JP4614188B2 - Immersion flat membrane filtration device - Google Patents

Immersion flat membrane filtration device Download PDF

Info

Publication number
JP4614188B2
JP4614188B2 JP2007129416A JP2007129416A JP4614188B2 JP 4614188 B2 JP4614188 B2 JP 4614188B2 JP 2007129416 A JP2007129416 A JP 2007129416A JP 2007129416 A JP2007129416 A JP 2007129416A JP 4614188 B2 JP4614188 B2 JP 4614188B2
Authority
JP
Japan
Prior art keywords
membrane
water
cylindrical spacer
treated
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007129416A
Other languages
Japanese (ja)
Other versions
JP2008284422A (en
Inventor
慎一 吉川
康記 関根
一彦 能登
那夫紀 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007129416A priority Critical patent/JP4614188B2/en
Publication of JP2008284422A publication Critical patent/JP2008284422A/en
Application granted granted Critical
Publication of JP4614188B2 publication Critical patent/JP4614188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、浸漬平膜ろ過装置に係り、特に下水及び工業廃水などの被処理水を満たした処理槽に浸漬配置され、処理後の被処理水をろ過処理する浸漬平膜ろ過装置に関する。   The present invention relates to an immersion flat membrane filtration device, and more particularly to an immersion flat membrane filtration device that is immersed in a treatment tank filled with water to be treated such as sewage and industrial wastewater, and filters the treated water after treatment.

下水及び工業廃水において有機成分を含む廃水を微生物で分解する活性汚泥処理が一般に用いられている。この活性汚泥処理の一方法として膜分離活性汚泥法があり、膜分離活性汚泥法では、反応処理後の被処理水と活性汚泥とを膜分離するため浸漬平膜ろ過装置を用いている。また、活性汚泥を用いず固液分離により処理する際も、固液分離手段として浸漬平膜を用いる浸漬平膜ろ過装置が用いられている。浸漬平膜ろ過装置は、特許文献1,2で開示されているように、被処理水で満たされた処理槽内に複数の膜エレメントが浸漬した状態で並列配置され、各膜エレメントを内部から被処理水を吸引することによりろ過水が得られる。各膜エレメントは処理槽内に所定の間隔を持って垂直に設置されており、その下方には、散気を行なうための散気手段が設けられる。散気を行う目的としては、(1)膜面に堆積する汚泥ケーキなどの固形物を除去して膜の閉塞を抑制する洗浄効果を得ること、(2)処理槽内に旋回流を起こして膜表面近傍に水流を与えるとともに処理槽内を攪拌すること、(3)処理槽内の被処理水が活性汚泥等の微生物を含有している場合は、好気処理のための酸素供給を行うこと、などである。これにより膜エレメントによるろ過処理を効率良く行うことができる。   In sludge and industrial wastewater, activated sludge treatment is generally used in which wastewater containing organic components is decomposed by microorganisms. As one method of this activated sludge treatment, there is a membrane separation activated sludge method. In the membrane separation activated sludge method, a submerged flat membrane filtration apparatus is used for membrane separation of water to be treated and activated sludge after reaction treatment. Moreover, also when processing by solid-liquid separation without using activated sludge, the immersion flat membrane filtration apparatus which uses an immersion flat membrane as a solid-liquid separation means is used. As disclosed in Patent Documents 1 and 2, the immersion flat membrane filtration device is arranged in parallel in a state where a plurality of membrane elements are immersed in a treatment tank filled with water to be treated, and each membrane element is disposed from the inside. Filtration water is obtained by sucking the water to be treated. Each membrane element is vertically installed in the processing tank with a predetermined interval, and below that, an aeration means for aeration is provided. For the purpose of aeration, (1) to obtain a cleaning effect that suppresses clogging of the membrane by removing solid matter such as sludge cake deposited on the membrane surface, (2) to cause a swirling flow in the treatment tank (3) When the water to be treated in the treatment tank contains microorganisms such as activated sludge, supply oxygen for aerobic treatment. And so on. Thereby, the filtration process by a membrane element can be performed efficiently.

上記従来の浸漬平膜ろ過装置では、膜のろ過性能を維持するための空気散気の動力費が大きいという問題があった。これを解決するため、膜エレメントを槽内の上下に積層してフレームで支持し、下方に配置した散気手段より空気をまず下段の膜エレメントに供給し、ついで下段で使用した空気を上段の膜エレメントでも使用できるようにした装置が特許文献3に開示されている。これにより膜モジュール当たり使用する空気量を大幅に削減することができる。また、上下の膜エレメントの間に筒状のスペーサを設け、下段で使用した散気空気が膜エレメントの外部に逃げることなく、上段の膜エレメントに利用できるようにした構造が特許文献4に開示されている。
特開2001−162141号公報 特開2000−237551号公報 特開平8−57269号公報 特開平11−57426号公報
The conventional immersion flat membrane filtration device has a problem that the power cost of air diffusing for maintaining the filtration performance of the membrane is large. In order to solve this problem, the membrane elements are stacked on the top and bottom of the tank and supported by the frame. Air is first supplied to the lower membrane element from the diffuser disposed below, and then the air used in the lower stage is supplied to the upper stage. An apparatus that can be used with a membrane element is disclosed in Patent Document 3. As a result, the amount of air used per membrane module can be greatly reduced. Also, Patent Document 4 discloses a structure in which a cylindrical spacer is provided between the upper and lower membrane elements so that the diffused air used in the lower stage can be used for the upper membrane element without escaping to the outside of the membrane element. Has been.
JP 2001-162141 A JP 2000-237551 A JP-A-8-57269 JP-A-11-57426

しかしながら、特許文献3,4に示すような上下多段の膜エレメントの場合、まず下段の膜モジュールで被処理水のろ過が行なわれるが、散気空気とともにろ過分離後の汚泥およびろ過分離されなかった被処理水が上段の膜エレメントに供給され、それによって、上段の膜モジュールでろ過する被処理水は下段の膜モジュールに比べて被処理水中の汚泥量が増加、すなわち被処理水が濃縮されていることになるため、上段の膜モジュールほど濃度の高い被処理水をろ過することとなり、汚泥による汚染が進行し易く、上下の膜モジュール間で膜の汚れ方に差が生じ、このため上段の膜エレメント/モジュールほど被処理水のろ過性能が低下してしまうという問題があった。   However, in the case of the upper and lower multistage membrane elements as shown in Patent Documents 3 and 4, first, the water to be treated is filtered by the lower membrane module, but the sludge after filtration and separation along with the diffused air was not separated. The treated water is supplied to the upper membrane element, so that the treated water filtered by the upper membrane module has an increased amount of sludge in the treated water compared to the lower membrane module, that is, the treated water is concentrated. Therefore, the higher the membrane module in the upper stage, the higher the concentration of the water to be treated, and the contamination by the sludge tends to proceed, and there is a difference in how the membrane is soiled between the upper and lower membrane modules. The membrane element / module has a problem that the filtration performance of the water to be treated decreases.

そこで本発明は、上記従来技術の問題点を解決するため、筒状スペーサ内の被処理水の濃縮を低減することを目的としている。また本発明は浸漬平膜ろ過装置全体としての膜ろ過性能の低下を防止することを目的としている。   In view of the above, an object of the present invention is to reduce the concentration of water to be treated in a cylindrical spacer in order to solve the above-described problems of the prior art. Moreover, this invention aims at preventing the fall of the membrane filtration performance as the whole immersion flat membrane filtration apparatus.

本発明の浸漬平膜ろ過装置は、処理槽内の被処理水を膜ろ過する複数の膜エレメントを前記処理槽内に垂直に並列配置させるとともに、前記処理槽内の上下方向に複数積層配置し、上下の前記膜エレメント間の隙間を囲む筒状スペーサを備えた浸漬平膜ろ過装置において、 前記膜エレメントの膜平面と交差する側の前記筒状スペーサの側面に、前記処理槽から前記筒状スペーサの内側へ前記被処理水を取り込む通水孔を設け、前記通水孔は前記筒状スペーサの側面の半分より上方のみに配置してあることを特徴としている。 The immersion flat membrane filtration device of the present invention has a plurality of membrane elements for membrane filtration of water to be treated in a treatment tank arranged in parallel vertically in the treatment tank and a plurality of layers arranged in the vertical direction in the treatment tank. In the submerged flat membrane filtration device provided with a cylindrical spacer surrounding the gap between the upper and lower membrane elements, the cylindrical shape extends from the treatment tank to the side of the cylindrical spacer on the side intersecting the membrane plane of the membrane element. A water passage hole for taking in the water to be treated is provided inside the spacer, and the water passage hole is arranged only above half of the side surface of the cylindrical spacer.

この場合において、前記通水孔を設けた前記筒状スペーサの側面面積に対する前記通水孔の開口面積の比率が1%〜30%であるのが好ましい。
さらに前記通水孔の上部には前記筒状スペーサの側面から外側下方に傾斜させた庇を設けてもよい。また前記庇の下方であって、前記膜エレメントの側面に補助散気手段を設けてもよい。
In this case, the ratio of the opening area of the water flow hole for a side area of the cylindrical spacer provided with the water flow hole is preferably 1% to 30%.
Further, a ridge that is inclined outwardly and downwardly from the side surface of the cylindrical spacer may be provided at the upper portion of the water passage hole. An auxiliary air diffuser may be provided on the side surface of the membrane element below the ridge.

本発明によれば、上段及び下段の膜エレメントの間に設置された筒状スペーサの一部に、筒状スペーサ外部から内部へ被処理水を取り込むための通水孔を設けている。このため浸漬平膜ろ過装置の膜モジュールを上下に多段に積層して設置しても、下段膜モジュールによって濃縮された被処理水を希釈して、上段の膜モジュールがろ過する被処理水の濃縮を低減できる。よって浸漬平膜ろ過装置全体としての膜ろ過性能の低下を防止できる。   According to the present invention, a water passage hole for taking in water to be treated from the outside to the inside of the cylindrical spacer is provided in a part of the cylindrical spacer installed between the upper and lower membrane elements. For this reason, even if the membrane modules of the submerged flat membrane filtration device are stacked in multiple stages, the treated water concentrated by the lower membrane module is diluted and the treated water filtered by the upper membrane module is concentrated. Can be reduced. Therefore, the fall of the membrane filtration performance as the whole immersion flat membrane filtration apparatus can be prevented.

筒状スペーサの側面の半分より上方に通水孔を設けていることにより、通水孔から流入した被処理水の流れにより散気手段から均一に上昇してきた散気空気を乱すことなく上段膜モジュールに供給することができる。さらに下段膜モジュールを通過した散気空気が通気孔を介して筒状スペーサ外部に漏れることがない。よって効果的に上段の膜モジュールに散気空気を提供することができる。 By providing the water passage hole above half of the side surface of the cylindrical spacer, the upper membrane without disturbing the diffused air that has risen uniformly from the air diffuser due to the flow of water to be treated flowing from the water passage hole Can be supplied to the module. Further, the diffused air that has passed through the lower membrane module does not leak outside the cylindrical spacer through the vent hole. Therefore, aeration air can be effectively provided to the upper membrane module.

通水孔の開口率を1%〜30%とし、この開口率は下段膜モジュールによって濃縮された被処理水を希釈できる量、例えば下段膜モジュールで集水した処理水に相当する量の被処理水がスペーサ内へ供給できるように設定している。このため下段膜モジュールによって膜ろ過されず濃縮された被処理水を効果的に希釈できる。また上記開口率によれば通水孔から筒状スペーサ外部の被処理水が内部へ流れ込んでも散気手段により均一に散気された散気空気の流れが乱されることがなく、上段膜モジュールに散気空気を均一に供給できる。 The opening ratio of the water passage hole is 1% to 30%, and this opening ratio is an amount capable of diluting the water to be treated concentrated by the lower membrane module, for example, an amount equivalent to the treated water collected by the lower membrane module It is set so that water can be supplied into the spacer. For this reason, the to-be-processed water concentrated without being membrane-filtered by the lower-stage membrane module can be diluted effectively. Further, according to the opening ratio, even if the water to be treated outside the cylindrical spacer flows into the inside from the water passage hole, the flow of the diffused air uniformly diffused by the diffuser means is not disturbed, and the upper membrane module Aeration air can be supplied uniformly.

通水孔の上部に前記筒状スペーサの側面から外側下方に傾斜させた庇を設けている。このため下段膜モジュールの外側側面を沿って上昇する散気空気を通水孔から筒状スペーサ内へ取り込み、上段膜モジュールへ供給する散気空気量を増加させて膜モジュールの洗浄効果を高めることができる。 A trough that is inclined outward and downward from the side surface of the cylindrical spacer is provided at the upper part of the water passage hole . For this reason, air diffused air rising along the outer side surface of the lower membrane module is taken into the cylindrical spacer from the water hole, and the amount of air diffused supplied to the upper membrane module is increased to enhance the cleaning effect of the membrane module. Can do.

開口部上部に庇を設けた構成に加え、庇の下方であって、膜エレメントすなわち下段膜モジュールの側面に補助散気手段を設けている。このため、通気孔から筒状スペーサ内部に供給する散気空気量を増加でき、上段膜エレメントの洗浄効果をさらに高めることができる。 In addition to the configuration in which a ridge is provided in the upper portion of the opening , auxiliary air diffusion means is provided below the ridge and on the side surface of the membrane element, that is, the lower membrane module. For this reason, the amount of diffused air supplied from the vent hole to the inside of the cylindrical spacer can be increased, and the cleaning effect of the upper membrane element can be further enhanced.

上下の前記膜エレメント間の隙間を囲むとともに、前記膜エレメントの膜平面と交差する側の側面を上方から下方に向かってテーパ状に拡径させた筒状スペーサを設けている。このため筒状スペーサ外の被処理水を下段膜モジュールの側面に沿って筒状スペーサ内に上向に流入できる。よって筒状スペーサ内の被処理水を希釈できるとともに、下段膜モジュールを通過した散気空気を乱すことなく均一に分布させたまま上段膜モジュールに供給できる。 It surrounds the gap between the membrane elements of the upper and lower, are provided a cylindrical spacer is expanded in a tapered shape toward the lower side of the side intersecting the film plane of the membrane element from above. For this reason, the water to be treated outside the cylindrical spacer can flow upward into the cylindrical spacer along the side surface of the lower membrane module. Therefore, the water to be treated in the cylindrical spacer can be diluted and supplied to the upper membrane module while being uniformly distributed without disturbing the diffused air that has passed through the lower membrane module.

以下添付図面に従って、本発明に係る浸漬平膜ろ過装置の好ましい実施の形態について説明する。
図1は本発明の浸漬平膜ろ過装置の構成概略を示す図である。同図(1)は(2)矢印B方向の浸漬平膜ろ過装置の断面図を示し、同図(2)は斜視図をそれぞれ示している。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an immersion flat membrane filtration device according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of an immersion flat membrane filtration device of the present invention. FIG. 1A shows a sectional view of the submerged flat membrane filtration apparatus in the direction of arrow B, and FIG. 2B shows a perspective view.

本発明の浸漬平膜ろ過装置10は、下水及び工業廃水などの被処理水を満たした処理槽に浸漬配置され、複数の膜エレメント14を備えている。
膜エレメント14は平板状の濾膜であり、複数枚の膜エレメント14の濾膜面を互いに平行となるように所定間隔を開けて並列に配置して膜モジュール16を形成している。
The immersion flat membrane filtration device 10 of the present invention is immersed in a treatment tank filled with water to be treated such as sewage and industrial wastewater, and includes a plurality of membrane elements 14.
The membrane element 14 is a flat filter membrane, and the membrane modules 16 are formed by arranging the membrane surfaces of the plurality of membrane elements 14 in parallel at predetermined intervals so as to be parallel to each other.

本発明の浸漬平膜ろ過装置10は、前記膜モジュール16を処理槽の上下方向に積層(段積み)させて上段膜モジュール16a及び下段膜モジュール16bの多段形成としている。   In the submerged flat membrane filtration apparatus 10 of the present invention, the membrane modules 16 are stacked (stacked) in the vertical direction of the treatment tank to form a multistage formation of an upper membrane module 16a and a lower membrane module 16b.

また下段膜モジュール16bの下方には散気手段20を配置している。散気手段20は並列配置した膜エレメント14と同様に膜エレメント14の下方に沿って、複数の散気管を並列に直線上に配置している。散気手段20は、膜モジュール16に洗浄用の空気を供給し、膜表面に汚泥などの固形物が付着して閉塞するのを防止している。また散気手段20は散気空気量を任意に調整可能に構成することもできる。   Further, an air diffuser 20 is disposed below the lower membrane module 16b. The diffuser means 20 has a plurality of diffuser tubes arranged in parallel on a straight line along the lower side of the membrane element 14 like the membrane elements 14 arranged in parallel. The air diffuser 20 supplies cleaning air to the membrane module 16 to prevent solid matter such as sludge from adhering to the membrane surface and blocking it. Further, the air diffuser 20 can be configured so that the amount of air diffused can be arbitrarily adjusted.

浸漬平膜ろ過装置10内の上下方向に積層して配置された膜モジュール16の間には、筒状スペーサ30が設置されている。筒状スペーサ30は下段膜モジュール16bと上段膜モジュール16aを予め設定した所定間隔を離間させたスペースである。   A cylindrical spacer 30 is installed between the membrane modules 16 arranged in the vertical direction in the submerged flat membrane filtration device 10. The cylindrical spacer 30 is a space in which the lower membrane module 16b and the upper membrane module 16a are separated by a predetermined interval.

筒状スペーサ30には、通水孔40を設けている。通水孔40は図1(1)に示すように膜モジュール16の一対の側面、すなわち平板状の膜エレメント14の膜平面と交差する側(矢印A)に面する筒状スペーサ30の側面に形成している。通水孔40は処理槽内の被処理水を筒状スペーサ30内に供給可能な開口である。   The cylindrical spacer 30 is provided with a water passage hole 40. As shown in FIG. 1 (1), the water passage holes 40 are formed on a pair of side surfaces of the membrane module 16, that is, on the side surfaces of the cylindrical spacer 30 facing the side (arrow A) intersecting the membrane plane of the flat membrane element 14. Forming. The water passage hole 40 is an opening through which water to be treated in the treatment tank can be supplied into the cylindrical spacer 30.

上記構成による浸漬平膜ろ過装置の作用について以下説明する。
処理槽において活性汚泥により生物処理された、又は凝集処理された被処理水は、処理槽内に浸漬配置された浸漬平膜ろ過装置10の散気手段20が供給する散気空気によるエアリフトにより下段膜モジュール16bの下面から流入する。すなわち被処理水は下段膜モジュール16bの複数の膜エレメント14bの間から上向流となり下段膜モジュール16b間を流れる。このとき膜エレメント14bによりろ過分離が行われ活性汚泥などの被処理水と分離して処理水を得る。処理水は膜エレメントの上部に設けた図示しない集水管を介して反応槽外へ排出される。一方、下段膜モジュール16bを通過した活性汚泥などのろ過分離されなかった被処理水は下段膜モジュール16bの上部に形成した筒状スペーサ30に流入する。
The operation of the submerged flat membrane filtration device having the above configuration will be described below.
Water to be treated that has been biologically treated or coagulated with activated sludge in the treatment tank is subjected to a lower stage by air lift by aeration air supplied by the aeration means 20 of the submerged flat membrane filtration device 10 disposed in the treatment tank. It flows from the lower surface of the membrane module 16b. That is, the water to be treated flows upward between the plurality of membrane elements 14b of the lower membrane module 16b and flows between the lower membrane modules 16b. At this time, filtration separation is performed by the membrane element 14b, and it is separated from water to be treated such as activated sludge to obtain treated water. The treated water is discharged out of the reaction tank through a water collecting pipe (not shown) provided at the upper part of the membrane element. On the other hand, the water to be treated that has not been filtered and separated, such as activated sludge that has passed through the lower membrane module 16b, flows into a cylindrical spacer 30 formed on the upper portion of the lower membrane module 16b.

筒状スペーサ30の側面すなわち、平板状の膜エレメント14の膜平面と交差する側には通水孔40を開口してあり、この通水孔40から筒状スペーサ30外の被処理水が筒状スペーサ30内部へ流入する。このため下段膜モジュール16bのろ過分離によって濃縮された被処理水を上段膜モジュール16aへ到達する前に希釈することができる。   A water passage hole 40 is opened on the side surface of the cylindrical spacer 30, that is, the side intersecting the membrane plane of the flat membrane element 14, and water to be treated outside the cylindrical spacer 30 passes through the water passage hole 40. Flows into the inner spacer 30. For this reason, the to-be-processed water concentrated by the filtration separation of the lower stage membrane module 16b can be diluted before reaching the upper stage membrane module 16a.

ところで散気手段20による散気空気は、背景技術で示したように散気を行う目的、一例として膜エレメントを効果的に洗浄するため、均一に分散させて膜モジュール16へ供給する必要がある。よって通水孔40から被処理水を筒状スペーサ30内へ供給するにはこの点も考慮しなければならない。以下本実施形態では通水孔の取り付け位置を膜エレメント間の通水量と、散気空気の流れの様子の観点から説明する。   By the way, the air diffused by the air diffuser 20 needs to be uniformly dispersed and supplied to the membrane module 16 in order to effectively wash the membrane element, for example, as shown in the background art. . Therefore, in order to supply the water to be treated from the water passage hole 40 into the cylindrical spacer 30, this point must be taken into consideration. Hereinafter, in this embodiment, the attachment position of the water passage holes will be described from the viewpoint of the amount of water flow between the membrane elements and the state of the flow of the diffused air.

図2は膜エレメント間を通過する散気空気の通気量の説明図である。膜モジュールを構成する複数の膜エレメントは、膜面を互いに平行となるように所定間隔を開けて並列に配置して処理槽に浸漬している。このとき膜エレメントの両縁部は散気空気があたりにくく、膜エレメントの中央部に比べてこの部分の汚染が比較的進行し易い。   FIG. 2 is an explanatory diagram of the amount of aeration air passing between the membrane elements. The plurality of membrane elements constituting the membrane module are immersed in the treatment tank with the membrane surfaces arranged in parallel at predetermined intervals so as to be parallel to each other. At this time, air diffused air is difficult to hit at both edges of the membrane element, and contamination of this portion is relatively easy to proceed as compared with the central portion of the membrane element.

そこで筒状スペーサ30の側面に対して上部開口、下部開口、上下両方開口、開口なしの4つのケースを設定し、同図(1)に示すように膜モジュール16を構成する膜エレメント14間であって縁部領域1〜9の散気空気の通気量を測定した。   Therefore, four cases of upper opening, lower opening, both upper and lower openings, and no opening are set on the side surface of the cylindrical spacer 30, and between the membrane elements 14 constituting the membrane module 16 as shown in FIG. Thus, the amount of air diffused in the edge regions 1 to 9 was measured.

図2(2)は膜エレメントの縁部の通気量を示すグラフである。同グラフは縦軸:通気量(L/min)、横軸:縁部領域1〜9をそれぞれ示している。
まず通水孔を設けない開口なしの筒状スペーサの膜エレメント管の通気量は、曲線aで示すように縁部領域1,9を除き通気量0.4〜0.6(L/min)の範囲であり、上端領域全域において略均一に散気空気が供給されている。これは開口(通水孔)からの被処理水の流入による影響がなく、下段膜モジュールからの散気空気が略均一に上段膜モジュールに流入するためと考えられる。
FIG. 2 (2) is a graph showing the air flow rate at the edge of the membrane element. The graph shows the vertical axis: air flow rate (L / min) and the horizontal axis: edge regions 1 to 9, respectively.
First, the air flow rate of the membrane element tube of the cylindrical spacer without an opening provided with no water flow hole is 0.4 to 0.6 (L / min), except for the edge regions 1 and 9, as shown by the curve a. The diffused air is supplied substantially uniformly over the entire upper end region. This is presumably because the diffused air from the lower membrane module flows almost uniformly into the upper membrane module without being affected by the inflow of water to be treated from the opening (water passage hole).

次に上下両方開口及び下部開口の筒状スペーサをそれぞれ曲線b,曲線cに示す。図示のように縁部領域1〜9のいずれも通気量は0.3(L/min)以下であり、膜エレメントの縁部領域を通過する散気空気の通気量が開口なしと比べて著しく減少しているのがわかる。   Next, the cylindrical spacers of both the upper and lower openings and the lower opening are shown by curves b and c, respectively. As shown in the figure, the air flow rate of each of the edge regions 1 to 9 is 0.3 (L / min) or less, and the air flow rate of the diffused air passing through the edge region of the membrane element is significantly higher than that without the opening. You can see that it is decreasing.

ここで下部開口の散気空気の流れの様子について図3の浸漬平膜ろ過装置の筒状スペーサの部分拡大図を用いて説明する。同図(1)は筒状スペーサの下部に開口した通水孔の散気空気の流れを示している。筒状スペーサ30の下部に通水孔40を開口した場合、通水孔40から矢印bに示すように被処理水が筒状スペーサ30内に流入する。このとき被処理水が通水孔40を通過する際、筒状スペーサ30の側面に対して交差する方向から流入する。流入した被処理水は下段膜モジュール16bを通過した散気空気の流れを矢印cに示すようにスペーサ中央に押し込むとともに、筒状スペーサ30の上方のスペースにおいて渦流を形成する。そうすると、下段膜モジュール16bを通過した散気空気はスペーサ中央に集中してしまい、上段膜モジュール16aの下端dに示す領域に散気空気が流れなくなり、下端dのろ過分離において活性汚泥が付着し易くなる。このように散気空気の分散に偏りが生じてしまい、膜エレメントの縁部よりも中央部に散気空気が集中して通過し、両縁部における散気空気の通気量が減少するものと考えられる。   Here, the flow state of the diffused air in the lower opening will be described with reference to a partially enlarged view of the cylindrical spacer of the submerged flat membrane filtration device of FIG. FIG. 1A shows the flow of diffused air in a water passage hole opened at the bottom of the cylindrical spacer. When the water passage hole 40 is opened at the lower part of the cylindrical spacer 30, the water to be treated flows into the cylindrical spacer 30 from the water passage hole 40 as indicated by an arrow b. At this time, when the water to be treated passes through the water passage hole 40, the water to be treated flows from the direction intersecting the side surface of the cylindrical spacer 30. The treated water that has flowed in pushes the flow of diffused air that has passed through the lower membrane module 16 b into the center of the spacer as indicated by the arrow c, and forms a vortex in the space above the cylindrical spacer 30. Then, the diffused air that has passed through the lower membrane module 16b is concentrated in the center of the spacer, and the diffused air does not flow in the region indicated by the lower end d of the upper membrane module 16a, and activated sludge adheres in the filtration separation of the lower end d. It becomes easy. In this way, the dispersion of the diffused air is biased, the diffused air is concentrated and passed through the central part rather than the edge of the membrane element, and the amount of air diffused at both edges is reduced. Conceivable.

ここで上部開口の散気空気の流れの様子について以下説明する。図3(2)は筒状スペーサの上部に開口した通水孔の散気空気の流れを示している。図示のように、筒状スペーサ30の上部に通水孔40を開口した場合、通水孔40から矢印eに示すように被処理水が筒状スペーサ30内に流入する。このとき被処理水が通水孔40を通過する際、筒状スペーサ30の側面に対して交差する方向から流入する。そして通水孔40から流入した被処理水は下段膜モジュール16bを通過した被処理水の流れfの流れとともに直ちに上段膜モジュール16aへ流入する。したがって前述(1)の矢印cで示したような筒状スペーサ30の中央に散気空気が集中する現象が起こらず、下段膜モジュール16bを通過した散気空気は均一に分散された状態で分散状態を乱すことなく、上段膜モジュール16aに供給することができる。よって筒状スペーサの上部に通水孔を設けると散気空気が均一に分散されるものと考えられる。   Here, the state of the air diffused in the upper opening will be described below. FIG. 3 (2) shows the flow of diffused air in the water passage hole opened at the top of the cylindrical spacer. As shown in the drawing, when the water passage hole 40 is opened in the upper part of the cylindrical spacer 30, the water to be treated flows into the cylindrical spacer 30 from the water passage hole 40 as indicated by an arrow e. At this time, when the water to be treated passes through the water passage hole 40, the water to be treated flows from the direction intersecting the side surface of the cylindrical spacer 30. And the to-be-processed water which flowed in from the water flow hole 40 flows in into the upper stage membrane module 16a immediately with the flow of the flow f of to-be-processed water which passed the lower stage membrane module 16b. Therefore, the phenomenon that the diffused air is concentrated at the center of the cylindrical spacer 30 as shown by the arrow c in (1) does not occur, and the diffused air that has passed through the lower membrane module 16b is dispersed in a uniformly dispersed state. It can be supplied to the upper membrane module 16a without disturbing the state. Therefore, it is considered that the diffused air is uniformly dispersed when the water flow holes are provided in the upper part of the cylindrical spacer.

本発明では筒状スペーサに開口した通水孔によって被処理水を希釈するとともに、散気空気の流れを乱さないように被処理水を供給する必要があるため、筒状スペーサ30へ取り付ける通水孔40の位置を具体的に以下のように特定している。   In the present invention, it is necessary to dilute the water to be treated by the water flow holes opened in the cylindrical spacer and supply the water to be treated so as not to disturb the flow of the diffused air. The position of the hole 40 is specifically specified as follows.

まず通水孔40の取り付け位置は、膜エレメントの膜平面と交差する側の前記筒状スペーサ30の側面に開口し、その位置は側面の半分より上方に設定している。より好ましくは1/3以上に形成すると効果的である。これにより散気手段から均一に上昇してきた散気空気を乱すことなく上段膜モジュールに供給することができる。また下段膜モジュールを通過した散気空気が通水孔を介して外部に漏れることがない。   First, the attachment position of the water passage hole 40 opens on the side surface of the cylindrical spacer 30 on the side intersecting the membrane plane of the membrane element, and the position is set above half of the side surface. More preferably, it is effective to form 1/3 or more. As a result, the air diffused uniformly from the air diffuser can be supplied to the upper membrane module without being disturbed. Also, the diffused air that has passed through the lower membrane module does not leak outside through the water passage hole.

また通水孔40の開口率は、通水孔を設けた筒状スペーサの側面面積に対して、通水孔の開口面積を1%〜30%としている。これは、上記範囲以下では、筒状スペーサ内部に充分な被処理水が供給されず濃縮された被処理水を充分に希釈できない。また上記範囲以上では、筒状スペーサ内部に過剰な被処理水が供給され散気空気の流れが片寄ってしまう。   The opening ratio of the water passage hole 40 is such that the opening area of the water passage hole is 1% to 30% with respect to the side surface area of the cylindrical spacer provided with the water passage hole. If this is below the above range, sufficient treated water is not supplied into the cylindrical spacer, and the concentrated treated water cannot be sufficiently diluted. Above the above range, excessive water to be treated is supplied into the cylindrical spacer, and the flow of the diffused air is offset.

さらに通水孔40の形状は、筒状スペーサ30の側面に矩形に開口している。この他、前述の開口率を考慮しながら、被処理水を希釈できるとともに、筒状スペーサ30の散気空気の流れを乱さなければ、図示している形状にこだわる必要はなく、例えば図4に示すように筒状スペーサ30の側面に矩形の複数の開口となる通水孔40Aを水平方向となる直線上に並べて配置しても良い。また通水孔は筒状スペーサに必要とされる強度を維持しつつ、加工費が最小となるように設計すればよい。   Further, the shape of the water passage hole 40 is a rectangular opening on the side surface of the cylindrical spacer 30. In addition, it is not necessary to stick to the shape shown in FIG. 4 if the water to be treated can be diluted while taking into account the aperture ratio described above and the flow of the diffused air in the cylindrical spacer 30 is not disturbed. As shown, a plurality of rectangular openings 40 </ b> A that are rectangular openings may be arranged on the side surface of the cylindrical spacer 30 side by side on a straight line in the horizontal direction. Further, the water passage hole may be designed so as to minimize the processing cost while maintaining the strength required for the cylindrical spacer.

図5は実施形態に係る浸漬平膜ろ過装置の第1変形例の説明図である。図5は浸漬平膜ろ過装置10Aの正面断面を示している。図示のように、浸漬平膜ろ過装置10Aの下方には膜モジュール16を洗浄等するための散気手段20を設けている。散気手段20からの散気空気の一部には下段膜モジュール16bの外側側面を沿って流れる散気空気がある。この下段膜モジュール16bの外側を流れる散気空気を筒状スペーサ30の中に取り込むために、通水孔40の上部に庇50を設けている。庇50は、筒状スペーサ30の側面から外部へ斜め下方に傾斜させている。この庇50を設けることにより、被処理水を希釈するとともに、上段膜モジュール16aへより多くの散気空気が供給され、上段膜モジュール16aの膜ろ過性能を安定させることができる。   Drawing 5 is an explanatory view of the 1st modification of an immersion flat membrane filtration device concerning an embodiment. FIG. 5 shows a front cross section of the submerged flat membrane filtration device 10A. As shown in the figure, an air diffuser 20 for cleaning the membrane module 16 is provided below the submerged flat membrane filtration device 10A. Part of the diffused air from the diffuser means 20 is diffused air that flows along the outer side surface of the lower membrane module 16b. In order to take the diffused air flowing outside the lower membrane module 16 b into the cylindrical spacer 30, a gutter 50 is provided above the water passage hole 40. The flange 50 is inclined obliquely downward from the side surface of the cylindrical spacer 30 to the outside. By providing the jar 50, the water to be treated is diluted, more aeration air is supplied to the upper membrane module 16a, and the membrane filtration performance of the upper membrane module 16a can be stabilized.

図6は実施形態に係る浸漬平膜ろ過装置の第2変形例の説明図である。図6は浸漬平膜ろ過装置10Bの正面断面を示している。図示のように第2変形例の浸漬平膜ろ過装置10Bと第1変形例の浸漬平膜ろ過装置10Aと異なる構成は、庇50の下方に補助散気手段60を設けている点である。図5に示す庇50は、下段膜モジュール16bの外側側面に沿って流れる散気空気を筒状スペーサ30内に取り込むために斜め下方に傾斜させている。下段膜モジュール16bに沿って流れる散気空気は、処理条件によって異なるため、筒状スペーサ30内に供給される散気量が一定しないことがある。そこで第2変形例の浸漬平膜ろ過装置10Bは、庇50の下方であって、下段膜モジュール16bの側面に補助散気手段60を設置している。これにより、補助散気手段60からの散気空気は、下段膜モジュール16bの外側側面に沿って浮上し、庇50から、筒状スペーサ30内に供給される。よって、上段膜モジュール16aへより多くの散気空気が供給され、上段膜モジュール16aの膜ろ過性能を安定させることができる。   Drawing 6 is an explanatory view of the 2nd modification of an immersion flat membrane filtration device concerning an embodiment. FIG. 6 shows a front cross section of the submerged flat membrane filtration device 10B. As shown in the figure, the configuration different from the submerged flat membrane filtration device 10B of the second modification and the submerged flat membrane filtration device 10A of the first modification is that an auxiliary air diffuser 60 is provided below the tub 50. 5 is inclined obliquely downward in order to take in diffused air flowing along the outer side surface of the lower membrane module 16 b into the cylindrical spacer 30. Since the diffused air flowing along the lower membrane module 16b varies depending on the processing conditions, the amount of diffused air supplied into the cylindrical spacer 30 may not be constant. Therefore, the submerged flat membrane filtration device 10B of the second modified example is provided with the auxiliary air diffusion means 60 below the trough 50 and on the side surface of the lower membrane module 16b. Thereby, the diffused air from the auxiliary diffuser 60 floats along the outer side surface of the lower membrane module 16 b and is supplied from the ridge 50 into the cylindrical spacer 30. Therefore, more aeration air is supplied to the upper membrane module 16a, and the membrane filtration performance of the upper membrane module 16a can be stabilized.

図7は実施形態に係る浸漬平膜ろ過装置の第3変形例の説明図である。図7は浸漬平膜ろ過装置10Cの正面断面を示している。図示のように、浸漬平膜ろ過装置10Cの筒状スペーサ30Aは、膜エレメントの膜平面と交差する側の一対の側面をテーパ状に下方に拡径させて、断面視台形状に形成している。そして、筒状スペーサ30Aの下面には通水孔40Bを形成している。その他の構成は図5の装置構成と同一であり、同一の作用効果を示し、その説明を省略する。これにより筒状スペーサ30A内には、矢印gに示すように筒状スペーサ30Aの下面から被処理水が流入し、筒状スペーサ30A内の被処理水を希釈することができる。このとき流入する被処理水は、矢印gのように下段膜モジュール16bの側面に沿って、筒状スペーサ30A下面の通水孔40Bから流入するため、筒状スペーサ30A内の散気空気の流れ(矢印h)を乱すことがない。   Drawing 7 is an explanatory view of the 3rd modification of an immersion flat membrane filtration device concerning an embodiment. FIG. 7 shows a front cross section of the submerged flat membrane filtration device 10C. As shown in the figure, the cylindrical spacer 30A of the submerged flat membrane filtration device 10C is formed in a trapezoidal shape in cross section by expanding the pair of side surfaces on the side intersecting the membrane plane of the membrane element downward in a taper shape. Yes. A water passage hole 40B is formed on the lower surface of the cylindrical spacer 30A. Other configurations are the same as those of the apparatus configuration of FIG. As a result, the water to be treated flows into the cylindrical spacer 30A from the lower surface of the cylindrical spacer 30A as shown by the arrow g, and the water to be treated in the cylindrical spacer 30A can be diluted. The treated water that flows in at this time flows from the water passage hole 40B on the lower surface of the cylindrical spacer 30A along the side surface of the lower membrane module 16b as shown by the arrow g, and thus the flow of diffused air in the cylindrical spacer 30A (Arrow h) is not disturbed.

このような浸漬平膜ろ過装置によれば、下段膜モジュールを通過した被処理水を効果的に希釈することができるとともに、上段膜モジュールに流入する散気空気の分布を均一にすることができる。したがって上段膜モジュールの汚れの局所的な進行あるいは膜全体の汚れの進行を軽減できる。   According to such an immersion flat membrane filtration device, the water to be treated that has passed through the lower membrane module can be effectively diluted, and the distribution of the diffused air flowing into the upper membrane module can be made uniform. . Accordingly, it is possible to reduce the local progress of dirt on the upper membrane module or the progress of dirt on the entire membrane.

本発明の浸漬平膜ろ過装置の説明図である。It is explanatory drawing of the immersion flat membrane filtration apparatus of this invention. 膜エレメント間を通過する散気空気の通気量の説明図である。It is explanatory drawing of the ventilation | gas_flowing amount of the diffused air which passes between membrane elements. 浸漬平膜ろ過装置の筒状スペーサの部分拡大図を示している。The partial enlarged view of the cylindrical spacer of an immersion flat membrane filtration apparatus is shown. 通水孔の説明図である。It is explanatory drawing of a water flow hole. 浸漬平膜ろ過装置の第1変形例の説明図である。It is explanatory drawing of the 1st modification of an immersion flat membrane filtration apparatus. 浸漬平膜ろ過装置の第2変形例の説明図である。It is explanatory drawing of the 2nd modification of an immersion flat membrane filtration apparatus. 浸漬平膜ろ過装置の第3変形例の説明図である。It is explanatory drawing of the 3rd modification of an immersion flat membrane filtration apparatus.

符号の説明Explanation of symbols

10………浸漬平膜ろ過装置、14………膜エレメント、16………膜モジュール、20………散気手段、30………筒状スペーサ、40………通水孔、50………庇、60………補助散気手段。 DESCRIPTION OF SYMBOLS 10 ......... Immersion flat membrane filtration apparatus, 14 ......... Membrane element, 16 ......... Membrane module, 20 ......... Air diffuser, 30 ......... Cylindrical spacer, 40 ......... Water passage hole, 50 ... …… 庇, 60 ……… Auxiliary air diffuser.

Claims (4)

処理槽内の被処理水を膜ろ過する複数の膜エレメントを前記処理槽内に垂直に並列配置させるとともに、前記処理槽内の上下方向に複数積層配置し、上下の前記膜エレメント間の隙間を囲む筒状スペーサを備えた浸漬平膜ろ過装置において、
前記膜エレメントの膜平面と交差する側の前記筒状スペーサの側面に、前記処理槽から前記筒状スペーサの内側へ前記被処理水を取り込む通水孔を設け、前記通水孔は前記筒状スペーサの側面の半分より上方のみに配置してあることを特徴とする浸漬平膜ろ過装置。
A plurality of membrane elements for membrane filtration of water to be treated in the treatment tank are arranged vertically in parallel in the treatment tank, and a plurality of layers are arranged in the vertical direction in the treatment tank, and a gap between the upper and lower membrane elements is formed. In the submerged flat membrane filtration device provided with a surrounding cylindrical spacer,
Provided on the side surface of the cylindrical spacer on the side intersecting the membrane plane of the membrane element is a water passage hole for taking in the treated water from the treatment tank to the inside of the cylindrical spacer, and the water passage hole is the cylindrical shape. An immersion flat membrane filtration device, which is disposed only above half of the side surface of the spacer.
前記通水孔を設けた前記筒状スペーサの側面面積に対する前記通水孔の開口面積の比率が1%〜30%であることを特徴とする請求項1に記載の浸漬平膜ろ過装置。   The submerged flat membrane filtration device according to claim 1, wherein a ratio of an opening area of the water passage hole to a side surface area of the cylindrical spacer provided with the water passage hole is 1% to 30%. 前記通水孔の上部には前記筒状スペーサの側面から外側下方に傾斜させた庇を設けたことを特徴とする請求項1又は請求項2に記載の浸漬平膜ろ過装置。   The submerged flat membrane filtration device according to claim 1 or 2, wherein a ridge that is inclined outward and downward from a side surface of the cylindrical spacer is provided at an upper portion of the water passage hole. 前記庇の下方であって、前記膜エレメントの側面に補助散気手段を設けたことを特徴とする請求項3に記載の浸漬平膜ろ過装置。   The submerged flat membrane filtration device according to claim 3, wherein auxiliary air diffusion means is provided on a side surface of the membrane element below the ridge.
JP2007129416A 2007-05-15 2007-05-15 Immersion flat membrane filtration device Active JP4614188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129416A JP4614188B2 (en) 2007-05-15 2007-05-15 Immersion flat membrane filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129416A JP4614188B2 (en) 2007-05-15 2007-05-15 Immersion flat membrane filtration device

Publications (2)

Publication Number Publication Date
JP2008284422A JP2008284422A (en) 2008-11-27
JP4614188B2 true JP4614188B2 (en) 2011-01-19

Family

ID=40144656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129416A Active JP4614188B2 (en) 2007-05-15 2007-05-15 Immersion flat membrane filtration device

Country Status (1)

Country Link
JP (1) JP4614188B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448709B1 (en) * 2009-10-26 2014-10-13 메이덴샤 코포레이션 Membrane module, membrane unit, and membrane separation device
JP5488156B2 (en) * 2010-04-19 2014-05-14 株式会社明電舎 Membrane unit and membrane separator
JP5605802B2 (en) * 2011-02-14 2014-10-15 株式会社日立製作所 Flat membrane filtration device and flat membrane filtration method
CA2964891C (en) 2014-10-22 2021-11-09 Koch Membrane Systems, Inc. Membrane filter module with bundle-releasing gasification device
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
CN108144451A (en) * 2016-12-04 2018-06-12 江苏沛尔膜业股份有限公司 A kind of double outlets two-component double membrane structure membrane module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474526U (en) * 1990-11-06 1992-06-30
JPH09215980A (en) * 1996-02-13 1997-08-19 Mitsubishi Rayon Eng Co Ltd Method for membrane separation and bioprocessing of waste water
JPH1157426A (en) * 1997-08-25 1999-03-02 Kurita Water Ind Ltd Immersion-type membrane filter
JP2000084553A (en) * 1998-09-10 2000-03-28 Mitsubishi Rayon Co Ltd Membrane separator
JP2000271409A (en) * 1999-03-24 2000-10-03 Kubota Corp Operation of multistage stacked immersion type membrane separation device
JP2002224685A (en) * 2001-02-05 2002-08-13 Kobe Steel Ltd Activated sludge process equipment and method for operating the same
JP2002361051A (en) * 2001-06-07 2002-12-17 Kubota Corp Membrane cartridge
JP2003071257A (en) * 2001-09-04 2003-03-11 Kubota Corp Multi-stage superposing immersion type membrane separation apparatus
JP2006224050A (en) * 2005-02-21 2006-08-31 Japan Organo Co Ltd Immersion type membrane separation device
JP2007061787A (en) * 2005-09-02 2007-03-15 Toray Ind Inc Separation membrane module, water treatment apparatus and water treatment method using the apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474526U (en) * 1990-11-06 1992-06-30
JPH09215980A (en) * 1996-02-13 1997-08-19 Mitsubishi Rayon Eng Co Ltd Method for membrane separation and bioprocessing of waste water
JPH1157426A (en) * 1997-08-25 1999-03-02 Kurita Water Ind Ltd Immersion-type membrane filter
JP2000084553A (en) * 1998-09-10 2000-03-28 Mitsubishi Rayon Co Ltd Membrane separator
JP2000271409A (en) * 1999-03-24 2000-10-03 Kubota Corp Operation of multistage stacked immersion type membrane separation device
JP2002224685A (en) * 2001-02-05 2002-08-13 Kobe Steel Ltd Activated sludge process equipment and method for operating the same
JP2002361051A (en) * 2001-06-07 2002-12-17 Kubota Corp Membrane cartridge
JP2003071257A (en) * 2001-09-04 2003-03-11 Kubota Corp Multi-stage superposing immersion type membrane separation apparatus
JP2006224050A (en) * 2005-02-21 2006-08-31 Japan Organo Co Ltd Immersion type membrane separation device
JP2007061787A (en) * 2005-09-02 2007-03-15 Toray Ind Inc Separation membrane module, water treatment apparatus and water treatment method using the apparatus

Also Published As

Publication number Publication date
JP2008284422A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4614188B2 (en) Immersion flat membrane filtration device
JP5456253B2 (en) Activated sludge treatment equipment
JP5438879B2 (en) Membrane filtration unit
EP1043276B1 (en) Apparatus and method for treating water
JP2009537317A (en) Ventilation device for a water filtration system with a submerged membrane, comprising a floor provided with means for injecting gas and at least one pressure balance system
KR101495375B1 (en) Method of cleaning air diffuser apparatus
KR20010092783A (en) Immersed membrane filtration system and overflow process
JP5751294B2 (en) Membrane filtration unit
JP5845673B2 (en) Air diffuser
JP2009154051A (en) Simple filtration apparatus
JP6343227B2 (en) Membrane module
JP2007061787A (en) Separation membrane module, water treatment apparatus and water treatment method using the apparatus
JP2009240911A (en) Air diffusion apparatus and water treatment facility having membrane concentrator provided with the air diffusion apparatus
JP4397334B2 (en) Immersion membrane separator
KR20200033692A (en) high-rate plate settler module
TW201813934A (en) Membrane-separation activated sludge treatment system
JP4143974B2 (en) Immersion flat membrane filtration device
JP2007152282A (en) Membrane separation active sludge treatment method
CN109292968B (en) Integrated sewage treatment device of polyaluminium chloride reinforced aerobic granular sludge membrane bioreactor
JP6394980B2 (en) Carrier input type sewage treatment equipment
KR20120044594A (en) Air diffuser forming separated diffuser frame and air chamber
EP1688174A1 (en) Membrane filtration tank and process for filtering a liquid
JP2008212930A (en) Membrane separator
JP2011050905A (en) Apparatus for active treatment of sewage
JP6489507B2 (en) Sewage treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4614188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350