JP4107819B2 - Multi-stage submerged membrane separator - Google Patents

Multi-stage submerged membrane separator Download PDF

Info

Publication number
JP4107819B2
JP4107819B2 JP2001266588A JP2001266588A JP4107819B2 JP 4107819 B2 JP4107819 B2 JP 4107819B2 JP 2001266588 A JP2001266588 A JP 2001266588A JP 2001266588 A JP2001266588 A JP 2001266588A JP 4107819 B2 JP4107819 B2 JP 4107819B2
Authority
JP
Japan
Prior art keywords
membrane
case unit
tank
membrane case
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001266588A
Other languages
Japanese (ja)
Other versions
JP2003071257A (en
Inventor
達也 上島
康信 岡島
清司 和泉
昌章 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001266588A priority Critical patent/JP4107819B2/en
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to CA 2398461 priority patent/CA2398461C/en
Priority to KR20027010016A priority patent/KR100768841B1/en
Priority to US10/182,636 priority patent/US6843908B2/en
Priority to CNB018044522A priority patent/CN1241676C/en
Priority to PCT/JP2001/010524 priority patent/WO2002045827A1/en
Priority to EP20010999419 priority patent/EP1341597A1/en
Priority to AU18521/02A priority patent/AU781443B2/en
Publication of JP2003071257A publication Critical patent/JP2003071257A/en
Application granted granted Critical
Publication of JP4107819B2 publication Critical patent/JP4107819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多段積み浸漬型膜分離装置に関し、下廃水処理、汚泥濃縮などに使用する浸漬型膜分離装置の技術に係るものである。
【0002】
【従来の技術】
従来、図2に示すように、浸漬型膜分離装置1は、ケーシング2の内部に複数の平板状膜カートリッジ3を膜面を鉛直方向にして、かつ膜面間に一定間隙をおいて(通常6〜10mm)配列し、その下方に散気装置4を配設している。
【0003】
図3に示すように、平板状膜カートリッジ3は樹脂などの剛性を有する濾板3Aの表裏両面に濾過膜3Bを配置し、その周縁部において濾過膜3Bを濾板3Aに接着あるいは溶着し、濾板3Aと濾過膜3Bとの間、および濾板3Aに形成した透過水流路3Cに連通する透過水取出口3Dを濾板3Aに設けている。
【0004】
この浸漬型膜分離装置1は、処理槽5の内部に処理水量に応じた必要台数を設置し、原水を処理槽5に導入するとともに、散気装置4より散気する状態において、槽内の処理対象液を平板状膜カートリッジ3により濾過し、濾過膜を透過した透過水をチューブ6、集水管7を通じて槽外へ導出する。
【0005】
また、図4に示すような、浸漬型膜分離装置11においては、上下が開口した膜ケース12の内部に複数の平板状膜カートリッジ13を鉛直方向に沿って、かつ膜面間に一定間隙をおいて平行に配列することにより膜ケースユニット14を構成し、膜ケースユニット14を上下2段に配置しており、上下の膜ケースユニット14の間には開放空間を形成する間隔ケース15を設けて、上下の膜ケースユニット14を覆って空気の漏れや槽内液の流入を阻止している。下段の膜ケースユニット14の下方には散気装置16を内設した散気ケース17を設け、散気ケース17に処理対象液の流通開口17Aを形成している。
【0006】
上段の膜ケース12および間隔ケース15には、膜カートリッジ13の透過水取出口13Dにチューブ18を介して連通する集水管19,20をそれぞれ設けている。集水管19,20には吸引ポンプ21を有する透過水導出管22を接続し、散気装置16にはブロワ23を接続している。
【0007】
【発明が解決しようとする課題】
ところで、膜ケースユニット14を通過した原水は水分だけが除去されるので、膜ケースユニット14を多段に配置すると原水は上段に流れるのにしたがって汚泥濃度が上昇し、濃度の高まりによって濾過抵抗が大きくなって平板状膜カートリッジ13の間において膜間閉塞を引き起こす問題がある。
【0008】
また、水分量の減少によって原水の流量が減少し、結果として平板状膜カートリッジ13の間を流れる原水のクロスフロー流速が低下し、膜面洗浄効果を低下させる。
【0009】
本発明は上記した課題を解決するものであり、上下に多段に配置した各膜ケースユニットにおいて原水が円滑に流れて、安定した濾過作用を行うことができる多段積み浸漬型膜分離装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る本発明の浸漬型膜分離装置は、上下が開口した膜ケースの内部に複数の平板状膜カートリッジを膜面を鉛直方向にして膜面間に一定間隙をおいて配列することで膜ケースユニットを構成し、複数の膜ケースユニットを多段に配置して処理槽内に浸漬し、上下の膜ケースユニット間に周囲の槽内空間に開口部で連通する開放空間を形成し、最下段の膜ケースユニットの下方に散気装置を配置したものである。
【0011】
上記した構成により、散気装置から噴出する空気によって上向流が生じ、上向流は周囲の槽内混合液を伴って固気液混相流となって最下段の膜ケースユニットに流入し、平板状膜カートリッジの間の流路をクロスフローで流れる間に膜分離される。最下段の膜ケースユニットを通過した固気液混相流は開放空間を通して上方の各膜ケースユニットへ順次に流入し、各膜ケースユニットを通過する間に膜分離される。
【0012】
各膜ケースユニット内を槽内混合液が上昇することで各膜ケースユニット内の圧力が周囲の槽内領域よりも低くなり、開放空間には開口部を通して周囲の槽内混合液が流入する。このため、固気液混相流は、上下の膜ケースユニット間の開放空間を通過する際に、開口部を通して開放空間へ流入する槽内混合液を新たに伴って上方の膜ケースユニットへ流入する。
【0013】
したがって、膜分離作用によって減少した流量を新たに流入する槽内混合液で補うことで、各膜ケースユニットを流れる槽内混合液の流量が変動せず、下方の膜ケースユニットで高まった汚泥濃度を新たに流入する槽内混合液で希釈することができ、各膜ケースユニットの平板状膜カートリッジの間の流路に槽内混合液を安定した汚泥濃度およびクロスフロー流速で通液することができ、十分な膜面洗浄効果を確保して膜間閉塞を防止できる。
【0014】
請求項2に係る本発明の浸漬型膜分離装置は、開口部の上側縁に所定高さのスカート部を設けたものである。
この構成により、上向流が上方の膜ケースユニットへ再流入するのに際して流路断面積の急激な減少によって気泡が外部へ押し出されることをスカート部で抑制することができる。
【0015】
請求項3に係る本発明の浸漬型膜分離装置は、膜ケースユニットの平板状膜カートリッジより下方に所定高さのスカート部を設けたものである。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。先に説明したものと同様の作用を行うものは同一番号を付して説明を省略する。図1において、処理槽24に浸漬した浸漬型膜分離装置11は、上下に多段に配置する各膜ケースユニット14の内部に剛性を有する複数の平板状膜カートリッジ13(厚さ約6mm)を鉛直方向に沿って、かつ膜面間に一定間隙をおいて(通常6〜10mm)平行に配列している。
【0017】
各膜ケースユニット14は中間ケース部25で連結することで上下の膜ケースユニット14の間に周囲の槽内空間に開口部26で連通する開放空間27を形成しており、最下段の膜ケースユニット14の下方に配置した散気ケース17の内部に散気装置16を配置している。開口部26の上側縁には40mm以上の所定高さのスカート部25aを設けている。
【0018】
上下の膜ケースユニット14はフレーム材によって連結することも可能であり、この場合には、膜ケースユニット14の下端縁に平板状膜カートリッジ13より下方へ所定高さのスカート部25aを40〜50mm巾のアングル材等で形成する。
【0019】
以下、上記した構成における作用を説明する。生物処理を行う処理槽24に原水を導入し、散気装置16を通じて散気するとともに、吸引ポンプ21によって吸引圧を負荷する。
【0020】
散気装置16から噴出する空気によって上向流が生じ、この上向流によって処理槽24の内部に循環流が発生し、槽内の活性汚泥を含む槽内混合液が十分に攪拌混合され、効率よい活性汚泥処理が行われる。
【0021】
この上向流は周囲の槽内混合液を伴って固気液混相流となって最下段の膜ケースユニット14に流入し、平板状膜カートリッジ13の間の流路をクロスフローで流れる間に膜分離される。最下段の膜ケースユニット14を通過した固気液混相流は開放空間27を通して上方の各膜ケースユニット14へ順次に流入し、各膜ケースユニット14を通過する間に膜分離される。
【0022】
固気液混相流は、上下の膜ケースユニット14の間の開放空間27を通過する際に、開口部26を通して開放空間へ流入する槽内混合液を新たに伴って膜ケースユニット14へ流入する。
【0023】
このため、膜分離作用によって減少した流量を新たに流入する槽内混合液で補うことで、各膜ケースユニット14を流れる槽内混合液の流量が変動せず、下方の膜ケースユニット14で高まった汚泥濃度を新たに流入する槽内混合液で希釈することができ、各膜ケースユニット14の平板状膜カートリッジ13の間の流路に槽内混合液を安定した汚泥濃度およびクロスフロー流速で通液することができ、十分な膜面洗浄効果を確保して膜間閉塞を防止できる。
【0024】
開口部26の上側縁には所定高さのスカート部25aを設けているので、上向流が上方の膜ケースユニット14へ再流入するのに際して流路断面積の急激な減少によって気泡が外部へ押し出されることを抑制することができる。
【0025】
【発明の効果】
以上のように本発明によれば、固気液混相流は上下の膜ケースユニット間の開放空間を通過する際に開口部を通して開放空間へ流入する槽内混合液を新たに伴って上方の膜ケースユニットへ流入するので、各膜ケースユニットを流れる槽内混合液の流量が変動せず、膜ケースユニットにおける汚泥濃度が平均化でき、各膜ケースユニットの平板状膜カートリッジの間の流路に槽内混合液を安定した汚泥濃度およびクロスフロー流速で通液することができ、十分な膜面洗浄効果を確保して膜間閉塞を防止できる。上向流が上方の膜ケースユニットへ再流入するのに際してはスカート部で気泡が外部へ押し出されることを抑制することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における多段積み浸漬型膜分離装置を示す模式図である。
【図2】従来の膜分離装置の斜視図である。
【図3】同膜分離装置の平板状膜カートリッジの一部破断正面図である。
【図4】従来の多段積み浸漬型膜分離装置を示す模式図である。
【符号の説明】
11 浸漬型膜分離装置
12 膜ケース
13 平板状膜カートリッジ
14 膜ケースユニット
14a スカート部
15 間隔ケース
16 散気装置
17 散気ケース
17A 流通開口
18 チューブ
19、20 集水管
21 吸引ポンプ
22 透過水導出管
23 ブロワ
24 処理槽
25 中間ケース部
25a スカート部
26 開口部
27 開放空間
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a multi-stage submerged membrane separator, and relates to a technology of a submerged membrane separator used for sewage treatment, sludge concentration, and the like.
[0002]
[Prior art]
Conventionally, as shown in FIG. 2, the submerged membrane separation device 1 has a plurality of flat membrane cartridges 3 in a casing 2 with the membrane surfaces in the vertical direction and a constant gap between the membrane surfaces (usually 6 to 10 mm) are arranged, and the diffuser 4 is disposed below them.
[0003]
As shown in FIG. 3, the flat membrane cartridge 3 has filtration membranes 3B disposed on both front and back surfaces of a filter plate 3A having rigidity such as a resin, and the filtration membrane 3B is adhered or welded to the filter plate 3A at the peripheral portion thereof. A permeated water outlet 3D communicating with the permeated water passage 3C formed in the filter plate 3A and between the filter plate 3A and the filter membrane 3B is provided in the filter plate 3A.
[0004]
This submerged membrane separation device 1 is installed in the treatment tank 5 with a necessary number corresponding to the amount of treated water, and in the state where raw water is introduced into the treatment tank 5 and diffused from the diffuser 4, The liquid to be treated is filtered by the flat membrane cartridge 3, and the permeated water that has passed through the filtration membrane is led out of the tank through the tube 6 and the water collection pipe 7.
[0005]
Further, in the submerged membrane separation apparatus 11 as shown in FIG. 4, a plurality of flat membrane cartridges 13 are arranged in the vertical direction inside the membrane case 12 opened up and down, and a constant gap is provided between the membrane surfaces. The membrane case units 14 are configured by arranging them in parallel, and the membrane case units 14 are arranged in two upper and lower stages, and an interval case 15 that forms an open space is provided between the upper and lower membrane case units 14. Thus, the upper and lower membrane case units 14 are covered to prevent air leakage and inflow of liquid in the tank. A diffuser case 17 in which a diffuser 16 is provided is provided below the lower membrane case unit 14, and a circulation opening 17 </ b> A for the liquid to be processed is formed in the diffuser case 17.
[0006]
The upper membrane case 12 and the spacing case 15 are provided with water collecting pipes 19 and 20 that communicate with the permeate outlet 13D of the membrane cartridge 13 via the tube 18, respectively. A permeate discharge pipe 22 having a suction pump 21 is connected to the water collection pipes 19 and 20, and a blower 23 is connected to the air diffuser 16.
[0007]
[Problems to be solved by the invention]
By the way, since only water is removed from the raw water that has passed through the membrane case unit 14, if the membrane case unit 14 is arranged in multiple stages, the sludge concentration increases as the raw water flows to the upper stage, and the filtration resistance increases due to the increase in concentration. Thus, there is a problem of causing a clogging between the flat membrane cartridges 13.
[0008]
Further, the flow rate of the raw water is reduced due to the decrease in the water content, and as a result, the cross flow flow rate of the raw water flowing between the flat membrane cartridges 13 is lowered, and the membrane surface cleaning effect is lowered.
[0009]
The present invention solves the above-described problems, and provides a multi-stage submerged membrane separator that can perform raw filtration smoothly and perform a stable filtering action in each membrane case unit arranged in multiple stages above and below. For the purpose.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the immersion membrane separation apparatus according to the first aspect of the present invention includes a plurality of flat membrane cartridges in a membrane case having upper and lower openings, and a membrane surface between the membrane surfaces in a vertical direction. Membrane case units are configured by arranging them at a certain gap, and a plurality of membrane case units are arranged in multiple stages and immersed in the treatment tank. Between the upper and lower membrane case units, an opening is formed in the surrounding tank interior space. An open space that communicates is formed, and an air diffuser is disposed below the lowermost membrane case unit.
[0011]
With the configuration described above, an upward flow is generated by the air ejected from the diffuser, and the upward flow flows into the lowermost membrane case unit as a solid-gas / liquid mixed phase flow with the surrounding liquid mixture in the tank, The membrane is separated while flowing in the cross flow through the flow path between the flat membrane cartridges. The solid-gas-liquid mixed phase flow that has passed through the lowermost membrane case unit sequentially flows into the upper membrane case units through the open space, and is separated while passing through each membrane case unit.
[0012]
As the liquid mixture in the tank rises in each membrane case unit, the pressure in each film case unit becomes lower than the area in the surrounding tank, and the liquid mixture in the surrounding tank flows into the open space through the opening. For this reason, when the solid-gas-liquid mixed phase flow passes through the open space between the upper and lower membrane case units, the in-tank mixed solution flowing into the open space through the opening newly flows into the upper membrane case unit. .
[0013]
Therefore, the flow rate of the mixed liquid in the tank flowing through each membrane case unit does not fluctuate by supplementing the flow rate decreased by the membrane separation action with the newly flowing in- tank mixed liquid, and the sludge concentration increased in the lower membrane case unit. Can be diluted with the newly introduced in-tank mixture, and the in-tank mixture can be passed through the flow path between the flat membrane cartridges of each membrane case unit at a stable sludge concentration and cross-flow flow rate. It is possible to secure a sufficient film surface cleaning effect and prevent clogging between the films.
[0014]
The submerged membrane separation apparatus of the present invention according to claim 2 is provided with a skirt portion having a predetermined height on the upper edge of the opening.
With this configuration, when the upward flow re-enters the upper membrane case unit, it is possible to suppress the air bubbles from being pushed out by the skirt portion due to a rapid decrease in the flow path cross-sectional area.
[0015]
According to a third aspect of the present invention, there is provided a submerged membrane separation apparatus in which a skirt portion having a predetermined height is provided below a flat membrane cartridge of a membrane case unit.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Components that perform the same operations as those described above are denoted by the same reference numerals and description thereof is omitted. In FIG. 1, a submerged membrane separation device 11 immersed in a treatment tank 24 vertically places a plurality of plate-like membrane cartridges 13 (thickness: about 6 mm) having rigidity inside each membrane case unit 14 arranged in multiple stages. They are arranged in parallel along the direction and with a certain gap between the film surfaces (usually 6 to 10 mm).
[0017]
Each membrane case unit 14 is connected by an intermediate case portion 25 so as to form an open space 27 communicating with the opening 26 in the surrounding tank space between the upper and lower membrane case units 14. An air diffuser 16 is disposed inside an air diffuser case 17 disposed below the unit 14. A skirt portion 25 a having a predetermined height of 40 mm or more is provided on the upper edge of the opening 26.
[0018]
The upper and lower membrane case units 14 can also be connected by a frame material. In this case, a skirt portion 25a having a predetermined height is formed on the lower end edge of the membrane case unit 14 below the flat membrane cartridge 13 by 40 to 50 mm. It is made of a wide angle material.
[0019]
Hereinafter, the operation of the above-described configuration will be described. Raw water is introduced into the treatment tank 24 for performing biological treatment, diffused through the air diffuser 16, and suction pressure is applied by the suction pump 21.
[0020]
An upward flow is generated by the air ejected from the air diffuser 16, a circulating flow is generated inside the processing tank 24 by this upward flow, and the mixed liquid in the tank containing the activated sludge in the tank is sufficiently stirred and mixed. Efficient activated sludge treatment is performed.
[0021]
This upward flow becomes a solid-gas / liquid mixed phase flow along with the surrounding liquid mixture in the tank and flows into the lowermost membrane case unit 14 while flowing through the flow path between the flat membrane cartridges 13 by cross flow. The membrane is separated. The solid-gas-liquid mixed phase flow that has passed through the lowermost membrane case unit 14 sequentially flows into the upper membrane case units 14 through the open spaces 27 and is separated into membranes while passing through the membrane case units 14.
[0022]
When the solid-gas-liquid mixed phase flow passes through the open space 27 between the upper and lower membrane case units 14, the in-tank mixed solution flowing into the open space through the opening 26 newly flows into the membrane case unit 14. .
[0023]
For this reason, by supplementing the flow rate decreased by the membrane separation action with the newly introduced in-vessel mixture, the flow rate of the in-vessel mixture flowing through each membrane case unit 14 does not fluctuate and increases at the lower membrane case unit 14. The sludge concentration can be diluted with a newly introduced in-tank mixture, and the in-tank mixture can be diluted with a stable sludge concentration and a crossflow flow rate in the flow path between the flat membrane cartridges 13 of each membrane case unit 14. The liquid can be passed through, and a sufficient membrane surface cleaning effect can be secured to prevent clogging between the membranes.
[0024]
Since the skirt portion 25a having a predetermined height is provided on the upper edge of the opening 26, when the upward flow re-enters the upper membrane case unit 14, air bubbles are discharged to the outside due to a sudden decrease in the cross-sectional area of the flow path. Extrusion can be suppressed.
[0025]
【The invention's effect】
As described above, according to the present invention, the solid-gas-liquid mixed phase flow causes the upper membrane to be newly accompanied by the in-tank mixture flowing into the open space through the opening when passing through the open space between the upper and lower membrane case units. Since it flows into the case unit, the flow rate of the mixed liquid in the tank flowing through each membrane case unit does not fluctuate, the sludge concentration in the membrane case unit can be averaged, and the flow path between the flat membrane cartridges of each membrane case unit The liquid mixture in the tank can be passed at a stable sludge concentration and a cross flow rate, and a sufficient membrane surface cleaning effect can be secured to prevent clogging between the membranes. When the upward flow flows back into the upper membrane case unit, it is possible to suppress the bubbles from being pushed out to the outside by the skirt portion.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a multi-stage stacked immersion type membrane separation apparatus according to an embodiment of the present invention.
FIG. 2 is a perspective view of a conventional membrane separation apparatus.
FIG. 3 is a partially broken front view of the flat membrane cartridge of the membrane separation apparatus.
FIG. 4 is a schematic view showing a conventional multi-stage submerged membrane separation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Submerged membrane separator 12 Membrane case 13 Flat membrane cartridge 14 Membrane case unit 14a Skirt part 15 Space | interval case 16 Air diffuser 17 Air diffuser case 17A Flow opening 18 Tube 19, 20 Water collecting pipe 21 Suction pump 22 Permeated water outlet pipe 23 Blower 24 Treatment tank 25 Intermediate case part 25a Skirt part 26 Opening part 27 Open space

Claims (3)

上下が開口した膜ケースの内部に複数の平板状膜カートリッジを膜面を鉛直方向にして膜面間に一定間隙をおいて配列することで膜ケースユニットを構成し、複数の膜ケースユニットを多段に配置して処理槽内に浸漬し、上下の膜ケースユニット間に周囲の槽内空間に開口部で連通する開放空間を形成し、最下段の膜ケースユニットの下方に散気装置を配置したことを特徴とする多段積み浸漬型膜分離装置。A membrane case unit is constructed by arranging a plurality of flat membrane cartridges inside a membrane case opened at the top and bottom with the membrane surface in the vertical direction and a fixed gap between the membrane surfaces. Placed in the treatment tank, forming an open space communicating with the opening in the surrounding tank space between the upper and lower membrane case units, and an air diffuser was placed below the lowermost membrane case unit A multi-stage submerged membrane separator characterized by that. 開口部の上側縁に所定高さのスカート部を設けたことを特徴とする請求項1に記載の多段積み浸漬型膜分離装置。The multistage stacked immersion type membrane separation apparatus according to claim 1, wherein a skirt portion having a predetermined height is provided on an upper edge of the opening. 膜ケースユニットの平板状膜カートリッジより下方に所定高さのスカート部を設けたことを特徴とする請求項1に記載の多段積み浸漬型膜分離装置。The multi-stage stacked immersion type membrane separation apparatus according to claim 1, wherein a skirt portion having a predetermined height is provided below the flat membrane cartridge of the membrane case unit.
JP2001266588A 2000-12-04 2001-09-04 Multi-stage submerged membrane separator Expired - Lifetime JP4107819B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001266588A JP4107819B2 (en) 2001-09-04 2001-09-04 Multi-stage submerged membrane separator
KR20027010016A KR100768841B1 (en) 2000-12-04 2001-11-30 Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
US10/182,636 US6843908B2 (en) 2000-12-04 2001-11-30 Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
CNB018044522A CN1241676C (en) 2000-12-04 2001-11-30 Multistage immersion type membrane separator and high-conentration wastewater treatment facility using same
CA 2398461 CA2398461C (en) 2000-12-04 2001-11-30 Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
PCT/JP2001/010524 WO2002045827A1 (en) 2000-12-04 2001-11-30 Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
EP20010999419 EP1341597A1 (en) 2000-12-04 2001-11-30 Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
AU18521/02A AU781443B2 (en) 2000-12-04 2001-11-30 Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266588A JP4107819B2 (en) 2001-09-04 2001-09-04 Multi-stage submerged membrane separator

Publications (2)

Publication Number Publication Date
JP2003071257A JP2003071257A (en) 2003-03-11
JP4107819B2 true JP4107819B2 (en) 2008-06-25

Family

ID=19092851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266588A Expired - Lifetime JP4107819B2 (en) 2000-12-04 2001-09-04 Multi-stage submerged membrane separator

Country Status (1)

Country Link
JP (1) JP4107819B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614188B2 (en) * 2007-05-15 2011-01-19 株式会社日立プラントテクノロジー Immersion flat membrane filtration device
KR100885513B1 (en) * 2007-06-01 2009-02-26 주식회사 퓨어엔비텍 A filtration membrane module guide for multistory filtration membrane module in foul or waste water disposal device
KR101448709B1 (en) 2009-10-26 2014-10-13 메이덴샤 코포레이션 Membrane module, membrane unit, and membrane separation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536610B2 (en) * 1997-08-25 2004-06-14 栗田工業株式会社 Immersion type membrane filtration device
JP2000271452A (en) * 1999-03-24 2000-10-03 Kubota Corp Structure of space case in multistage stack immersion type membrane separator

Also Published As

Publication number Publication date
JP2003071257A (en) 2003-03-11

Similar Documents

Publication Publication Date Title
US5006230A (en) Dual-action aquarium filter
JP2599767Y2 (en) Filtration device for undiluted solution by internal pressure type filtration membrane
JP2008229628A (en) Water treatment apparatus and water treatment method
WO2001000307A2 (en) Self cleaning filter
JP2010075850A (en) Membrane cartridge
US20110263009A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP2007061787A (en) Separation membrane module, water treatment apparatus and water treatment method using the apparatus
JP4107819B2 (en) Multi-stage submerged membrane separator
JP4439149B2 (en) Submerged membrane separation activated sludge treatment equipment
JP2002011469A (en) Immersed flat membrane separation device
JPH09141066A (en) Dipping type membrane separator
JP3659833B2 (en) Operation method of multi-stage submerged membrane separator
JPH0720592B2 (en) Activated sludge treatment equipment
JP5361310B2 (en) Membrane cartridge
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JP3667131B2 (en) Immersion membrane separator
JP2935252B2 (en) Solid-liquid separator
JPH0822371B2 (en) Membrane filtration device
JP2000084554A (en) Method for operating water treating apparatus having membrane separator
JP2000271452A (en) Structure of space case in multistage stack immersion type membrane separator
JP2002361051A (en) Membrane cartridge
JPH07275668A (en) Membrane separation device
CN113562811B (en) Membrane filtration system and method of operating the same
JPS5976508A (en) Filtering device
JP4498188B2 (en) Membrane separation tank for methane fermentation treatment and method for operating the membrane separation tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

EXPY Cancellation because of completion of term