste is fired at around 700 ° C. as in the prior art. And the resistivity of the electrode of a photovoltaic cell will become high.
  • the electrode paste is an electrode paste in which all components other than the metal powder are organic components, an electrode exhibiting a sufficiently low resistivity can be obtained by firing the electrode paste at a low temperature of 550 ° C. or lower. Good contact with the substrate cannot be obtained.
  • the resistivity of the electrode is increased by inhibiting the contact between the metal powders.
  • the electrodes of the solar battery cells are used without using the wiring substrate, and the electrodes are formed by firing at 450 ° C. and 650 ° C., respectively, with the electrodes having a pattern of collecting current at both ends of the silicon substrate of the solar battery cells.
  • the characteristics of the solar battery cells were compared. As shown in FIGS. 7 (a) and 7 (b), the characteristics of the solar battery cell are the collector electrodes of p electrode 7 and n electrode 8 (p electrode 7 and n extending in the vertical direction of FIG. 7 (a)).
  • the interconnector 19 was connected to the electrode 8), and the four-terminal method was used. At this time, it was confirmed that the contact resistance of the electrode with respect to the silicon substrate at 50 ° C. and 650 ° C.
  • the electrode width was increased to about 300 ⁇ m, and the thickness of the electrode was 20 ⁇ m, which was as high as possible by screen printing.
  • the area of the back surface of the solar battery cell is 105 cm 2 , and the finger electrodes (portions of the p electrode 7 and the n electrode 8 extending in the left-right direction in FIG. 7A) are formed at a pitch of 1 mm.
  • the height is 10 cm.
  • the contact hole is in a line shape, the width is 100 ⁇ m, and the length is 10 cm. At this time, the short-circuit current density (Jsc) of the solar battery cell was about 37 mA / cm 2 .
  • Table 1 shows the characteristics per one photovoltaic cell and the resistivity of the electrode.
  • the solar cell produced as described above is installed on a wiring board on which a wiring having the same shape as the electrode of the solar cell is formed, as shown in FIGS. 8 (a) to 8 (c).
  • Table 2 shows the results of measuring the characteristics of the produced solar cell by the four-terminal method.
  • copper foil is used for the wiring of the wiring board, and the resistance is designed to be sufficiently small, so that the resistance of the electrode of the solar battery cell is ignored by installing the solar battery cell on the wiring board. can do.
  • the electrode when the current generated in the solar cell is collected to the wiring board via the electrode of the solar cell as in the above method, the electrode is used when the thickness of the electrode of the solar cell is thick as in the prior art. The loss due to the resistance tends to occur. Therefore, the thinner the electrode of the solar battery cell, the better. However, in the case where an insulating passivation film is formed on the back surface of the solar battery cell, the solar battery is securely connected to the wiring of the wiring board.
  • the thickness of the cell electrode is preferably equal to or greater than the thickness of the passivation film.
  • the thickness of the electrode of the solar battery cell is thin, even when the thickness of the electrode of the solar battery cell is 20 ⁇ m as described above, the F. F. Since the improvement effect was obtained, the thickness of the electrode of the solar battery cell is preferably 20 ⁇ m or less.
  • the short-circuit current density and open-circuit voltage of the solar cell are higher when the electrode paste is baked at 650 ° C. than when the electrode is formed by baking at 450 ° C. This is because lowering the firing temperature of the electrode paste could prevent a decrease in carrier lifetime in the silicon substrate. As a result, when the electrode paste was fired at 450 ° C. rather than at 650 ° C. The solar cell which has higher conversion efficiency was obtained.
  • the electrode paste firing temperature is lowered to improve the short-circuit current density and open-circuit voltage as described above.
  • the resistance of the electrode is increased, resulting in a decrease in the conversion efficiency of the solar cell.
  • the contact resistance between the electrode of the solar battery cell and the silicon substrate is 70 m ⁇ ⁇ cm 2 or less, more preferably 50 m ⁇ ⁇ cm 2 or less, F.R. F. Of 0.75 or more is obtained, and as a result, a solar cell and a solar cell module with high conversion efficiency are obtained.
  • the electrode of the solar battery cell since it is sufficient that the electrode of the solar battery cell has good contact with the silicon substrate, it is not necessary to form the electrode thickly as in the prior art (since it becomes a resistance component, the electrode is preferably thin) ) Since the amount of electrode material used can be greatly reduced, the material cost can be reduced.
  • a p + layer 3 formed by diffusing p type impurities on the back surface of a p type silicon substrate 1 and an n + layer formed by diffusing n type impurities. 4 is formed.
  • a passivation film having a contact hole which is an opening formed so that a part of the surface of the p + layer 3 is exposed on the back surface of the silicon substrate 1 and a part of the surface of the n + layer 4 is exposed. 5 is formed.
  • An antireflection film 2 is formed on the light receiving surface of the silicon substrate 1.
  • each of the antireflection film 2, the p + layer 3, the n + layer 4 and the passivation film 5 can be formed by a conventionally known method.
  • the p + layer 3 and the n + layer 4 are alternately arranged in a line extending linearly from the front side to the back side of the paper surface of FIG. It is not limited.
  • the contact holes provided in the passivation film 5 can be formed on the p + layer 3 and the n + layer 4 in a dot shape or a line shape, for example.
  • the contact hole can be easily formed by, for example, printing a paste capable of etching the passivation film 5 on the passivation film 5 in the shape of the contact hole and heating.
  • the p-electrode 7a and the n-electrode 8a of the solar battery cell are formed on the contact hole of the passivation film 5 by any one of electrolytic plating, electroless plating, or vacuum deposition.
  • the main component of the electrodes is preferably Ag, Ni, Cu, or Al.
  • electrolytic plating electroless plating, or vacuum deposition has not been used as a method for forming solar cell electrodes.
  • One reason is that the growth rate of the electrode is slow and it takes time to form the electrode.
  • the electrode of the solar cell it is not necessary to form the electrode of the solar cell thick, and it is advantageous that the electrode of the solar cell is thin as long as good contact with the silicon substrate can be obtained.
  • the electrode can be formed by electrolytic plating or vacuum deposition.
  • the electrode of the conventional solar battery cell needs to have a thickness of about several tens of ⁇ m because it is necessary to keep the resistance of the electrode low, but the electrode of this thickness is electroplated, electroless plated and In the case of forming by vacuum vapor deposition, the electrode formation rate is about several nm to several ⁇ m / min, and therefore it is necessary to be at least 10 minutes.
  • the thickness of the electrode of the solar battery cell since it is preferable that the thickness of the electrode of the solar battery cell is thin, it can be reduced to, for example, 1 ⁇ m or less, and the formation time of the electrode of the solar battery cell can be shortened to several minutes or less. In addition, the amount of electrode material used can be reduced. However, even in this case, in order to obtain a good connection with the wiring of the wiring board, the thickness of the electrode of the solar battery cell is determined so that the passivation film (insulating film) is formed on the back surface of the solar battery cell. The thickness is preferably equal to or greater than the film (insulating film).
  • electroless plating is slower in electrode formation than electrolytic plating, but it is possible to form the p-electrode 7a and the n-electrode 8a only by immersing the silicon substrate in the plating solution, and as in vacuum deposition. Since the vacuum process is not included, it is preferable in that the electrode can be easily formed.
  • the electroless plating can be performed by, for example, a conventionally known method.
  • a plating solution containing Ni as a main component is heated to about 80 ° C., and the plating solution is heated as shown in FIG.
  • a p-electrode 7a and an n-electrode made of a Ni layer having a thickness of about 0.3 ⁇ m are exposed on the exposed portion of the silicon substrate as shown in FIG. 8a can be formed.
  • the passivation film on the back surface of the solar battery cell was formed with a thickness of 0.1 ⁇ m.
  • a catalyst treatment may be performed before dipping in the plating solution.
  • anneal at a temperature of about 300 ° C. to 500 ° C., for example.
  • the annealing atmosphere is not particularly limited, but may be a mixed gas atmosphere of hydrogen and nitrogen, for example.
  • the p electrode 7a is formed on the wiring substrate including the p wiring 9 and the n wiring 10 respectively corresponding to the p electrode 7a and the n electrode 8a of the solar battery cell.
  • the solar battery cell is installed such that the n electrode 8a is installed on the n wiring 10. Thereby, the solar cell of this invention is produced.
  • the electrical connection between the p-electrode 7a and the p-wiring 9 and the electrical connection between the n-electrode 8a and the n-wiring 10 may be performed by a connecting material such as solder or a conductive adhesive. You may carry out only by physical crimping using the vacuum press-fit in the sealing process by the later sealing material, without using a connection material.
  • the solar cell electrode since the solar cell electrode only needs to obtain a good contact with the wiring of the wiring substrate, the range that does not affect the characteristics of the solar cell from the viewpoint of reducing the amount of electrode material used. Thus, it is preferable that the surface area of the electrode of the solar battery cell is small.
  • the wiring of the wiring board should have a large surface area from the viewpoint of sufficiently reducing the series resistance in order to collect the current collected from the solar cells. Therefore, for example, as shown in the schematic cross-sectional view of FIG. 4, it is preferable that the wiring width D1 of the wiring board is wider than the width D2 of the electrode of the solar battery cell.
  • the solar cells installed on the wiring substrate are sealed with a light-transmitting sealing material 13, a light-transmitting member 12 such as glass, and a weather-resistant base material 14.
  • the solar cell module of the present invention is completed by attaching the terminal box 15 and the frame 16.
  • F.I. F. Can be the solar cell module of the present invention having a 0.75 or more.
  • the electrode of the solar battery cell since the electrode of the solar battery cell only needs to obtain a good contact with the silicon substrate by causing the wiring board to have a current collecting function, the material cost can be reduced, It becomes possible to improve the characteristics and shorten the manufacturing time.
  • the wiring of the wiring board has a shape that covers all the electrodes of the solar battery cell.
  • the tip of the electrode of the solar battery cell has a shape longer than the wiring of the wiring substrate within a range in which the resistance does not decrease.
  • the present invention it is possible to provide a solar cell, a method for manufacturing a solar cell, and a solar cell module capable of improving the characteristics while suppressing the resistance of the electrode to be low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 シリコン基板(1)とのコンタクト抵抗が70mΩ・cm2以下である電極(7,7a,8,8a)を有する太陽電池セルと、太陽電池セルの電極(7,7a,8,8a)に電気的に接続するための導電性部材とを備え、太陽電池セルの電極(7,7a,8,8a)が導電性部材に電気的に接続されるように導電性部材上に太陽電池セルが配置されている太陽電池、その太陽電池の製造方法およびその太陽電池を用いた太陽電池モジュールである。

Description

太陽電池、太陽電池の製造方法および太陽電池モジュール
 本発明は、太陽電池、太陽電池の製造方法および太陽電池モジュールに関し、特に、電極の抵抗を低く抑えて特性を向上させることができる太陽電池、太陽電池の製造方法および太陽電池モジュールに関する。
 近年、エネルギ資源の枯渇の問題や大気中のCO2の増加のような地球環境問題などからクリーンなエネルギ源の開発が望まれており、特に太陽電池を用いた太陽光発電が新しいエネルギ源として開発され、実用化され、そして発展の道を歩んでいる。
 太陽電池としては、単結晶または多結晶の一導電型シリコン基板の受光面に逆導電型の不純物を拡散させてpn接合を形成し、そのシリコン基板の受光面と裏面とにそれぞれ電極を形成したものが従来から主流となっている。また、一導電型シリコン基板の裏面に同じ導電型の不純物を高濃度に含む不純物層を形成することによって、裏面電界効果による高出力化を図った太陽電池も一般的となっている。
 さらに、シリコン基板の受光面には電極を形成せずに、その裏面にp電極およびn電極を形成する裏面電極型太陽電池も開発されている(特許文献1(特表2006-523025号公報)参照)。裏面電極型太陽電池においては、一般的に受光面に電極を有しないので電極によるシャドーロスがなく、シリコン基板の受光面と裏面とにそれぞれ電極を有する太陽電池に比べて高い出力を得ることが期待される。
特表2006-523025号公報
 太陽電池において高い変換効率を得るために、キャリアライフタイムを高く保つことが重要であり、そのためには低温の処理温度で太陽電池を製造することが有効である。特に、太陽電池の電極形成時の処理温度はキャリアライフタイムに大きく影響するため、この処理温度を低温化することによって高い変換効率を期待することができる。
 しかしながら、実際には、太陽電池の電極形成時の処理温度を低温化することによってシリコン基板と電極とのコンタクト抵抗が大きくなったり、電極自体の抵抗率が大きくなるなどして、期待した成果を得ることができなかった。
 特に、太陽電池に一般的に用いられている、焼成により形成された電極は、金属粉末が主成分となるため、電極形成時の処理温度を低温化した場合には金属粉末同士が十分に融着せず、さらには、シリコン基板とのコンタクトを良好にするためにガラスフリットが添加されているために電極自体の抵抗率が大きくなる。一方、電極自体の抵抗率を低くするためにガラスフリットを添加しない場合には、シリコン基板とのコンタクト抵抗が非常に大きくなってしまうため、低温処理で電極自体の抵抗率とコンタクト抵抗の両方を小さい値にすることは非常に困難であった。
 また、特許文献1に記載されているような裏面電極型太陽電池においては、その裏面にp+層、n+層、p電極およびn電極がそれぞれ存在するため、その構造が複雑であることに加え、p電極およびn電極のバスバー電極は、太陽電池モジュールの製造時に隣接する裏面電極型太陽電池と直列接続するために裏面の両端部に設けざるを得ない。そのため、フィンガー電極の長さをシリコン基板の幅とほぼ同等程度の長さにしなければならないため、フィンガー電極1本当たりに流れる電流量が多くなり、フィンガー電極での抵抗損失が起こりやすい傾向にある。そのため、裏面電極型太陽電池においては、シリコン基板の受光面と裏面にそれぞれ電極がある一般的な太陽電池よりも電極の抵抗を低く抑える必要があった。
 上記の事情に鑑みて、本発明の目的は、電極の抵抗が大きくても影響を低く抑えて特性を向上させることができる太陽電池、太陽電池の製造方法および太陽電池モジュールを提供することにある。
 本発明は、シリコン基板とのコンタクト抵抗が70mΩ・cm2以下である電極を有する太陽電池セルと、太陽電池セルの電極に電気的に接続するための導電性部材とを備え、太陽電池セルの電極が導電性部材に電気的に接続されるように導電性部材上に太陽電池セルが配置されている太陽電池である。
 ここで、本発明の太陽電池において、電極の主成分は、Ag、Ni、CuまたはAlであることが好ましい。
 また、本発明の太陽電池において、電極の厚さは20μm以下であることが好ましい。
 また、本発明の太陽電池において、電極の形成のパターンと導電性部材の形成のパターンとが電気的に接続された際に、電極の形成のパターンは導電性部材の形成のパターンに実質的に重なるパターンであることが好ましい。
 また、本発明の太陽電池において、導電性部材は、絶縁性基材と絶縁性基材上に設置された配線とを含む配線基板であることが好ましい。
 また、本発明の太陽電池において、配線の主成分は、Ag、Ni、CuまたはAlであることが好ましい。
 また、本発明の太陽電池において、電極の幅は、配線基板の配線の幅よりも小さいことが好ましい。
 また、本発明の太陽電池において、太陽電池セルは、p電極およびn電極がともにシリコン基板の裏面側に形成されていることが好ましい。また、本発明の太陽電池において、電極は、焼成電極であることが好ましい。
 また、本発明は、上記のいずれかの太陽電池を製造する方法であって、金属粉末を主成分とする電極ペーストを印刷した後に電極ペーストを焼成することによって電極を形成する太陽電池の製造方法である。
 また、本発明の太陽電池の製造方法において、電極ペーストは、金属粉末と、溶剤と、増粘剤と、軟化点が450℃以下のガラスフリットとを含有することが好ましい。
 また、本発明の太陽電池の製造方法において、電極ペーストの焼成は、電極ペーストを550℃以下の温度で焼成することにより行なわれることが好ましい。
 また、本発明は、上記のいずれかの太陽電池を製造する方法であって、電解めっき、無電解めっきまたは真空蒸着によって電極を形成する太陽電池の製造方法である。
 さらに、本発明は、上記のいずれかの太陽電池が封止材によって封止されてなる太陽電池モジュールである。
 本発明によれば、電極の抵抗を低く抑えて特性を向上させることができる太陽電池、太陽電池の製造方法および太陽電池モジュールを提供することができる。
(a)~(e)は、本発明の太陽電池モジュールの製造方法の一例を図解する模式的な断面図である。 (a)~(c)は、本発明に用いられる太陽電池セルの電極のパターンの一例を示す模式的な平面図である。 本発明に用いられる配線基板の一例の模式的な平面図である。 本発明の太陽電池の一例の模式的な断面図である。 本発明に用いられる太陽電池セルのF.F.と電極のコンタクト抵抗との相関を示す図である。 (a)~(e)は、本発明の太陽電池モジュールの製造方法の他の一例を図解する模式的な断面図である。 (a)および(b)は、太陽電池セルの特性を測定する方法の一例を図解する模式図であり、(a)は太陽電池セルの電極にインターコネクタを接続する前の模式的な平面図であり、(b)は太陽電池セルの電極にインターコネクタを接続した後の模式的な断面図である。 (a)~(c)は、太陽電池の特性を測定する方法の一例を図解する模式図であり、(a)は配線基板が接続される前の太陽電池セルの模式的な平面図であり、(b)は太陽電池セルに接続する前の配線基板の模式的な平面図であり、(c)は(b)に示す配線基板が(a)に示す太陽電池セルに接続された後の太陽電池の模式的な断面図である。
符号の説明
 1 シリコン基板、2 反射防止膜、3 p+層、4 n+層、5 パッシベーション膜、7,7a p電極、8,8a n電極、9 p配線、10 n配線、11 絶縁性基材、12 透光性部材、13 透光性封止材、14 耐候性基材、15 端子ボックス、16 枠、17 スリット、18 接続用配線、19 インターコネクタ。
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 (実施の形態1)
 以下に、図1(a)~図1(e)の模式的断面図を参照して、本発明の太陽電池モジュールの製造方法の一例について説明する。
 まず、図1(a)に示すように、たとえばn型のシリコン基板1の裏面にp型不純物を拡散することにより形成したp+層3およびn型不純物を拡散することにより形成したn+層4を形成する。また、シリコン基板1の裏面にはp+層3の表面の一部が露出するとともに、n+層4の表面の一部が露出するように形成された開口部であるコンタクトホールを有するパッシベーション膜5を形成する。また、シリコン基板1の受光面には反射防止膜2を形成する。ここで、上記の反射防止膜2、p+層3、n+層4およびパッシベーション膜5はそれぞれ従来から公知の方法により形成することができる。
 また、この例においては、p+層3およびn+層4はそれぞれ図1の紙面の表側から裏側に向かって直線状に伸びるライン状に交互に配置されているが、この構成に限定されるものではない。
 また、パッシベーション膜5が備えているコンタクトホールは、p+層3上およびn+層4上にそれぞれ、たとえばドット状またはライン状などの形状に形成することができる。コンタクトホールは、たとえば、パッシベーション膜5をエッチング可能なペーストをコンタクトホールの形状にパッシベーション膜5上に印刷し、加熱することによって簡単に形成することができる。
 次に、図1(b)に示すように、シリコン基板1の裏面のパッシベーション膜5のコンタクトホールを埋めるようにして電極ペーストを印刷し、その電極ペーストを焼成することによって、p+層3に接するp電極7およびn+層4に接するn電極8をそれぞれ形成する。
 ここで、電極ペーストの主成分は、Ag、Ni、CuまたはAlの金属粉末であることが好ましい。なお、本発明において、「主成分」とは、電極ペーストの50質量%以上を占める成分であることを意味する。また、上記の電極ペーストは、上記の金属粉末とともに、溶剤、増粘剤および軟化点が450℃以下のガラスフリットを含むことが好ましい。
 さらに、上記の電極ペーストは、550℃以下の温度で焼成されることが好ましく、450℃以下の温度で焼成されることがより好ましい。上記の電極ペーストを550℃以下、特に450℃以下の温度で焼成することによって、シリコン基板1におけるキャリアライフタイムの低下を抑えることができ、高い太陽電池特性を期待することができる。
 また、電極ペーストが、Ag、Ni、CuまたはAlの金属粉末を主成分とし、軟化点が450℃以下のガラスフリットを用いることによって、550℃以下の低温焼成においてもシリコン基板1との良好なコンタクトが得られる電極(p電極7およびn電極8)を得ることができる。
 なお、良好なコンタクトとは、コンタクト抵抗が70mΩ・cm2以下、好ましくは50mΩ・cm2以下であることを意味する。このコンタクト抵抗が70mΩ・cm2以下である場合には0.7以上のフィルファクタ(F.F.)が期待でき、コンタクト抵抗が50mΩ・cm2以下である場合には0.75以上のF.F.が期待できる(詳細な説明は後述する)。
 また、p電極7およびn電極8の形状としては、たとえば図2(a)の模式的平面図に示すようなドット状、図2(b)に示すようなライン状、図2(c)に示すような櫛形状などに形成することができる。
 なお、本発明においては、p電極7およびn電極8は、シリコン基板1と良好なコンタクトが得られればよいために、従来のように電極の抵抗を小さくするために電極の断面積を大きくする必要がない。そのため、電極ペーストは、薄くコンタクトホールを覆う程度の幅に印刷されることが好ましい。この場合には、高価な電極ペーストの使用量を低減することができる傾向にある。
 また、従来においては、電極の断面積を大きくするために電極ペーストを厚く印刷する必要があった。そのため、スクリーン印刷により電極ペーストの印刷が行なわれ、他の印刷方法はあまり用いられていなかったが、本発明においては、電極ペーストを薄く印刷してもよいため、スクリーン印刷の他にも、厚膜化が難しいインクジェット印刷やオフセット印刷、凸版印刷、凹版印刷など様々な印刷法による印刷も可能である。すなわち、本発明においては、インクジェット印刷などのスクリーン印刷に比べて細線パターンの印刷に優れた方法で印刷することにより、電極の細線化と併せて電極の薄型化が可能となり、電極ペーストの使用量を低減することができる傾向が大きくなる。
 次に、図1(c)に示すように、太陽電池セルのp電極7およびn電極8にそれぞれ対応したp配線9およびn配線10を備えた配線基板上に、p電極7がp配線9上に設置され、n電極8がn配線10上に設置されるようにして太陽電池セルを設置する。これにより、本発明の太陽電池が作製される。
 ここで、p電極7とp配線9との電気的接続およびn電極8とn配線10との電気的接続はそれぞれ、たとえば、半田または導電性接着剤などの接続材料により行なってもよく、これらの接続材料を用いずに後の封止材による封止工程での真空圧着を利用して物理的な圧着のみで行なってもよい。また、太陽電池セルの電極の形成のパターンと配線基板の配線の形成のパターンとを電気的に接続した際に、太陽電池セルの電極の形成のパターンは配線基板の配線の形成のパターンに実質的に重なるパターンであることが好ましい。
 なお、上記の配線基板としては、たとえば図3の模式的平面図に示す構成のような配線基板を用いることができる。ここで、配線基板は、絶縁性基材11上にp配線9およびn配線10を含む配線を備えたものを用いることができる。
 また、配線基板の配線には、たとえば図3に示すようなスリット17が形成されていてもよく、p配線9とn配線10とを電気的に接続する接続用配線18が形成されていてもよい。
 また、p配線9およびn配線10を含む配線の主成分は、Ag、Ni、CuまたはAlであることが好ましい。また、絶縁性基材11としては、たとえば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドおよびエチレンビニルアセテートからなる群から選択された少なくとも1種を含む可撓性のある絶縁性基材を用いることができる。
 また、本発明において、太陽電池セルの電極は、配線基板の配線への良好なコンタクトが得られればよいため、電極ペーストの使用量を低減する観点から、太陽電池の特性に影響を与えない範囲で、太陽電池セルの電極の表面の面積は小さい方がよい。
 一方、配線基板の配線は、太陽電池セルから収集した電気を集電するために直列抵抗を十分に小さくするという観点から、配線基板の配線の表面の面積は大きい方がよい。したがって、たとえば図4の模式的断面図に示すように、太陽電池セルの電極の幅D2よりも配線基板の配線の幅D1の方が広いことが好ましい。
 次に、図1(d)に示すように、配線基板上に設置した太陽電池セルを透光性封止材13、ガラスなどの透光性部材12および耐候性基材14により封止する。
 最後に、図1(e)に示すように、端子ボックス15および枠16を取付けることにより太陽電池モジュールが完成する。以上により、F.F.が0.75以上の太陽電池モジュールを作製することができる。
 以下に、太陽電池セルの電極のコンタクト抵抗とF.F.との関係について説明する。まず、組成が僅かに異なる電極ペーストを数種類用意し、電極ペースト以外は全く同じ条件で複数の太陽電池セルを作製する。
 ここで、電極ペーストの違いは主に太陽電池セルの電極の抵抗率と、当該電極とシリコン基板とのコンタクト抵抗の違いとして表われる。さらに、このようにして作製した太陽電池を十分に配線抵抗が小さく、太陽電池セルの電極と同形状の配線が形成された配線基板上に設置して太陽電池セルの特性を評価することによって、太陽電池セルの電極の抵抗は無視することができるため、太陽電池セルの電極のコンタクト抵抗とF.F.との相関を見ることができる。ここで、太陽電池セルの電極のシリコン基板に対するコンタクト抵抗は、TLM法により算出した値を用いている。
 図5に、太陽電池セルのF.F.と電極のコンタクト抵抗との相関を示す。図5に示すように、太陽電池セルの電極のコンタクト抵抗が70mΩ・cm2以下である場合には、太陽電池セルのF.F.が0.7以上となる傾向にあり、50mΩ・cm2以下である場合にはF.F.が0.75以上となる傾向にある。したがって、この結果から、太陽電池セルの電極のシリコン基板に対するコンタクト抵抗が70mΩ・cm2以下である場合にはシリコン基板と良好なコンタクト抵抗が得られている電極であると言える。
 本発明においては、シリコン基板におけるキャリアライフタイムを高く維持するため、電極ペーストを550℃以下の温度で焼成することから、従来のように700℃前後で電極ペーストの焼成を行なった場合と比べて、太陽電池セルの電極の抵抗率が高くなってしまう。電極ペーストの金属粉末以外の成分がすべて有機成分である電極ペーストである場合には、電極ペーストを550℃以下という低温で焼成することによって、十分に低い抵抗率を示す電極が得られるが、シリコン基板との良好なコンタクトが得られない。
 シリコン基板との良好なコンタクトを得るためにはガラスフリットを電極ペーストに含有させる必要があるが、550℃以下といった低温焼成で低融点のガラスフリットを用いた場合でも、ガラスフリットが十分に溶融せず、金属粉末同士の接触を阻害することで電極の抵抗率は高くなるものと思われる。
 ここで、配線基板を用いずに太陽電池セルの電極のみで、太陽電池セルのシリコン基板の両端部で集電するパターンの電極にて、当該電極を450℃と650℃でそれぞれ焼成して形成したときの太陽電池セルの特性を比較した。太陽電池セルの特性は、図7(a)および図7(b)に示すように、p電極7、n電極8の集電電極(図7(a)の上下方向に伸びるp電極7およびn電極8の部分)にインターコネクタ19を接続し、4端子法により行なった。このとき、450℃と650℃の両焼成温度において、当該電極のシリコン基板に対するコンタクト抵抗は50mΩ・cm2以下であることを確認している。また、太陽電池セルの電極のパターンは同じであり、電極の抵抗を極力小さくするために、p電極7とn電極8との間のスペースをp電極7とn電極8とが接触しない程度に最小とすることで、電極幅をそれぞれ約300μmと大きくとり、電極の厚みも20μmとスクリーン印刷で可能な限り高く形成した。この太陽電池セルの裏面の面積は105cm2であり、フィンガー電極(図7(a)の左右方向に伸びるp電極7およびn電極8の部分)は1mmピッチで形成されており、フィンガー電極の長さは10cmである。また、コンタクトホールはライン状で、その幅は100μmで、長さは10cmである。このときの太陽電池セルの短絡電流密度(Jsc)は約37mA/cm2であった。
 表1に、太陽電池セル1枚当たりの特性、電極の抵抗率を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、電極ペーストを450℃で焼成した場合と650℃で焼成した場合とで、電極の抵抗率ρは約2倍の差があり、この差がF.F.の差になって表われている。
 また、上記のようにして作製した太陽電池セルを、図8(a)~図8(c)に示すように、太陽電池セルの電極と同形状の配線を形成した配線基板上に設置して、作製した太陽電池の特性を4端子法により測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ここで、配線基板の配線には銅箔を用い、抵抗が十分に小さくなるように設計しているため、太陽電池セルを配線基板上に設置することによって、太陽電池セルの電極の抵抗は無視することができる。
 したがって、表2に示すように、表1に示された電極ペーストを450℃で焼成して電極の抵抗率ρが高かった太陽電池セルは配線基板上に設置することによって、電極による抵抗損失が解消され、F.F.が0.771と大幅に改善した。
 また、表2に示すように、電極ペーストを650℃で焼成して電極を形成し、電極の抵抗率ρが低かった太陽電池セルを用いた場合でもF.F.が改善していることが確認され、650℃の焼成でも電極の抵抗が十分に低くなっていないことがわかった。
 このように450℃の焼成で電極の抵抗が大きい場合であっても、シリコン基板とのコンタクト抵抗が低い場合には、配線基板を利用することで高いF.F.を得ることが可能となる。上記で用いた太陽電池セルは10cm角程度の大きさであったが、さらに太陽電池セルが大型化する場合、太陽電池セルの両端で集電する方法では電極の抵抗の影響が大きくなり、650℃の焼成でもF.F.が大きく低下することが予想される。しかしながら、この場合でも配線基板を利用する上記の方法では、配線基板の配線、たとえば銅箔を厚くすることで容易に対応可能である。一方、従来のように、電極の厚みを厚くする方法ではスクリーン印刷で電極を厚く形成することは技術的に難しいだけでなく、銀ペーストなどの高価な電極ペーストを大量に使用することになり、材料費が非常に高くなってしまう。
 また、上記の方法のように太陽電池セルで発生した電流を太陽電池セルの電極を経由して配線基板に集電する場合には、従来のように太陽電池セルの電極の厚みが厚いと電極の抵抗による損失が発生する傾向にある。そのため、太陽電池セルの電極は薄ければ薄いほどよいが、太陽電池セルの裏面に絶縁性のパッシベーション膜が形成されている場合には、配線基板の配線と確実に接続するために、太陽電池セルの電極の厚みはパッシベーション膜の厚み以上であることが好ましい。
 また、太陽電池セルの電極の厚みは薄い方が好ましいが、上記のように太陽電池セルの電極の厚みが20μmである場合でも配線基板によるF.F.向上の効果が得られたことから、太陽電池セルの電極の厚みは20μm以下であることが好ましい。
 さらに、電極ペーストを650℃で焼成して電極を形成した場合と比べて、450℃で焼成した場合の方が太陽電池の短絡電流密度と開放電圧が高くなっている。これは、電極ペーストの焼成温度を低くしたことでシリコン基板におけるキャリアライフタイムの低下を防ぐことができたためであり、結果として、電極ペーストを650℃で焼成した場合よりも450℃で焼成した場合の方が高い変換効率を有する太陽電池が得られた。
 従来の太陽電池の電極は、シリコン基板からの電流の取り出しと収集という2つの役割を担っていたため、上記のように短絡電流密度および開放電圧の改善を狙って電極ペーストの焼成温度を低くした場合には、電極の抵抗が高くなってしまい、結果として太陽電池の変換効率を低下することがあった。
 しかしながら、本発明のように、シリコン基板からの電流の取り出しを太陽電池セルの電極で行ない、取り出した電流の収集を配線抵抗が十分低くなるように配線が設計された配線基板で行なうことによって、太陽電池セルの電極とシリコン基板のコンタクト抵抗が70mΩ・cm2以下、より好ましくは50mΩ・cm2以下である場合には、電極の抵抗によらず、F.F.が0.75以上の太陽電池が得られ、結果として高い変換効率の太陽電池および太陽電池モジュールが得られる。
 また、本発明においては、太陽電池セルの電極はシリコン基板と良好なコンタクトが得られればよいため、従来のように電極を厚く形成する必要がなく(抵抗成分となるため電極は薄い方が好ましい)、電極材料の使用量を大幅に低減することができることから、材料コストを低減することができる。
 さらに、本発明においては、電極ペーストを厚く印刷する必要がないため、電極ペーストの印刷方法として一般的であったスクリーン印刷のほか、インクジェット印刷やオフセット印刷、凸版印刷、凹版印刷など様々な印刷法を使用することができるため、より高精細なパターンの電極を形成することもできる。
 (実施の形態2)
 以下に、図6(a)~図6(e)の模式的断面図を参照して、本発明の太陽電池モジュールの製造方法の他の一例について説明する。
 まず、図6(a)に示すように、たとえばp型のシリコン基板1の裏面にp型不純物を拡散させることにより形成したp+層3およびn型不純物を拡散させることにより形成したn+層4を形成する。また、シリコン基板1の裏面にはp+層3の表面の一部が露出するとともに、n+層4の表面の一部が露出するように形成された開口部であるコンタクトホールを有するパッシベーション膜5を形成する。また、シリコン基板1の受光面には反射防止膜2を形成する。ここで、上記の反射防止膜2、p+層3、n+層4およびパッシベーション膜5はそれぞれ従来から公知の方法により形成することができる。
 また、この例においても、p+層3およびn+層4はそれぞれ図6(a)の紙面の表側から裏側に向かって直線状に伸びるライン状に交互に配置されているが、この構成に限定されるものではない。
 また、パッシベーション膜5が備えているコンタクトホールは、p+層3上およびn+層4上にそれぞれ、たとえばドット状またはライン状などの形状に形成することができる。コンタクトホールは、たとえば、パッシベーション膜5をエッチング可能なペーストをコンタクトホールの形状にパッシベーション膜5上に印刷し、加熱することによって簡単に形成することができる。
 次に、図6(b)に示すように、パッシベーション膜5のコンタクトホール上に、電解めっき、無電解めっきまたは真空蒸着のいずれかにより太陽電池セルのp電極7aおよびn電極8aを形成する。このとき、電極(p電極7aおよびn電極8a)の主成分は、Ag、Ni、Cu、またはAlであることが好ましい。
 従来、電解めっき、無電解めっきまたは真空蒸着は、太陽電池セルの電極の形成方法として用いられていなかった。その理由の1つとしては、電極の成長速度が遅く、電極の形成に時間がかかることが挙げられる。
 しかしながら、本発明においては、太陽電池セルの電極を厚く形成する必要はなく、シリコン基板との良好なコンタクトさえ得られれば、太陽電池セルの電極は薄い方が有利となるため、電解めっき、無電解めっきまたは真空蒸着により電極を形成することが可能となる。
 すなわち、従来の太陽電池セルの電極は、電極の抵抗を低く抑える必要があるため、数十μm程度の厚さを必要としていたが、この程度の厚さの電極を電解めっき、無電解めっきおよび真空蒸着によって形成する場合には、電極の形成速度は数nm~数μm/分程度となるため、少なくとも10分以上必要となる。
 一方、本発明においては、太陽電池セルの電極の厚さは薄い方が好ましいため、たとえば1μm以下に薄くすることができ、太陽電池セルの電極の形成時間を数分以下と短くすることができるとともに、電極材料の使用量も低減することができる。ただし、この場合においても、配線基板の配線と良好な接続を得るために、太陽電池セルの電極の厚さは、太陽電池セルの裏面にパッシベーション膜(絶縁膜)が形成されているときには、パッシベーション膜(絶縁膜)以上の厚さであることが好ましい。
 特に、無電解めっきは、電解めっきに比べて電極の形成速度は遅いが、めっき液にシリコン基板を浸漬させるだけでp電極7aおよびn電極8aの形成が可能であり、また真空蒸着のように真空プロセスを含まないため、電極の形成を簡単に行なうことができる点で好ましい。
 ここで、無電解めっきは、たとえば従来から公知の方法で行なうことができるが、たとえば、Niを主成分とするめっき液を80℃程度に加熱し、そのめっき液に図6(a)のようなコンタクトホールを形成したシリコン基板を約3分間浸漬させることによって、図6(b)のようにシリコン基板の露出した部分に0.3μm程度の厚さのNi層からなるp電極7aおよびn電極8aを形成することができる。このとき、太陽電池セルの裏面のパッシベーション膜は0.1μmの厚さで製膜されていた。また、電極の成長を促進する目的で、めっき液に浸漬する前に触媒処理をしてもよい。
 上記の方法により、太陽電池セルの電極を形成した後にシリコン基板とのコンタクトを良好なものとするためにたとえば300℃~500℃程度の温度でアニールすることが好ましい。アニールの雰囲気は特に限定されないが、たとえば水素と窒素との混合ガス雰囲気とすることができる。このように、太陽電池セルの電極を形成することで、シリコン基板とのコンタクト抵抗が70mΩ・cm2以下、好ましくは50mΩ・cm2以下の電極とすることができる。
 次に、図6(c)に示すように、太陽電池セルのp電極7aおよびn電極8aにそれぞれ対応したp配線9およびn配線10を備えた配線基板上に、p電極7aがp配線9上に設置され、n電極8aがn配線10上に設置されるようにして太陽電池セルを設置する。これにより、本発明の太陽電池が作製される。
 ここで、p電極7aとp配線9との電気的接続およびn電極8aとn配線10との電気的接続はそれぞれ、たとえば半田または導電性接着剤などの接続材料により行なってもよく、これらの接続材料を用いずに後の封止材による封止工程での真空圧着を利用して物理的な圧着のみで行なってもよい。
 また、本発明において、太陽電池セルの電極は、配線基板の配線への良好なコンタクトが得られればよいため、電極材料の使用量を低減する観点から、太陽電池の特性に影響を与えない範囲で、太陽電池セルの電極の表面の面積は小さい方がよい。
 一方、配線基板の配線は、太陽電池セルから収集した電流を集電するために直列抵抗を十分に小さくする観点から、配線基板の配線の表面の面積は大きい方がよい。したがって、たとえば、図4の模式的断面図に示すように、太陽電池セルの電極の幅D2よりも配線基板の配線の幅D1の方が広いことが好ましい。
 次に、図6(d)に示すように、配線基板上に設置した太陽電池セルを透光性封止材13、ガラスなどの透光性部材12および耐候性基材14により封止する。
 最後に図6(e)に示すように、端子ボックス15および枠16を取り付けることにより本発明の太陽電池モジュールが完成する。このように太陽電池モジュールを作製することによってF.F.が0.75以上の本発明の太陽電池モジュールとすることができる。
 このように、本発明によれば、配線基板に集電機能を担わせることによって、太陽電池セルの電極はシリコン基板との良好なコンタクトを得るだけでよいため、材料費の低減、太陽電池の特性向上および製造時間の短縮などを行なうことが可能となる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。たとえば、本実施例においては、配線基板の配線は太陽電池セルの電極すべてを覆うような形状となっていたが、F.F.が低下しない範囲で太陽電池セルの電極の先端が配線基板の配線よりも長い形状となるなど、一部接触しない部分があってもよい。
 本発明によれば、電極の抵抗を低く抑えて特性を向上させることができる太陽電池、太陽電池の製造方法および太陽電池モジュールを提供することができる。

Claims (14)

  1.  シリコン基板(1)とのコンタクト抵抗が70mΩ・cm2以下である電極(7,8)を有する太陽電池セルと、
     前記太陽電池セルの前記電極(7,7a,8,8a)に電気的に接続するための導電性部材とを備え、
     前記太陽電池セルの前記電極(7,7a,8,8a)が前記導電性部材に電気的に接続されるように前記導電性部材上に前記太陽電池セルが配置されていることを特徴とする、太陽電池。
  2.  前記電極(7,7a,8,8a)の主成分は、Ag、Ni、CuまたはAlであることを特徴とする、請求の範囲第1項に記載の太陽電池。
  3.  前記電極(7,7a,8,8a)の厚さは20μm以下であることを特徴とする、請求の範囲第1項に記載の太陽電池。
  4.  前記電極(7,7a,8,8a)の形成のパターンと前記導電性部材の形成のパターンとが電気的に接続された際に、前記電極(7,7a,8,8a)の形成のパターンは前記導電性部材の形成のパターンに実質的に重なるパターンであることを特徴とする、請求の範囲第1項に記載の太陽電池。
  5.  前記導電性部材は、絶縁性基材(11)と前記絶縁性基材(11)上に設置された配線(9,10)とを含む配線基板であることを特徴とする、請求の範囲第1項に記載の太陽電池。
  6.  前記配線(9,10)の主成分は、Ag、Ni、CuまたはAlであることを特徴とする、請求の範囲第5項に記載の太陽電池。
  7.  前記電極(7,7a,8,8a)の幅は、前記配線基板の前記配線(9,10)の幅よりも小さいことを特徴とする、請求の範囲第5項に記載の太陽電池。
  8.  前記太陽電池セルは、p電極(7,7a)およびn電極(8,8a)がともに前記シリコン基板(1)の裏面側に形成されていることを特徴とする、請求の範囲第1項に記載の太陽電池。
  9.  前記電極(7,7a,8,8a)は、焼成電極であることを特徴とする、請求の範囲第1項に記載の太陽電池。
  10.  請求の範囲第1項に記載の太陽電池を製造する方法であって、
     金属粉末を主成分とする電極ペーストを印刷した後に前記電極ペーストを焼成することによって前記電極(7,7a,8,8a)を形成することを特徴とする、太陽電池の製造方法。
  11.  前記電極ペーストは、前記金属粉末と、溶剤と、増粘剤と、軟化点が450℃以下のガラスフリットとを含有することを特徴とする、請求の範囲第10項に記載の太陽電池の製造方法。
  12.  前記電極ペーストの焼成は、前記電極ペーストを550℃以下の温度で焼成することにより行なわれることを特徴とする、請求の範囲第10項に記載の太陽電池の製造方法。
  13.  請求の範囲第1項に記載の太陽電池を製造する方法であって、
     電解めっき、無電解めっきまたは真空蒸着によって前記電極(7,7a,8,8a)を形成することを特徴とする、太陽電池の製造方法。
  14.  請求の範囲第1項に記載の太陽電池が封止材によって封止されてなる、太陽電池モジュール。
PCT/JP2009/055620 2008-05-30 2009-03-23 太陽電池、太陽電池の製造方法および太陽電池モジュール WO2009144996A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/995,381 US20110114179A1 (en) 2008-05-30 2009-03-23 Solar battery, method for manufacturing solar battery, and solar cell module
EP09754504A EP2284907A4 (en) 2008-05-30 2009-03-23 SOLAR BATTERY, METHOD FOR MANUFACTURING SOLAR BATTERY, AND SOLAR BATTERY MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-143126 2008-05-30
JP2008143126A JP2009290105A (ja) 2008-05-30 2008-05-30 太陽電池、太陽電池の製造方法および太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2009144996A1 true WO2009144996A1 (ja) 2009-12-03

Family

ID=41376882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055620 WO2009144996A1 (ja) 2008-05-30 2009-03-23 太陽電池、太陽電池の製造方法および太陽電池モジュール

Country Status (4)

Country Link
US (1) US20110114179A1 (ja)
EP (1) EP2284907A4 (ja)
JP (1) JP2009290105A (ja)
WO (1) WO2009144996A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370503A (zh) * 2018-12-25 2020-07-03 苏州阿特斯阳光电力科技有限公司 太阳能电池片及太阳能电池组件

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009137241A2 (en) 2008-04-14 2009-11-12 Bandgap Engineering, Inc. Process for fabricating nanowire arrays
KR20120010251A (ko) * 2009-04-23 2012-02-02 샤프 가부시키가이샤 배선 시트, 배선 시트가 부착된 태양 전지 셀, 및 태양 전지 모듈
JP4582723B1 (ja) * 2009-09-24 2010-11-17 智雄 松下 太陽電池の特性評価装置及び方法
JP2011155132A (ja) * 2010-01-27 2011-08-11 Sharp Corp 太陽電池モジュール及びその製造方法
US8524524B2 (en) * 2010-04-22 2013-09-03 General Electric Company Methods for forming back contact electrodes for cadmium telluride photovoltaic cells
WO2012128284A1 (ja) * 2011-03-24 2012-09-27 三洋電機株式会社 裏面電極型太陽電池、裏面電極型太陽電池の製造方法及び太陽電池モジュール
US9490376B2 (en) * 2011-09-29 2016-11-08 Lg Electronics Inc. Solar cell module
US20130147003A1 (en) * 2011-12-13 2013-06-13 Young-Su Kim Photovoltaic device
KR101923658B1 (ko) * 2011-12-13 2018-11-30 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 태양전지 모듈
EP2605286A1 (en) * 2011-12-13 2013-06-19 Samsung SDI Co., Ltd. Photoelectric module
WO2013123066A1 (en) * 2012-02-14 2013-08-22 Bandgap Engineering, Inc. Screen printing electrical contacts to nanowire areas
EP2973734A4 (en) * 2013-03-15 2016-04-13 Sunpower Corp IMPROVING THE CONDUCTIVITY OF SOLAR CELLS
TWI518924B (zh) * 2013-06-18 2016-01-21 新日光能源科技股份有限公司 太陽能電池
KR102124520B1 (ko) * 2013-10-29 2020-06-18 엘지전자 주식회사 태양 전지 모듈 및 그 제조 방법
US10700223B2 (en) 2016-12-01 2020-06-30 Shin-Etsu Chemical Co., Ltd. High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175399A (ja) * 2003-12-15 2005-06-30 Hitachi Ltd 太陽電池セルの製造方法及び太陽電池セル
JP2005340362A (ja) * 2004-05-25 2005-12-08 Sharp Corp 太陽電池セルおよび太陽電池モジュール
JP2006523025A (ja) 2003-04-10 2006-10-05 サンパワー コーポレイション 太陽電池用金属コンタクト構造体及び製法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789331A (fr) * 1971-09-28 1973-01-15 Communications Satellite Corp Cellule solaire a geometrie fine
GB8423558D0 (en) * 1984-09-18 1984-10-24 Secr Defence Semi-conductor solar cells
US5034068A (en) * 1990-02-23 1991-07-23 Spectrolab, Inc. Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
JP2005017399A (ja) * 2003-06-23 2005-01-20 Sony Corp ドーム形スクリーン装置
JP2005175197A (ja) * 2003-12-11 2005-06-30 Canon Inc 太陽電池モジュール及びその製造方法
CN100538915C (zh) * 2004-07-01 2009-09-09 东洋铝株式会社 糊组合物及使用该糊组合物的太阳能电池元件
JP2006041105A (ja) * 2004-07-26 2006-02-09 Sharp Corp 太陽電池およびその製造方法
JP4526902B2 (ja) * 2004-08-13 2010-08-18 信越半導体株式会社 太陽電池の製造方法
JP2006066802A (ja) * 2004-08-30 2006-03-09 Shin Etsu Handotai Co Ltd 太陽電池の製造方法および太陽電池
US7824579B2 (en) * 2005-06-07 2010-11-02 E. I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
JP4443516B2 (ja) * 2006-01-20 2010-03-31 三洋電機株式会社 光起電力素子およびその光起電力素子を備えた光起電力モジュール
US20080230119A1 (en) * 2007-03-22 2008-09-25 Hideki Akimoto Paste for back contact-type solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523025A (ja) 2003-04-10 2006-10-05 サンパワー コーポレイション 太陽電池用金属コンタクト構造体及び製法
JP2005175399A (ja) * 2003-12-15 2005-06-30 Hitachi Ltd 太陽電池セルの製造方法及び太陽電池セル
JP2005340362A (ja) * 2004-05-25 2005-12-08 Sharp Corp 太陽電池セルおよび太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2284907A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370503A (zh) * 2018-12-25 2020-07-03 苏州阿特斯阳光电力科技有限公司 太阳能电池片及太阳能电池组件
CN111370503B (zh) * 2018-12-25 2021-12-28 苏州阿特斯阳光电力科技有限公司 太阳能电池片及太阳能电池组件

Also Published As

Publication number Publication date
US20110114179A1 (en) 2011-05-19
EP2284907A1 (en) 2011-02-16
JP2009290105A (ja) 2009-12-10
EP2284907A4 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2009144996A1 (ja) 太陽電池、太陽電池の製造方法および太陽電池モジュール
EP3244454B1 (en) Main-gate-free high-efficiency back contact solar cell and assembly and preparation process thereof
US9691925B2 (en) Light receiving element module and manufacturing method therefor
US8253213B2 (en) Photoelectric conversion element, photoelectric conversion element assembly and photoelectric conversion module
US20170170338A1 (en) Solar cell and method for producing thereof
WO2014080894A1 (ja) 光発電装置
JPWO2008090718A1 (ja) 太陽電池セル、太陽電池アレイおよび太陽電池モジュール
JP2017529704A (ja) メインゲートフリーで高効率なバックコンタクト太陽電池モジュール、アセンブリ及び製造プロセス
JPWO2005109524A1 (ja) 太陽電池及びその製造方法
WO2009125628A1 (ja) 太陽電池セルの製造方法および太陽電池モジュールの製造方法ならびに太陽電池モジュール
WO2010001473A1 (ja) 光起電力装置およびその製造方法
KR20110122176A (ko) 태양전지 모듈
EP3096360A1 (en) Solar cell and solar cell module
CN103928567B (zh) 太阳能电池及其制造方法
CN208028070U (zh) 一种太阳能电池片及电池片阵列和组件
JP4040662B1 (ja) 太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP5692103B2 (ja) 太陽電池モジュール製造におけるフラックス塗布用具及び太陽電池モジュールの製造方法
CN101814539B (zh) 太阳能电池及其制作方法
WO2013094556A1 (ja) 配線シート付き太陽電池セル、太陽電池モジュールおよび太陽電池セルの製造方法
US20120118369A1 (en) Solar cell architecture having a plurality of vias with shaped foil via interior
CN102468369B (zh) 在太阳能电池表面形成金属电极的方法
WO2012128284A1 (ja) 裏面電極型太陽電池、裏面電極型太陽電池の製造方法及び太陽電池モジュール
TW201340361A (zh) 太陽能電池及製造太陽能電池的方法
CN106847946A (zh) P型perc双面太阳能电池的背电极结构和电池
CN106711244B (zh) Ibc电池接触开孔工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009754504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12995381

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE