WO2009143762A1 - 太阳能电池板及其制造方法 - Google Patents

太阳能电池板及其制造方法 Download PDF

Info

Publication number
WO2009143762A1
WO2009143762A1 PCT/CN2009/071966 CN2009071966W WO2009143762A1 WO 2009143762 A1 WO2009143762 A1 WO 2009143762A1 CN 2009071966 W CN2009071966 W CN 2009071966W WO 2009143762 A1 WO2009143762 A1 WO 2009143762A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sealant
glass substrate
back sheet
solar cell
Prior art date
Application number
PCT/CN2009/071966
Other languages
English (en)
French (fr)
Inventor
林朝晖
杨与胜
李沅民
Original Assignee
福建钧石能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建钧石能源有限公司 filed Critical 福建钧石能源有限公司
Publication of WO2009143762A1 publication Critical patent/WO2009143762A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of photovoltaic solar cell technology, and in particular to a solar cell panel and a method of fabricating the same.
  • Solar panels are a core part of a solar power generation system that converts the solar radiation capability into electrical energy, delivers the electrical energy to a battery, or drives the load.
  • solar panels include various types such as monocrystalline silicon solar cells, polycrystalline silicon solar cells, thin film silicon solar cells, etc.
  • hydrogenated amorphous silicon or nano silicon thin film solar cells have a transparent or translucent glass appearance.
  • Low cost, suitable for large-area manufacturing, etc. gradually become the window, roof, glass wall and other materials of the building structure.
  • thin-film solar panels are used in the windows, roofs and facades of the entire building, the entire building has the function of converting solar energy into electrical energy and becomes a small power station.
  • the thin film solar cell usually has a laminated structure, and is firstly manufactured by low pressure chemical vapor deposition (LPCVD) or atmospheric pressure chemical vapor deposition (APCVD) or magnetron sputtering.
  • LPCVD low pressure chemical vapor deposition
  • APCVD atmospheric pressure chemical vapor deposition
  • magnetron sputtering A transparent conductive oxide (TCO) film such as tin oxide Sn0 2 , zinc oxide ZnO or indium tin oxide ITO is deposited on the glass substrate; then a single junction or multi junction photocell is deposited by a plasma enhanced chemical vapor deposition (PECVD) process.
  • PECVD plasma enhanced chemical vapor deposition
  • Each photovoltaic unit sequentially includes a p layer based on amorphous silicon, a layer of amorphous silicon or nano silicon, and an n layer film of amorphous silicon or nano silicon; and then depositing a transparent conductive oxide such as zinc oxide ZnO And a metal film as a back electrode; finally using a sealant, such as acetic acid-vinyl acetate copolymer (Ethenyl Vinyl Acetate, EVA), TEDLAR polyvinyl fluoride and other polymer material sealant in the laminator to glass substrate and glass back sheet layer
  • EVA acetic acid-vinyl acetate copolymer
  • TEDLAR polyvinyl fluoride TEDLAR polyvinyl fluoride
  • a hydrogenated amorphous silicon or nano-silicon thin film solar cell has a laminated structure including a glass substrate 101 and a glass back sheet 102, and a glass substrate 101 and a glass back.
  • the battery unit 100 described herein is a layered structure including a transparent conductive oxide (TCO) film, and each of the junctions includes a p-layer, a 1-layer and an n-layer single-junction or multi-junction photovoltaic unit, and each junction photovoltaic unit
  • TCO transparent conductive oxide
  • the tunnel layer or the isolation layer or the like may be further included, as well as another transparent conductive oxide film and metal thin film, and the layered structure of the battery unit 100 is not shown here for the sake of simplicity.
  • the glass substrate 101 and the glass back sheet 102 are laminated together by the EVA organic sealant 103 to constitute a complete solar cell product.
  • thin-film solar cells have gradually become widely used as windows, roofs, and glass wall materials for building structures.
  • the solar panels in these buildings are subject to the natural environment such as wind and rain, and require EVA.
  • the sealant 103 can provide a good sealing effect.
  • sealants such as EVA are high-molecular organic multi-component adhesives, which tend to age over time and gradually absorb moisture. The moisture in the external environment slowly enters the interior of the thin-film solar cell. The structure produces a destructive effect that degrades the performance of the solar panel.
  • the present invention provides a solar cell panel comprising a glass substrate, a glass back sheet, and a battery unit between the glass substrate and the glass back sheet, the glass substrate and the glass back sheet
  • the edge regions are bonded together by a sealant, the side surfaces of the solar panel having a glass seal covering the sealant, and the glass seals and the sides of the glass substrate and the glass backsheet
  • the end face is melted into one.
  • the sealant is flush with the side faces of the glass substrate and the glass backing plate.
  • the sealant is recessed between the glass substrate and the glass back sheet.
  • the depression has a depth of 0.2 mm to 3 mm.
  • the sealant is a polymer material sealant such as an acetic acid-vinyl acetate copolymer or a polyvinyl fluoride.
  • the present invention provides a method of fabricating a solar panel comprising a glass substrate, a glass backsheet, and a battery cell between the glass substrate and the glass backsheet, the method comprising the steps of:
  • the glass substrate and the glass back sheet are bonded together by a sealant, and the excess sealant is scraped off so that the sealant is flush with the side end faces of the glass substrate and the glass back sheet;
  • the glass powder is instantaneously melted by a laser beam moving laterally in the lateral direction and moving in a slight amount in the longitudinal direction, thereby forming a glass cladding seal that covers the surface of the sealant and is melted into the side of the glass substrate and the glass back sheet. article.
  • the method further comprises continuing to scrape the sealant such that the end face of the sealant is recessed between the glass substrate and the glass backing plate.
  • the depression has a depth of 0.2 mm to 3 mm.
  • the glass powder has a particle size of between 0.05 mm and 0.5 mm.
  • the laser beam adopts a pulse mode with a pulse frequency of 1000 Hz to 60000 Hz.
  • the glass powder further contains a metal oxide powder.
  • the metal oxide powder comprises one or a combination of titanium oxide ⁇ 02, tin oxide Sn02, and zinc oxide ZnO.
  • the present invention has the following advantages:
  • the solar panel of the present invention is provided with a glass sealing layer at the joint of the edges of the two glass sheets after the glass substrate and the glass back sheet are laminated together by using an organic sealant, thereby covering the organic sealant, thereby preventing moisture from entering.
  • the glass sealing layer of the solar panel of the invention is sprayed by laser cladding method at the edge joint of the two glass sheets Glass powder, using a laser to instantly melt the sprayed glass powder to form a glass seal layer.
  • the use of a laser to form a glass sealing layer is advantageous for improving the sealing quality and sealing effect of the glass sealing layer, and the formed glass sealing layer has a relatively beautiful appearance and is advantageous for the automated production degree and production efficiency of the glass sealing layer.
  • FIG. 1 is a schematic view showing a typical structure of a thin film solar panel
  • FIG. 2 is a schematic structural view of a first embodiment of a solar cell panel according to the present invention.
  • FIG. 3 is a schematic structural view of a second embodiment of a solar panel according to the present invention.
  • FIG. 4 is a schematic structural view of a third embodiment of a solar cell panel according to the present invention.
  • Figure 5 is a schematic view showing a method of manufacturing a solar cell of the present invention.
  • FIG. 6 to 7 are views showing the manufacturing process of the first embodiment of the solar cell panel of the present invention.
  • Figs. 8 to 9 are views showing the manufacturing process of the second and third embodiments of the solar cell panel of the present invention.
  • the solar panel of the present invention includes not only thin film solar panels, but also various solar panels such as single crystal silicon, polycrystalline silicon, etc., as long as the solar panel has a structure in which a glass substrate and a glass back sheet are laminated together. Within the scope of protection of the present invention.
  • the solar panel includes a glass substrate 101 and a glass back plate 102.
  • the glass substrate 101 and the glass back plate 102 are laminated in a laminating machine by using an organic sealant 103 such as EVA or TEDLAR polyvinyl fluoride.
  • Battery unit between glass substrate 101 and glass back plate 102 100 which may be a film layered structure, for example, includes a transparent conductive oxide (TCO) film, a p layer, a layer of 1 and an n layer, and another layer of a transparent conductive oxide film and a metal film.
  • TCO transparent conductive oxide
  • the layered structure of the battery unit 100 is not shown in the drawings for the sake of simplicity.
  • the battery unit 100 may also be a photoelectric conversion unit of other known single crystal or polycrystalline solar cells.
  • the discussion of the present invention is not limited thereto, and details are not described herein again.
  • the glass substrate 101 and the glass back sheet 102 are laminated together by an organic sealant 103 such as EVA, and the excess portion of the overflowed colloid is removed by a squeegee or a doctor blade to form a flush with the sides of the glass substrate 101 and the glass back sheet 102.
  • Surface forming a complete solar cell product, namely solar panels.
  • the solar panel of the present invention indicates that a glass sealing strip 200 is provided on the side of the edge joint of the glass substrate 101 and the glass back sheet 102 for covering
  • the organic sealant 103, and the glass seal strip 200 is integrally formed with the side faces of the glass substrate 101 and the glass back plate 102, and functions to "snap" the glass substrate 101 and the glass back plate 102, and the glass substrate 101 and The glass back plate 102 is fused together, thereby effectively preventing moisture from entering the interior of the solar panel, improving the sealing performance and service life of the solar panel for long-term use outdoors.
  • the solar panel also includes a glass substrate 101, a glass backing plate 102, and a battery unit 100 between the glass substrate 101 and the glass backing plate 102.
  • the glass substrate 101 and the glass back sheet 102 are laminated together with the sealant 103, and the excess portion of the overflowed colloid is removed by a squeegee or a doctor blade, and the sealant 103 is continuously removed to recess the end surface thereof on the glass substrate 101 and the glass back sheet 102.
  • the depth of the depression is between 0.2 mm and 3 mm.
  • the side surface of the edge joint of the glass substrate 101 and the glass back sheet 102 is covered with a glass weather strip 201 covering the organic sealant 103 and melted into the side surface of the glass substrate 101 and the glass back sheet 102.
  • the glass substrate 101 and the glass back sheet 102 are fused together.
  • the sealant 103 is recessed between the glass substrate 101 and the glass backing plate 102, increasing the amount of the glass frit, thereby increasing the thickness of the glass weather strip 201 and making the sealing effect better.
  • FIG. 4 is a schematic view showing the structure of a third embodiment of a solar cell panel according to the present invention.
  • the glass substrate 101 and the glass back sheet 102 are laminated together with a sealant 103 to seal the battery cells 100 between the glass substrate 101 and the glass back sheet 102.
  • the excess portion of the colloid is removed, and the sealant 103 is further removed to be recessed between the glass substrate 101 and the glass backing plate 102 with a depth of 0.2 mm to 3 mm.
  • the recess of the sealant between the glass substrate 101 and the glass backing plate 102 has a glass sealing strip 202 covering the organic sealing adhesive 103 and melting together with the side faces of the glass substrate 101 and the glass backing plate 102.
  • the glass substrate 101 and the glass back plate 102 are fused together and substantially flush with the side end faces of the glass substrate 101 and the glass back plate 102.
  • the glass sealing strip 202 is formed by reducing the amount of glass frit, which not only functions as a sealing but also makes the edge of the solar panel more beautiful.
  • Fig. 5 is a schematic view showing a method of manufacturing a solar cell of the present invention.
  • glass frit 116 is contained in the container 114.
  • the glass frit 116 has a particle size of between 0.05 mm and 0.5 mm.
  • a conduit 112 is connected to the upper portion of the vessel 114, and compressed air 110 is introduced into the conduit 112.
  • a nozzle 118 is attached to the lower portion of the container 114.
  • the nozzle 118 has a nozzle having an inner diameter of between 0.5 mm and 2 mm so that the glass frit 116 can smoothly flow out of the nozzle.
  • the laser light emitted by the laser generator 106 is focused into a laser beam 108 via a lens system 107.
  • the laser generator 106 may be a solid state Nd:YAG (yttrium garnet crystal) laser or a gaseous CO 2 laser, a HeNe laser or the like.
  • the Nd:YAG laser has a fundamental output wavelength of 1064 nm of infrared light, and the laser output power can be very high, so that the glass laser splicing process of the infrared laser has the advantages of low cost and high yield.
  • the laser power of visible light is relatively weak, and a high power laser beam, such as a Nd:YAG laser with a wavelength of 532 nm, is required to obtain and maintain a high power laser.
  • the laser beam 108 is in a pulse mode with a pulse frequency of 10 to 100 Hz.
  • the solar panel 120 can be moved in the direction of the arrow on a work surface (not shown).
  • the solar panel 120 that has been laminated with the sealant Prior to beginning the laser cladding of the glass cladding, the solar panel 120 that has been laminated with the sealant is first placed on the table so that the sides requiring the glass seal are horizontally upward.
  • the position of the nozzle of the nozzle 118 and the focus of the laser beam 108 is adjusted to one end of the horizontal side of the solar panel 120, and the distance between the nozzle of the nozzle 118 and the focus of the laser beam 108 should be greater than 6 mm.
  • the compressed air 110 is opened, and under the combined action of gravity and compressed air 110, the glass frit 160 in the container 114 is transported along the nozzle 118 through the nozzle to the end surface of the horizontal side of the solar panel, delayed by a specific time T, for example, 300 ms.
  • the surface of the sealant forms a cone or truncated glass powder pile 115.
  • the laser generator 106 is then turned on and the focus of the pulsed laser beam 108 should be focused just at the glass frit stack 115.
  • the laser beam 108 strikes the surface of the glass powder pile 115.
  • the high temperature causes the glass powder pile 115 and the edge portions of the two glass sheets to be instantaneously melted, and at the same time rapidly cools to form a glass cladding point, and the pulsed laser beam 108 is simultaneously perpendicular to the side.
  • the direction is slightly oscillated, and the amplitude of the swing is equivalent to the distance between the glass substrate and the glass back sheet, so that the side surfaces of the glass substrate and the glass back sheet on the side of the solar panel 120 are also melted and melted at the glass cladding point.
  • the solar panel 120 is moved in the direction of the arrow at a steady speed, for example 30 cm/sec, the laser beam 108 and the glass frit nozzle remain stationary, and the laser beam 108 is slightly oscillated in a direction perpendicular to the side, with With the movement of the solar panel 120, each laser pulse produces a localized glass frit point that is fused to the side surfaces of the glass substrate and the glass backsheet.
  • the nozzle of the nozzle 118 continuously ejects the glass frit along the top side surface of the solar panel.
  • the laser The bundle 108 produces a continuous glass frit point to form a strip of glass cladding (i.e., the aforementioned glass seal) on the side surfaces.
  • the solar panel can also be kept stationary, and the laser beam is
  • the glass frit nozzle move along the top edge of the solar panel while the laser beam 108 makes a slight swing in a direction perpendicular to the movement.
  • a colored glass raw material mixture is the best choice, such as a material containing colored glass beads, which has a stronger light absorbing ability, thereby promoting the melting and re-solidification of the glass material.
  • the glass frit material may contain other non-glass light absorbing components to promote absorption of the laser and local melting of the glass, especially when the glass frit raw material contains one or a combination of metal oxide powders such as TiO 2 , Sn 02 , ZnO. The absorption of the infrared laser can be greatly enhanced.
  • the flow rate of compressed air 110, the power and pulse frequency of laser beam 108, and the delay from the nozzle to the opening of laser 106 can be varied.
  • the time T, the moving speed of the solar panel and other parameters are adjusted.
  • the flow rate of the compressed air 110 By adjusting the flow rate of the compressed air 110, the amount of the glass frit can be continuously and accurately adjusted over a wide range, and the glass powder can be uniformly and accurately conveyed to the edge-sealing portion.
  • Those skilled in the art can use computer to control the above various parameters without creative labor, and form a uniform glass cladding layer to achieve a good glass edge sealing effect. After forming a glass cladding layer on one side of the solar panel, the solar panel is rotated, and the other side is subjected to the laser cladding glass sealing operation.
  • FIG. 6 to 7 are schematic views showing the manufacturing process of the first embodiment of the solar cell panel of the present invention.
  • the glass substrate 101 and the glass back sheet 102 of the solar cell panel are laminated together in the laminating machine using the organic sealant 103, and the excess colloid is scraped off so that the sealant 103 and the glass substrate 101 and the glass back are The side surfaces of the plate 102 are flush.
  • the container 114 is filled with glass frit 116, the upper portion of the container 114 is connected to the pipeline 112, the compressed air 110 is introduced into the pipeline 112, and the nozzle 118 is connected to the lower portion of the vessel 114.
  • the nozzle 118 has a nozzle, and the glass frit 116 can flow out of the nozzle. .
  • the laser light emitted by the laser generator 106 is focused by the lens group 107 to form a laser beam 108.
  • the laser beam 108 is in a pulse mode, and the solar panel can be moved in the direction of the arrow on a work surface (not shown).
  • the solar panel Before starting the laser cladding glass edge sealing, the solar panel is placed on the workbench, the edge of the glass seal is required to be adjusted, and the nozzle of the nozzle 118 and the focus of the laser beam 108 are adjusted to the top end of the solar panel. Above the 103. Compressed air 110 is introduced.
  • the glass frit 160 in the container 114 flows out from the nozzle of the nozzle 118, and after a certain amount flows out, the laser generator 106 is turned on, and a trace amount is made in the direction of the arrow.
  • the reciprocating oscillating pulsed laser beam 108 strikes the surface of the glass frit, and the high temperature causes the glass powder, the glass substrate 101 and the edge portion of the glass backing plate 102 to be instantaneously melted, and simultaneously cooled rapidly to form the cover sealant 103, the glass substrate 101 and the glass back plate 102. Partially edged glass cladding points.
  • each laser pulse produces a partial glass cladding point, and the nozzle of the nozzle 118 and the focus of the laser beam 108 move to the solar cell.
  • the nozzle of the nozzle 118 continuously ejects the glass frit along the top edge region of the solar panel, and the laser beam 108 produces a continuous glass cladding point, thereby
  • the edge surface is formed with a strip-shaped glass cladding layer 200, that is, the aforementioned glass sealing strip, and the glass cladding layer 200 covers the sealant and is melted integrally with the side surfaces of the glass substrate 101 and the glass back sheet 102.
  • the solar panel may also be immobilized such that the laser beam 108 and the glass frit nozzle move along the sides of the solar panel.
  • the other side is repeated by rotating the solar cell panel, and the other side is subjected to laser cladding glass sealing.
  • 8 to 9 are views showing the manufacturing process of the second and third embodiments of the solar cell panel of the present invention. First, as shown in FIG. 8, the glass substrate 101 and the glass back plate 102 of the solar panel are laminated together with the sealant 103, and the excess part of the colloid is removed by a scraper or a doctor blade, and the colloidal sealant 103 is continuously removed.
  • a groove is formed between the glass substrate 101 and the glass backing plate 102.
  • a glass frit 116 is placed in the container 114.
  • the upper portion of the container 114 is connected to the line 112.
  • the lower portion of the container 114 is connected to the nozzle 118, and the glass frit 116 can flow out of the nozzle of the nozzle 118.
  • the laser light emitted by the laser generator 106 is focused by the lens group 107 to form a laser beam 108.
  • the laser beam 108 is in a pulse mode.
  • the solar panel Before the laser cladding glass is sealed, the solar panel is placed on a workbench (not shown), the edge of the glass seal is required, and the nozzle of the nozzle 118 and the focus of the laser beam 108 are adjusted to the solar panel.
  • the top end of the sealant 103 is above.
  • the compressed air 110 is introduced, and under the action of the gravity and the compressed air 110, the glass frit 160 in the container 114 flows out from the nozzle of the nozzle 118, and after flowing out a certain amount, the laser generator 106 is turned on to perform a slight reciprocating swing in the direction of the arrow.
  • the pulsed laser beam 108 strikes the surface of the flowing glass frit and the inside of the side surface of the glass sheet to form a glass frit point covering the sealant 103 and melted into the side surface of the glass sheet.
  • the solar panel moves in the direction of the arrow, the laser beam 108 and the glass frit nozzle remain stationary, each laser pulse produces a partial glass cladding point, and the nozzle of the nozzle 118 and the focus of the laser beam 108 move to the solar cell.
  • the nozzle of the nozzle 118 continuously ejects the glass frit along the top edge region of the solar panel, and the laser beam 108 instantaneously melts the glass frit while rapidly cooling, resulting in continuous glass cladding. Point, thereby forming a strip-shaped glass cladding layer 200 on the top edge surface, that is, the aforementioned glass sealing strip, as shown in FIG.
  • the amount of the glass frit is adjusted.
  • a glass seal strip as shown in FIG. 3 can be formed.
  • the amount of the glass frit is small, it can be formed as shown in FIG. Glass seals.
  • the solar panel can be left stationary, causing the laser beam 108 and the glass frit nozzle to move along the top edge of the solar panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

太阳能电池板及其制造方法
技术领域 本发明涉及光伏太阳能电池技术领域,特别涉及一种太阳能电池板及其 制造方法。
背景技术 太阳能电池板是太阳能发电系统中的核心部分, 其作用是将太阳的辐 射能力转换为电能, 将电能送往蓄电池中存储起来, 或推动负载工作。 概 括地讲, 太阳能电池板包括单晶硅太阳能电池、 多晶硅太阳能电池、 薄膜 硅太阳能电池等多种类型, 目前, 氢化非晶硅或纳米硅薄膜太阳能电池以 其具有透明或半透明的玻璃外观, 成本低、 适合大面积制造等特点, 逐渐 成为建筑结构的窗户、 屋顶、 玻璃墙面等材料。 当整幢建筑物的窗户、 屋 顶和外立面均采用薄膜太阳能电池板的时候, 整幢建筑便具有将太阳能转 换为电能的功能, 成为一座小型发电站。
图 1为硅基薄膜太阳能电池板典型结构示意图, 薄膜太阳能电池通常 具有叠层结构, 其制造过程中首先采用低压化学气相沉积 (LPCVD) 或常 压化学气相沉积 (APCVD)或磁控溅射工艺在玻璃基板上沉积一层氧化锡 Sn02、 氧化锌 ZnO或铟锡氧化物 ITO等透明导电氧化物(TCO)薄膜; 然 后利用等离子增强化学气相沉积(PECVD)工艺沉积单结或多结光电单元, 每个光电单元均依次包括基于非晶硅的 p层、 非晶硅或纳米硅的 1层和非 晶硅或纳米硅的 n层薄膜;然后再沉积一层透明导电氧化物例如氧化锌 ZnO 和金属薄膜作为背电极; 最后利用密封胶, 例如乙酸-乙酸乙烯共聚物 (Ethenyl Vinyl Acetate, EVA), TEDLAR聚氟乙烯等高分子材料密封胶在 层压机中将玻璃基板和玻璃背板层压封装在一起, 得到最终的太阳能电池 板成品。如图 1所示, 氢化非晶硅或纳米硅薄膜太阳能电池具有叠层结构, 该叠层结构包括玻璃基板 101和玻璃背板 102以及玻璃基板 101和玻璃背 板 102之间的电池单元 100。此处所述的电池单元 100为层状结构,包括透 明导电氧化物(TCO) 薄膜、 每结均依次包括 p层、 1层和 n层的单结或多 结光电单元, 每结光电单元之间还可以包括隧道层或隔离层等, 以及另一 层透明导电氧化物薄膜和金属薄膜,在此为简便起见并未示出电池单元 100 的层状结构。玻璃基板 101和玻璃背板 102通过 EVA有机密封胶 103层压 在一起, 构成完整的太阳能电池产品。
如前所述, 薄膜太阳能电池已逐渐成为一种建筑结构的窗户、 屋顶、 玻璃墙面材料而广泛使用, 这些建筑结构中的太阳能电池板要经受风吹雨 淋等自然环境的考验, 需要 EVA密封胶 103能够起到良好的密封作用。 但 是, EVA等密封胶是高分子有机多组分胶, 其随着时间的推移易出现老化 现象, 并逐渐吸收潮气, 外部环境中的水分会慢慢进入到薄膜太阳能电池 的内部, 对电池内部结构产生破坏作用, 使太阳能电池板的性能劣化。
发明内容
本发明的目的在于提供一种太阳能电池板及其制造方法, 能够增强薄 膜太阳能电池板的密封性能及使用寿命。
为达到上述目的, 本发明提供了一种太阳能电池板, 所述太阳能电池 板包括玻璃基板、玻璃背板以及位于玻璃基板和玻璃背板之间的电池单元, 所述玻璃基板和玻璃背板的边缘区域通过密封胶层压粘合在一起, 所述太 阳能电池板的侧边表面具有覆盖所述密封胶的玻璃密封条, 且所述玻璃密 封条与所述玻璃基板和玻璃背板的侧边端面熔为一体。
优选地, 在所述太阳能电池板的侧边表面, 所述密封胶与所述玻璃基 板和玻璃背板侧边端面齐平。
优选地, 在所述太阳能电池板的侧边表面, 所述密封胶凹陷在所述玻 璃基板和玻璃背板之间。
优选地, 所述凹陷的深度为 0.2mm至 3 mm。
优选地, 所述密封胶为乙酸-乙酸乙烯共聚物或聚氟乙烯等高分子材料 密封胶。 相应地, 本发明提供了一种太阳能电池板的制造方法, 所述太阳能电 池板包括玻璃基板、 玻璃背板以及位于玻璃基板和玻璃背板之间的电池单 元, 所述方法包括下列歩骤:
将玻璃基板和玻璃背板通过密封胶层压粘合在一起, 并将多余的密封 胶刮除, 使所述密封胶与所述玻璃基板和玻璃背板的侧边端面齐平;
沿着所述侧边连续将玻璃粉末喷洒在密封胶表面;
利用沿侧边方向横向移动且纵向微量移动的激光束瞬间熔化所述玻璃 粉末, 从而形成覆盖所述密封胶表面而且与所述玻璃基板和玻璃背板的侧 边熔为一体的玻璃熔覆密封条。 优选地, 所述方法还包括继续刮除所述密封胶, 使所述密封胶的端面 凹陷在玻璃基板和玻璃背板之间的歩骤。
优选地, 所述凹陷的深度为 0.2mm至 3 mm。
优选地, 所述玻璃粉末的颗粒度在 0.05mm至 0.5mm之间。
优选地, 所述激光束采用脉冲模式, 其脉冲频率为 1000Hz ~60000Hz。 优选地, 所述玻璃粉末中还包含金属氧化物粉末。
优选地, 所述金属氧化物粉末包括氧化钛 Τι02、 氧化锡 Sn02、 氧化 锌 ZnO中的一种或组合。
与现有技术相比, 本发明具有以下优点:
本发明的太阳能电池板在将玻璃基板和玻璃背板利用有机密封胶层压 胶合在一起之后, 在两玻璃板边缘的接合处设置玻璃密封层, 用于覆盖有机 密封胶, 从而防止了水汽进入太阳能电池板内部, 提高了在户外长期使用的 太阳能电池板的密封性能, 延长太阳能电池板的使用寿命; 本发明太阳能电 池板的玻璃密封层采用激光熔覆法, 在两玻璃板边缘接合处喷洒玻璃粉, 利 用激光瞬间将喷洒的玻璃粉熔化形成玻璃密封层。利用激光形成玻璃密封层 有利于提高玻璃密封层的密封质量和密封效果,而且形成的玻璃密封层外观 比较美观, 并且有利于玻璃密封层的自动化生产程度和生产效率。 附图说明
通过附图中所示的本发明的优选实施例的更具体说明, 本发明的上述及 其它目的、 特征和优势将更加清晰。在全部附图中相同的附图标记指示相同 的部分。并未刻意按比例绘制附图,重点在于示出本发明的主旨。在附图中, 为清楚起见, 放大了层的厚度。 图 1为薄膜太阳能电池板的典型结构示意图;
图 2为根据本发明太阳能电池板第一实施例的结构示意图;
图 3为根据本发明太阳能电池板第二实施例的结构示意图;
图 4为根据本发明太阳能电池板第三实施例的结构示意图;
图 5为说明本发明太阳能电池制造方法的示意图;
图 6至图 7为说明本发明太阳能电池板第一实施例的制造过程示意图; 图 8至图 9为说明本发明太阳能电池板第二和第三实施例的制造过程 示意图。
具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附 图对本发明的具体实施方式做详细的说明。 在下面的描述中阐述了很多具 体细节以便于充分理解本发明。 但是本发明能够以很多不同于在此描述的 其它方式来实施, 本领域技术人员可以在不违背本发明内涵的情况下做类 似推广。 因此本发明不受下面公开的具体实施的限制。下文中 讨论的本发 明太阳能电池板不仅包括薄膜太阳能电池板, 还可以包括单晶硅、 多晶硅 等多种太阳能电池板, 只要太阳能电池板具有玻璃基板和玻璃背板层压在 一起的结构都在本发明的保护范围之内。
图 2为根据本发明太阳能电池板第一实施例的结构示意图。 如图 2所 示, 本实施例中, 太阳能电池板包括玻璃基板 101、 玻璃背板 102, 玻璃基 板 101和玻璃背板 102利用 EVA、 TEDLAR聚氟乙烯等有机密封胶 103在 层压机中层压封装在一起。 玻璃基板 101和玻璃背板 102之间的电池单元 100, 可以是薄膜层状结构, 例如包括透明导电氧化物(TCO)薄膜、 p层、 1层和 n层, 以及另一层透明导电氧化物薄膜和金属薄膜等。为简单明了起 见图中未示出电池单元 100的层状结构。 此外, 电池单元 100还可以是其 他已知的单晶或多晶太阳能电池的光电转换单元, 本发明的讨论重点并不 在于此, 在此不再赘述。 玻璃基板 101和玻璃背板 102通过 EVA等有机密 封胶 103层压在一起, 利用刮板或刮刀将溢出的多余部分胶体去除刮平, 形成与玻璃基板 101和玻璃背板 102侧边平齐的表面, 形成完整的太阳能 电池产品, 即太阳能电池板。 作为采光和光电转换产品安装在户外、 屋顶、 墙面等暴露在阳光下的地方, 需要经受风吹日晒、 严寒酷暑的考验, 需要 太阳能电池板具有良好的密封性以保护内部的电池单元 100。 然而 EVA等 有机密封胶 103随着时间的推移会发生老化吸潮的现象, 本发明的太阳能 电池板在玻璃基板 101和玻璃背板 102边缘接合处侧边表明设置玻璃密封 条 200, 用于覆盖有机密封胶 103, 而且该玻璃密封条 200与玻璃基板 101 和玻璃背板 102的侧边端面熔为一体, 起到了 "悍接"玻璃基板 101和玻 璃背板 102的作用, 将玻璃基板 101和玻璃背板 102悍接熔合在一起, 从 而有效地防止了水汽进入太阳能电池板内部, 提高了在户外长期使用的太 阳能电池板的密封性能和使用寿命。
图 3为根据本发明太阳能电池板第二实施例的结构示意图。 如图 3所 示, 本实施例中, 太阳能电池板亦包括玻璃基板 101、玻璃背板 102以及玻 璃基板 101和玻璃背板 102之间的电池单元 100。玻璃基板 101和玻璃背板 102利用密封胶 103层压在一起,利用刮板或刮刀将溢出的多余部分胶体去 除, 并继续挖除密封胶 103使其端面凹陷在玻璃基板 101和玻璃背板 102 之间, 凹陷的深度为 0.2mm至 3mm。 然后在玻璃基板 101和玻璃背板 102 边缘接合处侧边表面覆盖玻璃密封条 201, 该玻璃密封条 201 覆盖有机密 封胶 103,并与玻璃基板 101和玻璃背板 102的侧边端面熔为一体,将玻璃 基板 101和玻璃背板 102悍接熔合在一起。密封胶 103凹陷在玻璃基板 101 和玻璃背板 102之间, 增加了玻璃粉的用量, 从而增加了玻璃密封条 201 的厚度, 使密封效果更佳。
图 4为根据本发明太阳能电池板第三实施例的结构示意图。 如图 4 所 示, 本实施例中, 玻璃基板 101和玻璃背板 102利用密封胶 103层压在一 起, 以密封玻璃基板 101和玻璃背板 102之间的电池单元 100。将多余的部 分胶体去除, 并继续挖除密封胶 103使其凹陷在玻璃基板 101和玻璃背板 102之间, 凹陷的深度为 0.2mm至 3 mm。 在玻璃基板 101和玻璃背板 102 之间密封胶的凹陷处具有玻璃密封条 202, 该玻璃密封条 202 覆盖有机密 封胶 103,并与玻璃基板 101和玻璃背板 102的侧边端面熔为一体,将玻璃 基板 101和玻璃背板 102悍接熔合在一起, 且与玻璃基板 101、 玻璃背板 102的侧边端面基本齐平。本实施例通过减少玻璃粉的用量形成所述玻璃密 封条 202, 不但能够起到密封作用, 而且使太阳能电池板的边缘更加美观。
图 5为说明本发明太阳能电池制造方法的示意图。 如图 5所示, 在容 器 114中装有玻璃粉 116。 玻璃粉 116的颗粒度在 0.05mm至 0.5mm之间。 容器 114上部连接有管路 112, 管路 112中通入压缩空气 110。 容器 114下 部接有喷管 118, 喷管 118具有喷嘴, 喷嘴的内径在 0.5mm至 2mm之间, 以使玻璃粉 116能够顺利地从喷嘴中流出。 激光发生器 106发出的激光经 透镜系统 107被聚焦成激光束 108。激光发生器 106可采用固态 Nd:YAG (钇 钕石榴石晶体)激光器或气态 C02激光器、氦氖激光器等。优选为 Nd:YAG 激光器, 其基频 Nd:YAG激光的原有输出波长是 1064纳米的红外线, 其 激光输出功率可以非常高, 使得红外激光的玻璃悍接过程具有低成本高产 量的优势。 相比来说, 可见光的激光功率相对较弱, 要得到并且维持高功 率的激光需要高功率激光束, 如波长为 532纳米可见光的 Nd:YAG激光。 激光束 108采用脉冲模式, 脉冲频率为 10~100Hz。太阳能电池板 120可以 在一个工作台面 (未示出) 上沿着箭头方向移动。
在开始进行激光熔覆玻璃封边之前, 首先将已用密封胶层压好的太阳 能电池板 120置于工作台上,使需要玻璃密封的侧边水平向上。将喷管 118 的喷嘴和激光束 108的聚焦点的位置调整至太阳能电池板 120水平侧边的 一端, 喷管 118的喷嘴和激光束 108的聚焦点之间的距离应大于 6mm。 打 开压缩空气 110,在重力和压缩空气 110的共同作用下, 容器 114中的玻璃 粉 160顺着喷管 118经喷嘴被输送到太阳能电池板水平侧边一端表面, 延 迟特定时间 T, 例如 300ms, 便会在喷嘴下方的太阳能电池板 120的侧边 的密封胶表面形成一个圆锥或圆台形的玻璃粉料堆 115。随即打开激光发生 器 106,脉冲激光束 108的聚焦点应恰好聚焦在玻璃粉料堆 115处。激光束 108打在玻璃粉料堆 115表面,高温使玻璃粉料堆 115和两玻璃板边缘部分 瞬间熔化, 同时又快速冷却, 形成玻璃熔覆点, 脉冲激光束 108 同时在垂 直于侧边的方向作微量的摆动, 摆动得幅度与玻璃基板和玻璃背板之间的 距离相当, 使太阳能电池板 120侧边的玻璃基板和玻璃背板的侧边表面也 熔化与所述玻璃熔覆点熔为一体。 太阳能电池板 120在一个稳定的速度下 沿箭头方向移动, 例如 30厘米 /秒, 激光束 108和玻璃粉喷嘴保持不动, 而且激光束 108在垂直于侧边的方向作微量的摆动,随着太阳能电池板 120 的移动, 每一个激光脉冲都产生一个局部的与玻璃基板和玻璃背板侧边表 面熔为一体的玻璃熔覆点。 喷管 118的喷嘴沿着太阳能电池板顶部侧边表 面连续不断地喷出玻璃粉, 当喷管 118的喷嘴和激光束 108的聚焦点移动 到太阳能电池板 120水平侧边的另一端时, 激光束 108产生连续的玻璃熔 覆点从而在侧边表面形成条状的玻璃熔覆层 (即前述的玻璃密封条)。
在本发明的其他实施例中, 也可以保持太阳能电池板不动, 令激光束
108和玻璃粉喷嘴沿太阳能电池板顶边移动,同时激光束 108沿垂直于移动 的方向做微量的摆动。
当使用可见光激光时, 带颜色的玻璃原料混合物是最佳选择, 比如含 有带色玻璃小球的材料, 具有更强的光吸收能力, 从而促进玻璃物质的熔 化和再次固化。 玻璃粉材料中可以含有其它非玻璃的吸光成分, 以促使激 光的吸收和玻璃的局部熔化,特别是当玻璃粉原料中包含金属氧化物粉末, 如 Ti02、 Sn02、 ZnO中的一种或组合时,对红外激光的吸收可以大大增强。
根据对玻璃熔敷层质量的要求, 例如对包括宽度、 厚度和均匀度等的 要求, 可以对压缩空气 110的流量、 激光束 108的功率和脉冲频率以及从 喷嘴出粉到打开激光器 106的延迟时间 T、 太阳能电池板的移动速度等参 数进行调节。 通过调节压缩空气 110的流量可以在较宽范围内连续精确调 节玻璃粉量, 向封边部位均匀、 准确地输送玻璃粉末。 本领域技术人员均 可不经过创造性劳动, 利用计算机控制以上各个参数, 形成均匀的玻璃熔 覆层, 达到良好的玻璃封边效果。 在太阳能电池板的一个侧边形成玻璃熔覆层之后,旋转太阳能电池板, 对另一条侧边进行上述激光熔覆玻璃封边操作。
图 6至图 7为说明本发明太阳能电池板第一实施例的制造过程示意图。 首先如图 6所示, 太阳能电池板的玻璃基板 101和玻璃背板 102利用有机 密封胶 103在层压机中层压在一起, 多余的胶体被刮除使得密封胶 103与 玻璃基板 101和玻璃背板 102的侧边表面齐平。容器 114中装有玻璃粉 116, 容器 114上部连接管路 112, 管路 112中通入压缩空气 110, 容器 114下部 接有喷管 118, 喷管 118具有喷嘴, 玻璃粉 116能够从喷嘴中流出。激光发 生器 106所发出的激光经透镜组 107聚焦形成激光束 108。激光束 108采用 脉冲模式, 太阳能电池板可以在一个工作台面 (未示出) 上沿着箭头方向 移动。 在开始激光熔覆玻璃封边之前, 将太阳能电池板置于工作台上, 需 要玻璃密封的边向上, 将喷管 118的喷嘴和激光束 108的聚焦点调整至太 阳能电池板顶边一端密封胶 103的上方。通入压缩空气 110, 此时, 在重力 和压缩空气 110的作用下, 容器 114中的玻璃粉 160从喷管 118的喷嘴中 流出,流出一定量之后打开激光发生器 106,沿箭头方向作微量往复摆动的 脉冲激光束 108打在玻璃粉表面, 高温使玻璃粉、 玻璃基板 101和玻璃背 板 102边缘部分瞬间熔化, 同时又快速冷却, 形成覆盖密封胶 103、玻璃基 板 101和玻璃背板 102部分边缘的玻璃熔覆点。 太阳能电池板沿箭头方向 移动, 激光束 108和玻璃粉喷嘴保持不动, 每一个激光脉冲都产生一个局 部的玻璃熔覆点, 当喷管 118的喷嘴和激光束 108的聚焦点移动到太阳能 电池板水平顶边的另一端时, 如图 7所示, 喷管 118的喷嘴沿着太阳能电 池板顶部边缘区域连续不断地喷出玻璃粉, 激光束 108产生连续的玻璃熔 覆点, 从而在顶边表面形成条状的玻璃熔覆层 200, 即前述的玻璃密封条, 玻璃熔覆层 200覆盖密封胶且与玻璃基板 101和玻璃背板 102侧边表面熔 为一体。
在本发明的其他实施例中,也可以使太阳能电池板不动,令激光束 108 和玻璃粉喷嘴沿太阳能电池板侧边移动。 在太阳能电池板的一个侧边形成 玻璃熔覆层之后, 通过旋转太阳能电池板, 使另一条侧边向上, 重复上述 操作, 对其他侧边进行激光熔覆玻璃封边。 图 8至图 9为说明本发明太阳能电池板第二和第三实施例的制造过程 示意图。 首先如图 8所示, 太阳能电池板的玻璃基板 101和玻璃背板 102 利用密封胶 103层压在一起, 利用刮板或刮刀将多余的部分胶体去除, 并 继续挖除胶体密封胶 103凹陷在玻璃基板 101和玻璃背板 102之间, 使玻 璃基板 101和玻璃背板 102之间形成一个凹槽。 在容器 114中装有玻璃粉 116, 容器 114上部连接管路 112, 容器 114下部接有喷管 118, 玻璃粉 116 能够从喷管 118的喷嘴中流出。 激光发生器 106发出的激光经透镜组 107 聚焦形成激光束 108。 激光束 108采用脉冲模式。 激光熔覆玻璃封边之前, 将太阳能电池板置于工作台 (图中未示出) 上, 需要玻璃密封的边向上, 将喷管 118的喷嘴和激光束 108的聚焦点调整至太阳能电池板侧边一端密 封胶 103的上方。通入压缩空气 110, 在重力和压缩空气 110的作用下, 容 器 114中的玻璃粉 160从喷管 118的喷嘴中流出, 流出一定量后打开激光 发生器 106,沿箭头方向作微量往复摆动的脉冲激光束 108打在流出的玻璃 粉表面和玻璃板侧边表面内侧, 形成覆盖密封胶 103 的且与玻璃板侧边表 面熔为一体的玻璃熔覆点。 太阳能电池板沿箭头方向移动, 激光束 108和 玻璃粉喷嘴保持不动, 每一个激光脉冲都产生一个局部的玻璃熔覆点, 当 喷管 118的喷嘴和激光束 108的聚焦点移动到太阳能电池板水平顶边的另 一端时, 喷管 118 的喷嘴沿着太阳能电池板顶部边缘区域连续不断地喷出 玻璃粉, 激光束 108使玻璃粉瞬间熔化, 同时又快速冷却, 产生连续的玻 璃熔覆点,从而在顶边表面形成条状的玻璃熔覆层 200, 即前述的玻璃密封 条, 如图 9所示。
通过调节压缩空气 110的流量, 调节玻璃粉的用量, 当玻璃粉的用量 较多时, 可形成如图 3所示的玻璃密封条, 当玻璃粉的用量较少时, 可形 成如图 4所示的玻璃密封条。
同样, 也可使太阳能电池板不动, 令激光束 108和玻璃粉喷嘴沿太阳 能电池板顶边移动。
在太阳能电池板的一个侧边形成玻璃熔覆层之后, 通过旋转太阳能电 池板, 使另一条侧边向上, 重复上述操作, 对其他边进行激光熔覆玻璃封 边。 以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制。 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明。 任何熟悉本领域的技术人员, 在不脱离本发明技术方案范围情况下, 都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变 动和修饰, 或修改为等同变化的等效实施例。 因此, 凡是未脱离本发明技 术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、 等同变化及修饰, 均仍属于本发明技术方案的保护范围内。

Claims

利 要 求
1、 一种太阳能电池板, 所述太阳能电池板包括玻璃基板、 玻璃背板以 及位于玻璃基板和玻璃背板之间的电池单元, 所述玻璃基板和玻璃背板的 边缘区域通过密封胶层压粘合在一起, 其特征在于: 所述太阳能电池板的 侧边表面具有覆盖所述密封胶的玻璃密封条, 且所述玻璃密封条与所述玻 璃基板和玻璃背板的侧边端面熔为一体。
2、 如权利要求 1所述的太阳能电池板, 其特征在于: 在所述太阳能电 池板的侧边表面, 所述密封胶与所述玻璃基板和玻璃背板侧边端面齐平。
3、 如权利要求 1所述的太阳能电池板, 其特征在于: 在所述太阳能电 池板的侧边表面, 所述密封胶凹陷在所述玻璃基板和玻璃背板之间。
4、 如权利要求 3所述的太阳能电池板, 其特征在于: 所述凹陷的深度 为 0.2mm至 3 mm。
5、 如权利要求 1所述的太阳能电池板, 其特征在于: 所述密封胶为乙 酸-乙酸乙烯共聚物或聚氟乙烯等高分子材料密封胶。
6、 一种太阳能电池板的制造方法, 所述太阳能电池板包括玻璃基板、 玻璃背板以及位于玻璃基板和玻璃背板之间的电池单元, 所述方法包括下 列歩骤:
将玻璃基板和玻璃背板通过密封胶层压粘合在一起, 并将多余的密封 胶刮除, 使所述密封胶与所述玻璃基板和玻璃背板的侧边端面齐平;
沿着所述侧边连续将玻璃粉末喷洒在密封胶表面;
利用沿侧边方向横向移动且纵向微量移动的激光束瞬间熔化所述玻璃 粉末, 从而形成覆盖所述密封胶表面而且与所述玻璃基板和玻璃背板的侧 边熔为一体的玻璃熔覆密封条。
7、 如权利要求 6所述的方法, 其特征在于: 所述方法还包括继续刮除 所述密封胶,使所述密封胶的端面凹陷在玻璃基板和玻璃背板之间的歩骤。
8、 如权利要求 7所述的方法, 其特征在于: 所述凹陷的深度为 0.2mm 至 3 mmo
9、 如权利要求 6所述的方法, 其特征在于: 所述玻璃粉末的颗粒度在 0.05mm至 0.5mm之间。
10、 如权利要求 6所述的方法, 其特征在于: 所述激光束采用脉冲模 式, 其脉冲频率为 1000 Hz ~60000Hz。
11、 如权利要求 9所述的方法, 其特征在于: 所述玻璃粉末中还包含 金属氧化物粉末。
12、 如权利要求 11所述的方法, 其特征在于: 所述金属氧化物粉末包 括氧化钛 Ti02、 氧化锡 Sn02、 氧化锌 ZnO中的一种或组合。
PCT/CN2009/071966 2008-05-26 2009-05-25 太阳能电池板及其制造方法 WO2009143762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810097425.3 2008-05-26
CN2008100974253A CN101593782B (zh) 2008-05-26 2008-05-26 太阳能电池板及其制造方法

Publications (1)

Publication Number Publication Date
WO2009143762A1 true WO2009143762A1 (zh) 2009-12-03

Family

ID=41376608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071966 WO2009143762A1 (zh) 2008-05-26 2009-05-25 太阳能电池板及其制造方法

Country Status (2)

Country Link
CN (1) CN101593782B (zh)
WO (1) WO2009143762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742663A (zh) * 2017-10-26 2018-02-27 成都亿伏科技有限公司 雨雪天气减小光伏组件压力的设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110300660A1 (en) * 2010-06-07 2011-12-08 Du Pont Apollo Limited Method of manufacturing photovoltaic device
CN102280517A (zh) * 2010-06-11 2011-12-14 杜邦太阳能有限公司 太阳能电池模块及其边缘封闭的方法
CN104518039A (zh) * 2014-12-31 2015-04-15 江苏武进汉能光伏有限公司 一种真空薄膜太阳能电池组件及其制造方法
CN111180531A (zh) * 2019-12-27 2020-05-19 广东爱旭科技有限公司 一种3d打印制备太阳能电池正面副栅电极的方法
CN112517349B (zh) * 2020-12-03 2022-03-18 南京大学 一种空气敏感性二维材料器件的封装设备及封装方法
CN112670360B (zh) * 2020-12-17 2023-07-18 泰州隆基乐叶光伏科技有限公司 太阳能电池组件及其封装方法
CN113345983B (zh) * 2021-06-08 2023-01-03 天津爱旭太阳能科技有限公司 防水汽进入的双玻组件的制作方法和双玻组件
CN115581106A (zh) * 2022-10-17 2023-01-06 福耀高性能玻璃科技(福建)有限公司 一种钙钛矿太阳能电池的封装方法及钙钛矿太阳能电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1809933A (zh) * 2003-04-16 2006-07-26 阿波朗.索拉尔公司 光电模块及其制造方法
CN101026182A (zh) * 2006-02-20 2007-08-29 三星Sdi株式会社 有机发光显示装置及其制造方法
CN101051672A (zh) * 2007-04-26 2007-10-10 南京大学 染料敏化太阳电池的抗衰老封装方法
CN101093807A (zh) * 2006-02-21 2007-12-26 三星Sdi株式会社 用熔料密封料和加固结构封装有机发光显示器的方法
CN101097873A (zh) * 2006-06-30 2008-01-02 Lg.菲利浦Lcd株式会社 有机电致发光显示器及其制造方法
CN101140958A (zh) * 2007-09-30 2008-03-12 中山大学 小功率模块化太阳电池组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328751B2 (zh) * 1974-11-27 1978-08-16
BE876681A (fr) * 1978-06-14 1979-11-30 Bfg Glassgroup Procede de fabrication d'un panneau comprenant au moins une cellule photovoltaique et panneau comprenant au moins une telle cellule
CN1189949C (zh) * 1999-02-01 2005-02-16 库尔特玻璃+制镜股份公司 太阳能电池模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1809933A (zh) * 2003-04-16 2006-07-26 阿波朗.索拉尔公司 光电模块及其制造方法
CN101026182A (zh) * 2006-02-20 2007-08-29 三星Sdi株式会社 有机发光显示装置及其制造方法
CN101093807A (zh) * 2006-02-21 2007-12-26 三星Sdi株式会社 用熔料密封料和加固结构封装有机发光显示器的方法
CN101097873A (zh) * 2006-06-30 2008-01-02 Lg.菲利浦Lcd株式会社 有机电致发光显示器及其制造方法
CN101051672A (zh) * 2007-04-26 2007-10-10 南京大学 染料敏化太阳电池的抗衰老封装方法
CN101140958A (zh) * 2007-09-30 2008-03-12 中山大学 小功率模块化太阳电池组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742663A (zh) * 2017-10-26 2018-02-27 成都亿伏科技有限公司 雨雪天气减小光伏组件压力的设备

Also Published As

Publication number Publication date
CN101593782B (zh) 2011-06-22
CN101593782A (zh) 2009-12-02

Similar Documents

Publication Publication Date Title
WO2009143762A1 (zh) 太阳能电池板及其制造方法
CN201228500Y (zh) 光伏玻璃窗
CN101661963B (zh) 一种隔热型薄膜太阳能电池结构
CN201191614Y (zh) 双玻eva中空光伏幕墙
EP2543644A2 (en) Physical tempered glass, solar cover plate, solar backsheet and solar panel
JP2003124491A (ja) 薄膜太陽電池モジュール
CN101560864B (zh) 光伏真空窗户及其制造方法
CN202227625U (zh) 一体化薄膜太阳能建材板
CN103746021A (zh) 一种含彩色艺术图案的透光薄膜太阳能组件及其制作方法
US20200266311A1 (en) Solar cell hermetic package structure
CN101245686A (zh) 真空绝热光伏窗
KR20160009486A (ko) 밀봉 태양전지 모듈
CN107154440A (zh) 一种太阳能电池真空玻璃窗
CN203247765U (zh) 一种真空玻璃合中空玻璃的隔热型光伏构件
CN101752453A (zh) 玻璃衬底双面铜铟镓硒薄膜太阳电池组件的制备方法
CN102254967B (zh) 薄膜太阳电池、组件及制造方法
JP2003110128A (ja) 薄膜太陽電池モジュール及びその製造方法
CN202839697U (zh) 一种新型bipv太阳能电池组件
CN104347741A (zh) 一种柔性透光光伏组件及其制备方法
CN201527981U (zh) 一种隔热型薄膜太阳能电池结构
CN101924152A (zh) 一种薄膜太阳能电池及其制作方法
CN202196798U (zh) 一种具有自洁功能的太阳能电池组件
CN208608211U (zh) 一种光伏玻璃组件
Karasu et al. Solar glass panels: a review
CN114185218B (zh) 一种电致变色发电中空玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753480

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09753480

Country of ref document: EP

Kind code of ref document: A1