CN111180531A - 一种3d打印制备太阳能电池正面副栅电极的方法 - Google Patents

一种3d打印制备太阳能电池正面副栅电极的方法 Download PDF

Info

Publication number
CN111180531A
CN111180531A CN201911382034.0A CN201911382034A CN111180531A CN 111180531 A CN111180531 A CN 111180531A CN 201911382034 A CN201911382034 A CN 201911382034A CN 111180531 A CN111180531 A CN 111180531A
Authority
CN
China
Prior art keywords
solar cell
grid electrode
front side
powder
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911382034.0A
Other languages
English (en)
Inventor
李娟�
方结彬
林纲正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Aiko Technology Co Ltd
Original Assignee
Guangdong Aiko Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Aiko Technology Co Ltd filed Critical Guangdong Aiko Technology Co Ltd
Priority to CN201911382034.0A priority Critical patent/CN111180531A/zh
Publication of CN111180531A publication Critical patent/CN111180531A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • B22F12/47Radiation means with translatory movement parallel to the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了一种3D打印制备太阳能电池正面副栅电极的方法,采用3D激光熔覆成型技术,将由金属粉末与玻璃粉末组成的混合粉末通过3D打印机喷嘴聚集硅片表面,与激光汇于一点,混合粉末熔化冷却后获得太阳能电池正面副栅电极。本发明3D打印制备太阳能电池正面副栅电极的方法,导电材料无需采用溶剂进行调制浆料,直接将导电金属粉末通过激光熔融冷却后与硅片结合形成欧姆接触,后续无需对正面副栅电极进行烧结,简化了制备工艺,同时节省了材料,降低成本。

Description

一种3D打印制备太阳能电池正面副栅电极的方法
技术领域
本发明涉及一种3D打印制备太阳能电池正面副栅电极的方法。
背景技术
传统太阳能电池片采用丝网印刷工艺制作太阳能正面电极,然后进行烧结。
丝网印刷是利用丝网图形部分网孔透过浆料,非图文部分网孔不透浆料的基本原理进行印刷。印刷时在丝网一端倒入浆料,用刮刀在丝网的浆料部分施加一定压力,同时朝丝网另一端移动。浆料在移动中被刮板从图形部分的网孔中挤压到基片上。丝网印刷由五大要素构成,即丝网、刮刀、浆料、工作台以及基片。太阳能电池片丝网印刷中浆料是由功能组份、粘结组份和有机载体组成的一种流体,功能组份一般为贵金属或贵金属的混合物。载体是聚合物在有机溶剂中的溶液。功能组份决定了成膜后的电性能和机械性能。载体决定了厚膜的工艺特性,是印刷膜和干燥膜的临时粘结剂。功能组份和粘结组份一般为粉末状,在载体中进行充分搅拌和分散后形成膏状的厚膜浆料。烧结后的厚膜导体是由金属和粘结组份组成。有机载体包括有机高分子聚合物、有机溶剂、有机添加剂等。它调节了浆料的流变性,固体粒子的浸润性,金属粉料的悬浮性和流动性以及浆料整体的触变形,决定了印刷质量的优劣。正面电极的印刷主要监控印刷后的湿重和次栅线的宽度。湿重过大,造成浆料浪费,栅线宽度过大,会使电池片受光面积较少,效率下降。正面电极印刷过程中容易出现结点和断线,一般是由于浆料在网版内停留时间较长,浆料变干,聚集成大的颗粒,或者浆料内有大的异物,刮条经过时,大颗粒将网孔撑大,该部位印刷的浆料比其他部位多,形成所谓结点,而严重时这些颗粒或异物会堵塞网孔,浆料无法透过,造成断栅。此外,太阳能电池正面电极副栅线主要对太阳电池中产生的光生电流进行收集,需要与太阳能电池形成欧姆接触,副栅的高度越高,其传输电阻就会越低;而副栅的宽度越宽,虽然同样可以降低电阻,但是会降低有效受光面积,限制太阳电池的转换效率的提高,因此副栅线高宽比的优化越来越被广泛重视。但由于受到浆料流变性的制约,副栅的印刷高度提升往往需要依赖宽度的增加;使用的丝网网版膜厚的限制,也会影响透过丝网网版的印刷浆料的下墨量,印刷的浆料的高度也存在限制,这些直接导致丝网印刷副栅线的高度和宽度受到限制,影响副栅性能。
印刷了浆料的硅片经过烘干排焦过程后使浆料中的大部分有机溶剂挥发,膜层收缩为固态物紧密粘附在硅片上,这时可视为金属电极材料和硅片接触在一起。烧结过程是要使印刷到硅片上的电极在高温下烧结成电池片,最终使电极和硅片本身形成欧姆接触,从而提高电池片的开路电压,其原理为当电极里金属材料和半导体单晶硅加热到共晶温度时,单晶硅原子以一定比例融入到熔融的合金电极材料中,单晶硅原子融入到电极金属中的整个过程一般只需要几秒钟的时间。烧结方式采用高温快速烧结,加热采用红外线加热。烧结高温前,一定要保证浆料中的有机物已经经过烘干并挥发干净。正面电极的烧结对电池片性能影响主要表现在串联电阻和并联电阻,烧结温度过低导致烧结不足,串联电阻过大,温度过高导致烧穿,并联电阻过小。烧结过程还可能出现断栅现象。
由上印刷烧结制备太阳能电池正面电极过程中,浆料中溶剂对印刷过程影响很大,且对后续烧结工艺存在影响,而在烧结过程中对设备、工艺控制等要求较高,基于现有丝网印刷工艺制备太阳能电池正面电极的不足,有必要提供一种无需有机溶剂、无需进行烧结即可制备太阳能电池正面电极的工艺。
发明内容
本发明的目的在于提供一种3D打印制备太阳能电池正面副栅电极的方法,解决现有丝网印刷工艺制备太阳能电池正面副栅电极需要采用有机溶剂制浆料,导致工艺复杂,成本高,良品率低的技术问题。
本发明的目的,通过以下技术方案实现:
一种3D打印制备太阳能电池正面副栅电极的方法,采用3D激光熔覆成型技术,将由金属粉末与玻璃粉末组成的混合粉末通过3D打印机喷嘴聚集硅片表面,与激光汇于一点,混合粉末熔化冷却后获得太阳能电池正面副栅电极。
本发明中,3D打印所述太阳能电池正面副栅电极在真空环境或惰性气体的密闭环境中进行,激光功率为5-100W,激光频率10-200KHz,激光光斑尺寸10-60um,喷嘴输送混合粉末采用气动送粉,送粉速率1-35g/min,载流气体流量1-25L/min。
进一步地,所述惰性气体为氮气或氩气。
本方明中,所述激光或喷嘴喷出的混合粉末与硅片垂直。
本发明中,3D打印机喷嘴和激光发生器模块与硅片呈水平方向相对运动,形成太阳能电池正面副栅电极,其中,3D打印机喷嘴和激光发生器模块移动速度15000-28000mm/min。
本发明中,所述混合粉末由以下质量百分比组分组成:金属粉末80~99%,玻璃粉末1~20%。
进一步地,所述金属粉末为银粉。
本发明中,所述混合粉末粒径<0.5um。
本发明中,正面副栅线电极高宽比为0.4-1.0。
与现有技术相比,本发明具有以下有益效果:
(1)本发明3D打印制备太阳能电池正面副栅电极的方法,导电材料无需采用溶剂进行调制浆料,直接将导电金属粉末通过激光熔融冷却后与硅片结合形成欧姆接触,后续无需对正面副栅电极进行烧结,简化了制备工艺。
(2)本发明方法制备的太阳能电池正面副栅电极副栅线的高度、宽度可选择范围远超丝网印刷工艺,可以制备出性能更好的太阳能电池正面副栅电极,工艺过程容易控制,提高了产品的良品率。
附图说明
图1是本发明进行3D打印制备太阳能电池正面副栅电极的示意图;
图2是本发明太阳能电池正面副栅电极结构图;
图中附图标记如下:1-硅片;2-太阳能电池正面副栅电极;3-3D打印机喷嘴;4-激光束;5-正面副栅电极;6-正面钝化膜;7-N型硅;8-P型硅。
具体实施方式
以下结合具体的实施例对本发明作进一步的说明,以便本领域技术人员更好理解和实施本发明的技术方案。
实施例1
一种3D打印制备太阳能电池正面副栅电极的方法,包含以下步骤:采用3D激光熔覆成型技术,将由金属粉末与玻璃粉末组成的混合粉末通过3D打印机喷嘴聚集硅片表面,与激光汇于一点,激光束垂直于硅片表面,3D打印机喷嘴和激光发生器模块与硅片呈水平方向相对运动,3D打印机喷嘴和激光发生器模块移动速度为23000mm/min,如图1所示,混合粉末熔化冷却后获得太阳能电池正面副栅电极,如图2所示。本实施例中,3D打印太阳能电池正面副栅电极在惰性气体氮气的密闭环境中进行,激光功率为20W,激光频率120KHz,激光光斑尺寸25um,喷嘴输送混合粉末采用气动送粉,送粉速率12g/min,载流气体流量10L/min。混合粉末由银粉和玻璃粉组成,混合粉末粒径<0.5um。混合粉末中银粉的质量百分比为83%,玻璃粉的质量百分比为17%,玻璃粉与银粉质量百分比为20.48%。最终制得的太阳能电池正面副栅线电极高度15.04um,高宽比为0.86。
对比例1
采用取玻璃粉与银粉质量百分比为20.48%的正银正面副栅浆料,通过丝网印刷、烧结制得太阳能电池正面副栅电极。
实施例2
一种3D打印制备太阳能电池正面副栅电极的方法,包含以下步骤:采用3D激光熔覆成型技术,将由金属粉末与玻璃粉末组成的混合粉末通过3D打印机喷嘴聚集硅片表面,与激光汇于一点,激光束垂直于硅片表面,3D打印机喷嘴和激光发生器模块与硅片呈水平方向相对运动,3D打印机喷嘴和激光发生器模块移动速度为18000mm/min,粉末熔化冷却后获得太阳能电池正面副栅电极。本实施例中,3D打印太阳能电池正面副栅电极在惰性气体氮气的密闭环境中进行,激光功率为35W,激光频率75KHz,激光光斑尺寸25um,喷嘴输送混合粉末采用气动送粉,送粉速率12g/min,载流气体流量10L/min。混合粉末由银粉和玻璃粉组成,混合粉末粒径<0.5um。混合粉末中银粉的质量百分比为87%,玻璃粉的质量百分比为13%。最终制得的太阳能电池正面副栅线电极高度15.53um,高宽比为0.74。
对比例2
采用取玻璃粉与银粉质量百分比为14.94%的正银正面副栅浆料,通过丝网印刷、烧结制得太阳能电池正面副栅电极。
实施例3
一种3D打印制备太阳能电池正面副栅电极的方法,包含以下步骤:采用3D激光熔覆成型技术,将由金属粉末与玻璃粉末组成的混合粉末通过3D打印机喷嘴聚集硅片表面,与激光汇于一点,激光束垂直于硅片表面,3D打印机喷嘴和激光发生器模块与硅片呈水平方向相对运动,3D打印机喷嘴和激光发生器模块移动速度为25000mm/min,粉末熔化冷却后获得太阳能电池正面副栅电极。本实施例中,3D打印太阳能电池正面副栅电极在惰性气体氮气的密闭环境中进行,激光功率为60W,激光频率120KHz,激光光斑尺寸50um,喷嘴输送混合粉末采用气动送粉,送粉速率12g/min,载流气体流量10L/min。混合粉末由银粉和玻璃粉组成,混合粉末粒径<0.5um。混合粉末中银粉的质量百分比为92%,玻璃粉的质量百分比为8%。最终制得的太阳能电池正面副栅线电极高度15.21um,高宽比为0.55。
对比例3
采用取玻璃粉与银粉质量百分比为8.7%的正银正面副栅浆料,通过丝网印刷、烧结制得太阳能电池正面副栅电极。
实施例4
一种3D打印制备太阳能电池正面副栅电极的方法,包含以下步骤:采用3D激光熔覆成型技术,将由金属粉末与玻璃粉末组成的混合粉末通过3D打印机喷嘴聚集硅片表面,与激光汇于一点,激光束垂直于硅片表面,3D打印机喷嘴和激光发生器模块与硅片呈水平方向相对运动,3D打印机喷嘴和激光发生器模块移动速度为27000mm/min,,粉末熔化冷却后获得太阳能电池正面副栅电极。本实施例中,3D打印太阳能电池正面副栅电极在惰性气体氮气的密闭环境中进行,激光功率为80W,激光频率150KHz,激光光斑尺寸35um,喷嘴输送混合粉末采用气动送粉,送粉速率12g/min,载流气体流量10L/min。混合粉末由银粉和玻璃粉组成,混合粉末粒径<0.5um。混合粉末中银粉的质量百分比为97%,玻璃粉的质量百分比为3%。最终制得的太阳能电池正面副栅线电极高度15um,高宽比为0.57。
对比例4
采用取玻璃粉与银粉质量百分比为3.09%的正银正面副栅浆料,通过丝网印刷、烧结制得太阳能电池正面副栅电极。
性能测试实验
传统丝网印刷制作太阳能电池工艺流程包含:制绒、扩散、刻蚀、退火、背钝化、正面镀膜、背面激光开膜、丝网印刷电极电场、烧结、抗光衰工艺,制成晶硅太阳能电池。
本发明3D打印太阳能电池工艺流程包含:制绒、扩散、刻蚀、退火、背钝化、正面镀膜、3D打印电极电场、抗光衰工艺,制成晶硅太阳能电池。
检测采用上述实施例和对比例正面副栅线电极制成的太阳能电池的串联电阻(Rs)、开路电压(Uoc)和转换效率,如表1所示。
表1实施例和对比例正面副栅线电极高宽比以及制成的太阳能电池的电学性能
Figure BDA0002342511610000071
以上实施实例对本发明不同的实施过程进行了详细的阐述,但是本发明的实施方式并不仅限于此,所属技术领域的普通技术人员依据本发明中公开的内容,均可实现本发明的目的,任何基于本发明构思基础上做出的改进和变形均落入本发明的保护范围之内,具体保护范围以权利要求书记载的为准。

Claims (9)

1.一种3D打印制备太阳能电池正面副栅电极的方法,其特征在于,采用3D激光熔覆成型技术,将由金属粉末与玻璃粉末组成的混合粉末通过3D打印机喷嘴聚集硅片表面,与激光汇于一点,混合粉末熔化冷却后获得太阳能电池正面副栅电极。
2.根据权利要求1所述3D打印制备太阳能电池正面副栅电极的方法,其特征在于,3D打印所述太阳能电池正面副栅电极在真空环境或惰性气体的密闭环境中进行,激光功率为5-100W,激光频率10-200KHz,激光光斑尺寸10-60um,喷嘴输送混合粉末采用气动送粉,送粉速率1-35g/min,载流气体流量1-25L/min。
3.根据权利要求2所述3D打印制备太阳能电池正面副栅电极的方法,其特征在于,所述惰性气体为氮气或氩气。
4.根据权利要求3所述3D打印制备太阳能电池正面副栅电极的方法,其特征在于,所述激光或喷嘴喷出的混合粉末与硅片垂直。
5.根据权利要求4所述3D打印制备太阳能电池正面副栅电极的方法,其特征在于,3D打印机喷嘴和激光发生器模块与硅片呈水平方向相对运动,形成太阳能电池正面副栅电极,其中,3D打印机喷嘴和激光发生器模块移动速度15000-28000mm/min。
6.根据权利要求1-5任一项所述3D打印制备太阳能电池正面副栅电极的方法,其特征在于,所述混合粉末由以下质量百分比组分组成:金属粉末80~99%,玻璃粉末1~20%。
7.根据权利要求6所述3D打印制备太阳能电池正面副栅电极的方法,其特征在于,所述金属粉末为银粉。
8.根据权利要求7所述3D打印制备太阳能电池正面副栅电极的方法,其特征在于,所述混合粉末粒径<0.5um。
9.根据权利要求8所述3D打印制备太阳能电池正面副栅电极的方法,其特征在于,正面副栅线电极高宽比为0.4-1.0。
CN201911382034.0A 2019-12-27 2019-12-27 一种3d打印制备太阳能电池正面副栅电极的方法 Pending CN111180531A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911382034.0A CN111180531A (zh) 2019-12-27 2019-12-27 一种3d打印制备太阳能电池正面副栅电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911382034.0A CN111180531A (zh) 2019-12-27 2019-12-27 一种3d打印制备太阳能电池正面副栅电极的方法

Publications (1)

Publication Number Publication Date
CN111180531A true CN111180531A (zh) 2020-05-19

Family

ID=70654242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911382034.0A Pending CN111180531A (zh) 2019-12-27 2019-12-27 一种3d打印制备太阳能电池正面副栅电极的方法

Country Status (1)

Country Link
CN (1) CN111180531A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598650A (en) * 2021-02-18 2022-03-09 Hazeleger Hendrik The laser annealing industrial solar cell printing production system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593782A (zh) * 2008-05-26 2009-12-02 福建钧石能源有限公司 太阳能电池板及其制造方法
DE102008060211A1 (de) * 2008-12-04 2010-06-10 Stiebel Eltron Gmbh & Co. Kg Verfahren zur Metallkontaktierung einer Solarzelle oder Verfahren zur Herstellung eines Solarmoduls und Laserauftragsschweiß-Anlage
CN102709394A (zh) * 2012-06-11 2012-10-03 苏州晶银新材料股份有限公司 太阳能电池正面电极栅线的制备工艺
CN107331434A (zh) * 2017-06-30 2017-11-07 北京市合众创能光电技术有限公司 一种晶体硅太阳能电池主副栅线分离印刷正银浆料组合及其制备方法
CN110137281A (zh) * 2019-05-30 2019-08-16 江苏欧达丰新能源科技发展有限公司 激光烧结金属粉粒制备光伏电池片栅线电极的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593782A (zh) * 2008-05-26 2009-12-02 福建钧石能源有限公司 太阳能电池板及其制造方法
DE102008060211A1 (de) * 2008-12-04 2010-06-10 Stiebel Eltron Gmbh & Co. Kg Verfahren zur Metallkontaktierung einer Solarzelle oder Verfahren zur Herstellung eines Solarmoduls und Laserauftragsschweiß-Anlage
CN102709394A (zh) * 2012-06-11 2012-10-03 苏州晶银新材料股份有限公司 太阳能电池正面电极栅线的制备工艺
CN107331434A (zh) * 2017-06-30 2017-11-07 北京市合众创能光电技术有限公司 一种晶体硅太阳能电池主副栅线分离印刷正银浆料组合及其制备方法
CN110137281A (zh) * 2019-05-30 2019-08-16 江苏欧达丰新能源科技发展有限公司 激光烧结金属粉粒制备光伏电池片栅线电极的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598650A (en) * 2021-02-18 2022-03-09 Hazeleger Hendrik The laser annealing industrial solar cell printing production system

Similar Documents

Publication Publication Date Title
CN102881350B (zh) 太阳能电池正面电极浆料及玻璃粉
US20210350948A1 (en) Full-area aluminum back surface field back-side silver paste and preparation method and application thereof
US20070158621A1 (en) Conductive Paste, Solar Cell Manufactured Using Conductive Paste, Screen Printing Method and Solar Cell Formed Using Screen Printing Method
JP2012509588A (ja) 太陽電池用電極の製造方法、これを用いて製造された太陽電池用基板及び太陽電池
CN106024095B (zh) 一种太阳能电池无氧玻璃导电浆料
CN112041994A (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
CN114315159B (zh) TOPCon电池主栅电极银浆料用玻璃粉及其制备方法与应用
EP3583612A1 (en) Glass frit, conductive paste and use of the conductive paste
CN108713039A (zh) 导电组合物以及所述组合物的应用
CN110663087A (zh) 晶硅太阳能电池正面导电银浆及其制备方法和太阳能电池
CN103597548A (zh) 太阳能电池和太阳能电池的铝电极形成用膏状组合物
CN111548021A (zh) 一种混合玻璃粉及用其制备的导电银浆
CN107994101A (zh) 一种晶体硅太阳能电池片金属电极制作方法
CN110137281A (zh) 激光烧结金属粉粒制备光伏电池片栅线电极的方法
CN114360767A (zh) 一种优异印刷性能的太阳能电池正极银浆及其制备方法
CN105637046B (zh) 包含纳米级化学熔料的导电糊料或导电油墨
CN111180531A (zh) 一种3d打印制备太阳能电池正面副栅电极的方法
JP5693503B2 (ja) 太陽電池およびその製造方法
CN111180529A (zh) 一种3d打印制备太阳能电池正面主栅电极的方法
Wang et al. Effects of screen printing and sintering processing of front side silver grid line on the electrical performances of multi-crystalline silicon solar cells
Wang et al. Effect of the mass ratio of micron and submicron silver powder in the front electrode paste on the electrical performance of crystalline silicon solar cells
CN111584654A (zh) 一种制备晶硅太阳能电池电极的方法
JP6062383B2 (ja) 太陽電池の製造方法
CN108428492B (zh) 太阳能电池正面电极浆料
CN110603606B (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination