WO2009144770A1 - Immersed membrane separation apparatus - Google Patents
Immersed membrane separation apparatus Download PDFInfo
- Publication number
- WO2009144770A1 WO2009144770A1 PCT/JP2008/001376 JP2008001376W WO2009144770A1 WO 2009144770 A1 WO2009144770 A1 WO 2009144770A1 JP 2008001376 W JP2008001376 W JP 2008001376W WO 2009144770 A1 WO2009144770 A1 WO 2009144770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- flow
- submerged
- membrane separation
- separation apparatus
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 249
- 238000000926 separation method Methods 0.000 title claims abstract description 94
- 238000001914 filtration Methods 0.000 claims description 32
- 238000007654 immersion Methods 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 6
- 239000007788 liquid Substances 0.000 description 35
- 238000005273 aeration Methods 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/18—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/08—Flow guidance means within the module or the apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/18—Use of gases
- B01D2321/185—Aeration
Definitions
- the present invention relates to a submerged membrane separation apparatus used for filtration or concentration in general water treatment such as clean water and wastewater.
- a submerged membrane separator 2 in which a plurality of membrane elements 1 are arranged in parallel at an appropriate interval is known.
- the membrane element 1 is formed by arranging a filtration membrane 4 made of an organic membrane covering a surface of a rectangular flat filter plate 3 as a membrane support, and joining the filtration membrane 4 to the filter plate 3 at the periphery. is there.
- the membrane support includes a nonwoven fabric, a net, and the like.
- the submerged membrane separation apparatus 2 is used by being immersed in the liquid 6 to be treated in the treatment tank 5, and diffuses aeration gas from the aeration apparatus 7 disposed below the membrane element 1.
- the membrane element 1 receives the driving pressure and filters the liquid 6 to be treated with a filtration membrane.
- Gravity filtration using the head pressure of the treatment tank 5 as a driving pressure or a negative pressure inside the filtration membrane. Used for suction filtration given as driving pressure.
- Japanese Patent Gazette Japanese Patent Gazette (Japanese Patent No. 3258858).
- This is provided with a membrane separation device inside the membrane separation tank, the membrane separation device is provided with a large number of filtration membrane plates arranged in parallel, and the water flow forming device is an upward flow of the liquid to be treated between the filtration membrane plates.
- a rectifying plate is provided below the water surface above the membrane separation device, the rectifying plate is bent or curved, and the upward flow of the liquid to be treated flowing between the filtration membrane plates is inclined toward the outside of the membrane separation device. Guide upward.
- the membrane separation apparatus described in Japanese Patent Publication is soaked and disposed in a liquid to be treated in a treatment tank, and a plurality of pieces are provided inside a box-shaped case having upper and lower openings.
- Membrane cartridges are provided in parallel at regular intervals, and an air diffuser is provided below the membrane cartridge. The air diffused from the air diffuser causes an upward flow by the air lift action, and the membrane surface of the membrane cartridge is washed by the upward flow.
- a frame-shaped rectification case that guides upward flow that has escaped from the flow path between the membrane cartridges is provided.
- the membrane separation apparatus described in Japanese Patent Publication has a membrane module that is immersed in a liquid to be treated and has a diffuser tube provided below the membrane module.
- a diffuser induction wall is disposed around the membrane module.
- the diffuser induction wall has a shape with its upper end folded back outward.
- an upward flow of the gas-liquid mixed phase is generated by the air lift action of the air, and the flow of the liquid 6 to be processed along the membrane surface of the filtration membrane 4 is formed by the upward flow.
- the liquid 6 to be treated is supplied in a cross flow with respect to the flow of the permeate that flows through 4.
- the flow along the membrane surface of the filtration membrane 4 is referred to as a cross flow.
- the cross flow flows through the flow path between the membrane surfaces of the opposing filtration membranes 4 and flows upward from the submerged membrane separation device 2 as an upward flow.
- the cross flow depends on the flow of bubbles, and the flow of bubbles is affected by the shape of the treatment tank 5. For this reason, depending on the shape of the treatment tank 5, the mode of the bubble flow is biased to a part of the membrane surface of the filtration membrane 4, and as a result, the crossflow may not be uniformly formed on the entire membrane surface.
- This cross flow contributes to the flux by its diffusion action and cleaning action, and contributes to the improvement of filtration efficiency.
- the diffusion action diffuses the solid substance in the liquid to be treated along the membrane surface
- the cleaning action removes the fouling substance on the membrane surface and prevents the filtration membrane 4 from being clogged.
- the cross flow is configured to flow uniformly over the entire membrane surface of the filtration membrane 4, and the flow velocity of the cross flow at each part of the membrane surface of the filtration membrane 4 is equal. And it is necessary to be large, and satisfying these conditions contributes to the improvement of filtration efficiency.
- it is necessary to increase the flow velocity of the cross flow it is necessary to increase the amount of aeration diffused from the diffuser 7.
- an increase in the amount of aeration is a factor that causes a reduction in device life due to vibration, damage to the membrane, an increase in energy costs, and the like.
- the liquid 6 to be treated in the treatment tank 5 flows out from the submerged membrane separation device 2 as an upward flow to the upper region, and then reverses and flows into a side region of the submerged membrane separation device 2 as a downward flow. Then, it flows into the submerged membrane separator 2 again from the lower region, and a circulation flow is formed across the inside and outside of the submerged membrane separator 2.
- the cross flow may be unevenly distributed, and is orthogonal to the width direction of the membrane elements 1, that is, the arrangement direction of the membrane elements 1.
- the cross flow that flows through the flow path between the membrane elements 1 tends to increase as the distance from the central portion of the membrane element 1 increases toward the end portion.
- Table 1 FIG. 12, and FIG. 13 are analysis results showing changes in crossflow when the distance from the wall surface of the treatment tank to the membrane separation apparatus is different.
- the conditions of this analysis are: viscosity of liquid 10 mPa ⁇ s, bubble diameter of air aerated in liquid 5 mm, aeration rate 2 m 3 / min per unit area below membrane separator, width of membrane separator 0.5 m It is.
- the distance from the wall of the treatment tank to the membrane separation device is expressed as “distance from the wall”, and the flow velocity of the cross flow is expressed as “transmembrane liquid flow velocity”.
- the bubble velocity is expressed as “intermembrane bubble velocity”, and the bubble velocity obtained by subtracting the intermembrane fluid velocity from the intermembrane bubble velocity, that is, the rising velocity of bubbles in a stationary liquid, is denoted as “bubble relative velocity”. ing.
- the intermembrane fluid flow velocity is an average flow velocity at the upper end of the flow path between the membrane elements.
- FIG. 14 is a schematic diagram showing the volume fraction of bubbles in the liquid to be treated in the treatment tank when the distance from the wall is 0.35 m, 0.5 m, 1 m, 2 m, and 10 m, respectively. However, the area
- the wall surface of the treatment tank is indicated by a symbol W
- the end of the film surface is indicated by a symbol M
- the wall surface of the treatment tank is omitted.
- the display method for indicating the volume fraction is originally performed with a single color shading on the screen, and the shading difference cannot be clearly expressed on paper.
- FIG. 14 regions having different volume fractions are schematically and schematically shown, and each region is represented with a different pattern.
- FIG. 14 shows that when the distance from the wall surface of the treatment tank to the membrane separation apparatus is 0.35 m, 0.5 m, and 1 m, the amount of bubbles entrained in the downward flow increases. ing.
- the distance from the wall of the treatment tank to the membrane separation device is 0.35 m, 0.5 m In the case of 1 m, the flow velocity of the cross flow becomes small. For this reason, it is preferable that the distance from the wall surface of the treatment tank to the membrane separation apparatus is about 2 m or more.
- the present invention solves the above-described problems, and the crossflow mode can be made to be close to a state of flowing uniformly over the entire membrane surface of the filtration membrane, and the crossflow in each part of the membrane surface of the filtration membrane.
- the present invention provides a membrane separation apparatus that can increase the flow rate of the liquid, and further, when a large membrane separation apparatus is disposed in a processing tank having a limited volume or when many membrane separation apparatuses are disposed.
- an object of the present invention is to provide a submerged membrane separation apparatus that can sufficiently exhibit a diffusion action and a cleaning action.
- an immersion type membrane separation apparatus includes a wall surrounding an inner region from a lower opening to an upper opening, a membrane separation means disposed in the inner region, and a lower portion of the membrane separation means.
- the rectifying unit is opposed to a region near the inner edge of the wall body in the upper opening.
- the rectifying unit has a shape protruding toward the inside of the upper region in the vertical direction of the upper opening.
- a plurality of submerged membrane separators are arranged adjacent to each other, and the rectification unit is arranged only at an outer position in the arrangement direction in the plurality of submerged membrane separators in a row. It is characterized by that.
- the membrane separation means includes a plurality of membrane elements arranged in parallel, and a flow path is formed between the membrane elements, and the membrane elements are disposed on the main surface of the membrane support.
- a filtration membrane made of a flat membrane is arranged on the surface.
- the rectification unit is disposed at a position facing each other in a direction orthogonal to the arrangement direction of the membrane elements, and between the rectification units as the distance from the upper opening of the wall body increases. It has a shape with a small distance.
- the minimum separation distance between the two rectifying sections is 90% or more with respect to the distance between the wall edges facing each other in the direction orthogonal to the arrangement direction of the membrane elements. % Or less.
- the submerged membrane separation apparatus is disposed in the treatment tank and is operated in a state in which an upward flow of the liquid to be treated is generated in the treatment tank by the aerated air diffused from the diffuser.
- the upward flow flows in the inner region along the membrane surface of the membrane separation means, that is, the membrane element, passes through the rectifying unit from the upper opening, and flows out to the upper region of the treatment tank. And it reverses in the upper area
- the rectifying portion facing the upper opening acts as a resistance against the upward flow flowing out from the region near the inner edge of the wall in the upper opening, that is, the region near both sides of the membrane element. For this reason, the flow of the upward flow that flows in the region in the vicinity of both sides of the membrane element is suppressed, and as a result, the upward flow is close to a state of flowing evenly over the entire membrane surface of the membrane element.
- the crossflow mode close to a state where the crossflow flows uniformly over the entire membrane surface of the filtration membrane, and close to the state where the crossflow velocity at each part of the membrane surface of the filtration membrane is equal. be able to.
- the smooth flow of the downflow is realized by eliminating the factors that hinder the downflow, and as a result, the flow velocity of the crossflow at each part of the membrane surface of the filtration membrane Can be increased.
- the perspective view which shows the immersion type membrane separator in embodiment of this invention Sectional view showing the submerged membrane separator Perspective view showing a model of a submerged membrane separator in analysis Sectional view showing a model of a submerged membrane separator in the same analysis
- Schematic diagram showing rectifying plates in various models of submerged membrane separators in the same analysis Schematic diagram showing rectifying plates in various models of submerged membrane separators in the same analysis
- Graph showing the flow velocity distribution in the same analysis showing the flow velocity distribution in the same analysis
- the perspective view which shows the other immersion type membrane separator in embodiment of this invention The graph which shows the flow-velocity distribution in the immersion type membrane separator which concerns on the conventional structure Graph showing the flow velocity distribution in the same configuration
- Schematic diagram showing the volume fraction of bubbles in the same configuration The perspective view which shows the immersion type membrane separator in the same structure Sectional view showing a submerged membrane separator in the same configuration
- the submerged membrane separation device 11 has a plurality of membrane elements 12 arranged in parallel at appropriate intervals as membrane separation means, and a flow path is formed between the membrane elements 12.
- the membrane separation means is not limited to the membrane element 12 according to the present embodiment, and various types such as a hollow fiber membrane and a ceramic tube membrane can be used.
- the membrane element 12 is a filter plate 14 made of an organic membrane covering a surface of a rectangular flat filter plate 13 which is a membrane support, and the filtration membrane 14 is joined to the filter plate 13 at the peripheral edge. is there.
- the membrane support includes a sheet-like nonwoven fabric, a net, and the like.
- an air diffuser 15 for diffusing aeration gas is disposed below the membrane element 12.
- the submerged membrane separation device 11 is used by being immersed in the liquid 17 to be processed in the processing tank 16.
- the membrane element 12 receives the driving pressure and filters the liquid 17 to be treated by the filtration membrane 14.
- the head pressure is given as the driving pressure in the tank of the treatment tank 16, or the negative pressure is applied to the inside of the filtration membrane 14. May be given as the driving pressure.
- the submerged membrane separation device 11 has a wall 18 surrounding the side surface around the membrane element 12, and forms a flow path from the lower opening 18 a to the upper opening 18 b in the inner region surrounded by the wall 18.
- the membrane element 12 is arranged in the inner region.
- the membrane element 12 and the wall body 18 are separate bodies. However, it is also possible to form the wall body 18 on both sides of the membrane element 12 by providing portions forming part of the wall body 18 on both sides of the membrane element 12 and arranging the membrane elements 12.
- the upper end of the membrane element 12 corresponds to the upper opening 18b and the lower end of the membrane element 12 corresponds to the lower opening 18a in the vertical direction.
- the inner region formed by the wall body 18 can be formed longer than the membrane element 12, the upper opening 18 b is located above the upper end of the membrane element 12, and the lower opening 18 a is below the lower end of the membrane element 12. It is also possible to be located in
- a rectifying plate 19 that forms a rectifying portion is provided at the upper end position of the wall body 18, and the shape of the rectifying plate 19 will be described in detail later.
- the rectifying plates 19 are arranged at positions facing each other in a direction orthogonal to the arrangement direction of the membrane elements 12 and positions facing each other in the arrangement direction of the membrane elements 12.
- the mode of providing the rectifying plate 19 is not limited to that provided over the entire circumference of the four sides of the upper opening 18b as shown in FIG. 1, but is opposed to the direction perpendicular to the arrangement direction of the membrane elements 12 as shown in FIG. It is also possible to provide the baffle plate 19 only at the position where it is.
- the reason for this is that cross-flow drift occurs mainly in the width direction of the membrane element 12, and rectification is performed only on opposite sides in the width direction of the membrane element 12, that is, in the direction perpendicular to the arrangement direction of the membrane elements 12.
- the present invention can also be realized by providing the plate 19.
- the present embodiment discloses a configuration in which the membrane elements 12 are arranged in one row.
- the membrane elements 12 are arranged in a plurality of rows, it is possible to arrange the rectifying plates 19 at positions separating the plurality of rows of membrane elements 12.
- a plurality of submerged membrane separators are arranged adjacent to each other, and the current plate 19 is arranged only at an outer position in the arrangement direction of the plurality of submerged membrane separators in a row. Is also possible. Even in this case, it is possible to provide the rectifying plate 19 only at a position facing each other in the direction orthogonal to the arrangement direction of the membrane elements 12.
- the rectifying plate 19 has a shape that protrudes obliquely upward from the upper end position of the wall body 18, that is, toward the inside of the upper region in the vertical direction of the upper opening 18 b, and faces the region near the inner edge of the wall body 18. Opposite the opening 18b.
- the rectifying plate 19 has a shape in which the distance between the both rectifying plates 19 gradually decreases as the distance from the upper opening of the wall 18 increases, and the tip of both forms a minimum separation portion with a minimum separation distance.
- the rectifying plate 19 does not have to be an integral structure with the wall body 18, and can be shaped to extend away from the upper end of the wall body 18, that is, from the vicinity of the upper end of the wall body 18, It is also possible to have a shape surrounding the wall 18, and it is also possible to form a minimum separation portion at an intermediate position of the current plate 19. In any case, the rectifying plate 19 protrudes toward the inside of the upper region in the vertical direction of the upper opening 18b.
- the rectifying plate 19 is not limited to a flat plate surface, but may be a concave surface or a convex surface, and a curved surface or a curved surface may be employed. Furthermore, materials that can be used as the current plate 19 are not limited to members without holes, but include members with holes such as punching metal and members with slits.
- the upward flow flows in the inner region along the membrane surface of the membrane element 12, and flows out from the upper opening 18 b to the upper region of the treatment tank 16 through the minimum separation portion of the rectifying plate 19. And it reverse
- the rectifying plate 19 facing the upper opening 18b acts as a resistance against the upward flow flowing out from the region near the inner edge of the upper opening 18b, that is, the region near both sides of the membrane element 12. For this reason, the flow of the upward flow that flows in the region in the vicinity of both sides of the membrane element 12 is suppressed, and as a result, the upward flow is close to a state of flowing evenly over the entire membrane surface of the membrane element 12.
- the upward flow that is, the cross flow mode can be made to be close to the state of flowing uniformly over the entire membrane surface of the filtration membrane, and the flow velocity of the cross flow in each part of the membrane surface of the filtration membrane is equalized. Can be close.
- the smooth flow of the downward flow is realized without the factor that obstructs the flow of the downward flow.
- the cross flow of each part of the membrane surface of the filtration membrane 14 is reduced.
- the flow rate can be increased.
- FIG. 3 shows the model of the structure of this invention which provided the baffle plate
- FIG. 4 partially shows the configuration of the present invention. 3 and 4, the air diffused portion 30 corresponds to the air diffuser 15 in FIGS. 1 and 2, and the other components will be described with reference numerals in FIGS. 1 and 2.
- line1, line2, line3, and line4 are set in order from the bottom to the top.
- Model 1 As shown in FIG. 5A, the rectifying plate 19 has a flat plate surface, is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b, and the length of the rectifying plate 19 is 200 mm. The separation distance is 300 mm.
- Model 3 As shown in FIG.
- the rectifying plate 19 has a flat plate surface, is inclined at 30 ° with respect to the flow path cross section of the upper opening 18b, and the length of the rectifying plate 19 is 200 mm.
- the separation distance is 154 mm.
- Model 4 As shown in FIG. 5B, the rectifying plate 19 has a flat plate surface, is inclined at 30 ° with respect to the flow path cross section of the upper opening 18b, and the length of the rectifying plate 19 is 100 mm.
- the separation distance is 327 mm.
- Model 5 As shown in FIG.
- the rectifying plate 19 has a concave arc shape with respect to the upper opening 18b, the arc chord is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b, and the chord Has a length of 200 mm and a minimum separation distance of 300 mm.
- Model 6 As shown in FIG. 5D, the rectifying plate 19 has a convex arc shape with respect to the upper opening 18b, the chord of the arc is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b, and the string Has a length of 200 mm and a minimum separation distance of 300 mm.
- Model 7 As shown in FIG.
- the rectifying plate 19 has a bent shape, is composed of a portion parallel to a portion perpendicular to the flow path cross section of the upper opening 18b, and the length of the perpendicular portion is 100 mm. The length of the parallel part is 100 mm, and the minimum separation distance is 300 mm.
- Model 8 As shown in FIG. 5 (f), the rectifying plate 19 has a bent shape, each side is inclined at 45 ° with respect to the flow path cross section of the upper opening 18b, and the length of each side is 141 mm. The minimum separation distance is 300 mm.
- Model 9 As shown in FIG. 5G, the current plate 19 is not provided.
- FIG. 7 shows changes in the flow velocity in the model 1, and shows the flow velocity of the cross flow at each position of line 1, line 2, line 3, and line 4 on the membrane surface of the membrane element 12. It shows a tendency to become slower as it approaches the center side in the width direction of the membrane element 12 from the membrane end, which is the edge of the membrane element, and this tendency becomes more prominent as the measurement point moves from the lower measurement point to the higher measurement point.
- FIG. 8 shows changes in the flow velocity in the model 9 and shows the same tendency as in the model 1.
- the tendency to become slower as the distance from the end of the membrane element 12 in the width direction to the center side in the width direction of the membrane element 12 increases.
- the presence of the rectifying plate 19 alleviates the uneven distribution of the crossflow velocity on the membrane surface of the membrane element 12.
- Tables 2 and 3 show the cross flow velocity in the models 1 to 9, showing the average velocity and the maximum velocity on the entire membrane surface of the membrane element 12, and the average velocity and deviation in the line 4.
- the average flow velocity tends to be higher in the model in which the rectifying plate 19 is provided than in the model 9 without the rectifying plate 19.
- model 3 is excluded.
- the deviation also tends to be small in the model in which the current plate 19 is provided.
- Model 1 Especially in Model 1, Model 4, Model 5, and Model 7, both the flow velocity and deviation are improved.
- the resistance between the rectifying plates 19 is too large, and the average flow velocity is lower than that in the model 9.
- FIG. 9 shows the distribution of the average flow velocity in the model 1 and the model 9, and there is a tendency that it becomes slower as it approaches the center side in the width direction of the membrane element 12 from the membrane end that is the end in the width direction of the membrane element 12. Yes, it can be seen that the deviation in the model 1 with the rectifying plate 19 is smaller than the deviation in the model 9 without the rectifying plate 19.
- the opening ratio (%) is the ratio of the minimum separation distance at the minimum separation portion to the apparatus width, and is obtained by the minimum separation distance / apparatus width ⁇ 100.
- the minimum separation distance and the opening ratio of each model are shown in Tables 4 and 5.
- the device width is 500 mm.
- the rectifying plate 19 is inclined at 15 ° with respect to the flow path cross section of the upper opening 18b, and each model 15 shown in FIG. 6 (b) and Table 5 is shown.
- the rectifying plate 19 is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b.
- Model 10 Minimum separation distance 200 mm, opening ratio 40%, model 11. Minimum separation distance 250 mm, opening ratio 50%, model 12. Minimum separation distance 300 mm, opening ratio 60%, model 13. Minimum separation distance 400 mm, opening ratio 80%, model 14. Minimum separation distance 450 mm, opening ratio 90%, model 15. Minimum separation distance 150 mm, opening ratio 30%, model 16. Minimum separation distance 200 mm, opening ratio 40%, model 17. Minimum separation distance 300 mm, opening ratio 60%, model 18. Minimum separation distance 400 mm, opening ratio 80%, model 19. Minimum separation distance 450mm, opening ratio 90% Compared to the model 9 without the rectifying plate 19 shown in FIG. 5g and Table 3, the opening ratio is 50% -90% regardless of the inclination angle of the rectifying plate 19, as shown in Tables 4 and 5. Some models 11-14 and 17-19 show a tendency to increase the average flow velocity.
- model 11, model 12, and model 17 having an opening ratio of 50 to 60% tend to increase the average flow velocity and decrease the deviation.
- the installation of the rectifying plate is effective in improving the liquid flow rate and deviation between the membranes, and the improvement in the liquid flow rate and deviation between the membranes is larger in the opening ratio of the minimum separation part than the shape of the rectifying plate.
- Cross flow relies on bubbly flow, and the cross flow generates a circulating flow throughout the tank.
- the bubbles themselves move upward due to their buoyancy, and gather on the end of the membrane element 12 in the width direction along the flow of the circulating flow.
- the flow straightening plate 19 suppresses entrainment of the bubble flow due to the circulation flow, guides the bubble flow upward toward the liquid level of the processing tank, and the bubbles are released onto the liquid level of the processing tank, so Vortex generation can be suppressed and the vortex generation position can be moved away from the submerged membrane separation device.
- non-uniformity of the cross flow velocity that is, deviation is improved, and the average flow velocity is improved.
- the present invention can be realized if the opening ratio is 50% -90%.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
An immersed membrane separation apparatus comprising a wall member surrounding an interior zone extending from an inferior opening to a superior opening and, disposed opposite to the superior opening, a flow straightening part.
Description
本発明は、上水や廃水などの一般水処理においてろ過または濃縮に用いられる浸漬型膜分離装置に関する。
The present invention relates to a submerged membrane separation apparatus used for filtration or concentration in general water treatment such as clean water and wastewater.
従来の膜分離装置としては、例えば図15および図16に示すように、複数の膜エレメント1を適当な間隔で並列に配置した浸漬型膜分離装置2が知られている。膜エレメント1は、膜支持体である矩形の平板状のろ板3に、その表面を覆って有機膜からなるろ過膜4を配置し、ろ過膜4を周縁部でろ板3に接合したものである。膜支持体には、樹脂製のろ板3の他に、不織布、ネット等がある。浸漬型膜分離装置2は処理槽5の被処理液6に浸漬して使用し、膜エレメント1の下方に配置した散気装置7から曝気用の気体を散気する。
As a conventional membrane separator, for example, as shown in FIGS. 15 and 16, a submerged membrane separator 2 in which a plurality of membrane elements 1 are arranged in parallel at an appropriate interval is known. The membrane element 1 is formed by arranging a filtration membrane 4 made of an organic membrane covering a surface of a rectangular flat filter plate 3 as a membrane support, and joining the filtration membrane 4 to the filter plate 3 at the periphery. is there. In addition to the resin filter plate 3, the membrane support includes a nonwoven fabric, a net, and the like. The submerged membrane separation apparatus 2 is used by being immersed in the liquid 6 to be treated in the treatment tank 5, and diffuses aeration gas from the aeration apparatus 7 disposed below the membrane element 1.
膜エレメント1は、駆動圧力を受けてろ過膜で被処理液6をろ過するものであり、処理槽5の槽内の水頭圧を駆動圧力とする重力ろ過、あるいはろ過膜の内側に負圧を駆動圧力として与える吸引ろ過に用いる。
The membrane element 1 receives the driving pressure and filters the liquid 6 to be treated with a filtration membrane. Gravity filtration using the head pressure of the treatment tank 5 as a driving pressure or a negative pressure inside the filtration membrane. Used for suction filtration given as driving pressure.
先行技術としては、例えば日本国特許公報(特許第3258583号)に記載するものがある。これは膜分離槽の内部に膜分離装置を備えるものであり、膜分離装置が多数のろ過膜板を並設してなり、水流形成装置がろ過膜板どうしの間に被処理液の上昇流を形成する。膜分離装置の上方における水面下に整流板を設けており、整流板は屈曲あるいは湾曲してなり、ろ過膜板どうしの間から流れ出る被処理液の上昇流を膜分離装置の外側に向けて斜め上方へ案内する。
Examples of prior art include those described in Japanese Patent Gazette (Japanese Patent No. 3258858). This is provided with a membrane separation device inside the membrane separation tank, the membrane separation device is provided with a large number of filtration membrane plates arranged in parallel, and the water flow forming device is an upward flow of the liquid to be treated between the filtration membrane plates. Form. A rectifying plate is provided below the water surface above the membrane separation device, the rectifying plate is bent or curved, and the upward flow of the liquid to be treated flowing between the filtration membrane plates is inclined toward the outside of the membrane separation device. Guide upward.
また、日本国特許公報(特許第3290577号)に記載した膜分離装置は、処理槽内の被処理液に浸漬して配置するものであり、上下が開口した箱状のケースの内部に複数の膜カートリッジを一定間隔で並列に設け、膜カートリッジの下方に散気装置を設けている。散気装置より散気する空気がそのエアリフト作用により上昇流を生起させ、上昇流により膜カートリッジの膜面を洗浄する。ケースの上部には、膜カートリッジの相互間の流路から抜け出た上昇流を上方に導く枠状の整流ケースを設けている。
Moreover, the membrane separation apparatus described in Japanese Patent Publication (Patent No. 3290577) is soaked and disposed in a liquid to be treated in a treatment tank, and a plurality of pieces are provided inside a box-shaped case having upper and lower openings. Membrane cartridges are provided in parallel at regular intervals, and an air diffuser is provided below the membrane cartridge. The air diffused from the air diffuser causes an upward flow by the air lift action, and the membrane surface of the membrane cartridge is washed by the upward flow. At the top of the case, a frame-shaped rectification case that guides upward flow that has escaped from the flow path between the membrane cartridges is provided.
また、日本国特許公報(特許第3867481号)に記載した膜分離装置は、被処理液に浸漬して配置する膜モジュールを有し、膜モジュールの下方に散気管を配設したものであり、膜モジュールの周囲に散気誘導壁を配設している。散気誘導壁は、その上端部を外側に折り返した形状をなす。
Moreover, the membrane separation apparatus described in Japanese Patent Publication (Patent No. 38677481) has a membrane module that is immersed in a liquid to be treated and has a diffuser tube provided below the membrane module. A diffuser induction wall is disposed around the membrane module. The diffuser induction wall has a shape with its upper end folded back outward.
上述した浸漬型膜分離装置2においては、空気のエアリフト作用により気液混相の上昇流を生じさせ、上昇流によりろ過膜4の膜面に沿った被処理液6の流れを形成し、ろ過膜4を透過して流れる透過液の流れに対して被処理液6をクロスフローで供給する。以下においてはろ過膜4の膜面に沿った流れをクロスフローと称する。クロスフローは、相対向するろ過膜4の膜面間の流路を流れ、上昇流として浸漬型膜分離装置2から上方へ流れ出る。
In the submerged membrane separation apparatus 2 described above, an upward flow of the gas-liquid mixed phase is generated by the air lift action of the air, and the flow of the liquid 6 to be processed along the membrane surface of the filtration membrane 4 is formed by the upward flow. The liquid 6 to be treated is supplied in a cross flow with respect to the flow of the permeate that flows through 4. Hereinafter, the flow along the membrane surface of the filtration membrane 4 is referred to as a cross flow. The cross flow flows through the flow path between the membrane surfaces of the opposing filtration membranes 4 and flows upward from the submerged membrane separation device 2 as an upward flow.
しかしながら、クロスフローは気泡の流れに依存し、気泡の流れは処理槽5の形状に影響を受ける。このため、処理槽5の形状によっては気泡の流れの態様がろ過膜4の膜面の一部に偏ったものとなり、結果としてクロスフローが膜面の全体に均一に形成されない場合がある。
However, the cross flow depends on the flow of bubbles, and the flow of bubbles is affected by the shape of the treatment tank 5. For this reason, depending on the shape of the treatment tank 5, the mode of the bubble flow is biased to a part of the membrane surface of the filtration membrane 4, and as a result, the crossflow may not be uniformly formed on the entire membrane surface.
このクロスフローは、その拡散作用、洗浄作用によりフラックスに寄与し、ろ過効率の向上に貢献している。ここで、拡散作用は、被処理液中の固形物質を膜面に沿って拡散させるものであり、洗浄作用は、膜面上のファウリング物質を除去し、ろ過膜4の目詰まりを防止するものであり、これらの作用にはクロスフローの流速が関係し、この流速が大きいいほどに拡散作用、洗浄作用が向上する。
This cross flow contributes to the flux by its diffusion action and cleaning action, and contributes to the improvement of filtration efficiency. Here, the diffusion action diffuses the solid substance in the liquid to be treated along the membrane surface, and the cleaning action removes the fouling substance on the membrane surface and prevents the filtration membrane 4 from being clogged. These actions are related to the cross flow velocity, and the larger the flow velocity, the better the diffusing action and the washing action.
したがって、拡散作用および洗浄作用を十分に発揮するには、クロスフローがろ過膜4の膜面の全体に均一に流れる態様をなし、ろ過膜4の膜面の各部位におけるクロスフローの流速が等しく、かつ大きいことが必要であり、これらの条件を満たすことがろ過効率の向上に貢献する。クロスフローの流速を上げるには、散気装置7から散気する曝気量を増やす必要がある。しかしながら、曝気量の増加は、振動による装置の寿命低下、膜の損傷、エネルギーコストの上昇等を起こす要因となる。
Therefore, in order to sufficiently exhibit the diffusion action and the cleaning action, the cross flow is configured to flow uniformly over the entire membrane surface of the filtration membrane 4, and the flow velocity of the cross flow at each part of the membrane surface of the filtration membrane 4 is equal. And it is necessary to be large, and satisfying these conditions contributes to the improvement of filtration efficiency. In order to increase the flow velocity of the cross flow, it is necessary to increase the amount of aeration diffused from the diffuser 7. However, an increase in the amount of aeration is a factor that causes a reduction in device life due to vibration, damage to the membrane, an increase in energy costs, and the like.
次に、処理槽5の被処理液6は、浸漬型膜分離装置2から上方領域へ上昇流として流れ出た後に、反転して下降流となって浸漬型膜分離装置2の側方領域を流れ、再び下方領域から浸漬型膜分離装置2へ流入し、浸漬型膜分離装置2の内外にわたって循環流を形成する。
Next, the liquid 6 to be treated in the treatment tank 5 flows out from the submerged membrane separation device 2 as an upward flow to the upper region, and then reverses and flows into a side region of the submerged membrane separation device 2 as a downward flow. Then, it flows into the submerged membrane separator 2 again from the lower region, and a circulation flow is formed across the inside and outside of the submerged membrane separator 2.
このため、複数の膜エレメント1を所定の間隔で並列に配置する浸漬型膜分離装置2ではクロスフローが偏在する場合があり、膜エレメント1の幅方向、つまり膜エレメント1の配列方向と直交する方向において、膜エレメント1の中央部から離れて端部側に近づくほどに、膜エレメント1の相互間の流路を流れるクロスフローが多くなる傾向を有する。
For this reason, in the submerged membrane separation apparatus 2 in which a plurality of membrane elements 1 are arranged in parallel at a predetermined interval, the cross flow may be unevenly distributed, and is orthogonal to the width direction of the membrane elements 1, that is, the arrangement direction of the membrane elements 1. In the direction, the cross flow that flows through the flow path between the membrane elements 1 tends to increase as the distance from the central portion of the membrane element 1 increases toward the end portion.
一方、被処理液6が浸漬型膜分離装置2から上方領域へ上昇流として流れ出た後に、反転して下降流となって浸漬型膜分離装置2の側方領域を流れる際に、上昇流に含まれた気泡の一部が下降流に連行される現象があり、浮力に起因する力が気泡に作用することで、下降流中の気泡は下降流の流れを阻害する要因となり、結果として膜分離装置から上方領域へ流れ出る上昇流の流れおよびクロスフローを阻害する。このため、下降流に連行される気泡の量が多くなるほどに、クロスフローの流速が小さくなる。
On the other hand, when the liquid 6 to be treated flows out as an upward flow from the submerged membrane separation device 2 to the upper region, the liquid 6 is reversed to become a downward flow and flows into the side region of the submerged membrane separation device 2. There is a phenomenon in which some of the contained bubbles are entrained in the downward flow, and the force due to buoyancy acts on the bubbles, causing the bubbles in the downward flow to interfere with the downward flow, resulting in the membrane This hinders the upward flow and cross flow from the separator to the upper region. For this reason, the flow velocity of the cross flow decreases as the amount of bubbles entrained in the downward flow increases.
この現象は処理槽の壁面から膜分離装置までの距離が近いほどに顕著となる。表1、図12および図13は、処理槽の壁面から膜分離装置までの距離が異なる場合におけるクロスフローの変化を示す解析結果である。この解析の条件は、液体の粘度10mPa・s、液体中に曝気した空気の気泡径5mm、膜分離装置の下方での単位面積当たりの曝気量2m3/min、膜分離装置の幅0.5mである。
This phenomenon becomes more prominent as the distance from the wall surface of the treatment tank to the membrane separation apparatus is shorter. Table 1, FIG. 12, and FIG. 13 are analysis results showing changes in crossflow when the distance from the wall surface of the treatment tank to the membrane separation apparatus is different. The conditions of this analysis are: viscosity of liquid 10 mPa · s, bubble diameter of air aerated in liquid 5 mm, aeration rate 2 m 3 / min per unit area below membrane separator, width of membrane separator 0.5 m It is.
表1、図12および図13において、処理槽の壁面から膜分離装置までの距離は「壁からの距離」として表記し、クロスフローの流速は「膜間液流速」として表記し、クロスフロー中の気泡の流速は「膜間気泡流速」として表記し、膜間気泡流速から膜間液流速を減じた気泡の流速、つまり静止した液体中の気泡の上昇速度は「気泡相対流速」として表記している。ただし、膜間液流速は膜エレメントの相互間の流路の上端での平均流速である。
In Table 1, FIG. 12, and FIG. 13, the distance from the wall of the treatment tank to the membrane separation device is expressed as “distance from the wall”, and the flow velocity of the cross flow is expressed as “transmembrane liquid flow velocity”. The bubble velocity is expressed as “intermembrane bubble velocity”, and the bubble velocity obtained by subtracting the intermembrane fluid velocity from the intermembrane bubble velocity, that is, the rising velocity of bubbles in a stationary liquid, is denoted as “bubble relative velocity”. ing. However, the intermembrane fluid flow velocity is an average flow velocity at the upper end of the flow path between the membrane elements.
表1、図12および図13において明らかなように、壁からの距離が2mに達するまでは、壁からの距離が大きくなるほどに膜間液流速が増加する傾向を示し、その後は緩やかに減少する傾向を示す。
As is apparent from Table 1, FIG. 12 and FIG. 13, until the distance from the wall reaches 2 m, the intermembrane fluid flow rate tends to increase as the distance from the wall increases, and then gradually decreases. Show the trend.
気泡相対流速は次式の理論値にほぼ一致する。ただし、壁からの距離が0.05mであるときを除く。
The bubble relative flow velocity almost agrees with the theoretical value of the following formula. However, the case where the distance from the wall is 0.05 m is excluded.
v=4/3Cd・(ρ-ρw)/ρw・g・d
(ここで、vは気泡相対流速、Cdは抵抗係数、ρは気泡密度、ρwは液体密度、gは重力加速度、dは気泡径)
上記の結果より、処理槽の壁面から膜分離装置までの距離が近いほどに、エアリフト作用の効率が低下し、クロスフローが小さくなることが分かる。 v = 4 / 3Cd · (ρ−ρw) / ρw · g · d
(Where v is the bubble relative flow velocity, Cd is the resistance coefficient, ρ is the bubble density, ρw is the liquid density, g is the gravitational acceleration, and d is the bubble diameter)
From the above results, it can be seen that the closer the distance from the wall of the treatment tank to the membrane separation device, the lower the efficiency of the air lift action and the smaller the cross flow.
(ここで、vは気泡相対流速、Cdは抵抗係数、ρは気泡密度、ρwは液体密度、gは重力加速度、dは気泡径)
上記の結果より、処理槽の壁面から膜分離装置までの距離が近いほどに、エアリフト作用の効率が低下し、クロスフローが小さくなることが分かる。 v = 4 / 3Cd · (ρ−ρw) / ρw · g · d
(Where v is the bubble relative flow velocity, Cd is the resistance coefficient, ρ is the bubble density, ρw is the liquid density, g is the gravitational acceleration, and d is the bubble diameter)
From the above results, it can be seen that the closer the distance from the wall of the treatment tank to the membrane separation device, the lower the efficiency of the air lift action and the smaller the cross flow.
図14は、壁からの距離がそれぞれ0.35m、0.5m、1m、2m、10mである場合において、処理槽内の被処理液中における気泡の体積分率を示す模式図である。ただし、膜分離装置の幅方向の中心位置から処理槽の壁面までの領域を示している。図14中において、処理槽の壁面は符号Wで示し、膜面の端部は符号Mで示しており、10mの場合は処理槽の壁面を省略した図である。
FIG. 14 is a schematic diagram showing the volume fraction of bubbles in the liquid to be treated in the treatment tank when the distance from the wall is 0.35 m, 0.5 m, 1 m, 2 m, and 10 m, respectively. However, the area | region from the center position of the width direction of a membrane separator to the wall surface of a processing tank is shown. In FIG. 14, the wall surface of the treatment tank is indicated by a symbol W, the end of the film surface is indicated by a symbol M, and in the case of 10 m, the wall surface of the treatment tank is omitted.
この体積分率の多寡を表す表示方法は、本来は画面上で単色の濃淡によって行なうものであり、紙面上では濃淡差を明確に表現できない。
The display method for indicating the volume fraction is originally performed with a single color shading on the screen, and the shading difference cannot be clearly expressed on paper.
このため、図14においては体積分率の異なる領域を概略的に、かつ模式的に示し、さらに各領域に異なる模様を付して表現している。
For this reason, in FIG. 14, regions having different volume fractions are schematically and schematically shown, and each region is represented with a different pattern.
この表現方法において、図14は、処理槽の壁面から膜分離装置までの距離が0.35m、0.5m、1mである場合は、下降流に連行される気泡の量が多くなることを表している。
In this expression method, FIG. 14 shows that when the distance from the wall surface of the treatment tank to the membrane separation apparatus is 0.35 m, 0.5 m, and 1 m, the amount of bubbles entrained in the downward flow increases. ing.
図14に示す結果、および下降流に連行される気泡の量が多くなるほどに、クロスフローの流速が小さくなることから、処理槽の壁面から膜分離装置までの距離が0.35m、0.5m、1mである場合は、クロスフローの流速が小さくなる。このため、処理槽の壁面から膜分離装置までの距離は2m程度もしくはそれ以上にすることが好ましい。
As the result shown in FIG. 14 and the amount of bubbles entrained in the downward flow increase, the flow velocity of the cross flow decreases, so the distance from the wall of the treatment tank to the membrane separation device is 0.35 m, 0.5 m In the case of 1 m, the flow velocity of the cross flow becomes small. For this reason, it is preferable that the distance from the wall surface of the treatment tank to the membrane separation apparatus is about 2 m or more.
しかしながら、限られた容積の処理槽内により大きな膜分離装置を配置する場合には、あるいはより多くの膜分離装置を配置する場合には、処理槽の壁面から膜分離装置までの距離が小さくなるので、上述した問題の解決が求められる。
However, when a larger membrane separation apparatus is arranged in a treatment tank having a limited volume, or when more membrane separation apparatuses are arranged, the distance from the wall of the treatment tank to the membrane separation apparatus becomes smaller. Therefore, a solution to the above-described problem is required.
本発明は上記した課題を解決するものであり、クロスフローの態様をろ過膜の膜面の全体に均一に流れる状態に近いものとすることができ、ろ過膜の膜面の各部位におけるクロスフローの流速を大きくすることができる膜分離装置を提供するものであり、さらには限られた容積の処理槽内により大きな膜分離装置を配置する場合や、多くの膜分離装置を配置する場合にあっても拡散作用および洗浄作用を十分に発揮することができる浸漬型膜分離装置を提供することを目的とする。
The present invention solves the above-described problems, and the crossflow mode can be made to be close to a state of flowing uniformly over the entire membrane surface of the filtration membrane, and the crossflow in each part of the membrane surface of the filtration membrane. The present invention provides a membrane separation apparatus that can increase the flow rate of the liquid, and further, when a large membrane separation apparatus is disposed in a processing tank having a limited volume or when many membrane separation apparatuses are disposed. However, an object of the present invention is to provide a submerged membrane separation apparatus that can sufficiently exhibit a diffusion action and a cleaning action.
上記課題を解決するために、本発明の浸漬型膜分離装置は、下部開口から上部開口に至る内部領域を囲む壁体と、内部領域内に配置する膜分離手段と、膜分離手段の下方に配置する散気装置を備えた浸漬型膜分離装置であって、壁体の上端又はその近傍から延びて上部開口に臨んで対向する整流部を有することを特徴とする。
In order to solve the above problems, an immersion type membrane separation apparatus according to the present invention includes a wall surrounding an inner region from a lower opening to an upper opening, a membrane separation means disposed in the inner region, and a lower portion of the membrane separation means. A submerged membrane separation apparatus provided with a diffuser to be disposed, characterized by having a rectifying section extending from an upper end of a wall body or the vicinity thereof and facing the upper opening.
また、本発明の浸漬型膜分離装置において、整流部は、上部開口における壁体の内側縁近傍領域に対向することを特徴とする。
Further, in the submerged membrane separation apparatus of the present invention, the rectifying unit is opposed to a region near the inner edge of the wall body in the upper opening.
また、本発明の浸漬型膜分離装置において、整流部は、上部開口の鉛直方向における上方領域の内側に向けて突出する形状を有することを特徴とする。
Moreover, in the submerged membrane separation apparatus of the present invention, the rectifying unit has a shape protruding toward the inside of the upper region in the vertical direction of the upper opening.
また、本発明の浸漬型膜分離装置において、複数の浸漬型膜分離装置を相互に隣接して配置し、列をなす複数の浸漬型膜分離装置における配列方向の外側位置にのみ整流部を配置したことを特徴とする。
Further, in the submerged membrane separator of the present invention, a plurality of submerged membrane separators are arranged adjacent to each other, and the rectification unit is arranged only at an outer position in the arrangement direction in the plurality of submerged membrane separators in a row. It is characterized by that.
また、本発明の浸漬型膜分離装置において、膜分離手段は複数の膜エレメントを並列に配置し、膜エレメントの相互間に流路を形成してなり、膜エレメントが膜支持体の主面上に平膜からなるろ過膜を配置してなることを特徴とする。
In the submerged membrane separation apparatus of the present invention, the membrane separation means includes a plurality of membrane elements arranged in parallel, and a flow path is formed between the membrane elements, and the membrane elements are disposed on the main surface of the membrane support. A filtration membrane made of a flat membrane is arranged on the surface.
また、本発明の浸漬型膜分離装置において、整流部は、膜エレメントの配列方向と直交する方向において相対向する位置に配置し、かつ壁体の上部開口から離れるほどに双方の整流部間の距離が小さくなる形状を有することを特徴とする。
Further, in the submerged membrane separation apparatus of the present invention, the rectification unit is disposed at a position facing each other in a direction orthogonal to the arrangement direction of the membrane elements, and between the rectification units as the distance from the upper opening of the wall body increases. It has a shape with a small distance.
また、本発明の浸漬型膜分離装置において、膜エレメントの配列方向と直交する方向において相対向する壁体縁辺間の距離に対して、双方の整流部間の最小離間距離が50%以上で90%以下であることを特徴とする。
In the submerged membrane separation apparatus according to the present invention, the minimum separation distance between the two rectifying sections is 90% or more with respect to the distance between the wall edges facing each other in the direction orthogonal to the arrangement direction of the membrane elements. % Or less.
以上の本発明において、浸漬型膜分離装置は、処理槽内に配置し、散気装置から散気する曝気空気によって処理槽内に被処理液の上昇流を生じさせる状態で運転する。
In the present invention described above, the submerged membrane separation apparatus is disposed in the treatment tank and is operated in a state in which an upward flow of the liquid to be treated is generated in the treatment tank by the aerated air diffused from the diffuser.
上昇流は、膜分離手段、つまり膜エレメントの膜面に沿って内部領域を流れ、上部開口から整流部間を通過して処理槽の上方領域に流れ出る。そして、処理槽の上方領域で反転して下降流となり、浸漬型膜分離装置の側方領域を流れる。
The upward flow flows in the inner region along the membrane surface of the membrane separation means, that is, the membrane element, passes through the rectifying unit from the upper opening, and flows out to the upper region of the treatment tank. And it reverses in the upper area | region of a processing tank, becomes a downward flow, and flows through the side area | region of an immersion type membrane separator.
このため、上部開口における壁体の内側縁近傍領域、つまり膜エレメントの両側部近傍領域から流れ出る上昇流にあっても、上部開口から直接的に下降流となることはなく、一旦、整流部間を通過して処理槽の上方領域に流れ出て後に反転して下降流となるので、上昇流に含まれた気泡が処理槽の上方領域で離間し、被処理液の液面上に解放され、下降流が気泡を連行することを抑制できる。
For this reason, even in the upward flow that flows out from the region near the inner edge of the wall in the upper opening, that is, the region near the both sides of the membrane element, the downward flow does not directly flow from the upper opening. Since it flows down to the upper region of the processing tank and then reverses to become a downward flow, bubbles contained in the upward flow are separated in the upper region of the processing tank, and are released onto the liquid surface of the liquid to be processed. It can suppress that a downward flow entrains a bubble.
この際に、上部開口における壁体の内側縁近傍領域、つまり膜エレメントの両側部近傍領域から流れ出る上昇流に対して、上部開口に臨んで対向する整流部が抵抗として作用する。このため、膜エレメントの両側部近傍領域を流れる上昇流の流れが抑制され、結果として上昇流が膜エレメントの膜面の全体に均等に流れる状態に近いものとなる。
At this time, the rectifying portion facing the upper opening acts as a resistance against the upward flow flowing out from the region near the inner edge of the wall in the upper opening, that is, the region near both sides of the membrane element. For this reason, the flow of the upward flow that flows in the region in the vicinity of both sides of the membrane element is suppressed, and as a result, the upward flow is close to a state of flowing evenly over the entire membrane surface of the membrane element.
よって、クロスフローの態様をろ過膜の膜面の全体に均一に流れる状態に近いものとすることができ、ろ過膜の膜面の各部位におけるクロスフローの流速が等しくなる状態に近いものとすることができる。下降流が気泡を連行することを抑制することで、下降流の流れを阻害する要因をなくして下降流の円滑な流れを実現し、結果としてろ過膜の膜面の各部位におけるクロスフローの流速を大きくすることができる。
Therefore, it is possible to make the crossflow mode close to a state where the crossflow flows uniformly over the entire membrane surface of the filtration membrane, and close to the state where the crossflow velocity at each part of the membrane surface of the filtration membrane is equal. be able to. By suppressing the downflow from entraining bubbles, the smooth flow of the downflow is realized by eliminating the factors that hinder the downflow, and as a result, the flow velocity of the crossflow at each part of the membrane surface of the filtration membrane Can be increased.
したがって、限られた容積の処理槽内により大きな膜エレメントを充填する場合にあっても、より多くの膜エレメントを充填する場合にあっても拡散作用および洗浄作用を十分に発揮することができる。
Therefore, even when a large membrane element is filled in a processing tank having a limited volume, even when a larger number of membrane elements are filled, the diffusing action and the cleaning action can be sufficiently exhibited.
また、このことは従来よりも少ない曝気量で同等の拡散作用および洗浄作用を発揮できることを意味する。
This also means that the same diffusing action and cleaning action can be achieved with a smaller amount of aeration than before.
(実施の形態1)
以下、本発明の実施の形態を図面に基づいて説明する。図1および図2において、浸漬型膜分離装置11は膜分離手段として複数の膜エレメント12を適当な間隔で並列に配置してなり、膜エレメント12の相互間に流路を形成している。膜分離手段には、本実施の形態に係る膜エレメント12に限らず、中空糸膜やセラミックチューブ膜などの種々の形式のものを使用できる。 (Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2, the submergedmembrane separation device 11 has a plurality of membrane elements 12 arranged in parallel at appropriate intervals as membrane separation means, and a flow path is formed between the membrane elements 12. The membrane separation means is not limited to the membrane element 12 according to the present embodiment, and various types such as a hollow fiber membrane and a ceramic tube membrane can be used.
以下、本発明の実施の形態を図面に基づいて説明する。図1および図2において、浸漬型膜分離装置11は膜分離手段として複数の膜エレメント12を適当な間隔で並列に配置してなり、膜エレメント12の相互間に流路を形成している。膜分離手段には、本実施の形態に係る膜エレメント12に限らず、中空糸膜やセラミックチューブ膜などの種々の形式のものを使用できる。 (Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2, the submerged
膜エレメント12は、膜支持体である矩形の平板状のろ板13に、その表面を覆って有機膜からなるろ過膜14を配置し、ろ過膜14を周縁部でろ板13に接合したものである。膜支持体には、樹脂製のろ板13の他に、シート状の不織布、ネット等がある。膜エレメント12の下方には曝気用の気体を散気する散気装置15を配置している。浸漬型膜分離装置11は処理槽16の被処理液17に浸漬して使用する。
The membrane element 12 is a filter plate 14 made of an organic membrane covering a surface of a rectangular flat filter plate 13 which is a membrane support, and the filtration membrane 14 is joined to the filter plate 13 at the peripheral edge. is there. In addition to the resin filter plate 13, the membrane support includes a sheet-like nonwoven fabric, a net, and the like. Below the membrane element 12, an air diffuser 15 for diffusing aeration gas is disposed. The submerged membrane separation device 11 is used by being immersed in the liquid 17 to be processed in the processing tank 16.
膜エレメント12は、駆動圧力を受けてろ過膜14で被処理液17をろ過するものであり、駆動圧力として処理槽16の槽内の水頭圧を与える場合、あるいはろ過膜14の内側に負圧を駆動圧力として与える場合がある。
The membrane element 12 receives the driving pressure and filters the liquid 17 to be treated by the filtration membrane 14. When the head pressure is given as the driving pressure in the tank of the treatment tank 16, or the negative pressure is applied to the inside of the filtration membrane 14. May be given as the driving pressure.
浸漬型膜分離装置11は、膜エレメント12の周囲の側面を囲む壁体18を有し、壁体18で囲まれた内部領域に下部開口18aから上部開口18bに至る流路を形成しており、内部領域に膜エレメント12を配置している。
The submerged membrane separation device 11 has a wall 18 surrounding the side surface around the membrane element 12, and forms a flow path from the lower opening 18 a to the upper opening 18 b in the inner region surrounded by the wall 18. The membrane element 12 is arranged in the inner region.
本実施の形態では、膜エレメント12と壁体18とが別体である。しかしながら、膜エレメント12の両側部に壁体18の一部をなす部位を設け、膜エレメント12を配列することで膜エレメント12の両側位置に壁体18を形成することも可能である。
In the present embodiment, the membrane element 12 and the wall body 18 are separate bodies. However, it is also possible to form the wall body 18 on both sides of the membrane element 12 by providing portions forming part of the wall body 18 on both sides of the membrane element 12 and arranging the membrane elements 12.
本実施の形態では、上下方向において膜エレメント12の上端が上部開口18bに対応し、膜エレメント12の下端が下部開口18aに対応している。しかしながら、壁体18で形成する内部領域は膜エレメント12より長く形成することも可能であり、上部開口18bが膜エレメント12の上端より上方に位置し、下部開口18aが膜エレメント12の下端より下方に位置することも可能である。
In the present embodiment, the upper end of the membrane element 12 corresponds to the upper opening 18b and the lower end of the membrane element 12 corresponds to the lower opening 18a in the vertical direction. However, the inner region formed by the wall body 18 can be formed longer than the membrane element 12, the upper opening 18 b is located above the upper end of the membrane element 12, and the lower opening 18 a is below the lower end of the membrane element 12. It is also possible to be located in
壁体18の上端位置には整流部をなす整流板19を設けており、整流板19の形状は後に詳述する。整流板19は膜エレメント12の配列方向と直交する方向において相対向する位置と、膜エレメント12の配列方向において相対向する位置とに配置している。
A rectifying plate 19 that forms a rectifying portion is provided at the upper end position of the wall body 18, and the shape of the rectifying plate 19 will be described in detail later. The rectifying plates 19 are arranged at positions facing each other in a direction orthogonal to the arrangement direction of the membrane elements 12 and positions facing each other in the arrangement direction of the membrane elements 12.
整流板19を設ける態様は、図1に示すように、上部開口18bの四辺の全周にわたって設けるものに限らず、図10に示すように、膜エレメント12の配列方向と直交する方向において相対向する位置にのみ整流板19を設けることも可能である。
The mode of providing the rectifying plate 19 is not limited to that provided over the entire circumference of the four sides of the upper opening 18b as shown in FIG. 1, but is opposed to the direction perpendicular to the arrangement direction of the membrane elements 12 as shown in FIG. It is also possible to provide the baffle plate 19 only at the position where it is.
この理由は、クロスフローの偏流が主として膜エレメント12の幅方向において生じることにあり、膜エレメント12の幅方向の両側、つまり膜エレメント12の配列方向と直交する方向において相対向する位置にのみ整流板19を設けることでも本願発明は実現できる。
The reason for this is that cross-flow drift occurs mainly in the width direction of the membrane element 12, and rectification is performed only on opposite sides in the width direction of the membrane element 12, that is, in the direction perpendicular to the arrangement direction of the membrane elements 12. The present invention can also be realized by providing the plate 19.
さらに、本実施の形態では膜エレメント12を1列に配置した構成を開示している。しかしながら、膜エレメント12を複数列で配置する場合には複数列の膜エレメント12を隔てた位置に整流板19を配置することも可能である。
Furthermore, the present embodiment discloses a configuration in which the membrane elements 12 are arranged in one row. However, when the membrane elements 12 are arranged in a plurality of rows, it is possible to arrange the rectifying plates 19 at positions separating the plurality of rows of membrane elements 12.
例えば、図11に示すように、複数の浸漬型膜分離装置を相互に隣接して配置し、列をなす複数の浸漬型膜分離装置における配列方向の外側位置にのみ整流板19を配置することも可能である。この場合にあっても、膜エレメント12の配列方向と直交する方向において相対向する位置にのみ整流板19を設けることも可能である。
For example, as shown in FIG. 11, a plurality of submerged membrane separators are arranged adjacent to each other, and the current plate 19 is arranged only at an outer position in the arrangement direction of the plurality of submerged membrane separators in a row. Is also possible. Even in this case, it is possible to provide the rectifying plate 19 only at a position facing each other in the direction orthogonal to the arrangement direction of the membrane elements 12.
整流板19は、壁体18の上端位置から斜め上方へ、つまり上部開口18bの鉛直方向における上方領域の内側に向けて突出する形状を有し、壁体18の内側縁近傍領域に臨んで上部開口18bに対向している。整流板19は、壁体18の上部開口から離れるほどに双方の整流板19の間の距離が漸次に小さくなる形状をなし、双方の先端間が最小離間距離の最小離間部をなす。
The rectifying plate 19 has a shape that protrudes obliquely upward from the upper end position of the wall body 18, that is, toward the inside of the upper region in the vertical direction of the upper opening 18 b, and faces the region near the inner edge of the wall body 18. Opposite the opening 18b. The rectifying plate 19 has a shape in which the distance between the both rectifying plates 19 gradually decreases as the distance from the upper opening of the wall 18 increases, and the tip of both forms a minimum separation portion with a minimum separation distance.
しかしながら、整流板19は、壁体18と一体的な構造である必要はなく、壁体18の上端から離れた位置に、つまり壁体18の上端近傍から延びる形状とすることも可能であり、壁体18の周囲を囲む形状とすることも可能であり、整流板19の途中位置において最小離間部を形成することも可能である。いずれにしても、整流板19は上部開口18bの鉛直方向における上方領域の内側へ向けて突出している。
However, the rectifying plate 19 does not have to be an integral structure with the wall body 18, and can be shaped to extend away from the upper end of the wall body 18, that is, from the vicinity of the upper end of the wall body 18, It is also possible to have a shape surrounding the wall 18, and it is also possible to form a minimum separation portion at an intermediate position of the current plate 19. In any case, the rectifying plate 19 protrudes toward the inside of the upper region in the vertical direction of the upper opening 18b.
また、図5に示すように、整流板19は平板面に限定するものではなく、凹面や凸面とすることも可能であり、曲面や屈曲した面を採用することも可能である。さらに、整流板19として利用可能な素材には、孔の無い部材に限らず、パンチングメタルの様な孔の有る部材や、スリットを有する部材がある。
Further, as shown in FIG. 5, the rectifying plate 19 is not limited to a flat plate surface, but may be a concave surface or a convex surface, and a curved surface or a curved surface may be employed. Furthermore, materials that can be used as the current plate 19 are not limited to members without holes, but include members with holes such as punching metal and members with slits.
以下に、上記した構成の作用を説明する。ろ過運転時には、散気装置15から被処理液中に空気を曝気し、被処理液中に気液混相の上昇流を生じさせる。この上昇流により被処理液17をクロスフローで膜エレメント12の膜面に沿って供給するとともに、膜エレメント12の膜面を洗浄する。
The operation of the above configuration will be described below. During the filtration operation, air is aerated from the diffuser 15 into the liquid to be processed, and an upward flow of gas-liquid mixed phase is generated in the liquid to be processed. By this upward flow, the liquid 17 to be treated is supplied along the membrane surface of the membrane element 12 by cross flow, and the membrane surface of the membrane element 12 is washed.
上昇流は、膜エレメント12の膜面に沿って内部領域を流れ、上部開口18bから整流板19の最小離間距離の最小離間部を通過して処理槽16の上方領域に流れ出る。そして、処理槽16の上方領域で反転して下降流となり、浸漬型膜分離装置11の側方領域を流れ、循環流を形成する。
The upward flow flows in the inner region along the membrane surface of the membrane element 12, and flows out from the upper opening 18 b to the upper region of the treatment tank 16 through the minimum separation portion of the rectifying plate 19. And it reverse | inverts in the upper area | region of the processing tank 16, becomes a downward flow, flows through the side area | region of the immersion type membrane separator 11, and forms a circulation flow.
このため、上部開口18bの内側縁近傍領域、つまり膜エレメント12の両側部近傍領域から流れ出る上昇流にあっても、上部開口18bから直接的に下降流となることはなく、一旦、整流板19の最小離間距離の最小離間部を通過して処理槽16の上方領域に流れ出て後に反転して下降流となるので、上昇流に含まれた気泡が処理槽16の上方領域で離間し、被処理液の液面上に解放され、下降流が気泡を連行することを抑制できる。
For this reason, even in the upward flow flowing out from the region near the inner edge of the upper opening 18b, that is, the region near both sides of the membrane element 12, there is no direct downward flow from the upper opening 18b. The minimum separation distance of the processing tank 16 passes through the minimum separation portion and flows out to the upper region of the processing tank 16 and then reverses to become a downward flow. Therefore, the bubbles included in the upward flow are separated in the upper region of the processing tank 16 and covered. It is released on the liquid level of the processing liquid, and it is possible to suppress the downward flow from entraining bubbles.
この際に、上部開口18bの内側縁近傍領域、つまり膜エレメント12の両側部近傍領域から流れ出る上昇流に対して、上部開口18bに臨んで対向する整流板19が抵抗として作用する。このため、膜エレメント12の両側部近傍領域を流れる上昇流の流れが抑制され、結果として上昇流が膜エレメント12の膜面の全体に均等に流れる状態に近いものとなる。
At this time, the rectifying plate 19 facing the upper opening 18b acts as a resistance against the upward flow flowing out from the region near the inner edge of the upper opening 18b, that is, the region near both sides of the membrane element 12. For this reason, the flow of the upward flow that flows in the region in the vicinity of both sides of the membrane element 12 is suppressed, and as a result, the upward flow is close to a state of flowing evenly over the entire membrane surface of the membrane element 12.
よって、上昇流、つまりクロスフローの態様をろ過膜の膜面の全体に均一に流れる状態に近いものとすることができ、ろ過膜の膜面の各部位におけるクロスフローの流速が等しくなる状態に近いものとすることができる。
Therefore, the upward flow, that is, the cross flow mode can be made to be close to the state of flowing uniformly over the entire membrane surface of the filtration membrane, and the flow velocity of the cross flow in each part of the membrane surface of the filtration membrane is equalized. Can be close.
下降流が気泡を連行することを抑制することで、下降流の流れを阻害する要因をなくして下降流の円滑な流れを実現し、結果としてろ過膜14の膜面の各部位におけるクロスフローの流速を大きくすることができる。
By suppressing the downward flow from entraining bubbles, the smooth flow of the downward flow is realized without the factor that obstructs the flow of the downward flow. As a result, the cross flow of each part of the membrane surface of the filtration membrane 14 is reduced. The flow rate can be increased.
したがって、限られた容積の処理槽内により大きな浸漬型膜分離装置11を配置する場合や、より多くの浸漬型膜分離装置11を配置する場合にあっても拡散作用および洗浄作用を十分に発揮することができる。
Accordingly, even when a larger immersion type membrane separation device 11 is arranged in a treatment tank having a limited volume or when more immersion type membrane separation devices 11 are arranged, the diffusion action and the cleaning action are sufficiently exhibited. can do.
以下に、本発明の浸漬型膜分離装置に係る解析について説明する。図3において、(a)は整流板を設けた本願発明の構成のモデルを示し、(b)は整流板を設けていない従来の構成のモデルを示している。図4は本願発明の構成を部分的に示している。図3および図4において、散気箇所30は図1および図2における散気装置15に相当するものであり、他の構成要素には図1および図2における符号を付して説明する。また、膜エレメント12の膜面上には、4つの測定点、下方から上方へ順次にline1、line2、line3、line4を設定している。
Hereinafter, the analysis according to the submerged membrane separation apparatus of the present invention will be described. In FIG. 3, (a) shows the model of the structure of this invention which provided the baffle plate, (b) has shown the model of the conventional structure which does not provide the baffle plate. FIG. 4 partially shows the configuration of the present invention. 3 and 4, the air diffused portion 30 corresponds to the air diffuser 15 in FIGS. 1 and 2, and the other components will be described with reference numerals in FIGS. 1 and 2. On the membrane surface of the membrane element 12, four measurement points, line1, line2, line3, and line4 are set in order from the bottom to the top.
この解析においては、図5に示すように、整流板19の形態の相違によって8つのモデルを設定し、整流板19を設けていないモデルを対照標準としている。以下に各モデルを説明する。
モデル1.
図5(a)に示すように、整流板19は、平板面を有し、上部開口18bの流路断面に対して60°に傾斜し、かつ整流板19の長さが200mmであり、最小離間距離が300mmである。
モデル2.
図5(a)に示すように、整流板19は、平板面を有し、上部開口18bの流路断面に対して60°に傾斜し、かつ整流板19の長さが100mmであり、最小離間距離が400mmである。
モデル3.
図5(b)に示すように、整流板19は、平板面を有し、上部開口18bの流路断面に対して30°に傾斜し、かつ整流板19の長さが200mmであり、最小離間距離が154mmである。
モデル4.
図5(b)に示すように、整流板19は、平板面を有し、上部開口18bの流路断面に対して30°に傾斜し、かつ整流板19の長さが100mmであり、最小離間距離が327mmである。
モデル5.
図5(c)に示すように、整流板19は、上部開口18bに対して凹面の円弧状をなし、円弧の弦が上部開口18bの流路断面に対して60°に傾斜し、かつ弦の長さが200mmであり、最小離間距離が300mmである。
モデル6.
図5(d)に示すように、整流板19は、上部開口18bに対して凸面の円弧状をなし、円弧の弦が上部開口18bの流路断面に対して60°に傾斜し、かつ弦の長さが200mmであり、最小離間距離が300mmである。
モデル7.
図5(e)に示すように、整流板19は、屈曲した形状をなし、上部開口18bの流路断面に対して垂直な部位と平行な部位からなり、垂直な部位の長さが100mm、平行な部位の長さが100mmであり、最小離間距離が300mmである。
モデル8.
図5(f)に示すように、整流板19は、屈曲した形状をなし、各辺が上部開口18bの流路断面に対して45°に傾斜し、各辺の長さが141mmであり、最小離間距離が300mmである。
モデル9.
図5(g)に示すように、整流板19を設けない構成である。
解析条件
解析ソフト;Fluent ver6.3
解析モデル;2D、倍精度、混相流(二流体Euler-Euler)、膜分離装置の下方での単位面積当たり曝気量2m3/min、膜エレメント幅500mm
結果
1.モデル1~モデル8の全てにおいて、散気箇所30より曝気を行なうことで、壁体18の内外にわたって循環流が形成される。 In this analysis, as shown in FIG. 5, eight models are set according to the difference in the shape of the rectifyingplate 19, and a model without the rectifying plate 19 is used as a reference standard. Each model will be described below.
Model 1.
As shown in FIG. 5A, the rectifyingplate 19 has a flat plate surface, is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b, and the length of the rectifying plate 19 is 200 mm. The separation distance is 300 mm.
Model 2.
As shown in FIG. 5A, the rectifyingplate 19 has a flat plate surface, is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b, and the length of the rectifying plate 19 is 100 mm. The separation distance is 400 mm.
Model 3.
As shown in FIG. 5B, the rectifyingplate 19 has a flat plate surface, is inclined at 30 ° with respect to the flow path cross section of the upper opening 18b, and the length of the rectifying plate 19 is 200 mm. The separation distance is 154 mm.
Model 4.
As shown in FIG. 5B, the rectifyingplate 19 has a flat plate surface, is inclined at 30 ° with respect to the flow path cross section of the upper opening 18b, and the length of the rectifying plate 19 is 100 mm. The separation distance is 327 mm.
Model 5.
As shown in FIG. 5 (c), the rectifyingplate 19 has a concave arc shape with respect to the upper opening 18b, the arc chord is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b, and the chord Has a length of 200 mm and a minimum separation distance of 300 mm.
Model 6.
As shown in FIG. 5D, the rectifyingplate 19 has a convex arc shape with respect to the upper opening 18b, the chord of the arc is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b, and the string Has a length of 200 mm and a minimum separation distance of 300 mm.
Model 7.
As shown in FIG. 5 (e), the rectifyingplate 19 has a bent shape, is composed of a portion parallel to a portion perpendicular to the flow path cross section of the upper opening 18b, and the length of the perpendicular portion is 100 mm. The length of the parallel part is 100 mm, and the minimum separation distance is 300 mm.
Model 8.
As shown in FIG. 5 (f), the rectifyingplate 19 has a bent shape, each side is inclined at 45 ° with respect to the flow path cross section of the upper opening 18b, and the length of each side is 141 mm. The minimum separation distance is 300 mm.
Model 9.
As shown in FIG. 5G, thecurrent plate 19 is not provided.
Analysis conditions Analysis software; Fluent ver6.3
Analytical model: 2D, double precision, multi-phase flow (two-fluid Euler-Euler), aeration rate perunit area 2 m 3 / min below the membrane separator, membrane element width 500 mm
Result 1. In all of the models 1 to 8, the circulation flow is formed across the inside and outside of the wall body 18 by performing aeration from the diffused portion 30.
モデル1.
図5(a)に示すように、整流板19は、平板面を有し、上部開口18bの流路断面に対して60°に傾斜し、かつ整流板19の長さが200mmであり、最小離間距離が300mmである。
モデル2.
図5(a)に示すように、整流板19は、平板面を有し、上部開口18bの流路断面に対して60°に傾斜し、かつ整流板19の長さが100mmであり、最小離間距離が400mmである。
モデル3.
図5(b)に示すように、整流板19は、平板面を有し、上部開口18bの流路断面に対して30°に傾斜し、かつ整流板19の長さが200mmであり、最小離間距離が154mmである。
モデル4.
図5(b)に示すように、整流板19は、平板面を有し、上部開口18bの流路断面に対して30°に傾斜し、かつ整流板19の長さが100mmであり、最小離間距離が327mmである。
モデル5.
図5(c)に示すように、整流板19は、上部開口18bに対して凹面の円弧状をなし、円弧の弦が上部開口18bの流路断面に対して60°に傾斜し、かつ弦の長さが200mmであり、最小離間距離が300mmである。
モデル6.
図5(d)に示すように、整流板19は、上部開口18bに対して凸面の円弧状をなし、円弧の弦が上部開口18bの流路断面に対して60°に傾斜し、かつ弦の長さが200mmであり、最小離間距離が300mmである。
モデル7.
図5(e)に示すように、整流板19は、屈曲した形状をなし、上部開口18bの流路断面に対して垂直な部位と平行な部位からなり、垂直な部位の長さが100mm、平行な部位の長さが100mmであり、最小離間距離が300mmである。
モデル8.
図5(f)に示すように、整流板19は、屈曲した形状をなし、各辺が上部開口18bの流路断面に対して45°に傾斜し、各辺の長さが141mmであり、最小離間距離が300mmである。
モデル9.
図5(g)に示すように、整流板19を設けない構成である。
解析条件
解析ソフト;Fluent ver6.3
解析モデル;2D、倍精度、混相流(二流体Euler-Euler)、膜分離装置の下方での単位面積当たり曝気量2m3/min、膜エレメント幅500mm
結果
1.モデル1~モデル8の全てにおいて、散気箇所30より曝気を行なうことで、壁体18の内外にわたって循環流が形成される。 In this analysis, as shown in FIG. 5, eight models are set according to the difference in the shape of the rectifying
As shown in FIG. 5A, the rectifying
As shown in FIG. 5A, the rectifying
As shown in FIG. 5B, the rectifying
As shown in FIG. 5B, the rectifying
As shown in FIG. 5 (c), the rectifying
As shown in FIG. 5D, the rectifying
As shown in FIG. 5 (e), the rectifying
As shown in FIG. 5 (f), the rectifying
Model 9.
As shown in FIG. 5G, the
Analysis conditions Analysis software; Fluent ver6.3
Analytical model: 2D, double precision, multi-phase flow (two-fluid Euler-Euler), aeration rate per
2.モデル1~モデル8の全てにおいて、循環流は膜エレメント12の幅方向の側部に近いほどに速くなる傾向にあり、膜エレメント12の幅方向の中央側に近いほどに遅くなる傾向にあり、この傾向は流れが上昇するにしたがって顕著になった。
2. In all of the models 1 to 8, the circulation flow tends to be faster as it is closer to the side in the width direction of the membrane element 12, and tends to be slower as it is closer to the center side in the width direction of the membrane element 12. This tendency became more prominent as the flow increased.
図7は、モデル1における流速の変化を示すものであり、膜エレメント12の膜面上のline1、line2、line3、line4の各位置におけるクロスフローの流速を示しており、膜エレメント12の幅方向の端である膜端から膜エレメント12の幅方向の中央側に近いほどに遅くなる傾向を示しており、この傾向は下位の測定点から上位の測定点に移動するほどに顕著となる。
FIG. 7 shows changes in the flow velocity in the model 1, and shows the flow velocity of the cross flow at each position of line 1, line 2, line 3, and line 4 on the membrane surface of the membrane element 12. It shows a tendency to become slower as it approaches the center side in the width direction of the membrane element 12 from the membrane end, which is the edge of the membrane element, and this tendency becomes more prominent as the measurement point moves from the lower measurement point to the higher measurement point.
図8は、モデル9における流速の変化を示すものであり、モデル1と同様の傾向を示している。しかしながら、モデル1の傾向に比べて、膜エレメント12の幅方向の端である膜端から膜エレメント12の幅方向の中央側に近いほどに遅くなる傾向が大きくなる。
FIG. 8 shows changes in the flow velocity in the model 9 and shows the same tendency as in the model 1. However, as compared with the tendency of the model 1, the tendency to become slower as the distance from the end of the membrane element 12 in the width direction to the center side in the width direction of the membrane element 12 increases.
すなわち、整流板19の存在によって、膜エレメント12の膜面上におけるクロスフローの流速の偏在が緩和された。
That is, the presence of the rectifying plate 19 alleviates the uneven distribution of the crossflow velocity on the membrane surface of the membrane element 12.
表2、表3は、モデル1~モデル9におけるクロスフローの流速を示し、膜エレメント12の膜面の全体での平均流速および最大流速、line4における平均流速および偏差を示している。
Tables 2 and 3 show the cross flow velocity in the models 1 to 9, showing the average velocity and the maximum velocity on the entire membrane surface of the membrane element 12, and the average velocity and deviation in the line 4.
表2、表3に示すように、整流板19のないモデル9に比べて、整流板19を設けるモデルにおいて平均流速が大きくなる傾向を示す。ただし、モデル3を除く。また、偏差も整流板19を設けるモデルにおいて小さくなる傾向を示す。
As shown in Tables 2 and 3, the average flow velocity tends to be higher in the model in which the rectifying plate 19 is provided than in the model 9 without the rectifying plate 19. However, model 3 is excluded. Further, the deviation also tends to be small in the model in which the current plate 19 is provided.
特にモデル1、モデル4、モデル5、モデル7では流速、偏差がともに改善している。モデル3では整流板19の間での抵抗が大きくなり過ぎて、モデル9より平均流速が低下した。
Especially in Model 1, Model 4, Model 5, and Model 7, both the flow velocity and deviation are improved. In the model 3, the resistance between the rectifying plates 19 is too large, and the average flow velocity is lower than that in the model 9.
図9はモデル1とモデル9とにおける平均流速の分布を示すものであり、膜エレメント12の幅方向の端である膜端から膜エレメント12の幅方向の中央側に近いほどに遅くなる傾向があり、整流板19を設けるモデル1における偏差が整流板19のないモデル9の偏差に比べて小さくなることが分かる。
FIG. 9 shows the distribution of the average flow velocity in the model 1 and the model 9, and there is a tendency that it becomes slower as it approaches the center side in the width direction of the membrane element 12 from the membrane end that is the end in the width direction of the membrane element 12. Yes, it can be seen that the deviation in the model 1 with the rectifying plate 19 is smaller than the deviation in the model 9 without the rectifying plate 19.
次に、図6に示すように、整流板19の間の最小離間部における開口割合が異なる10のモデルを設定して解析した。開口割合(%)は装置幅に対する最小離間部における最小離間距離の割合であり、最小離間距離/装置幅×100により求める。各モデルの最小離間距離および開口割合は表4および表5に示す。
Next, as shown in FIG. 6, ten models having different opening ratios in the minimum separation portion between the rectifying plates 19 were set and analyzed. The opening ratio (%) is the ratio of the minimum separation distance at the minimum separation portion to the apparatus width, and is obtained by the minimum separation distance / apparatus width × 100. The minimum separation distance and the opening ratio of each model are shown in Tables 4 and 5.
全モデル10-19において装置幅は500mmである。図6(a)および表4に示す各モデル10-14において、整流板19は上部開口18bの流路断面に対して15°に傾斜し、図6(b)および表5に示す各モデル15-19において、整流板19は上部開口18bの流路断面に対して60°に傾斜する。
In all models 10-19, the device width is 500 mm. In each model 10-14 shown in FIG. 6 (a) and Table 4, the rectifying plate 19 is inclined at 15 ° with respect to the flow path cross section of the upper opening 18b, and each model 15 shown in FIG. 6 (b) and Table 5 is shown. At -19, the rectifying plate 19 is inclined at 60 ° with respect to the flow path cross section of the upper opening 18b.
モデル10.最小離間距離200mm、開口割合40%、モデル11.最小離間距離250mm、開口割合50%、モデル12.最小離間距離300mm、開口割合60%、モデル13.最小離間距離400mm、開口割合80%、モデル14.最小離間距離450mm、開口割合90%、モデル15.最小離間距離150mm、開口割合30%、モデル16.最小離間距離200mm、開口割合40%、モデル17.最小離間距離300mm、開口割合60%、モデル18.最小離間距離400mm、開口割合80%、モデル19.最小離間距離450mm、開口割合90%
先に図5gおよび表3において示した整流板19のないモデル9に比べて、表4、表5に示すように、整流板19の傾斜角度に関係なく、開口割合が50%-90%であるモデル11-14および17-19モデルにおいて平均流速が大きくなる傾向を示す。Model 10. Minimum separation distance 200 mm, opening ratio 40%, model 11. Minimum separation distance 250 mm, opening ratio 50%, model 12. Minimum separation distance 300 mm, opening ratio 60%, model 13. Minimum separation distance 400 mm, opening ratio 80%, model 14. Minimum separation distance 450 mm, opening ratio 90%, model 15. Minimum separation distance 150 mm, opening ratio 30%, model 16. Minimum separation distance 200 mm, opening ratio 40%, model 17. Minimum separation distance 300 mm, opening ratio 60%, model 18. Minimum separation distance 400 mm, opening ratio 80%, model 19. Minimum separation distance 450mm, opening ratio 90%
Compared to the model 9 without the rectifyingplate 19 shown in FIG. 5g and Table 3, the opening ratio is 50% -90% regardless of the inclination angle of the rectifying plate 19, as shown in Tables 4 and 5. Some models 11-14 and 17-19 show a tendency to increase the average flow velocity.
先に図5gおよび表3において示した整流板19のないモデル9に比べて、表4、表5に示すように、整流板19の傾斜角度に関係なく、開口割合が50%-90%であるモデル11-14および17-19モデルにおいて平均流速が大きくなる傾向を示す。
Compared to the model 9 without the rectifying
さらに、好ましい結果として、開口割合が50-60%であるモデル11、モデル12、モデル17では、平均流速が大きくなるとともに、偏差が小さくなる傾向を示す。
Furthermore, as a preferable result, the model 11, model 12, and model 17 having an opening ratio of 50 to 60% tend to increase the average flow velocity and decrease the deviation.
以上の結果より、整流板の設置は膜間の液流速と偏差の改善に効果があること、および膜間の液流速と偏差の改善は整流板の形状よりも最小離間部の開口割合の大きさに依拠することが確認できた。整流板19が、クロスフローに対して抵抗となる存在にも拘らず、偏差の改善および平均流速の向上に効いている理由としては以下の要因が考えられる。
Based on the above results, the installation of the rectifying plate is effective in improving the liquid flow rate and deviation between the membranes, and the improvement in the liquid flow rate and deviation between the membranes is larger in the opening ratio of the minimum separation part than the shape of the rectifying plate. We were able to confirm that we depended on us. The following factors can be considered as reasons why the rectifying plate 19 is effective in improving the deviation and the average flow velocity in spite of the presence of resistance against the cross flow.
クロスフローは気泡流に依拠しており、クロスフローによって槽全体に循環流が発生する。気泡自体は自らの浮力によって上方向へ移動しつつ、循環流の流れに乗って膜エレメント12の幅方向の端部側に集まる。
ク ロ ス Cross flow relies on bubbly flow, and the cross flow generates a circulating flow throughout the tank. The bubbles themselves move upward due to their buoyancy, and gather on the end of the membrane element 12 in the width direction along the flow of the circulating flow.
気泡が上部開口18bから直ちに下降流に巻き込まれると、その気泡は上昇流の駆動力ではなくなり、下降流中に渦が発生する要因となり、下降流の流れを阻害してエネルギーロスが生じる。
When the bubbles are immediately drawn into the downward flow from the upper opening 18b, the bubbles are not the driving force of the upward flow, causing a vortex to occur during the downward flow, and the flow of the downward flow is obstructed, resulting in energy loss.
上述した現象により、気泡流に依拠するクロスフローの流速が膜エレメント12の膜面上の位置によって異なるものとなる。
Due to the phenomenon described above, the flow velocity of the cross flow depending on the bubble flow varies depending on the position of the membrane element 12 on the membrane surface.
しかしながら、整流板19が循環流による気泡流の連行を抑制し、気泡流を処理槽の液面に向けて上方へ導き、気泡が処理槽の液面上に解放されることで、下降流中に渦が発生することを抑制するとともに、渦の発生位置を浸漬型膜分離装置から遠ざけることができ、その結果、クロスフローの流速の不均一性、つまり偏差が改善され、平均流速が向上する。また、開口割合が50%-90%であれば本発明を実現できる。
However, the flow straightening plate 19 suppresses entrainment of the bubble flow due to the circulation flow, guides the bubble flow upward toward the liquid level of the processing tank, and the bubbles are released onto the liquid level of the processing tank, so Vortex generation can be suppressed and the vortex generation position can be moved away from the submerged membrane separation device. As a result, non-uniformity of the cross flow velocity, that is, deviation is improved, and the average flow velocity is improved. . Further, the present invention can be realized if the opening ratio is 50% -90%.
Claims (7)
- 下部開口から上部開口に至る内部領域を囲む壁体と、内部領域内に配置する膜分離手段と、膜分離手段の下方に配置する散気装置を備えた浸漬型膜分離装置であって、壁体の上端又はその近傍から延びて上部開口に臨んで対向する整流部を有することを特徴とする浸漬型膜分離装置。 A submerged membrane separation apparatus comprising a wall surrounding an inner region from a lower opening to an upper opening, a membrane separation means disposed in the inner region, and an air diffuser disposed below the membrane separation means. A submerged membrane separation apparatus comprising a rectifying section extending from the upper end of the body or the vicinity thereof and facing the upper opening.
- 整流部は、上部開口における壁体の内側縁近傍領域に対向することを特徴とする請求項1に記載の浸漬型膜分離装置。 2. The submerged membrane separation apparatus according to claim 1, wherein the rectifying unit faces a region near the inner edge of the wall body in the upper opening.
- 整流部は、上部開口の鉛直方向における上方領域の内側に向けて突出する形状を有することを特徴とする請求項1または2に記載の浸漬型膜分離装置。 The submerged membrane separation apparatus according to claim 1 or 2, wherein the rectifying unit has a shape protruding toward the inside of the upper region in the vertical direction of the upper opening.
- 複数の浸漬型膜分離装置を相互に隣接して配置し、列をなす複数の浸漬型膜分離装置における配列方向の外側位置にのみ整流部を配置したことを特徴とする請求項1に記載の浸漬型膜分離装置。 The plurality of submerged membrane separators are arranged adjacent to each other, and the rectifying unit is arranged only at an outer position in the arrangement direction of the plurality of submerged membrane separators in a row. Immersion membrane separator.
- 膜分離手段は複数の膜エレメントを並列に配置し、膜エレメントの相互間に流路を形成してなり、膜エレメントが膜支持体の主面上に平膜からなるろ過膜を配置してなることを特徴とする請求項1に記載の浸漬型膜分離装置。 The membrane separation means has a plurality of membrane elements arranged in parallel, and a flow path is formed between the membrane elements. The membrane element is formed by arranging a filtration membrane made of a flat membrane on the main surface of the membrane support. The submerged membrane separation apparatus according to claim 1.
- 整流部は、膜エレメントの配列方向と直交する方向において相対向する位置に配置し、かつ壁体の上部開口から離れるほどに双方の整流部間の距離が小さくなる形状を有することを特徴とする請求項5に記載の浸漬型膜分離装置。 The rectifying unit is disposed at a position opposite to each other in a direction orthogonal to the arrangement direction of the membrane elements, and has a shape in which the distance between the both rectifying units decreases as the distance from the upper opening of the wall body increases. The submerged membrane separator according to claim 5.
- 膜エレメントの配列方向と直交する方向において相対向する壁体縁辺間の距離に対して、双方の整流部間の最小離間距離が50%以上で90%以下であることを特徴とする請求項6に記載の浸漬型膜分離装置。 The minimum separation distance between the two rectifying portions is 50% or more and 90% or less with respect to the distance between the wall edges facing each other in the direction orthogonal to the arrangement direction of the membrane elements. The submerged membrane separation apparatus described in 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010514267A JP5283696B2 (en) | 2008-05-30 | 2008-05-30 | Immersion membrane separator |
PCT/JP2008/001376 WO2009144770A1 (en) | 2008-05-30 | 2008-05-30 | Immersed membrane separation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/001376 WO2009144770A1 (en) | 2008-05-30 | 2008-05-30 | Immersed membrane separation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009144770A1 true WO2009144770A1 (en) | 2009-12-03 |
Family
ID=41376671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/001376 WO2009144770A1 (en) | 2008-05-30 | 2008-05-30 | Immersed membrane separation apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5283696B2 (en) |
WO (1) | WO2009144770A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013202467A (en) * | 2012-03-28 | 2013-10-07 | Kubota Corp | Membrane separation facility |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09141066A (en) * | 1995-11-21 | 1997-06-03 | Kubota Corp | Dipping type membrane separator |
JPH1157426A (en) * | 1997-08-25 | 1999-03-02 | Kurita Water Ind Ltd | Immersion-type membrane filter |
JP2001009246A (en) * | 1999-06-25 | 2001-01-16 | Hitachi Plant Eng & Constr Co Ltd | Immersion type flat membrane filtering device |
JP2002011469A (en) * | 2000-06-29 | 2002-01-15 | Hitachi Plant Eng & Constr Co Ltd | Immersed flat membrane separation device |
JP2003093849A (en) * | 2001-09-27 | 2003-04-02 | Yuasa Corp | Immersion type membrane filter device |
-
2008
- 2008-05-30 JP JP2010514267A patent/JP5283696B2/en active Active
- 2008-05-30 WO PCT/JP2008/001376 patent/WO2009144770A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09141066A (en) * | 1995-11-21 | 1997-06-03 | Kubota Corp | Dipping type membrane separator |
JPH1157426A (en) * | 1997-08-25 | 1999-03-02 | Kurita Water Ind Ltd | Immersion-type membrane filter |
JP2001009246A (en) * | 1999-06-25 | 2001-01-16 | Hitachi Plant Eng & Constr Co Ltd | Immersion type flat membrane filtering device |
JP2002011469A (en) * | 2000-06-29 | 2002-01-15 | Hitachi Plant Eng & Constr Co Ltd | Immersed flat membrane separation device |
JP2003093849A (en) * | 2001-09-27 | 2003-04-02 | Yuasa Corp | Immersion type membrane filter device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013202467A (en) * | 2012-03-28 | 2013-10-07 | Kubota Corp | Membrane separation facility |
Also Published As
Publication number | Publication date |
---|---|
JP5283696B2 (en) | 2013-09-04 |
JPWO2009144770A1 (en) | 2011-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6248637B2 (en) | Air diffuser, operation method thereof, and water treatment apparatus | |
JP5566031B2 (en) | Spacing member, membrane element, and submerged membrane separator | |
JP5845673B2 (en) | Air diffuser | |
JP3867481B2 (en) | Immersion flat membrane separator | |
WO2011058835A1 (en) | Dipped flat membrane element, dipped flat membrane unit, and dipped flat membrane filtration device | |
JP5283696B2 (en) | Immersion membrane separator | |
JP4614188B2 (en) | Immersion flat membrane filtration device | |
JP3290577B2 (en) | Immersion type membrane separation device | |
JP5599402B2 (en) | Capillary membrane filtration module | |
WO2013103083A1 (en) | Membrane separation method and membrane separation apparatus | |
JP4996379B2 (en) | Filtration device | |
WO2013187513A1 (en) | Immersed membrane unit | |
JP4143974B2 (en) | Immersion flat membrane filtration device | |
JP5605802B2 (en) | Flat membrane filtration device and flat membrane filtration method | |
JP2001047046A (en) | Membrane separation type water treatment apparatus | |
JP5935982B2 (en) | Immersion membrane separator | |
JP2007061787A (en) | Separation membrane module, water treatment apparatus and water treatment method using the apparatus | |
JP2000157848A (en) | Immersion type membrane separator | |
JP4948120B2 (en) | Treated water treatment equipment | |
JP2008142603A (en) | Sewage treatment device | |
JP4107819B2 (en) | Multi-stage submerged membrane separator | |
JP2011050905A (en) | Apparatus for active treatment of sewage | |
JP3278544B2 (en) | Activated sludge treatment equipment | |
JP4538479B2 (en) | Floatator | |
JP2002361051A (en) | Membrane cartridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08763973 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010514267 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08763973 Country of ref document: EP Kind code of ref document: A1 |