WO2009142040A1 - 耐震性構造物 - Google Patents

耐震性構造物 Download PDF

Info

Publication number
WO2009142040A1
WO2009142040A1 PCT/JP2009/053775 JP2009053775W WO2009142040A1 WO 2009142040 A1 WO2009142040 A1 WO 2009142040A1 JP 2009053775 W JP2009053775 W JP 2009053775W WO 2009142040 A1 WO2009142040 A1 WO 2009142040A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
end side
free end
fixed
shear
Prior art date
Application number
PCT/JP2009/053775
Other languages
English (en)
French (fr)
Inventor
片山拓朗
岡林拓也
山尾敏孝
Original Assignee
学校法人君が淵学園
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人君が淵学園, 国立大学法人熊本大学 filed Critical 学校法人君が淵学園
Publication of WO2009142040A1 publication Critical patent/WO2009142040A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/023Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices

Definitions

  • the present invention relates to a dense structure that can improve 1 » ⁇ Ikekura of structures mainly subjected to shear deformation such as high-rise buildings.
  • Non-Patent Document 1 It is related to the vibration characteristics such as the natural period and damping of the structure ⁇ : etc., but the proper design of the natural period and damping of the structure especially considering the periodic characteristics of the ground It is considered to be important in performing (see, for example, Non-Patent Document 1).
  • Non-patent document 1 shows that the design ground motion used to check the metaphysical performance of structures is based on the standard acceleration response spectrum, the attenuation constant 3 and the regional correction coefficient. It is specified. According to the standard acceleration response spectrum of Level 1 ⁇ Level 2 «3 ⁇ 4] of Non-Patent Document 1, over the natural period exceeding about 1 second, the caloric velocity increases as the natural period becomes longer. I will be deceived.
  • Non-Patent Document 2 stipulates that the calculation is performed by multiplying the sum of the fixed t weight and the tt «load by the ground shear coefficient. If the seismic layer shear force coefficient is arranged as a function of the natural period, in the natural period exceeding about 1 second, the shear layer shear force coefficient is calculated according to the longer period of the natural period.
  • Non-Patent Document 1 Japan Road Bridge Association: Road Bridge Indication; Organic Explanation, Total, pp. 12-29, March 2002
  • Non-Patent Document 2 Building Standards Act Construction Order: Showa 25 Decree No. 338: Construction Act Enforcement Order, Article 88, Final Revision November 7, 2005 Decree No. 334
  • Non-Patent Document 3 Japanese Architecture: Isolated Design 3 ⁇ 4ff, pp. 26-56, September 20, 1989 Disclosure of Invention
  • a longer period in the region where the natural period exceeds 1 second may cause resonance with a slightly longer period ground motion, which is expected to be caused by a subduction-zone giant earthquake.
  • Non-Patent Document 4 Civil Engineering ⁇ , 0 Buildings ⁇ 3 ⁇ 4: Long-period ground ⁇ due to a subduction-zone earthquake and joint proposal for improving the metamorphic properties of a building structure, November 20, 2006
  • the conventional shear structure is a cantilever shear structure composed of a plurality of layers with the lowermost floor as the fixed end fixed to the lower structure and the uppermost floor as the free end.
  • a model in which the horizontal restoring force in the horizontal direction is expressed by a shear panel is used to calculate the natural period and the natural vibration mode of the structure necessary for the metameter with sufficient accuracy in engineering.
  • the metaphysical structure of the present invention supports the upper structure on the lower job, and the upper structure is a structure that mainly resists the vertical load and the weight of the main frame.
  • the upper structure is a folding structure that forms a fixed-end side hierarchy consisting of a plurality of hierarchies where the lowest floor on the fixed end side is fixed to the lower structure, and an upper floor of the same fixed-end side hierarchy.
  • the bent portion forming layer and the free end side layer portion formed of a plurality of layers in which the bent portion forming layer forms an upper floor and the lowermost floor which is the free end side is supported by the lower structure so as to be horizontally movable.
  • it is a one-fold bending cantilever shear structure.
  • the bent portion forming layer includes at least a beam portion provided in the upper floor of the fixed end side layer portion and a beam portion provided in the upper layer of the free end side layer portion in common. .
  • the metaphysical structure of the present invention is the metaseismic structure according to (1), wherein the free end side layer portion has a mass larger than the fixed end side layer portion. Let's assume that it was formed.
  • the earthquake-resistant structure of the present invention is the meta-inertial structure according to the above (1) or (2), wherein the lower structure is provided with an accommodation recess for accommodating the lower floor of the free end side hierarchy portion.
  • the number of trees means that the lowermost floor of the free end side layer portion is supported in the accommodation recess so as to be horizontally movable.
  • the rich structure according to the present invention is the f seismic structure according to (3), wherein the lowermost floor of the free end side layer is a lower structure via a horizontal support device.
  • the glue is to be supported horizontally so that it can move horizontally.
  • the metaphysical structure of the present invention is any one of (1) to (4)! It is an fSttt structure and is characterized in that a plurality of types of horizontal movable support devices having different friction coefficients are provided, and the friction attenuation by these horizontal movable support devices is adjusted.
  • the metaphysical structure of the present invention is a metamorphic structure of any one of firf self (1) to (5), wherein The adhesive pad is the insertion of a damping device between the substructure and the substructure.
  • the metaphysical structure of the present invention has a metamorphic structure of MS (1) to (6).
  • the metaphysical structure of the present invention is one of tijfS (1) to (7) or a metamorphic t3 ⁇ 4f structure, which is a fixed end side layer portion and a free end side layer portion.
  • the cantilever part (or the cantilever floor part) and the cantilever part (or the floor part) of at least one pair of the opposing strata are extended to the opposite cantilever part (or the cantilever part).
  • a cantilever floor A floor telescopic device is interposed between the two, and the space that absorbs the horizontal relative displacement between the fixed end side layer and the free end side layer is expanded and contracted horizontally by the same floor expansion device. Any number of obstructions can be used.
  • the metaphysical structure of the present invention is any one of metaphysical structures (1) to (8), and includes a fixed end side layer portion and a free end side layer portion. Extend the base frame part to which the heel part or side face is attached in the horizontal direction and face each other, between the opposing base frame parts, or between the opposite side »parts and the base frame part. An employment expansion / contraction device is interposed between the two, and the gap that absorbs the horizontal relative displacement between the fixed end layer and the free end layer is closed horizontally and expandably by the employment expansion device. .
  • the present invention realizes a longer natural period in the horizontal direction of the shear structure by revising the conventional support structure of the shear structure and the arrangement of the frames constituting the shear structure, In addition, it realizes the development of a solid-state mode that has a shape similar to that of a squeezed car with a damping device. The invention's effect
  • the upper structure is supported on the lower structure, and the upper part is a structure that mainly resists vertical load and water weight mainly in frame construction, Is a fixed structure consisting of multiple floors with the lowermost floor on the fixed end side fixed to the lower structure. It consists of multiple levels up to the ⁇ ⁇ floor formed by the end layer, the folded layer forming the upper floor of the fixed end layer, and the ⁇ ⁇ floor formed by the bent layer forming layer.
  • the lower end floor is supported by the lower end structure so that it can move horizontally and the free end layer and the force are combined into a single folded cantilever shear structure.
  • the earthquake-resistant structure according to the present invention which is a bent cantilever shear structure, raises the structure so that the upper end of the conventional shear structure, that is, the free end faces the ground.
  • the mechanical Pg3 ⁇ 4 related to the natural period of the bent cantilever shear structure of the present invention is about twice as high as the rank in the height direction compared to the conventional shear structure with the lower end fixed. Since the natural period of the shear structure increases in proportion to the rank, the natural period of the folded cantilever shear structure of the present invention is about twice that of the conventional shear structure.
  • the folded cantilever shear structure of the present invention generates a fixed mode in which a large horizontal relative displacement between opposing layers of the fixed end layer portion and the free end layer portion is 1 mm. Appear. In the most important primary eclectic mode, the above horizontal relative displacement gradually increases from the upper floor to the lower floor, and is the highest on the lower floor.
  • the primary natural vibration mode is a solid gft mode with the longest natural period.
  • a solid having a long period is used. Since it can be made into a shear structure with mode, it is possible to reduce the seismic force acting on the structure by increasing the natural period, and it occurs on the lowest floor of the free end layer A structure that mainly undergoes shear deformation, such as a double-layer building, because it can potentially reduce the vibration amplitude of the structure at the time of ⁇ ⁇ because it has a large friction damping due to Coulomb friction force.
  • the metaphor performance can be improved.
  • the free end side layer portion is opened so as to have a larger mass than the fixed end side layer portion.
  • the bent cantilever structure is formed.
  • the natural period of the shear structure can be lengthened.
  • the mass of the free end layer related to the natural period can be increased by increasing the floor area of the free end layer.
  • the mass of the free end side layer portion can be increased by increasing the P3 ⁇ 43 ⁇ 4 of the free end side layer portion, by increasing the size of the room, and by increasing the number of rooms.
  • the T3 ⁇ 4 structure is provided with an accommodation recess for accommodating the lower floor of the free end side layer, and the lowermost floor of the free end side layer is horizontally disposed in the accommodation recess. It is supported so that it can move freely.
  • the mass of the free end side layer portion is increased by increasing 3 ⁇ 4 of the total of the fixed end side layer portion and the free end side layer portion, or Increasing the natural period can also increase the natural period. Therefore, regardless of the number of floors and the height of the fixed-end side layer, by increasing ⁇ of the free-end side layer, increasing the wrinkles and mass related to the natural period, the shear structure The natural period can be increased.
  • the lower floor of the storage recess and the free-end side layer stored in the storage recess each have a water-tight structure, and the storage recess is filled with liquid, so that the free end side submerged in the liquid
  • the buoyancy of the lower floor of the hierarchy it is also possible to support the lowermost floor and the lower floor of the free end side hierarchy so that they can move horizontally.
  • the adjustment work for increasing the ground height of each of the free end side layer portion and the fixed end side layer portion can be easily performed by adjusting the depth of the housing recess.
  • the lowermost floor of the free end side layer is supported by the lower structure via the horizontal support device so as to be horizontally movable.
  • Horizontal support devices can be broadly classified into # 3 ⁇ 4 type pointed friction key and sliding friction type depending on the friction mechanism.
  • the mold is a horizontal movable support device that floats an object using the dynamic pressure of compressed air flow. In principle, the part is empty and no frictional force is generated, but a device that generates compressed air is required separately.
  • the rolling friction type is a support device in which a large number of rolling elements are sandwiched between upper and lower flat plates or curved plates.
  • a dynamic support device can be made.
  • Sliding wear is a support device consisting of two sliding plates.Suitable materials such as sliding plate, surface roughness, presence / absence of lubricant, type, bearing stress, etc.
  • a horizontal movable support device can be made. In general, the number of friction systems increases in the order of insect type, rolling and sliding.
  • the horizontal movable support device is installed between the lowest floor of the free end side layer and the lower structure, it can be used by using a horizontal support device having the required number of friction systems. It is possible to adjust the frictional number between the lowest floor of the tier and the lower structure.
  • [0 0 3 9] 7 mm flat support device It is possible to create a horizontal support device with the required number of frictional systems by combining the friction mechanism, material, and other parameters.
  • the number of sight systems of the shear structure can be set to a necessary value.
  • the range of the number of friction systems that can be obtained is limited, but a horizontal movable support device with a known number of friction systems and a proven track record can be used with a slight design change, so it has the required number of friction systems.
  • Non-Patent Document 5 the number of sight lines of rolling roller steel roller bearings is
  • the number of frictional systems of sliding resin and stainless steel plate be 0.1.
  • the size of the visual system is adjusted in the range of 0.05 to 0.1. can do.
  • Non-Patent Document 5 Japan Highway Bridge Association: Road Bridge Specifications ⁇ Same Comment I Common Edition Steel Bridge, p. 86-89, March 2002
  • a device is interposed between the lowest floor of the free end side layer and the lower structure.
  • the energy consumed by the Coulomb friction generated between the lowermost floor and the lower structure of the free end side layer is proportional to the water width of the lowermost floor and the lower structure. Increase or decrease.
  • the vibration energy of the body increases or decreases in proportion to the square of the horizontal relative amplitude of the location. Therefore, when the horizontal relative amplitude of the part increases, that is, when the vibration amplitude of the shearing structure increases, the effect of friction damping due to Coulomb friction decreases.
  • At least one pair of opposing hierarchies or opposing cantilever portions among the opposing hierarchies of the fixed end side hierarchies and the free end side hierarchies (Possibly a cantilever floor)
  • An attenuation device is interposed between the fixed layer and the free end layer in the horizontal direction.
  • the folded cantilever shear structure of this invention is based on a large amount of water between the fixed layer and the free layer on opposite sides. Expresses the natural vibration mode. This horizontal relative displacement gradually increases from ⁇ Jf floor toward the lower floor in the primary eigen ⁇ mode and becomes the maximum in the lowest floor of the free end layer, but in the eigen 3 ⁇ 43 ⁇ 43 ⁇ 4 mode after the second order! In the middle, the middle floor, which is between the upper floor and the lower floor, is the largest near the upper floor or near the lower floor.
  • the method of inserting the damping device according to the present invention can maximize the performance of the damping device, and can efficiently perform the shearing structure using the second and subsequent solid mode in addition to the first order. It is possible to improve the decay of the body.
  • the damping device described in (6) and (7) above is a viscous damping device that uses the viscous resistance of fluid, an oil damper that uses pressure drop due to turbulent fluid flow, and metal It is a device that can consume vibration energy such as hysteretic dampers using IJ for plastic deformation and friction damping devices using Coulomb friction. Furthermore, a variable oil damper that can control the damping coefficient using magnetic fluid in real time is used. »Damping performance of the shear structure by changing the damping coefficient of the variable oil damper according to the amplitude. It is also possible to incorporate a method for controlling the image in real time.
  • At least one set of the beams (or floors) of the facing layers of the fixed layer and the free layer is at least one pair.
  • Each cantilever part (or cantilevered floor part) is extended, and a floor telescopic device is interposed between the opposing cantilevered parts (or cantilevered floor parts), and the fixed end is secured by the floor telescopic device. Close the gap that absorbs the horizontal relative displacement between the side layer and the free end layer so that it can expand and contract in the horizontal direction! /
  • the purpose of constructing a high-rise building according to the present invention is to share a safe living space and a storage space in a safe manner. Therefore, securing the maximum living space and storage space in a limited space is important for sharing an inexpensive space.
  • the fixed end side layer portion and the free end side layer portion are opposed to each other.
  • the floor will be installed in the space to be used for the main space and storage space.
  • the cantilever part is extended from the beam part of the fixed end side layer part and the free end side layer part, and the cantilever part is configured using the cantilever part. did.
  • the water pair displacement occurs in the fixed end layer and the free end layer opposite to each other! / ⁇
  • the same horizontal relative to the cantilever and cantilever floor A gap to absorb the displacement was provided.
  • the cantilever floor can be used as a living space and storage space by closing the gap with a floor telescopic device that easily deforms. .
  • the cantilevered floor will be reinforced with floor beams in the middle of the cantilevered floor as required.
  • the frictional force generated by the floor expansion and contraction device is constant and quantitative over time, the frictional force may be considered as frictional damping of the shear structure.
  • the opposite side surfaces of the fixed-end side layer portion and the free-end side layer portion are stretched in the horizontal direction, and the opposite side surfaces are attached.
  • Fixed end side by using the same extension / contraction device by interposing a concealing expansion / contraction device between the probable parts, between the opposing base frame parts, or between the opposing side wall and base frame parts.
  • the gap that absorbs the horizontal relative displacement between the layer portion and the free end layer portion is closed in such a way that it can expand and contract in the horizontal direction.
  • the purpose of the high-rise binning that is the subject of the present invention is to share a low-cost living space and storage space. Therefore, it is important to provide a safe space.
  • the base frame to which the side «or side « of the fixed end layer and the free end layer is attached is stretched horizontally.
  • the foundation frame is generally referred to as a stud or torso, which is installed to attach a saddle or the like.
  • the restoring force of the expansion / contraction device generated by the horizontal relative displacement of the fixed end side layer portion and the free end side layer portion that does not affect each other is not affected by the natural period of the shear structure.
  • ⁇ i which is caused by the horizontal relative displacement ⁇
  • FIG. 1 is a conceptual explanatory diagram of a cantilever shear structure (System-CS).
  • FIG. 3 A conceptual illustration of a bent cantilevered shear structure (System-FR) with the end supported by a roller.
  • FIG. 4 A diagram showing the relationship between the natural period of the 3 ⁇ 4 decay system and the number of layers /? In System-CS and System-FR.
  • FIG. 7 A conceptual illustration of a folded cantilever shear structure (System- DFR) in which a dashpot is placed on a horizontal plane.
  • FIG. 9 is an explanatory front view of the seismic structure according to this example.
  • Fig. 9 [-1 cross-sectional explanatory diagram (a), Fig. 9 cross-sectional view taken along line II-II (b), and III-III cross-sectional explanatory diagram (c) of Fig.
  • Fig. 1 Plane explanatory view (a) of the horizontal movable support device, and (b) Side explanatory view of the same device.
  • Fig. 1 2 Plane explanatory diagram of the attenuation device (a), ⁇ j plane explanatory diagram of the device (b).
  • Fig. 1 Plan view of the sliding friction type horizontal movable support device (a), Side view of the device: b).
  • Fig. 14 Cross-sectional side view of the damping device (a), bottom view of the device (b).
  • Fig. 15 (a) Plane explanatory view of the floor telescopic device, (b) Cross sectional side view of the device.
  • FIG. 16 is a side view (a) of the «extension device as seen from the inside to the outside, and a cross-sectional bottom view (b) of the device.
  • Fig. 17 External view of the folded cantilevered shear structure model (showing deformation when horizontal load is applied to the free end). .
  • Fig. 18 Cross-sectional arrangement explanatory diagram of the viscous damping device.
  • FIG. 19 An enlarged view of part a in FIG.
  • Fig. 20 Illustration of horizontal support device.
  • Fig. 24 4 Dimensional illustration of the viscous damping device.
  • Fig. 25 Diagram showing the relationship between water ⁇ weight acting on the free end and horizontal displacement.
  • Figure 2 7 Comparison of natural periods focusing on dashpot and roller.
  • Fig. 2 9 Natural vibration mode of System-DFR.
  • Figure 1 shows a shear structure with the bottom end fixed to, which is one of the plane tgg models of the ridge layer.
  • This model is made up of n beams, two columns of equal cross section rigidly connected to them, and dashpots, and n layers of shear oscillators with the same dynamic characteristics in each layer.
  • This vibration model is called Syst em-CS.
  • n representing the number of layers also serves as a parameter representing the geometric height of the structure.
  • the columns are elastic and the beams are rigid. To do. The mass of the columns and beams is concentrated on the beams in each layer.
  • the symbols 3 ⁇ 4 and c in Fig. 1 are the shear spring constant and mass of each layer and the viscous damping coefficient of the dashpot.
  • the dash pot represents the structural damping of the structure or the conventional damping of the upper and lower beams (hereinafter abbreviated as a bell face arrangement). As shown in Fig.
  • Figure 1 the horizontal displacement of the beam when the base is subjected to horizontal displacement is defined as 2 .
  • represents time.
  • Figure 1 is an image of the deformation, and the column before deformation is straight.
  • Figure 2 shows the i3 ⁇ 43 ⁇ 4 model that defines the dynamics of each layer of System-CS as a cantilever shear structure.
  • the vibration system becomes a 1 degree of freedom «I modenole consisting of shear panel constant k, viscous damping coefficient c, and mass m . Therefore, the natural circular frequency ⁇ 3 ⁇ 4 and natural period ⁇ 0 of the 3 ⁇ 4 decay system and the natural damping constant of this »model are expressed by the following equations, respectively.
  • ⁇ ⁇ , ⁇ 0 and ⁇ are called the layer natural period, the layer natural R frequency, and the layer viscous damping constant, respectively.
  • Vector superscript ⁇ Bracketed subscripts ( ⁇ ) indicate that the size of the vector or the 3 ⁇ 4 ff column is n.
  • the superscript T indicates the transpose of the matrix.
  • Equation 2 [0 0 7 1] and C (") and A (") in Equation 2 are the stiffness matrix, damping matrix, and mass matrix expressed by the following equations, respectively.
  • is an eigenvalue.
  • the eigenvector ⁇ satisfies the following orthogonal condition.
  • is a Kronecker deleter.
  • the natural period of the cantilever shear structure, Syst em-CS is determined by the natural peripheral layer natural layer 73 ⁇ 4 and the number of layers. I understand that.
  • the viscous damping constant of System-CS is determined by the layer viscous damping constant and the number of layers. When the number of layers is increased with the layer viscous damping constant being constant, the viscosity damping constant may decrease. I understand.
  • the dynamic model shown in Fig. 3 consists of a shear structure F with the lower end fixed to the base and a shear structure R with the lower end supported in a straight direction by a roller on the coagulation 15 Are bent cantilevered shear structures joined together at the top.
  • the shear structure R the lower end of the shear structure F is cut off from the base, and a beam supported by a roller in the vertical direction and movable in the horizontal direction is added to the lower end.
  • Figure 3 shows the image at the time of deformation, and the column before deformation is straight.
  • the number of the beam of the shear structure F is directed from the lower end to the upper end as 1, 2, ..., ", and the number of the beam of the shear structure R from the upper end to the lower end is ⁇ , « + 1, ... .., 2 «
  • the beam ⁇ is a beam common to the shear structures F and R, and the beam 2 « is a beam that is supported in the vertical direction by a roller.
  • the mass of (2; rl) is ".
  • the mass of ⁇ and beam 2/2 is (l + a) m A and (1 +, respectively.
  • is the upper end of shear structures F and R, respectively.
  • / is a Coulomb friction force that is a moderation of the rolling resistance force of the single roller that is in the horizontal movement of the beam 2/7, and details will be described later.
  • e n is the 2 /? th unit vector whose value of the Goth element is 1.
  • -v (2 "), x 2n ), x (2n) is the number 3, respectively a, number 3 b, the number 3 c of a Betatoru replaced with 2Ita.
  • Number 15 of the C3 ⁇ 4 Oyopi M3 ⁇ 4! is The stiffness matrix, damping matrix, and mass matrix shown below are used.
  • Equation 16 d the matrix S ( 2 ) of Equation 16 d has the ?? and 2? Th diagonal element values? And the other element values are all zero.
  • Equation 17 is transformed into the following equation.
  • a ra is an eigenvalue.
  • the definition of eigenvector and orthogonal condition are expressed by the following equations.
  • Equation 18 the natural frequency and natural vector of Equation 18 are equal to those obtained by replacing n with In in Equation 9 and Equation 10 b, respectively. It can be seen that it is about twice the natural period.
  • Figure 4 shows the relationship between the natural period from the first to the third order and the number of layers in System-CS and System-FR.
  • the number of layers n here also represents the geometrical length of the structure /? Toto / .
  • the eigenvalues are calculated using Eqs. 8 and 9, and in the latter condition, eigenvalues ⁇ are obtained from Eqs.
  • the numerical method for the eigenvalue problem is a solution that combines the Householder method and the QR method. From Fig.
  • the beam on the fixed side shearing body F is indicated by a mark
  • the ⁇ of the shearing structure R on the roller side is indicated by a mark.
  • Primary mode is inverted V-shaped with beams 273 and 73 displaced in the same direction
  • secondary mode is elongated 0-shaped with beams 2 "and beam / 3 displaced in the opposite direction
  • tertiary mode is letter-shaped
  • 4 It can be seen that the next mode is an 8-shaped mode that is bent into the shape of “ku”.
  • Country 6 is the first to third order viscous damping constant and number of layers of System-CS and System-FR
  • Equation 2 The relationship of «is examined in Equation 2 2.
  • the System-FR conditions are the same as those in Figure 4. If the layer viscous damping constant ⁇ ) is constant, it can be seen that the damping constant of System-FR is about half that of System-CS, and decreases in inverse proportion to the increase in the number of layers ".
  • the coulomb friction force / can be adjusted to an arbitrary magnitude, but in this embodiment, is considered to be a force proportional to the vertical force acting on the roller. That is, if the vertical force acting on the System- FR roller is p and the dynamic friction coefficient of the roller is //, / is expressed by the following equation.
  • the vertical force is the sum of the mass of the beam “1/2” and the sum of the mass of the beam 277 multiplied by the gravitational acceleration g.
  • Equation 28 b is a coefficient representing the magnitude of the vertical force acting on the roller. Given the number of roller dynamics, it is considered possible to evaluate the damping due to Coulomb friction force as the equivalent viscous damping by Equation 26b.
  • the natural period of the bent cantilever shear structure with the free end supported by the roller in the vertical direction is about twice that of the normal cantilever shear structure, but the viscous damping constant is about 1 / 2 was shown.
  • Increasing the natural period in the region exceeding about 1 second results in a decrease in seismic force, while an increase in displacement amplitude due to a decrease in horizontal rigidity.
  • the decrease in viscosity and decay coefficient leads to an increase in displacement amplitude, it is necessary to decrease the displacement amplitude.
  • the low-order natural vibration mode has a large contribution to the displacement. Therefore, paying attention to the low-order natural vibration mode, we consider the increase in attenuation by installing a dashpot as a damping device.
  • a dashpot As shown in Fig. 5, since the height of the Syst em-FR's primary and secondary natural vibration modes is equal, the relative displacement between the structure F beam and the structure R beam will occur. the left and right adjacent beam as shown in 7 is considered possible to increase the attenuation by connecting with a dash pot c B. This arrangement of the attenuation device is called a horizontal arrangement.
  • 3 ⁇ 4 is the dashpot viscous damping coefficient, which has the following relationship with the existing dashpot viscous damping coefficient.
  • C r is an attenuation matrix with a dashpot shown by the following equation.
  • the System— DFR becomes a non-proportional damped vibration system, so the natural vector cannot be diagonalized with c + 2n) .
  • the damping constant of the system can be expressed in terms of complex eigenscience ( 5)
  • the Coulomb friction force acts as a nonlinear term in System-DFR.
  • the viscous damping constant is expressed by diagonal approximation 6) of the damping matrix using the eigenvector, with a focus on roughly evaluating the effect of the dashpot.
  • the viscous damping constant ⁇ due to the diagonal approximation of e ") using the eigenvector is calculated by the following equation.
  • Equation 33 the proportionality coefficient ⁇ , which represents the magnitude of the attenuation coefficient, has no effect.
  • CDFR CDFR, I 3 ⁇ 4 FR-c, i + FR-f, i + FR-d, i
  • FIG. 9 is a schematic front view of the metaseismic structure ST according to this example
  • Figs. 10 (a), (b), and (c) are cross sections of the I-I spring in Fig. 9, respectively. It is explanatory drawing, ⁇ - ⁇ f spring cross-sectional explanatory drawing, III-III spring cross-sectional explanatory drawing.
  • the earthquake-resistant structure ST has an upper structure 11 that is mainly a frame structure and resists vertical and horizontal loads mainly on the lower part «3t 10 of the foundation or underground structure. It is a structure constructed by supporting it.
  • the upper structure 11 includes a fixed-end-side shear structure F (hereinafter simply referred to as “shear structure FJ”) and a free-end-side shear structure R (hereinafter simply “ With the shear structure RJ and ⁇ "T” there is an integral folded cantilever shear structure DFR (hereinafter simply referred to as "cantilever shear structure DFR"!
  • a pair of left and right cantilever shear structures DFR, DFR are arranged in a symmetrical arrangement, and a pair of fixed end side shear structures F, F is arranged, and both free end side shear structures R, R are arranged between both shear «bodies F, F, and both free end side shear structures R, R are integrated. Talk to me.
  • the cantilever shear structure DFR has a fixed end as shown in Figs.
  • the fixed end side layer 12 consisting of multiple layers (in this example, the 10th layer) with the lowermost floor fixed to the lower structure 10 and the upper floor (this »
  • the fixed-end-side shear structure F is formed with the bent part forming layer 13 forming the uppermost floor), and when the upper layer is formed, the bent part forming layer 13 and the lowermost floor that is a free law are formed.
  • a free end side shear structure R is formed with a free end side layer portion 14 composed of a plurality of layers (10 layers in this example) supported by the lower structure 10 so as to be horizontally movable, and then V is formed.
  • the fixed-end side layer portion 12 includes a column portion 15 extending in the vertical direction (the Z direction shown in FIG. 10) and the left and right and back directions (the X direction and the Y direction shown in FIG. 10).
  • Each layer part formed by assembling the beam part (or floor part) 16 extending in the direction) is constructed in a stacked state in the vertical direction.
  • the free end side layer portion 14 is formed by assembling and forming each layer portion formed by assembling a column portion 17 extending in the up-down direction and a beam portion (or floor portion) 18 extending in the left-right and front-rear direction. It is constructed in a stacked state in the direction.
  • the bent portion forming layer 13 includes a beam portion (or a beam portion) (or a column portion 15 that forms the uppermost layer of the fixed end side layer portion 12 and a column portion 17 that forms the uppermost layer of the free end side layer portion 14. (Floor) 19 is installed.
  • the free end side layer portion 14 is formed so as to have a larger mass than the fixed end ridge layer portion 12, and the natural period of the cantilever shear structure DF is Has a longer period. Specifically, the mass of the free end side layer portion 14 related to the natural period is increased by increasing the floor area of the free base layer portion 14. The floor area is increased by increasing the number of rooms and by increasing the number of rooms. Also, the floor area can be increased by increasing the! Of the free end side layer 14.
  • the lower structure 10 is provided with a receiving recess 29 that is formed in a stepped recess for receiving the lower floor of the free end side hierarchical portion 14.
  • the floor 28 of the lowest floor of the side layer 14 is supported so as to be horizontally movable, and the ground level of ⁇ 16, 18 of each layer of the fixed end layer 12 and the free end layer 14 is matched. ing.
  • the enforcing accommodation M portion 29 can effectively use the space inside thereof, and the lowermost floor of the free end side layer portion 14 is appropriately placed in the accommodation recess 29. It can be accommodated and the ground level of the lowest floor can be made lower than the ground level of the lowest floor of the fixed end side tier 12. Therefore, ⁇ and ⁇ from the lowest floor to the top floor of the free end side layer 14 are larger than P ⁇ and ⁇ from the bottom floor to the top floor of the fixed end layer 12 It can also be done.
  • the fixed period can also be increased by increasing the PW3 ⁇ 4 of 12 (3 ⁇ 43 ⁇ 4 and the free end layer 14 or by increasing the mass of the free end layer 14 as selfish. Therefore, regardless of the heel and height of the fixed end layer 12, the P maiden of the free end layer 14 can be increased to reduce the heel and mass related to the natural period.
  • the natural period of the cantilever shear structure DFR can be increased by increasing the period.
  • a plurality of horizontal movable support devices M are provided on the lowest floor of the free end side layer portion 14, and these horizontal 3 ⁇ 4 support devices M are provided in the ffrf self-receiving recesses 29 provided in the lower structure 10.
  • the free end side layer portion 14 is supported through the via so as to be horizontally movable in the X direction and the Y direction shown in FIG.
  • the horizontal movable support device M is a roller having a large number of charcoal and spherical balls 21 a on a horizontal plate-like lower collar portion 20 disposed on the lower structure 10.
  • the part 21 is placed so as to be able to roll in the left and right and the oxalic acid directions (X direction and heel direction shown in FIG.
  • Preamble BIX container recess 29 formed in the lower structure 10 accommodates the horizontally movable support device M so as to be horizontally movable.
  • a plurality of damping devices Na are interposed between the floor 28 on the lowest floor of the free end side layer 14 and the accommodating recess 29 of the lower structure 10.
  • the damping device Na is disposed between the horizontal support devices M that are P ⁇ in plan view, that is, the hypoerection acts on the entire surface of the floor 28 of the lowest floor.
  • the attenuation device Na a large attenuation device that can effectively use the space between the floor portion 28 and the lower structure 10 can be used.
  • the damping device Na increases the damping constant of the primary natural vibration mode most efficiently. Since the floor 28 is displaced in each of the X and Y directions shown in FIG. 10, the attenuator Na needs to be effective for displacement in each of the X and Y directions.
  • the damping device Na has a flat cylindrical shape with a circular top view and an open top surface as shown in FIGS. And has a connecting portion 25a on the side side 3 ⁇ 4; a sex fluid case 25, a viscous fluid (Fig. ⁇ Rf) accommodated in the viscous fluid case 25, and a horizontal plane in the viscous fluid case 25 is shown in FIG.
  • a slide body 26 is slidably accommodated through the oil.
  • the slide body 26 has a series! ⁇ 15 26a at its upper end.
  • the viscous fluid case 25 is connected to one of the lower structure 10 or one of the attenuation articles of the pedestal 10a provided on the lower structure 10 for height adjustment.
  • the connecting part 26a is connected to the other of the damping papers such as the beam part and the floor part.
  • 25b and 26b are connecting holes, respectively.
  • As a viscous fluid it is possible to shelve oil ⁇ , which is a fluid with the required viscosity, and by setting the fluid viscosity and the interval between the fluid of the slide body 26 and the fluid case 25 as appropriate: The viscous damping coefficient required to increase the damping of the shear structure can be obtained. Therefore, the damping device Na is capable of generating an effective force for all horizontal displacements of the floor portion 28.
  • the layers are connected in the horizontal direction by interposing a plurality of attenuation devices Nb. is doing. That is, the cantilever 23 is extended from the beam 16 of the fixed-end side layer 12 to the free-end-side layer 14 side, while the beam 18 force cantilever of the free-end side layer 14 is formed.
  • the beam portion 24 is formed by extending in a protruding manner toward the fixed end side layer portion 12 side, and both the cantilever beam portions 23 and 24 are arranged in an opposed state on substantially the same horizontal plane, and the both cantilever beam portion 23 , 24 ⁇ ⁇ is equipped with a damping device Nb and a floor extension device FE.
  • the powerful floor expansion and contraction device FE is a device that closes the gap between the cantilever portions 23 and 24 shown by the symbol FE in FIG. 9, and only the symbol FE is shown in the figure.
  • the purpose of forming the two cantilever portions 23 and 2 is to use the cantilever portions of the fixed side layer portion 12 and the free end layer portion 14 as shown in FIG.
  • floors 61, 63 between them the main space and the accommodation space are increased.
  • the model, arrangement and mounting method of the damping device Nb will be explained with reference to Fig. 14.
  • Floor extension device FE construction This will be explained with reference to FIG.
  • the purpose of installing the damping device is to efficiently increase the damping of the second and subsequent fixed vibration modes in addition to the primary natural vibration mode. It is desirable to install the damping device Nb in the space between the lower surface of the floor portions 61 and 63 and the ceiling below the floor portion 61, 63. Therefore, it is convenient to use a damping device having a compact outer shape. In addition, since the fixed end side layer portion 12 and the free end side layer portion 14 are displaced in the X direction and the Y direction shown in FIG. 10, respectively, the attenuation device Nb is effective for all horizontal relative displacements. I have to!
  • the damping device Nb uses a high-performance and compact-shaped oil damper that utilizes the pressure drop due to the tongue flow of the fluid.
  • the bottom view (b) shows the arrangement of the damping device Nb when the bottom surfaces of the floor portions 61 and 63 to which the reduction Nb is attached are viewed from below.
  • the attenuation device b is composed of one main body 64 having connecting portions 64a and 64b at both ends. Connection & 64a is connected to floor beam 60 installed on floor 61 via bracket 65a, and connection 64b is connected to floor beam 62 installed on floor 63 via bracket 65b. .
  • the floor portion 61 is a floor portion installed in one of the cantilever beam portion 23 and the cantilever beam portion 24, and the floor portion 63 is a floor portion installed in the other cantilever portion.
  • the cross-sectional shape of the floor beams 60 and 62 is good with a cross-section of any shape such as a solid cross-section, thin-wall cross-section, open cross-section, closed cross-section.
  • the brackets 65a and 65b may be directly attached to the floor portions 61 and 63 instead of the floor beams 60 and 62. The description of the structure of the main body of the damping device, the connecting method of the connecting portion of the damping device and the bracket, and the fixing method of the bracket and the floor beam will be omitted.
  • the direction of the main body 64 of the damping device Nb is the direction connecting the connecting part 64a and the connecting part 64b, and the direction intersects both the X direction and the Y direction in the figure. Therefore, the damping device Nb is enabled. Adjust the angle of the two main bodies 64 to 3 ⁇ 4 ⁇ in which the required damping performance differs in the X and Y directions.
  • Two bodies 64 which are the two sides of the triangle, are used as a set, and the number of sets required for increasing attenuation is set. To do. In order to distribute the damping force in the Y direction and to act efficiently, use a small number of pairs, and use at least two pairs and separate each pair without sharing the bracket, that is, in the Y direction. It is good to install.
  • the type and arrangement of the damping device Na and the damping device Nb need not be limited to the viscous damping device, oil damper and their arrangement as shown in this example. This type of damping device can be arranged to maximize its performance.
  • the purpose of installing the floor expansion and contraction device FE is as shown in Fig. 15.
  • the cantilever 23 of the fixed-end side layer 12 and the cantilever 24 of the free-end side layer 14 By closing the gap Ga, the floor portions 61 and 63 installed in the cantilever portions 23 and 24 are made free from problems as the main space or storage space.
  • the floor expansion and contraction device FE has a restoring force that shortens the natural period of the shear structure against the horizontal relative displacement between the fixed end layer 12 and the free end layer 14 on the fixed end side. It is required not to act on the layer 12 and the free end layer 14.
  • Floor expansion and contraction device FE is connected to a viscoelastic material 71 that is easily deformed into a floor 61, as shown in a plane explanatory view (a) and a cross-sectional side explanatory view (b) in FIG.
  • the storage recess 61a for storing the plate 70 and fixing the sliding member 72 is provided, and the storage recess 63a for fixing the foot 70 is provided on the floor 63 corresponding to the floor 61, and the connecting plate 70 is provided in the storage recess 63a.
  • the combination of the material of the sliding member 72 and the connecting plate 70 can be, for example, a fluorine resin plate and a stainless plate. Or 3 ⁇ 4
  • Extension device WE is a fixed end-side layer that is similar to that shown in Fig. 16 as seen from the inside to the outside (a) and cross-sectional bottom view (b).
  • the side m 82 is extended horizontally from the head and the free end side layer, and a gap Ga that absorbs horizontal relative displacement is provided, or the side surfaces from the fixed end side layer and the free end side layer are opposed to each other.
  • the base frame 83 of each other to which 81 is attached is stretched in the horizontal direction, and the gap Ga that absorbs 7) C plane relative displacement is provided, and the stretched sides «82 or between the stretched base frames 83 are easy.
  • the elastic member 80 is formed so as to be deformable.
  • Figure 16 shows an example of connecting the base frame 83 and the side surface «82, and explains the method of connecting the base frame 83 and the side surface « 82 at the same time. is there.
  • the base frame 83 and the elastic member 80 are connected to each other by connecting the bag nut 83b fixed to the bracket 83a attached to the base frame 83 up and down and the connecting hole 80a of the elastic member 80, the holding plate 84 and bolts ( The figure is omitted). It is also possible to connect using a stud bolt instead of the bag nut 83a.
  • ⁇ H 82 and expansion / contraction material 80 are connected to each other by connecting the bag nut 82a embedded in the side surface ⁇ 82 and the connection hole 80a of the expansion / contraction material 80 with a support plate 84 and bolts (not shown). To do. Bag Nut 82a instead of 82a It is also possible to connect by using a bolt.
  • the elastic member 80 is formed of an elastic material having a small elastic coefficient or an elastic material and having a cross-sectional shape that can be easily deformed, for example, a cross-sectional shape shown in FIG. 16 (b). Therefore, by appropriately selecting the material and cross-sectional shape of the elastic material 80, the elastic material
  • the restoring force generated by deformation in the X and Y directions in the figure of 80 can be reduced to 3 ⁇ 4g without affecting the natural period of the shear structure.
  • a pair of left and right bent cantilever shear structures DFR, DFR are fixed end side layer 12 forces S outside, free end side layer
  • the configuration is not limited to the left and right sentences so that the portion 14 is positioned inward, and a folded cantilever shear structure DFR can be added forward and / or backward.
  • a large number of bending force S cantilevered shear structures DFR are arranged in a shelf shape so that the fixed end side layer portion 12 is located outward and the free end side layer portion 14 is located inward. It can also be configured.
  • the fixed-end side layer portions 12 that are difficult in the circumferential direction can be integrally connected to form a cylindrical shape surrounding the free-end side layer portion 14. In this way, it can also be made into a long-period, high-decrease metaseismic structure.
  • m 11 is a structure that mainly resists the vertical load and water weight mainly in a frame structure, and is a shear wall 51 or diagonal material for resisting a large local shear force. 52 may be partially included (see FIG. 9).
  • Fig. 17 is an external view of the bent cantilever shear structure DFR.
  • the structure DFR has a pair of left and right shear structures F, F standing on .30, and both shear structures F, F,
  • the shear structure R is placed between F, and the beam sections 31, 31 at the upper end of the two shear structures F, F are connected to the beam section 32 at the upper end of the shear structure R by the Bonoleto 33 that extends in the left-right direction. is doing.
  • This model is a plane vibration model in which the horizontal property in the direction of the weight arrow is smaller than the normal property in the direction perpendicular to the arrow, and the model is obtained in the direction of the arrow.
  • a horizontal support device 34 having a roller 43 is provided. The details of the horizontal 3 ⁇ 41 »support device 34 will be described later.
  • Figure 17 shows an exaggerated depiction of the deformation when a horizontal load is applied to the free end of the bent cantilever shear structure DFR.
  • the beam parts 31, 32, the pillar parts 35, 36 and the roller 43 are emphasized, and the other members are omitted.
  • the horizontal displacement of the upper end beam sections 31, 31, 32 of the shear structures F and R and the lower end beam section 37 of the shear structure R that is, the horizontal displacement of the free end; 3 ⁇ 4 0 is shown.
  • the deformation is very similar to the first natural vibration mode shown in Fig. 5. It should be noted that the horizontal displacement direction in this figure is the model direction.
  • Table 1 shows the specifications of the structure model mainly related to the natural period.
  • the shear panel and layer natural period shown in Table 1 are values obtained by static test of the model. Details will be described in the next section.
  • the ⁇ flat movable support / separation 34 includes a lower rail 38, a roller body 39, and an upper rail 40.
  • SS400 Polished flat steel
  • the material of the shaft 42 and the roller 43 is carbon steel (SC450).
  • the shaft spacing is 180mm and the rail width is 50mm.
  • the upper rail 40 is fixed to the beam portion 37 at the lower end of the shear structure R with bolts (not shown).
  • FIG. 22 shows the ⁇ ft of the viscous damping device A corresponding to the System-FR dashpot shown in Fig. 3.
  • Viscosity I "green damping device A is equipped with an oil casing 44 as a viscous fluid case with transparent clear / Rene and a plate plate 45 as a slide body.
  • Figure 23 shows the Ml of the viscous damping device B corresponding to the dashpot c B of the System-DFR shown in Fig. 7.
  • the viscous damping device B includes an oil casing 46 as a viscous fluid case of aluminum-yumu (A6063), a TO plate 47 as a slide body, and a connecting body 48.
  • These two viscous damping devices, ⁇ and ⁇ are both a sticky damping plate type damping device that uses the shear deformation of dimethylol silicone oil filled in oil casings 44 and 46 for IJ.
  • Fig. 18 shows the arrangement of the viscous damping devices ⁇ and B in a cross section perpendicular to the vibration direction of the model.
  • the shear structure R and the shear structure F are separated from each other for easy understanding of the arrangement of the damping device.
  • the reference line CL of the shearing network R and the reference line CL of the shearing structure F overlap.
  • the viscous damping device A is installed between the beam portions 31 and 31 that are difficult in the vertical direction of the shear structure F, and is installed outside the shear structure F.
  • the viscous damping device B is interposed between the beam portions 31 and 32 adjacent to each other in the left-right direction of the shear structure F and the shear structure R.
  • FIG. 19 is an enlarged view of part a in FIG. 18.
  • the arrangement of the rice occupancy attenuation devices A and B will be described in detail with reference to FIG. Since the viscous damping device A uses the relative speed of the upper and lower beam sections 31, 31 of the shear structure F, the upper end of the slide body 45 is a connecting plate fixed to the upper beam section 31. 49, and the lower end of the slide body 45 is inserted into the casing oil 44 fixed to the outer surface of the lower beam 31. This structure is repeated at all levels. However, in order to reproduce the arrangement of the System-FR dashpot, it is necessary to install a viscosity reduction 3 ⁇ 4 A in the shear «5 body R. However, because there is not enough space in the structure, the shear structure Viscosity damping device ⁇ could not be installed on body R.
  • Viscosity damping device B uses the relative speed of beam 32 of shear structure R and beam 31 of shear structure F, so connecting body 48 attached to TO plate 47 is connected to shear structure F is fixed to the middle part of the horizontal connecting frame 50 installed in a machine shape between the beam parts 31 and 31 adjacent to each other in the left and right direction, and the lower end of 47 is between the pair of left and right beam parts 32 and 32 of the shear structure R. Insert it into the oil casing 46 located at.
  • the horizontal connecting frame 50 and the connecting body 48 are both aluminum alloy M (A6063).
  • Viscosity damping coefficient of viscous damping devices A and B is calculated by the following formula.
  • Viscosity damping coefficient 3 ⁇ 4 of viscosity damping device A is multiplied by the number of viscosities per layer ⁇ the number of devices A installed. This is the viscosity damping coefficient of the System-FR dashpot.
  • the viscosity damping coefficient of the system-FRD dashpot is obtained by multiplying the viscous damping coefficient of viscous device B by the number of installed viscous damping devices B per layer.
  • Figure 25 shows an example of a load-displacement curve for one cycle of Syatem—FR and Syatera-F.
  • the characteristics of the structural system in which the Coulomb friction force acts that is, the load gap during loading and unloading, are notable.
  • Figure 27 shows a comparison of the relationship between the natural period and amplitude of one waveform in the primary fixed-fficiency mode calculated from System-DFR, System-FR, and System-F free records.
  • the points of interest are beam 5 at the top of the model and beam 10 on the roller.
  • 0 (5) is a fifth-order square matrix in which the values of all elements are zero. Since 5 is a non-proportional damping matrix, the viscous damping constant is approximated by diagonal approximation. The ratio of the viscous damping constant of the i-th order eigenvector with respect to 5 and the layer viscous damping constant is approximated by the following equation.
  • FR _ C is the diagonal near fi3 ⁇ 4 the FR one c, i.
  • Table 4 summarizes the quantities and calculation results necessary to calculate the viscous damping constants of System-FR and System-DFR in the reduced model based on vibration theory.
  • Fig. 29, Fig. 3 Q and Fig. 31 show the steady state of the vibration model during the sinusoidal vibration by the shaking table for the vibration system of System-DFR and System-FR and System-F, respectively.
  • the first- and second-order natural vibration modes obtained by measuring the vibration are compared with the eigenvectors of the decay system shown in Table 4. Since these three vibration systems are non-proportional damped vibration systems, in addition to the shape of the vibration mode represented by the beam amplitude fli , the phase shift based on the motion of the shaking table is also shown.
  • a positive angle represents a phase lag and a negative angle represents a phase advance.
  • ⁇ ⁇ ⁇ 0 sin ( ⁇ ).
  • We 2 ⁇ / ⁇ and Calo S width are shown in the figure.
  • a cantilevered shear structure with a lower end fixed to the foundation and a horizontally movable support on the lower end
  • a bending cantilever shear structure with a long-period natural vibration mode in which the shear structures supported by the device are connected to each other at the upper end, and the adjacent beams and floors of the two shear structures that make up this structure.
  • a horizontal damping device for the viscous damping device connected in the horizontal direction.
  • the natural vibration mode can be lengthened by changing the support structure of the frame and foundation of the shear structure, but the displacement amplitude is increased by the horizontal rigidity decrease.
  • the displacement amplitude can be reduced by increasing the damping constant due to the installation of the viscous damping device, and the horizontal surface ⁇ S position of the proposed viscous damping device 14 increases the damping constant more efficiently than the conventional vertical surface ⁇ self-positioning. can do.
  • 3 ⁇ 4 is defined by the following equation as a function of the eave height of the building.
  • Fig. 3 2 shows the conventional model S) model.
  • the Jgft model has a plane frame consisting of 7 pillars and 15 beams.
  • the cross section of the column is constant in the height direction, and the cross section of the beam is constant in the horizontal direction.
  • a shear vibration model is used in which the mechanical properties of each layer are represented by one concentrated mass, shear panel and dashpot. Mass of each layer i221 ⁇ ! ⁇ 15 the value of the shear bar Ne constants ki ⁇ k and damping coefficient of viscosity alpha ⁇ Omega 5 is all equal to the height direction respectively.
  • the mass of each layer and the shear panel 3 ⁇ 4 are determined so that the period of the first-order eigen »mode is about 1 second.
  • the viscous damping coefficient is determined so that the damping constant of the mode is 2%.
  • Table 5 shows the specifications of the vibration model in Fig. 32.
  • the natural period obtained by eigenvalue analysis is 0.98 seconds, and the attenuation: 3 ⁇ 4 is 2.0%.
  • Figure 33 shows the vibration model of the seismic structure according to this example.
  • the free end side layer portion is installed in the center, and two fixed end side layer portions are installed on both sides thereof.
  • the free end layer is a plane frame composed of 2 pillars and 15 beams
  • the free end layer is a plane frame consisting of 3 columns and 16 beams
  • the bending part formation layer is 2 It is a plane frame consisting of a beam, a free end layer and a fixed end layer.
  • a shear vibration model is used in which the mechanical properties of each layer are represented by one concentrated mass, shear spring, and dashpot.
  • the mass nm and the shear panel constants a to 1 ⁇ 2 4 of each layer in the fixed end side layer portion are all equal in the height direction.
  • Table 6 shows the specifications of the vibration model in Figure 33.
  • the height and floor height are the same as those of conventional structures.
  • the mass of each layer in the fixed-end side layer part ⁇ 3 is 1/4 of the conventional mass
  • the mass of each layer in the free-law layer part mni- ⁇ is is 1/2 of the conventional mass
  • the bent part formation layer The mass ffi! 4 to i2215 and the mass of the free end mM> were the same as in the conventional type.
  • the shear panel constant of each layer in the fixed end side layer is 1/5 of the conventional type
  • the shear panel constant of each layer in the free end layer is 2/5 of the conventional type.
  • the shear spring is 4/5 of the conventional type.
  • the viscous damping coefficient CD to G13 of the damping device connecting the free end side layer and the fixed end side layer is 1/20 of the viscous damping coefficient used in the supported vibration model.
  • the period of the first natural vibration mode obtained by complex eigenvalue analysis was 2.0 seconds, and the damping constant was 29%.
  • the period of the second eigenmode is 0.75 seconds and the decay constant is 29%. Comparing Table 1 and Table 2, the seizure structure of the present invention has a natural period approximately twice that of a conventional structure, and is extremely low in life and less attenuated than a conventional structure. It is possible to obtain a high level and a damping constant by using the power.
  • Fig. 3 4 and Fig. 3 5 show the first and second natural vibration modes of metaphysical structures calculated by eigenfunction
  • M are the mass matrix, damping matrix, and stiffness matrix, respectively.
  • are relative displacement vector, relative velocity vector, and relative acceleration vector.
  • 3 ⁇ 4 are the relative displacement, relative velocity, and relative acceleration of the mass with the degree of freedom number.
  • s is the degree of freedom number at the free end. Number 3 9 is solved using the linear acceleration method.
  • Fig. 3 6 is an acceleration record of the ground Stt used for ffiW answer angle ⁇ ⁇ . This is June 1978
  • the NS direction acceleration record of the Miyagi-ken-oki earthquake that occurred on the 12th was regulated to a maximum acceleration of 300 gal;
  • Figure 37 shows the Fourier spectrum of the above acceleration record. As can be seen from Fig. 37, the predominant period of ground motion is around 1 second.
  • Figures 3 8 and 3 9 compare the absolute acceleration response of the top floor / roof and the relative change ⁇ ⁇ , respectively.
  • the relative displacement here is the displacement of each floor based on the position of the fixed column.
  • a conventional building repeats strong earthquakes with a period of about 1 second. When the dominant period of motion and the primary natural period of the structure are combined, a vibration with a large amplitude that greatly exceeds the acceleration amplitude of the earthquake motion occurs. is expected. However, there is no clear periodicity in the metamorphic structure of the present invention, and it can be seen that the amplitude is much smaller than that of the conventional structure.
  • Fig. 4 0 and Fig. 4 1 compare the maximum acceleration and maximum relative displacement of each floor.
  • the results of the seismic structure not to install the damper are also shown.
  • the acceleration and displacement are both «compared to conventional buildings».
  • the acceleration is reduced to 1/6 of the conventional type, and the displacement is reduced to 1/3. Therefore, the seismic force acting on the structure is reduced by extending the natural period, and as a result, the acceleration response and deformation are reduced.
  • the response acceleration can be made the same as the horizontal acceleration of the ground motion by installing a damping device.
  • Figure 4 2 shows a comparison of the maximum interlaminar shear force of each layer.
  • the interlaminar shear force of the fixed-end side layer is about 1 ⁇ 0 of the conventional structure, and the interlaminar shear force of the structure becomes smaller as the amplitude decreases. If the height of the fixed end, that is, the level of 1 is 3.3 m, the maximum interlayer deformation angle of the base of the seismic structure is 1/194, and the maximum interlayer deformation angle of the conventional S3 ⁇ 4 is 1/63. .
  • Figure 4 3 shows the sum of the viscous damping coefficients of the damping devices installed per layer. This is a comparison of the relationship between the damping constants of natural vibration modes. From Fig. 43, it can be seen that a conventional building requires a damping device with a performance of 10 times or more in order to obtain the same attenuation as that of metaphysical structures. From this, it can be seen that the metabolite structure of the present invention can efficiently improve the damping performance by installing the damping device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

高層ビルディング等のせん断変形が主となる構造物の耐震性能を向上させること。 下部構造の上に上部構造を支持させると共に、同上部構造は、主に骨組み構造で主たる鉛直荷重と水平荷重に抵抗する構造物であって、上部構造は、固定端側となる最下層階を下部構造に固定させた複数の階層からなる固定端側階層部と、同固定端側階層部の上層階を形成する折曲部形成階層と、同折曲部形成階層が形成する上層階まで複数の階層からなりかつ自由端側となる最下層階を下部構造に水平移動自在に支持させた自由端側階層部とから、一体の片持ちせん断構造体となしている。そのため、下端を固定した従来のせん断構造体に比べると、本発明の折り曲がり片持ちせん断構造体の固有周期に関係する力学上の階数は高さ方向の階数の約2倍となる。そして、せん断構造体の固有周期は階数に比例して増加するので、本発明の折り曲がり片持ちせん断構造体の固有周期は、従来のせん断構造体の固有周期の約2倍になる。

Description

明細書
耐震性構造物
技術分野
[ 0 0 0 1 ] 高層ビルディング等のせん断変形が主となる構造物の 1»†生倉を向上させるこ とができる而濃性構造物に関する。 背景技術
[ 0 0 0 2 ] ±也翻によって構造物に作用する ί纏力の大きさは、 の周期 ·振幅特 14
と構造物の固有周期と減衰^:などの振動特性に関係するが、 特に地 の周期 特 を考慮して構造物の固有周期と減衰 を適切に設計することは、 而髓計 を経済的に行う上で重要であると考えられる (例えば、 非特許文献 1参照)。
[ 0 0 0 3 ] 非特許文献 1におレ、ては、 構造物の而攮性能の照査に用いる設計地震動は、 標 準加速度応答スぺクトルと減衰定¾3補正係数および地域別補正係数によって規 定される。 非特許文献 1のレベル 1 · レベル 2 «¾]の標準加速度応答スぺクト ルによれば、約 1秒を超える固有周期にぉ 、ては、固有周期の長周期化に応じてカロ 速度が 咸される。
[ 0 0 0 4 ] また、 非特許文献 2におレ、ては、 は固 ¾t重と tt«荷重の和に地 せ ん断カ係数を乗じて計算するように規定されている。 地震層せん断力係数を固有 周期の関数として整理すると、 約 1秒を超える固有周期においては固有周期の長 周期化に応じて耀層せん断力係数が赚される。
[ 0 0 0 5 ] 固有周期の長周期化は構造物に作用する地震カを赚する一方で、 水平方向の 剛性低下による変位振幅の増加を招くので、 減難加などの制震雕を必要とす る。 長周期化と高減衰化を積極的に 計に取り A bた構造物は、 アイソレー ターとダンパーを用いた免 築物 (非特許文献 3参照) として実用化されてい る。
非特許文献 1 日本道路橋会:道路橋示; » .同解説 計編、 pp. 12 - 29、 平成 14年 3月
非特許文献 2 建築基準法施工令:昭和 25年政令第三百三十八号:建 準法 施行令、第 88条、最終改正平成 17年 11月 7日政令第三百三十四号
非特許文献 3 日本建築 :免赚造設計 ¾ff、 pp. 26-56、 1989年 9月 20日 発明の開示
発明が解決しょうとする課題
[ 0 0 0 6 ] ァイソレータ一とダンパーを用!/ヽた免震建築物は一般に高価であり、 その適用 範囲は高度な而懷性を要求される医療廳ゃ公共纖などの低層ピ イングに 限定されており、 一般の高層ビ ィングに適用可能な安価な 冓造が求めら れている。
[ 0 0 0 7 ] また、固有周期が 1秒を超える領域での長周期化は、海溝型巨大地震によって引 き起こされると予想されるやや長周期の地震動との共振を引き起こす可能性が髙
V、ので、減衰装置などを用 、た効果的な制 "策の重要性が高まっている(非特許 文献 4参照)。
非特許文献 4 土木^^社、 0本建築^ ¾:海溝型巨大地震による長周期地 β と ·建築構造物の而«性向上に関する共同提言、 2006年 11月 20 日
[ 0 0 0 8 ] そこで、 本発明では、 高層ピソ 'ィング等のせん断変形が主となる構造体の耐 震性能を向上させることを目的として、従来のせん断構造体と比較して長周期で ある固 モードを持つせん断構造体と、 その構造体に適用する効率的な減衰 装置の配設構造を樹共するものである。
[ 0 0 0 9 ] ここで、従来のせん断構造体とは、固定端となる最下層階を下部構造に固定し、 最上層階を自由端とする複数の階層からなる片持ちせん断構造体であり、 水平方 向の層間復元力をせん断パネで表した モデルにより、 而«¾計に必要な構造 体の固有周期と固有振動モードを工学的に十分な精度で算出できる構造体とする。 課題を解決するための手段
[0010] ( 1 ) 本発明の而擴性構造物は、 下部職の上に上部構造を支持させると共に、 同上部構造は、 主に骨組^ f造で主たる鉛直荷重と水 重に抵抗する構造物で あって、 上部構造は、 固定端側となる最下層階を下部構造に固定させた複数の階 層からなる固定端側階層部と、 同固定端側階層部の上層階を形成する折曲部形成 階層と、 同折曲部形成階層が上層階を形成すると共に自由端側となる最下層階を 下部構造に水平移動自在に支持させた複数の階層からなる自由端側階層部とから、 一体の折り曲がり片持ちせん断構造体となしたことを 1敫とする。
[0011] ここで、 折曲部形成階層は、 少なくとも、 固定端側階層部の上層階が具備する 梁部と自由端側階層部の上層階が具備する梁部とを共通に構成している。
[0012] (2) 本発明の而攛性構造物は、 前記 (1) の而震性構造物であって、 自由端側 階層部は、 固定端側階層部よりも質量が大となるように形成したことを顿敫とす る。
[0013] (3)本発明の耐震性構造物は、前記(1)又は(2) の而慣性構造物であって、 下部構造に自由端側階層部の下層階を収容する収容凹部を設けて、 同収容凹部内 にて自由端側階層部の最下層階を水平移動自在に支持させたことを樹数とする。
[0014] (4) 本発明の而濃性構造物は、 廳己 (3) の f震'隨造物であって、 自由端側 階層部の最下層階は、 水平 支持装置を介して下部構造に水平移動自在に支持 させることを糊敫とする。
[0015] (5) 本発明の而欞性構造物は、 歸己 (1) 〜 (4) のいずれか 1つの! fSttt冓 造物であって、 水平可動支持装置としては、 摩擦係数が異なる複数の種類を設け て、 これら水平可動支持装置による摩擦減衰を調整するようにしたことを特徴と する。
[0016] (6) 本発明の而懷个生構造物は、 firf己 (1) 〜 (5) のいずれか 1つの而懷性構 造物であって、 自由端側階層部の最下層階と下部構造との間に減衰装置を介設し たことを糊敷とする。
[0017] (7) 本発明の而儘十生構造物は、 MS (1) 〜 (6) のレヽずれか 1つの而懷性構 造物であって、 固定端側階層部と自由端側階層部との対向する階層の内、 少なく とも一組の対向する階層同士間又は対向する片持ち梁部 (もしく片持ち床部) 同 士間に減衰装置を介設して、 同減衰装置により固定端側階層部と自由端側階層部 を水平方向に連結したことを糊敫とする。
[0018] (8) 本発明の而儘十生構造物は、 tijfS (1) 〜 (7) のレヽずれか 1つの而養 t¾f 造物であって、 固定端側階層部と自由端側階層部との対向する階層の内、 少なく とも一組の対向する階層同士の梁部 (もしくは床部) カゝら片持ち梁部 (もしくは 片持ち床部) を延伸させ、 対向する片持ち梁部 (もしくは片持ち床部) 同士間に 床用伸縮装置を介設して、 同床用伸縮装置により固定端側階層部と自由端側階層 部との水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞したことを頓数 とする。
[0019] (9) 本発明の而欞性構造物は、 歸己 (1) 〜 (8) のいずれか 1つの而樓性構 造物であって、 固定端側階層部と自由端側階層部との対向する側面^ ϋ部または 側面タ を取り付ける下地骨組部を水平方向に延伸させ、 対向する側面 部同 士間、 対向する下地骨組部同士間、 又は、 対向する側面 »部と下地骨組部の間 に雇用伸縮装置を介設して、 同雇用伸縮装置により固定端側階層部と自由端 側階層部の水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞したことを »とする。
[0020] なお、 本発明は、 従来のせん断構造体の支持形式とせん断構造体を構成する骨 組の配置を見直すことにより、 せん断構造体の水平方向の固有周期の長周期化を 実現し、 且つ減衰装置による減錦加に辩 となる形状を持った固 動モード の発現を実現するものである。 発明の効果
[0021] (1)本発明では、下部構造の上に上部構造を支持させると共に、同上部 は、 主に骨組 冓造で主たる鉛直荷重と水¥ 重に抵抗する構造物であって、 上部構 造は、 固定端側となる最下層階を下部構造に固定させた複数の階層からなる固定 端側階層部と、 同固定端側階層部の上層階を形成する折曲部形成階層と、 同折曲 部形成階層が形成する ±Λ階まで複数の階層からなり力つ自由端側となる最下層 階を下部構造に水平移動自在に支持させた自由端側階層部と力ゝら、 一体の折り曲 がり片持ちせん断構造体となしている。
[ 0 0 2 2 ] このように、 折り曲がり片持ちせん断構造体となした本発明に係る耐震性構造 物は、 従来のせん断構造体の上端すなわち自由端が地面を向くように構造体を高 さ方向の略 1ノ2点で折り曲げ、自由端を水平移動自在となした†¾ に相当する。 そのため、下端を固定した従来のせん断構造体に比べると、本発明の折り曲がり片 持ちせん断構造体の固有周期に関係する力学上の Pg¾は、 高さ方向の階数の約 2 倍となる。そして、せん断構造体の固有周期は階数に比例して増加するので、本発 明の折り曲がり片持ちせん断構造体の固有周期は、 従来のせん断構造体の固有周 期の約 2倍になる。
[ 0 0 2 3 ] また、 本発明の折り曲がり片持ちせん断構造体は、 固定端側階層部と自由端側 階層部の対向する階層間の大きな水平相対変位を 1敫とする固 モードを発 現する。 而鍵計上最も重要な 1次固有議モードにおいては、 上記の水平相対 変位は上層階から下層階へ向かうにしたがって徐々に大きくなり、 最下層階で最 大となる。 1次固有振動モードとは固有周期が最も長い固^ gftモードである。
[ 0 0 2 4 ] 一般的に、 構造体の減衰を効率良く増加させるためには、 大きな相対変位が発 生する部位にクーロン摩擦力や粘性力などを作用させると良い。 自由端側階層部 の最下層階は下部構造に水平移動自在に支持されているので、 水平移動時には当 該箇所の動摩衞系数と自由端側階層部の鉛直反力との積に比例するクーロン摩擦 力が自由端側階層部の最下層階と下部構造との間に発生する。 1次固 モー ドの水 目対変位が最も大きな部位に鉛直反力に起因するクーロン摩擦力が作用 するので、 本発明の折り曲がり片持ちせん断構造体は大きな摩擦減衰を潜在的に 有する。 従来のせん断構造体では、 このような鉛直反力に起因するクーロン摩擦 カは努生しない。
[ 0 0 2 5 ] 従って、 本発明では、 従来のせん断構造体と比較して、 長周期である固 モードを持つせん断構造体となすことができるため、 固有周期の長周期化により 構造体に作用する地震力を低減させることが可能であること、 且つ自由端側階層 部の最下層階に発生するクーロン摩擦力による大きな摩擦減衰を潜在的に有して いるため、 ±也 時の構造体の振動振幅を低減させることが可能であることから、 髙層ビルディング等のせん断変形が主となる構造体の而擴性能を向上させること ができる。
[ 0 0 2 6 ] ( 2 ) 本発明では、 自由端側階層部は、 固定端側階層部よりも質量が大となるよ うに开成している。
[ 0 0 2 7 ] このように、 折り曲がり片持ちせん断構造体の自由端側階層部の質量を、 固定 端側階層部よりも質量が大となるように形成することにより、 折り曲がり片持ち せん断構造体の固有周期を長周期化することができる。 そして、 固有周期に関係 する自由端側階層部の質量は、 自由端側階層部の床面積を大きくすることにより 増加させることができる。 例えば、 自由端側階層部の質量は、 自由端側階層部の P¾¾を増加させることにより、 また、 部屋を大きくすることにより、 また、 部屋 の数を多くすることにより増加させることができる。
[ 0 0 2 8 ] ここで、 自由端側階層部の質量を大きくすると、 逆に固定端側階層部の地震力 の負担が増えることにもなるが、 固定端側階層部が負担する水平方向質量 (固定 側の地震力の増加) を適宜増大させることで、 また、 大きく を増やすことな どで、 より大きな地震力を衝咸させることができる。 これは、 的な構 態 力';、 本発明に係る折り曲がり片持ちせん断構造体であることから、 その一部を形 成する固定端側階層部と自由端側階層部を上記したように適: US整することが可 能となる。 その結果、 大きな地震力を堅実に低減させることが可能となる。
[ 0 0 2 9 ] ( 3 ) 本発明では、 T¾構造に自由端側階層部の下層階を収容する収容凹部を設 けて、 同収容凹部にて自由端側階層部の最下層階を水平移動自在に支持させてい る。
[ 0 0 3 0 ] これは、 自由端側階層部の最下層階の地上高を、 固定端側階層部の最下層階の 地上高より下げることを示している。 また、 自由端側階層部の最下層階から最上 層階までの »と高さを、 固定端側階層部の最下層階から最上層階までの と 高さに比べて、 大きくすることを示している。
[ 0 0 3 1 ] 本宪明のせん断構造体では、 固定端側階層部の,と自由端側階層部の,を 合計した ¾を増加させることにより、 又は、 自由端側階層部の質量を増加させ ることによつても固有周期を増加させることができる。 よって、 固定端側階層部 の階数と高さに拘ることなく、 自由端側階層部の βを增カ卩させることにより、 固有周期に関係する赚および質量を増加させることにより、 せん断構造体の固 有周期を長周期化することができる。
[ 0 0 3 2 ] また、 収容凹部と収容凹部に収納される自由端側階層部の下層階をそれぞれ水 密構造とすると共に収容凹部に液体を充填することにより、 液体に没した自由端 側階層部の下層階の浮力を利用して、 自由端側階層部の最下層階ならびに下層階 を水平移動自在に支持することも可能である。 また、 ?夜体の¾性を利用して エネルギーを吸収させ、 せん断構造体の振動を減衰させることも可能である。
[ 0 0 3 3 ] また、 自由端側階層部と固定端側階層部の各階層の地上高を させる調整作 業を、 収容凹部の深さ調整により容易に行うこができる。
[ 0 0 3 4 ] ( 4 ) 本発明では、 自由端側階層部の最下層階を、 水平 支持装置を介して下 部構造に水平移動自在に支持させるようにしている。
[ 0 0 3 5 ] これは、 自由端側階層部の最下層階を水平移動自在に支持すると共に、 自由端 側階層部の最下層階と下部構造との間の摩 系数の大きさを調整する手段として、 7平可動支持装置を用いることを示したものである。
[ 0 0 3 6 ] ·水平 支持装置は、 その摩擦機構の違いにより #¾ 型ところがり摩鍵お よびすベり摩擦型に大別できる。 型は、 例えば圧縮空気流の動圧を利用し て物体を浮上させる水平可動支持装置であり、 原理的に 部は無 ヽので摩擦力 は発生しないが、 圧縮空気を発生する装置などが別途必要で.ある。 ころがり摩擦 型は、 多数の転動体を上下の平面版又は曲面板で挟んだ支持装置であり、 転動体
. 又は曲面板の曲率雜、 転動体と平面板又は球面板の表面粗さと材質、 およ υ¾ 触面の支圧応力などを適 組み合わせることにより所要の摩衞系数を持つ水平可 動支持装置を作ることができる。 すべり摩 は、 二つの摺動平板からなる支持 装置であり、 摺動平板の材質、 表面粗さ、 潤滑油の有無 '種類、 支圧応力などを 適:励み合わせることにより所要の摩 ¾ί系数を持つ水平可動支持装置を作ること ができる。 一般的に、 虫型、 ころがり摩 すべり摩 の順に摩擦系数 は大きくなる。
[ 0 0 3 7 ] 水平可動支持装置は自由端側階層部の最下層階と下部構造の間に設置されてい るので、 所要の摩衞系数を有する水平 支持装置を用いることにより、 自由端 側階層部の最下層階と下部構造との摩衞系数を調整することができる。
[ 0 0 3 8 ] ( 5) 本発明では、 水平 支持装置として、 摩衞系数が異なる複数の麵を設 けて、 これら水平可動支持装置による摩擦減衰を調整するようにしている。
[ 0 0 3 9 ] 7Κ平可動支持装置の摩擦機構や材質などの諸元を適:^袓み合わせることにより 所要の摩衞系数を持つ水平 支持装置を作ることは可能である。 しかし、 本発 明の摩擦係数が異なる複数の種類の水平可動支持装置を設ける方法によっても、 せん断構造体の摩観系数を而 «1計上必要な値に設定することができる。 この方 法では、 得られる摩擦系数の範囲は限定されるが、 摩激系数が既知で使用実績の ある水平可動支持装置を僅かの設計変更により使用することができるので、 所要 の摩聽数を有する水平 支持装置を新規に開発する:^に比べて、 水平 » 支持装置の設置に関する費用を大幅に縮減することができる。
[ 0 0 4 0 ] 例えば、 非特許文献 5では、 ころがり摩翻の鋼製ローラー支承の摩観系数は
0. 0 5、 すべり摩翻のふつ素樹脂とステンレス板の摩衞系数は 0. 1として 設計することを推奨している。 これらの二つの種類の水平可動支持装置の ί細総、 数を一定として、 各種類の個数の比率を変えることにより、 0. 0 5〜0. 1の 範囲で摩観系数の大きさを調整することができる。
非特許文献 5 日本道路橋会:道路橋示方書 ·同解説 I共通編 Π鋼橋編、 p. 86 - 89、平成 14年 3月
[ 0 0 4 1 ] ( 6 ) 本 明では、 自由端側階層部の最下層階と下部構造との間に «装置を介 設している。 [ 0 0 4 2 ] 自由端側階層部の最下層階と下部構造との間で発生するクーロン摩擦力によつ て消費される¾エネルギーは、 最下層階と下部構造の水 幅に比例して 増減する。 これに対して 体の持つ振動エネルギーは当該箇所の水平相対振幅 の二乗に比例して増減する。 従つて、 当該箇所の水平相対振幅が大きくなるとつ まりせん断構造体の振動振幅が大きくなると、 クーロン摩擦 による摩擦減衰の 効果は減少する。
[ 0 0 4 3 ] 振動振幅の増加に伴う摩擦減衰の効果の減少を捕うための方法として、例えば、 振幅の二乗に比例して »エネルギーが消費される粘性減衰装置を装着すること が考えられる。 粘性減衰装置の能力を最大限に発揮するためには、 相対速度が最 も大きくなる部位に粘性減衰装置を装着する必要がある。 相対速度が最大となる 部位と相対変位が最大となる部位は一 る。
[ 0 0 4 4 ] 本発明の折り曲がり片持ちせん断構造体にぉレ、ては、 而 計上最も重要な 1 次固有振動モードの水平相対変位は、 自由端側階層部の最下層階で最大となる。 よって、 自由端側階層部の最下層階と下部構造との間に減衰装置を介設すること により、 せん断構造体の減衰性能を最も効率的に向上させることが可能である。
[ 0 0 4 5 ] ( 7 ) 本発明では、 固定端側階層部と自由端側階層部との対向する階層の内、 少 なくとも一組の対向する階層同士間又は対向する片持ち梁部(もしく片持ち床部) 同士間に減衰装置を介設して、 同減衰装置により固定 ®ί則階層部と自由端側階層 部を水平方向に連結している。
[ 0 0 4 6 ] ここで、 本焭明の折り曲がり片持ちせん断構造体は、 固定端側階層部と自由端 側階層部の対向する階層間の大きな水 ¥t目対変位を糊敷とする固有振動モードを 発現する。 この水平相対変位は、 1次固有 βモードでは ±Jf階から下層階に向 つて徐々に大きくなり自由端側階層部の最下層階で最大となるが、 2次以降の 固有 ¾¾¾モードにお!ヽては上層階と下層階の中間である中層階あるレ、は上層階付 近又は下層階付近で最大となる。
[ 0 0 4 7 ] —方、 階層が多数となる超高層ビ /1 ^'ィングにおいては、 P皆層の増加に比例し て固有周期が長くなるので、 1 次固 ffi動モードに加えて 2次以降の固有振動モ 一ドの»を制御することが n«計上重要となる: tj^がある。
[ 0 0 4 8 ] 1 次固有観モードに加えて 2次以降の固 モードを として最も効率 良く減衰を増加させるためには、 減彭曽加の纖とする次数の固 モ一ドに ぉレ、て、 固定端側階層部と自由端側階層部の対向する階層間の水平相対変位が最 大となる階層同士間を減衰装置により水平方向に連結すれば良レ、。
[ 0 0 4 9 ] よって、 本発明の減衰装置の介設方法は、 減衰装置の性能を最大限に発揮でき て、 1次に加えて 2次以降の固 動モードを として効率的にせん断構造体 の減衰†生青を向上させることが可能である。
[ 0 0 5 0 ] なお、 上記 (6 ) と (7 ) に記 る減衰装置は、 流体の粘性抵抗を利用する 粘性減衰装置、 流体の乱流による圧力降下を禾 IJ用するオイルダンパー、 金属の塑 性変形を禾 IJ用した履歴型ダンパー、 クーロン摩擦を利用する摩 減衰装置など の振動エネルギーを消費することのできる装置である。 さらに、 磁性流体を利用 した減衰係数をリアルタイムで制御できる可変型オイルダンパーなどを して、 »振幅の大きさに応じて可変型オイルダンパーの減衰係数を変化させることに よりせん断構造体の減衰性能をリアルタイムで制御する方法を取り入れることも 可能である。
[ 0 0 5 1 ] ( 8 ) 発明では、 固定端側階層部と自由端側階層部との対向する階層の内、 少な くとも一組の対向する階層同士の梁部 (もしくは床部) からそれぞれ片持ち梁部 (もしくは片持ち床部) を延伸させ、対向する片持ち梁部(もしくは片持ち床部) 同士間に床用伸縮装置を介設して、 同床用伸縮装置により固定端側階層部と自由 端側階層部との水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞して!/ヽ る。
[ 0 0 5 2 ] 本発明の とする高層ビルディングを建設する目的は、 安 ^つ 1¾1且つ安 価な居住空間および収納空間を in共することである。 よって、 限られた空間の中 で居住空間および収納空間を最大限に確保することは、 安価な空間を樹共する上 で重要である。
[ 0 0 5 3 ] 本発明のせん断構造体にぉレヽては、 固定端側階層部と自由端側階層部との対向 する空間に、 剧主空間および収納空間に利用するための床部を設置することとし た。 この床部を設置するために、 固定端側階層部と自由端側階層部の梁部から片 持ち梁部を延伸すると共に同片持ち梁部を利用して片持ち床部を構成することと した。 ただし、 互!/ヽに相対する固定端側階層部と自由端側階層部には水 目対変 位が発生するので、 相 ¾ ^る片持ち梁部および片持ち床部には同水平相対変位を 吸収する隙間を設けるものとした。 さらに、 片持ち床部の同隙間は安全管理上適 当でないので、 同間隙を容易に変形する床用伸縮装置で塞ぐことにより、 片持ち 床部を居住空間および収納空間として利用できるようにした。
[ 0 0 5 4 ] また、 互レ、に相対する固定端側階層部と自由端側階層部の水平相対変位により 生じる床用伸縮装置の復元力は、 せん断構造体の固有周期に影響を及ぼさなレヽ程 度の小さなものとする。
[ 0 0 5 5 ] なお、 片持ち床部は、 片持ち床部の中間や を必要に応じて床梁などにより 補強を行うこととする。 また、 床用伸縮装置で発生する摩擦力などが経年的に一 定で且つ定量的である場"^は、 同摩擦力をせん断構造体の摩擦減衰として考慮し ても良い。
[ 0 0 5 6 ] ( 9 ) 本発明では、 固定端側階層部と自由端側階層部との対向する側面 «部また は側面耀を取り付ける下地骨組部を水平方向に延伸させ、 対向する側面確部 同士間、 対向する下地骨組部同士間、 又は、 対向する側面タ隨部と下地骨組部の 間にタ匿用伸縮装置を介設して、 同 «用伸,縮装置により固定端側階層部と自由 端側階層部の水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞している。
[ 0 0 5 7] 本発明の文豫とする高層ビノ ィングを ¾Sする目的は、 安;^ Eつ' |¾®且つ安 価な居住空間および収納空間を樹共することである。 よって、 安 ^つ' 1¾1な空 間を提供することは重要である。
[ 0 0 5 8 ] 本発明のせん断構造体では、 固定端側階層部と自由端側階層部に水平相対変位 が発生するので、 互レ、に相 る固定端側階層部と自由 ϊ¾ί則階層部の境界では、 互いの階層部に設置した側面外壁の 同士間に同水平相対変位を吸収する隙間 を設けるものとした。 この隙間は、 風雨の侵入などの原因となるので'^ iな空間 を提供する目的に適当でないので、 同隙間を容易に変形する外壁用伸縮装置で塞 ぐこととした。
[0059] 同隙間の寸法を最小限にすると共に^^用伸縮装置を取り付けるために、 固定 端側階層部と自由端側階層部の側面 «部または側面 «を取り付ける下地骨組 を水平方向に延伸し、 側面 «の 同士間の隙間を容易に変形する^ H 申縮 装置で塞ぐこととした。 ここで、 下地骨組とは、 賤などを取り付けるために設 置される一般的に間柱や胴縁と呼称されるようなものである。
[0060] また、 互レ、に相 l"る固定端側階層部と自由端側階層部の水平相対変位により 生じる 用伸縮装置の復元力は、 せん断構造体の固有周期に影響を及ぼさなレヽ ©i の小さなものとする。 同水平相対変位により発生する^ 伸縮装置の塑性 変形などに起因する »エネルギー消費が、 経年的に一定且つ定量的であるとき は、 同振動エネルギー消費をせん断構造体の減衰として考慮しても良!/、。 図面の簡単な説明
[0061] [図 1〕片持ちせん断構造体 (System- CS)の概念説明図。
[図 2 ]層の動力学特性を定義する振動モデル。
[図 3]由端をローラーで支持された折り曲がり片持ちせん断構造体 (System- FR)の概念説明図。
[図 4]System - CS と System- FRにおける ¾衰系の固有周期と層数 /?の関 係を示す図。
[図 5]System - FRの ¾衰系固有繊モードの一例 (《 = ? = 0,H = 10)。
[図 6]System - CS と System- FRにおける粘性減衰定数と層数;?の関係を示 す図。
[図 7 ]ダッシュポットを水平面に配置する折り曲がり片持ちせん断構造体 (System- DFR)の概念説明図。
[図 8 ]System-DFRにおける粘性減衰 と層数/?の関係 ( = =0, r =1)説明 図。 図 9 ]本実施例に係る而震性構造物の 的正面説明図。
図 1 0 ]図 9の : [- 1線断面説明図 (a)、 図 9の Π- II線断面説明図 (b)、 図 9の III - III線断面説明図 (c)。
図 1 1 水平可動支持装置の平面説明図 (a)、 同装置の側面説明図 (b)。
図 1 2 ?咸衰装置の平面説明図 (a)、 同装置の佃 j面説明図 (b)。
図 1 3 すべり摩擦型水平可動支持装置の平面説明図 (a)、 同装置の側面説明図 : b)。
図 1 4 減衰装置の断面側面説明図 (a)、 同装置の底面説明図 (b)。
図 1 5 床用伸縮装置の平面説明図 (a)、 同装置の断面側面説明図 (b)。
図 1 6 «用伸縮装置の内側から外側を見た側面説明図 (a)、同装置の断面底面 説明図 (b)。
図 1 7 ]折り曲がり片持ちせん断構造体模型の外観説明図 (自由端に水平荷重が ί乍用する時の変形の »を示す)。 .
図 1 8 ]粘性減衰装置の横断面配置説明図。
図 1 9 ]図 1 4の a部拡大説明図。
図 2 0 ]水平 支持装匱の 轉兑明図。
図 2 1 ]ローラ一車体の動 J*¾f系数のグラフ。
図 2 2 ]粘性減衰装置 Aの拡大説明図。
図 2 3 ]粘性減衰装置 Bの拡大説明図。
図 2 4]粘†生減衰装置の 寸法説明図。
図 2 5 ]自由端に作用する水 ψ 重と水平変位の関係を示す図。
図 2 6 ]System-F0の 1次固有周期と粘性 «定数の関係を示す図。
図 2 7]ダッシュポットとローラ一に着目した固有周期の比較。
図 2 8 ]ダッシュポットとローラーに着目した粘性減衰定数の比
図 2 9 ]System-DFRの固有振動モード。
図 3 0 ]System-FRの固有振動モード。
図 3 l ]System-Fの固有振動モード。 [図 3 2 ]従来型建築物の振動モデル
[図 3 3 ]本難例に係る而«性構造物の モデル
[図 3 4 ]耐震性構造物の 1次固有振動モ—ド
[図 3 5 ]1¾震性構造物の 2次固 «1モード
[図 3 6 ]宮城県沖地震の加速度記録 ·
[図 3 7 ]図 3 6に示す加速度記録のフーリエスぺクトル
[図 3 8 ]最上階の絶対加速度応答の比較
[図 3 9 ]最上階の相対変^ £;答の比較
[図 4 0 ]各階の最大絶対加速度の比較
[図 4 1 ]各階の最大相対変位の比較
[図 4 2 ]各階層の最大層間せん断力の比較
[図 4 3 ]階層あたりの減衰装置の粘性減衰係数の合計と減衰定数の関係 符号の説明
ST 而欞性構造物
DFR 折り曲がり片持ちせん断構造体
F 固定端側せん断構造体
R 自由端側せん断鶴体
L すべり摩擦型水平 支持装置
M 水平 支持装置
Na 減衰装置 (粘性減衰装置)
Nb 減衰装置 (オイルダンパー)
FE 床用伸縮装置
WE «用伸縮装置
A,B 粘 I·生減衰装置
10 TW造
11 上部構造 12 固定端側階層部
13 折曲部形成階層
14 自由端側階層部
15 柱部
16 梁部 (もしくは床部)
17 柱部
18 梁部 (もしくは床部)
19 梁部 (もしくは床部) 発明を実施するための最良の形態
[ 0 0 6 3 ] 本実施形態では、先ず、本発明に係るせん断ネ麟体の骨組と下部構造としての基 礎による支持形式の特徴を述べ、同せん断構造体の運動方程式と非減衰系の固有 値問題を定式化し、固有振動モ一ドの固有周期と形状および減衰定数を理論的に 解明する。 次に振動理論により得られた固有振動モードの形状に着目した粘性減 衰装置の効率的な配置につ!/、て述べ、粘性減衰装置の設置による減衰定数の増カロ を理論的に明らカゝにする。 振動理論により得られた固 モードの固有周期と 形状および減衰定数は縮/』 型を用いた振動実験により具体的に検証する。 最後 に、振動理論と振動実験によって明らかになつた本発明に係るせん断構造体の特 ί敫をまとめる。
[ 0 0 6 4 ] [本努明に係る折り曲がりせん断構造体の振動理論]
[ 0 0 6 5 ] (1)従来の片持ちせん断構造体
図 1に髙層ピ ^'ィングの平面 tgg]モデルの一つである下端が に固定され たせん断構造体を示す。 この モデルは n個の梁とそれらに剛結された等断面 の 2本の柱と 個のダッシュポットで構成され, 各層の動力学特性が全て等しい n層のせん断振動体とする。 この振動モデルを Syst em-CS と呼ぶ。
[ 0 0 6 6 ] 各層の髙さは ftとし, ffit体の高さは A ζ = "Λとする。よって、層数を表す nは 構造体の幾何学的高さを表すパラメータ一を兼ねる。柱は弾性体とし、梁は剛体と する。 柱と梁の質量は各層の梁に集中させる。 図 1中の記号んと ¾および cは各 層のせん断バネ定数と質量およびダッシュポットの粘性減衰係数とする。 ダッシ ュポットは構造体の構造減衰または従来の上下の梁を連結する(以後、鈴直面配置 と略す。)粘性減衰装置による減衰を表すものとする。基部が水平変位 )を生じ たときの梁の水平変位を図 1 のごとく 2 ,…, と定義する。 ここに、 ίは時間 を表す。 なお、図 1は変形時のイメージであり、変形前の柱は真っ直ぐである。 7 ] 図 2に片持ちせん断構造体としての Sys t em- CSの各層の動力^ ^生を定義す る i¾¾モデルを示す。図のごとく梁に水平力 Phが作用したときの梁の水平変位を Xとするとき、せん断バネ こついては = Xの関係があるものとする。 質 量を梁に集中させると、この振動系はせん断パネ定数 kと粘性減衰係数 cおよび 質量 mからなる 1 自由度 «Iモデノレとなる。 よって、この »モデルの ¾衰系 の固有円振動数 β¾と固有周期: Γ0およ 性減衰定数 はそれぞれ次式で表され る。
[数 1 a ]
Figure imgf000018_0001
[数 l b ]
本実施形態では、 Τϋ、 ω0および^)をそれぞれ層固有周期、層固有 R振動数、およ び層粘性減衰定数と呼ぶ。
[ 0 0 6 8 ] Syst em- CS において基部が水平変位 )を生じる時の運動方程式は次式で示 される。
[数 2 ]
M(") x(n) + C + K^n) x(") = -zM(f, p('7)
[ 0 0 6 9 ] ここに、 Sは基部の加速度である。 は各成分の値が全て 1であるべクトル とする。 ")と;^")および はそれぞれ次式で示す変位べクトルと速度べクト ノレおよひ加速度べクトルとする。
[数 3 a] χ(η)≡[¾,¾,···,½]
[数 3 b]
[数 3 c] ひり≡[Λ1;2,···,½]Τ
[0 0 70] べクトルの上付 ·括弧付添え字 (《)はべクトルまたは正 ¾ff列のサイズが nであ ることを示す。 上付き添え字 Tは行列の転置を示す。
[0 0 7 1] 数 2の と C(")および A (")はそれぞれ次式で示す剛性行列と減衰行列およ ぴ質量行列とする。
[数 4 a]
^( =ん (")
[数 4 b]
[数 4 c]
[0 0 7 2] ここに、 /(")は単位行列、 ")は次式の三重対角行列とする。
[数 5]
2 -1 0 ··· 0
- 1 2 - 1 "·. :
") 0 '·. '·. "·. 0
; '·. -1 2 - 1
0 ··· 0 一 1 1
[0 0 7 3] System-CSの^ «衰系の固有値問題は次式となる。
[数 6]
-ω I )=0
[0 0 7 4] ここに、 wと φ(")は固有円振動数とそれに対応する固有べクトルである。 数
(4a)と数 (4c)を用いると数 (6)は次式の標準固有値問題に変形される。 [数 7]
(η)-λΙ{η)(η) =0
[0075] ここに Λは固有値である。 固有円振動数 と層固有円 β数 の比、固有周期 Ί]と層固有周期 ¾の比、および固有値 Λ.には次式の関係がある。 ·
[数 8]
Figure imgf000020_0001
[0076] 固有値 と固有べクトル^")の角 W»まそれぞれ次式で表される。
[数 9]
Figure imgf000020_0002
[数 1 0 a]
Figure imgf000020_0003
[数 1 O b]
Figure imgf000020_0004
[0077] また、固有べクトル^")は次の直交条件を満たす。 ここに ·はクロネッカーの デレタとする。
[¾ 1 1 a ]
[数 1 1 b]
Figure imgf000020_0005
[0078] 数 8と数 9より、固有周期 7 と層固有周期 Γ0の比は次式で表される。
[数 1 2] t 1 2z-l
=一 co sec -π \<i≤n
Γ0 2 Λη + 2
[0079] 数 12より片持ちせん断構造体、 Syst em-CS の固有周撕ま層固有周期 7¾と層 数"によって決まり、層固有周期を一定として層数を増加させると固有周期は増 加することが分かる。
[0080] 次に、 System - CSの固有べクトル の粘性減衰錄を とすると、固有べク トルの直交条件より、 と^)の比は次式で表される。
[数 13] ζ; r- - . ( 2/-1 , .
— = Ai =/sm π , 1≤ι≤η
Co J 14« + 2 J
[0081] 数 13より、System - CS の粘性減衰定数は層粘性減衰定数 と層数"によつ て決まり、層粘性減衰定数を一定として層数を増加させると粘性減衰定数は減少 することが分かる。
[0082] (2)折り曲がり片持ちせん断構造体
a)固有周期と固有 »]モード
ここではせん断構造体の高さ htotalを変えることなく、数 12に基づレ、て固有周 期に関係するところの層数"を 2倍にすることにより、構造体の 1次固有周期を 約 2倍にすることを考える。図 3に示" 動モデルは、下端を基部に固定したせん 断構造体 Fと、下端を凝 15上のローラ一で鋭直方向に支持したせん断構造体 Rを、 互いに上端で結合した折り曲がり片持ちせん断構造体である。せん断構造体 Rは、 せん断構造体 F の下端を基部から切り離し、その下端にローラーで鉛直方向に支 持され且つ水平方向に移動が可能な梁を追加したものである。なお、図 3は変形時 のィメージであり、変形前の柱は真っ直ぐである。
[0083] せん断構造体 Fの梁の番号を下端から上端に向力 て 1, 2,…,"とし、せん断構造 体 Rの梁の番号を上端から下端に向かって《,« + 1,·.·,2«とする。 梁《はせん断構 造体 Fと Rに共通な梁であり、梁 2«はローラーで鉛直方向に支持された梁である。 柱と梁の質量は各層の梁に集中させ、梁 1 力 粱 (zrl)および梁 1)から梁 (2;rl)の質量を " とする。粱 と梁 2/2の質量はそれぞれ、 (l + a)mAと(1 + とする。 αと はそれぞれせん断構造体 Fと Rの上端の梁 3を結合するための質 量の増加およびローラー上の梁 2ηを とするための質量の増加を表す質量係 数とする。各層のダッシュポットの粘性減衰係数とせん断パネ は全て等しく、 それぞれ と kAする。 梁 iの水平変位を図 3に示すように とする。
4] 図 3の繊モデルを System - FR と呼ぶ。 System-FR の単層の動力 性は System - CS と相似であり、数 1 aと数 1 bが成り立つものとして、" と およ ぴ には次数の関係があるものとする。
[数 14]
Figure imgf000022_0001
ここに、 σは比例 とする。
[0085] System-FRにおいて基部が水平変位 ζ(ί)を生じるときの運動方程式は次式で 示される。
[数 15]
Figure imgf000022_0002
[0086] ここに、/は梁 2/7の水平移動に刘する口一ラーの転がり抵抗力をモデノレ化した クーロン摩擦力とし、詳細は後述する。 e n はゴ番目の要素の値が 1である 2/?次 単位べクトルとする。 -v(2")、 x2n)、 x(2n)はそれぞれ数 3 a、数 3 b、数 3 cの を 2ηに置き換えたベタトルである。 数 15の と C¾ およぴ M¾!)はそれ ぞれ次式で示す剛性行列と減衰行列および質量行列とする。
[数 16 a]
4¾° =び
[数 16 b] C ") = acA^
[数 16 c] /(2 + (2"))
[数 16 d] ここで、数 16 dの行列 S(2")は/?番目と 2?番目の対角要素の値がそれぞれ なと ?であり、他の要素の値が全てゼロである 2 次の行列とする。
[0087] System - FRにおいてクーロン摩擦力と粘性減衰力を無視した #¾衰系の固有 値問題は次式となる。
[¾17]
Figure imgf000023_0001
_U
[0088] ここに、 と はそれぞれ非減衰系の固有円振動数とそれに対応する固 有べクトルである。 数 16 aと数 16 cを用いると数 17は次式に変形される。
夂 18]
Figure imgf000023_0002
[0089] ここに、 Araは固有値とする。 固有べクトル の定義と直交条件をそれぞれ 次式で表す。
[数 19]
T
Figure imgf000023_0003
[数 20 a]
2η)Ύ A2n) ln) _ .
^FR A ^FR 一 °ijん FR,i
[数 2 O b] ¾T(/(2")+ 2"))^)
[0090] また、固有円振動数 ,,.と層固有円振動数 の比、固有周期 7 と層固有周 期 7¾の比、および固有値; には次式の関係がある。
[¾21] TFR,i一 ( Q 1
T0 ^RJ ^FR,i
[009 1] なお、数 14で示した構造体の質量とせん断パネ定数および粘性減衰定数の大 きさを表す比例定数びは数 2 1で表す固有周期と層固有周期の比に影響を及ぼ さない。
α = β = 0の条件では、数 18の固有直と固有べクトノレはそれぞれ数 9と数 1 0 bにおいて nを Inに置き換えたものに等しいので、 System- FR の固有周期は System - CSの固有周期の約 2倍となることが分かる。
[009 2] 図 4は System- CS と System - FRにおける 1次から 3次までの固有周期と層 数 の関係を数 8と数 21で調べたものである。 ここでの層数 nは構造体の幾何 学的な髙さ /?toto/も表している。 System- FR はな = =0と =2,;?=1の二つの 条件で計算した固有周期の比を示している。 前者の条件の固有周撕ま数 8と数 9 を用いて計算し、後者の条件では固有値 ^を数値計算により数 1 8から求めて 数 21で整理したものである。固有値問題の数値解法にはハウスホルダー法と QR 法を併用した解法を用いた。図 4より層固有周期 7 が一定であれば、 System- FR の固有周期は System- CSの固有周期の約 2倍となり、層数 こ比例して増加する ことが分かる。 System-FR におけるな = 2, /? = 1の条件では固有周期は = β = 0 に比べて若干大きくなることが分かる。
[0093] 図 5はび= =0と, 7 = 10の条件の System FRの 1次から 4次までの 威衰系 の固有べクトル すなわち固有振動モードの一例である。固有振動モードの形 状を分かり易くするため、固定側のせん断 « 体 Fの梁を ·印で、ローラー側のせ ん断構造体 Rの粱を〇印で表示する。 1次モードは梁 273と梁 73が同方向に変位す る逆 V字形、 2次モードは梁 2"と梁 /3が反対方向に変位する細長い 0字形、 3次モ ードは 字形、 4次モードは「く」 の字に曲がった 8字形の モードとなること が分かる。
[0094] b)粘性減衰錄
System - FR の固有べクトル の粘性減衰定数を^ ¾として、減衰行列 C)¾!)を評価する粘性減衰定数 Ov?-c,iとクーロン摩擦力 f による減衰を評価する 等価粘性減衰定数^ ¾一 ;に分けて考える。 数 2 0 aと数 2 0 bの固有べクトル の直交条件より、 FR_c>iと層粘 'Ιίϋ粘性減衰定数 の比は数 2 2で表される。
[数 2 2 ]
Figure imgf000025_0001
ψϋ,ί, 1 i≤n
0 TFR,i
なお、数 1 4で示した構造体の質量とせん断パネ定数および減衰定数の大きさ を表す比例定数 σは数 2 2の関係に影響を及ぼさなレヽ。
[ 0 0 9 5 ] 國6は System-CS と System- FRの 1次から 3次までの粘性減衰定数と層数
«の関係を数 2 2で調べたものである。 System-FR の条件は図 4の条件と同じ である。 層粘性減衰定数^)が一定であれば、 System-FR の減衰定数は Sys tem-CSの減衰定数の約 1/2となり、層数"の増加に反比例して減少すること が分かる。
System-FR における Ω; = 2, = 1の条件の粘性減衰定数は、 w≤10において a = = 0に比べて若干小さくなるものの、 n > 10においては大きな違いは見られ ない。
[ 0 0 9 6 ] c)クーロン摩擦力と ^ffi粘性減衰
ク一口ン摩擦力 が作用する振動系の 1周期の間に消滅するエネルギーの量が fffi粘性減衰係数を持つ減衰 ¾1¾系の 1周期の間に消滅するエネルギーの量に等 しいと仮定し、固有べクトル間の連成を無視すると、 i次の固有べクトル^ に 着目した衛面粘性減衰係数¾は次式で表される。
[数 2 3 ]
4/ F(2Rη,)2n.i ここに、 0は定常振動の円振動数であり、 とする。 .は固有べクトル の振幅であり、着目する梁ゾの振幅を ^とすると、次式で近似できる。
Figure imgf000026_0001
[009 7] 固有べクトル? の 質量^と等価剛性もはそれぞれ次式で表される。
[数 25 a]
' "'Γ )
[数 25 b]
Ki - ^FR KFR V>FR,i - KA FR,i
[0098] 9»¾の^ ft粘性減衰 /;iは次式で表される。
[数 26 a]
Figure imgf000026_0002
[0099] 数 (26a)に数 (23)と数 (24)を適用すると次式を得る。
[数 26 b]
Figure imgf000026_0003
πθα^ Α ΑλΡ ϊ
[0 1 00] 口一ラーに制動機能を持たせるとクーロン摩擦力 /を任意の大きさに調整でき るが、本 形態では、 をローラーに作用する鉛直力に比例する力と考える。 す なわち System- FR のローラーに作用する鉛直力を p 、ローラーの動摩擦係数を //とすると、/は次式で表される。
[数 2 7]
[0 1 01] 鉛直力 は、梁"の質量の 1/2および梁 /τΗから梁 277の質量の和に重力加速度 gを掛けたものとし、次式で表す。
[数 28 a]
Figure imgf000026_0004
[数 28 b]
Figure imgf000027_0001
ここに、 はローラーに作用する鉛直力の大きさを表す係数である。ローラーの 動摩観系数が与えられれば、数 2 6 bによりクーロン摩擦力による減衰を等価粘 性減衰 として評価することが可能と考えられる。
[ 0 1 0 2 ] 最終的に、 System-FR の固有べクトル の粘性減衰定数^ ¾は次式によ り麵する。
[数 2 9 ]
FRJ ¾ SFR-c,i + FR-f,i
[ 0 1 0 3 ] (3)ダッシュポットの水平面配置による減衰増加対策 '
前節では自由端をローラーで鉛直方向に支持された折り曲がり片持ちせん断構 造体の固有周期は通常の片持ちせん断構造体の固有周期の約 2倍になるものの、 粘性減衰定数は約 1/2となることを示した。 約 1秒を超える領域での固有周期の 長周期化は地震力の低減をもたらす一方で、水平方向の剛性低下による変位振幅 の増加をもたらす。 また、粘 ι·生減衰定数の減少は変位振幅の増加につながるので、 変位振幅を減少させる が必要である。
[ 0 1 0 4 ] 一般に低次の固有振動モードは変位への寄与が大きいので、低次の固有振動モ 一ドに着目して、減衰装置としてのダッシュポットの設置による減衰増加を考え る。ダッシュポットの性能を最大限に発揮させるためには、相対変位が大きい箇所 にダッシュポットを設置する必要がある。 図 5の Syst em- FRの 1次 · 2次固有 振動モードの形状より、高さが等しレ、箇所の構造体 Fの梁と構造体 Rの梁では大き な相対変位が生じるので、図 7に示すように左右の隣接する梁をダッシュポット cBで連結することにより減衰を増加させることが可能と考えられる。この減衰装 置の配置を水平面配置と呼ぶ。 ¾はダッシュポットの粘性減衰係数とし、既に存 在するダッシュポットの粘性減衰係数 と次の関係があるものとする。
[数 3 0 ]
CB 二 τοΑ [0105] ここに、ては比例定数である。 図 7 の振動モデルを System-DFR と呼ぶ。 System - DFR において基部が水平変位 )を生じる時の運動方程式は次式で示 される。
[数 31]
Μ(2η) -(2η) , (Γ(2«) , r(2«) (2«) Κ(2η) (η2)
上、 -
Figure imgf000028_0001
ここに、 C r)は次式で示すダッシュポット による減衰行列とする。
[数 32 a]
cgn) =cB D^=tcAD^
[数 32 b] n(2«)— (2") 2n)T 2n) (In)
e2n—i
Figure imgf000028_0002
[0106] 数 32bの行列 (2")の配列特性により、System— DFR は非比例減衰振動系と なるので、固有べクトル は c + 2n)を対角化できなレ、。 非比例減衰振動 系の減衰定数は複素固有儀科斤 5)により言 W面できるが、 System-DFRではクーロ ン摩擦力が非線形項として作用するので、複素固有働科斤にぉ ヽてもこの非線形 項の影響は考慮できな!/ヽ。 本実施形態では、ダッシュポット の効果を大まかに 評価することに主眼を置いて、固有べクトル を用いた減衰行列の対角近似 6) により粘性減衰定数を言權する。 固有べクトル を用いた e ")の対角近似に よる粘性減衰定数^ は次式で計算される。
[数 33] FR-d,i FR,i D^ } FR4
. !¾て-
¾0 ^FR,i
数 33には、減衰係数 の大きさを表す比例係数 σは影響を及ぼさない。
[0107] 図 8は、 System- DFR の粘 |·生減衰定数^ と層数 の関係を、 α = /? = 0、 て =1の条件で調べたものである。 比較のために図 6で示した System - FR の ^T? - c,,'(" = ? = 0)と System-CS の も併記している。 層粘性減衰 を一 定とすると、^ と は層数 n の増加に反比例して減少するのに対して、 FR_d は層数 nの増加に比例して増加することが分かる。 τ = 1の条件は粘性減 衰係数が のダッシュポットを設置することを意味しているので、ダッシュポッ ト cAの鉛直面配置に比べてダッシュポット cBの水平面配置は効率的に減衰を増 カロさせると考えられる。
[0108] 最終的に System- DFR の固有べクトル の粘性減衰定数 F は、
CDFR = CDF +CDF-d,iとなるので、数 29より次式で評価する。
[数 34]
CDFR,I ¾ FR-c,i + FR-f,i+ FR-d,i
難例]
[0109] 以下に、本発明に係る実施例にっレヽて、図面を参照しながら説明する。図 9は、 本実施例にかかる而 f震性構造物 STの模式的正面説明図、 図 10 (a) (b) (c)は、 そ れぞれ同 9図の I— I系泉断面説明図、 ΙΙ-ΙΙ f泉断面説明図、 III-III 泉断面説明図 である。
[0110] 耐震性構造物 STは、 図 9に示すように、 基礎又は地下構造物等の下部 «3t 10 の上に、主に骨組み構造で主たる鉛直荷重と水平荷重に抵抗する上部構造 11を支 持させて構成した構造物である。 そして、 上部構造 11は、 図 10に示すように、 固定端側せん断構造体 F (以下、 単に 「せん断構造体 FJ と财る がある。) と自由端側せん断構造体 R (以下、 単に「せん断構造体 RJ と^ "Tる がある。) と力 ら、 上方へ突状に折り曲げた一体の折り曲がり片持ちせん断構造体 DFR (以 下、 単に 「片持ちせん断構造体 DFR」 と!^ Tることがある。) となしており、 本実 施例では、 左右一対の片持ちせん断構造体 DFR, DFRを左右対称ィ 置に配設して、 一対の固定端側せん断構造体 F, Fを配設し、 両せん断 « 体 F, Fの間に両自由端 側せん断構造体 R, Rを配設すると共に、 両自由端側せん断構造体 R, Rを一体とな して構成してレヽる。
[0111] すなわち、 片持ちせん断構造体 DFRは、 図 9及び図 10に示すように、 固定端 側となる最下層階を下部構造 10 に固定させた複数の階層 (本 «例では 1 0階 層) からなる固定端側階層部 12と、 同固定端側階層部 12の上層階 (本 »例で は最上層階)を形成する折曲部形成階層 13とで固定端側せん断構造体 Fを形成し、 上層階を形成すると折曲部形成階層 13 と、 自由 則となる最下層階を下部構造 10に水平移動自在に支持させた複数の階層 (本 »例では 1 0階層) からなる自 由端側階層部 14とで自由端側せん断構造体 Rを形成して Vヽる。
[ 0 1 1 2] そして、固定端側階層部 12は、上下方向 (図 1 0に示す Z方向) に伸延する柱 部 15と、左右及ひ 後方向(図 1 0に示す X方向及び Y方向)に伸延する梁部(も しくは床部) 16とを組み立てて形成する各階層部を、上下方向に積層状態に構築 して構成している。 同様に、 自由端側階層部 14は、 上下方向に伸延する柱部 17 と、左右及ひ前後方向に伸延する梁部 (もしくは床部) 18とを組み立てて形成す る各階層部を、上下方向に積層状態に構築して構成している。折曲部形成階層 13 は、固定端側階層部 12の最上階層を形成する柱部 15と、自由端側階層部 14の最 上階層を形成する柱部 17との間に、 梁部 (もしくは床部) 19を介設してネ冓成し ている。
[ 0 1 1 3 ] し力も、 本実施例では、 自由端側階層部 14を、 固定端伹階層部 12よりも質量 が大となるように形成して、 片持ちせん断構造体 DF の固有周期が長周期化する ようにしている。 具体的には、 固有周期に関係する自由端側階層部 14の質量は、 自由 ¾ί則階層部 14の床面積を大きくすることにより増加させて 、る。そして、床 面積は、 部屋を大きくすることにより、 また、 部屋の数を多くすることにより增 カロさせている。また、 自由端側階層部 14の! を増加させることによつても床面 積を大きくすることができる。
[ 0 1 1 4 ] ここで、 自由端側階層部 14の質量を大きくすると、 逆に固定端側階層部 12の 地震力の負担が増えることにもなるが、固定端側階層部 12力 S負担する水平方向質 量 (固定側の; t鍵力の增加) を適宜増大させることで、 また、 大きく減衰を増や すことなどで、 より大きな地震力を «させるようにしている。 本実施例では、 的な構 態が、 片持ちせん断構造体 DFRであることから、 その一部を形成 する固定端側階層部 12と自由端側階層部 14を上記したように適: 1JS整すること ができる。 その結果、 大きな ¾S力を堅実に低減させることができる。
[ 0 1 1 5 ] さらに、 本実施例では、 下部構造 10に自由端側階層部 14の下層階を収容する 収容凹部 29を段付き凹状に形成して設け、同収容凹部 29にて自由端側階層部 14 の最下層階の床部 28を水平移動自在に支持させると共に、 固定端側階層部 12と 自由端側階層部 14との各階層の β 16, 18の地上高レベルを整合させている。
[ 0 1 1 6 ] また、力かる収容 M部 29は、その内部の空間を有効に利用することができるも のであり、 適宜、 自由端側階層部 14の最下層階を収容凹部 29内に収容して、 同 最下層階の地上高を、固定端側階層部 12の最下層階の地上高より下げることがで きる。 従って、 自由端側階層部 14の最下層階から最上層階までの■と髙さを、 固定端側階層部 12の最下層階から最上層階までの P徵と髙さに比べて、大きくす ることもできる。
[ 0 1 1 7 ] この点からも、 本実施例に係る片持ちせん断構造体 DFRでは、 固定端側階層部
12の (¾¾と自由端側階層部 14の を合計した PW¾を増加させることにより、 又は、歸己したように自由端側階層部 14の質量を増加させることによつても、固 有周期を増加させることができる。 よって、固定端側階層部 12の赚と高さに拘 ることなく、自由端側階層部 14の P體女を増加させることにより、固有周期に関係 する隨および質量を増加させて、 片持ちせん断構造体 DFRの固有周期を長周期 ィ匕することができる。
[ 0 1 1 8 ] 自由端側階層部 14の最下層階には、複数の水平可動支持装置 Mを設けて、下部 構造 10に設けた ffrf己収容凹部 29に、 これらの水平 ¾支持装置 Mを介して自由 端側階層部 14を図 1 0に示す X方向及び Y方向に水平移動自在に支持させてい る。 ここで、水平可動支持装置 Mは、 図 1 1に示すように、下部構造 10上に配置 する水平板状の下沓部 20の上に、多数の炭,製の球状ローラー 21aを具備する ローラー部 21を左右及び ίΐΐ酸方向(図 1 0に示す X方向及び Υ方向)に転動自在 に載置し、同ローラー部 21の上に上杳部 22を载設して、同上沓部 22を自由端側 階層部 14の最下層階の床部 28に連設して構成している。 [ 0 1 1 9 ] また、 片持ちせん断構造体 DFRの摩擦減衰を調整するために、 一部の水平 支持装置 Mを、 図 1 2に示すような、 すべり摩擦 ¾R平可動支持装置 Lに置き換 えることも可能である。
[ 0 1 2 0 ] すべり摩擦 平 ¾Ι1ΐ支持装置 Lは、 図 1 2に示すように、 摺動板 53aが固着 又は固定された下沓部 53を下部構造 10に固定し、 上沓部 55を自由端側階層部 14の最下層階に固定し、摺動板 54aが固着又は固定された中沓部 5 を摺動板 53a と摺動板 54a力 S接し且つ上沓部 55と中沓部 54の中心がー¾1 "るように载設する。
[ 0 1 2 1 ] クーロン摩擦力は摺動板 55aと摺動板 56aの擲面で発生するので、 ころがり 摩^ Mである 7平可動支持装置 Mに比べてすべり摩^ S水平 支持装置 Lの摩 嵐系数は大きい。 これより、 摩 »数の異なる穩の水平可動支持装置 Mとしを 併用することにより、 片持ちせん断 « ^体 DFRの摩擦減衰を調整することができ る。
[ 0 1 2 2 ] 下部構造 10に形成した前言 BIX容凹部 29内には、 水平可動支持装置 Mを水平移 動自在に収容している。 また、 自由端側階層部 14の最下層階の床部 28と下部構 造 10の収容凹部 29との間には複数の減衰装置 Naを介設している。
[ 0 1 2 3 ] ここで、減衰装置 Naは、平面視的には互いに P赚する水平 支持装置 Mの中 間に配置され、すなわち最下層階の床部 28の全面に減勃が作用するように配置 されている。 (図 9および図 1 0 (c)参照) よって、 減衰装置 Na としては、 床部 28と下部構造 10の間の 用の空間を有効に禾用できる大型の減衰装置を使用 できる。 また、 1次固有振動モードの水平相対変位は床部 28と下部構造 10の間 で最大となるので、減衰装置 Naは最も効率良く 1次固有振動モードの減衰定数を 増カロさせる。また、床部 28は図 1 0に示す X方向と Y方向の各方向に変位するの で、 減衰装置 Naは X方向と Y方向の各方向の変位に有効である必要がある。
[ 0 1 2 4] 具体的には、減衰装置 Naは、図 1 3 (a) (b)に平面説明図と側面説明図を示すよ うに、 平面視円形で上面を開口させて扁平円筒型に形成して側¾¾に連結部 25a を有する ¾;性流体ケース 25と、 同粘性流体ケース 25内に収容した粘性流体 (図 ^rf) と、同粘性流体ケース 25内の水平面上を図 1 0に示す X方向と Y方向に 上記オイルを介してスライド自在に収容したスライド体 26を具備している。スラ ィド体 26は上端に連!^ 15 26aを具備している。 そして、 減衰装置 Naを配設する 際には、 下部構造 10又は高さ調整のために下部構造 10上に設けた台座 10aの減 衰文豫物の一方に粘性流体ケース 25の連§¾ 25aを連結し、梁部や床部等の減衰 文檢物の他方に連結部 26aを連結するようにしている。 25b, 26bはそれぞれ連結 孔である。 粘性流体としては、 所要の粘度のある流体であるオイ Λ を棚する ことができ、 流体の粘度おょぴスライド体 26と流体ケース 25の流体を介在する 間隔を適: I S定することにより、 せん断構造体の減衰の増加に必要な粘性減衰係 数を得ることができる。 よって、 減衰装置 Naは床部 28の全ての水平変位に対し て有効な «力を発生できるようにしてレ、る。
[ 0 1 2 5 ] 固定端側階層部 12と自由端側階層部 14との対向する階層の内、 少なくとも一
組の対向する階層 (本実施例では 1階層〜 8階層まで) 同士間には、 図 9及び図 1 0に示すように、複数の減衰装置 Nbを介設して階層同士を水平方向に連結して いる。すなわち、固定端側階層部 12の梁部 16から片持ち梁部 23を自由端側階層 部 14側に張り出し状に伸延させて形成する一方、 自由端側階層部 14の梁部 18 力 片持ち梁部 24を固定端側階層部 12側に張り出し状に伸延させて形成して、 両片持ち梁部 23, 24を略同一水平面上にて対向状態に配置すると共に、 両片持ち 梁部 23, 24 Ρ^に減衰装置 Nbと床用伸縮装置 FEを介設している。 力 る床用伸縮 装置 FEは、 図 9における符号 FEが示すところの片持ち梁部 23, 24の間隙を塞ぐ 装置であり、 図では符号 FEのみを記載して ヽる。
[ 0 1 2 6 ] 两片持ち梁部 23, 2 を形成する目的は、 図 1 5に示すように、 それらの片持ち 梁部を利用して固定側階層部 12と自由端階層部 14の間に床部 61, 63を形成する ことにより、 主空間と収容空間を増加させることにある。 同床部 61, 63は、 片 持ち梁部 23または片持ち梁部 24の上に床を増設し、 必要に応じてその床の端部 や中間部を、 床梁などを用 ヽて補強することにより、 既往の技術にて簡単に設置 することができる。 よって、 同床部 61, 63の形成法の詳細は説明を省略する。 先 ず、減衰装置 Nbの型式と配置および取りつけ方法を図 1 4を参照しながら説明し、 床用伸縮装置 FEの構造につ!ヽて図 1 5を参照しながら説明する。
[ 0 1 2 7 ] 減衰装置 を設置する目的は、 1次固有振動モードに加えて 2次以降の固德 動モ一ドの減衰 を効率的に增カ卩させることである。減衰装置 Nbは、床部 61, 63 の下面とその下の天井の間の空間に設置することが望ましレ、ので、 外形がコンパ クトな減衰装置の使用が便利である。また、固定端側階層部 12と自由端側階層部 14は、 それぞれ図 1 0に示す X方向と Y方向の各方向に変位するので、減衰装置 Nbは全ての水平相対変位に対して有効でなければならな!/、。
[ 0 1 2 8 ] ここで、減衰装置 Nbは、流体の舌し流による圧力低下を利用する高性能で且つ形 状がコンパクトなオイルダンパーを使用するものとして、 その配置を、 図 1 4の 断面側面説明図 (a)と底面説明図 (b)に示す。 底面説明図 (b)は減 置 Nbが取り 付けられる床部 61, 63下面を下から見上げたときの減衰装置 Nbの配置を示す。減 衰装置 bは、 両端に連結部 64aと 64bを具備する 1個の本体 64で構成する。 連 & 64aはブラケット 65aを介設して床部 61に設置された床梁 60に連結され、 連結部 64bはブラケット 65bを介設して床部 63に設置された床梁 62に連結され る。床部 61は、片持ち梁部 23または片持ち梁部 24のいずれ力一方に設置された 床部であり、 床部 63は残りの一方の片持ち梁部に設置された床部とする。 また、 床梁 60, 62の断面形状は、 充実断面、 薄肉断面、 開断面、 閉断面等の任意形状の 断面で良レ、。 ブラケット 65a, 65bは床梁 60, 62ではなく、 床部 61, 63に直接取り 付けても良い。 なお、 減衰装置本体の構造、 減衰装置の連結部とブラケットの連 結方法、 ブラケットと床梁の固定方法の説明は省略する。
[ 0 1 2 9] また、 図中の X方向と Y方向の各変位に対応するために、 隣り合う 2本の本体
64と床梁 60の一部は、 2個のブラケット 65aとブラケット 65bを頂点とする三角 形の各辺となるように配置する。 減衰装置 Nbの本体 64のィ權方向は連結部 64a と連結部 64bを結ぶ方向であり、 その方向は図中の X方向と Y方向の何れとも交 差しているので、あらゆる方向の変位に対して減衰装置 Nbは有効に する。 X 方向と Y方向の所要減衰性能が異なる ¾^には、二つの本体 64の角度を調整する。
[ 0 1 3 0 ] 三角形の二辺となる二つの本体 64を一組として、減衰増加に必要な組数を設置 する。 必要組数が少数の は、 減衰力を Y方向に分散させ且つ効率的に作用さ せるために、 少なくとも二袓を使用すると共に互いの組はブラケットを共有せず につまり Y方向に対して離して設置するのが良レ、。
[ 0 1 3 1 ] ここで、 減衰装置 Naと減衰装置 Nbの型式と配置は、 この魏例で示したよう な粘性減衰装置とオイルダンパーおよぴそれらの配置に限定する必要はなく、 他 の型式の減衰装置とその性能を最大限に発揮できる配置とすることもできる。
[ 0 1 3 2 ] 床用伸縮装置 FEを設 る目的は、 図 1 5に示すように、 固定端側階層部 12 の片持ち梁部 23と自由端側階層部 14の片持ち梁部 24の間隙 Gaを塞ぐことによ り、 片持ち梁部 23, 24に設置された床部 61, 63を 主空間または収納空間として 支障がないようにすることである。 また、床用伸縮装置 FEには、固定端側階層部 12と自由端側階層部 14との間の水平相対変位に対してせん断構造体の固有周期 を短くするような復元力を固定端側階層部 12と自由端側階層部 14に作用させな いことが求められる。
[ 0 1 3 3 ] 床用伸縮装置 FEは、図 1 5の平面説明図 (a)と断面側面説明図 (b)に示すように、 床部 61に容易に変形する粘弾性材 71と連結板 70を収納し且つ摺動材 72を固定 する収納凹部 61aを設け、床部 61と相 る床部 63に連^ ft 70を固定する収納 凹部 63aを設け、連結板 70を収納凹部 63aに固定し、連結板 70の先端部 70bを、 収納凹部 61aに固定された摺動材 72上に :掛けた構造であり、且つ連結板の先 » 70bの前方と側方の収納凹部 61に容易に変形する粘弾性材 71を充填したも のである。 床部 61と床部 63の水平相対変位に応じて連結板の先端部 70bの前方 および側方の粘弾性材 71は変形するので、 例えば粘弾性材 71としてシリコン系 シール材などを用いることにより、粘弾性材 71の変形により生じる復元力をせん 断構造体の固有周期に影響しない ¾tに小さくすることができる。
[ 0 1 3 4] 摺動材 72と連結板 70の材料の組み合わせは、 例えばふつ素樹脂板とステンレ ス板とすることができる。 あるいは ¾|§板の材ネ¾を縮 « "るために、摺動材 72 と接する連!^反 70の表面のみに搢動材 72と適合する別の摺動材を固着または固 定しても良い。 なお、 摺動材 72と連結板 70との間の摩観系数が »的に一定で 且つ定量的であれば、 摺動材 72と連結板 70で発生するクーロン摩擦力を、 せん 断構造体の減衰として考盧しても良レ、。
[ 0 1 3 5 ] 次に、 本発明のせん断構造体を覆うタ濯の構造にっレ、て説明する。 図 9に示す 断面 H— Πから下方の相 "る片持ち梁部 23と片持ち梁部 24の間隙 Gaすなわち 符号 FEが示す間隙では、固定端側階層部 12と自由端側階層部 14の水平相対変位 に起因する大きな間隙 Gaの変化が生じ、また、図 9の骨組面と TOなせん断構造 体の側面全体は風雨の 等を防ぐために側面確で覆わなければならな!ヽので、 断面 Π— Π付近とそれより下方の同側面:^ ϋにお!/、ては、固定端側階層部 12に設 置する側面壁面と、この側面膽に相対する自由端側階層部 14に設置する側面外 壁との間に、 固定端側階層部 12と自由端側階層部 14の水平相対変位を吸収する 間隙 Gaを設けると共に、同間隙 Gaを図 1 6に示す外壁用伸縮装置 IEで塞ぐもの とした。
[ 0 1 3 6 ] «用伸縮装置 WEは、 図 1 6の内側から外側を見た側面説明図 (a)と断面底面 説明図 (b)に示すように、相 ¾ "る固定端側階層部と自由端側階層部から互いの側 m 82を水平方向に延伸させると共に、 水平相対変位を吸収する間隙 Gaを設 け、または相対する固定端側階層部と自由端側階層部から側面 « 81を取り付け る互いの下地骨組 83を水平方向に延伸させると共に、 7]C平相対変位を吸収する間 隙 Gaを設け、 延伸させた側面 « 82同士または延伸させた下地骨組 83同士を、 容易に変形できるように形成した伸縮材 80を介設して連結するものである。
[ 0 1 3 7 ] また、 図 1 6は下地骨組 83と側面 « 82を連結する例を取り上げて、 下地骨 組 83との連結方法と側面 « 82との連結の方法を同時に説明したものである。 下地骨組 83と伸縮材 80との連結は、下地骨組 83に上下に延伸して取りつけたブ ラケット 83aに固定された袋ナツト 83bと伸縮材 80の連結孔 80aを、 押さえ板 84とボルト等 (図省略) などを介設して連結する。 袋ナツト 83aではなくスタツ ドボルトなどを用いて連結することも可能である。 側面; ^H 82と伸縮材 80との 連結は、 側面舰 82に埋め込まれた袋ナツト 82aと伸縮材 80の連結孔 80aを押 さえ板 84とボルト等(図省略) を介設して連結する。袋ナツト 82aではなく埋め 込みボルトなどを用 、て連結することも可能である。
[ 0 1 3 8 ] 伸縮材 80 は弾性係数が小さな弾性材料また 弾性材料を用いると共に容易 に変形することが可能な断面形状例えば図 1 6 (b)に示す断面形状のように形成 する。 よって、 伸縮材 80の材料と断面形状を適宜選択することにより、 伸縮材
80の図中の X方向と Y方向の変形によって生じる復元力は、せん断構造体の固有 周期に影響しな 、¾gに小さくすることができる。
[ 0 1 3 9 ] なお、水平相対変位に伴レヽ発生する伸縮材 80の塑性変形などに起因する ェ ネルギー吸収が経年的に一定で且つ定量的であれぱ、 これによる減衰をせん断構 造体の減衰として考慮しても良い。
[ 0 1 4 0 ] 以上に説明してきた本実施例のように、 左右一対の折り曲がり片持ちせん断構 造体 DFR, DFRを、 固定端側階層部 12力 S外方で、 自由端側階層部 14が内方に位置 するように、 左右文 に配設した構成に限らず、 折り曲がり片持ちせん断構造体 DFR を前方及び又は後方に増設して構成することもできる。 また、 多数の折り曲 力 Sり片持ちせん断構造体 DFRを、 固定端側階層部 12が外方で、 自由端側階層部 14が内方に位置するように、 棚-状に配設して構成することもできる。 この際、 周方向に難する固定端側階層部 12同士を一体に連設して、 自由端側階層部 14 を囲繞する筒状となして構成することもできる。 このようにネ冓成した:^にも、 長周期で高 ί咸衰の而ォ震十生構造物となすことができる。
[ 0 1 4 1 ] なお、 m 11は、主に骨組み構造で主たる鉛直荷重と水«重に抵抗する 構造物であって、局所的な大きなせん断力に抵抗するためのせん断壁 51または斜 材 52を部分的に有しても良い (図 9参照)。
賺例 3
[ 0 1 4 2 ] 以下に、本 例としての耐震性構造物 STの縮/ 型を用いて行つた振動実験 の結果について説明する。
[ 0 1 4 3 ] (1)実験の目的
本実施例としての構造体 DFRで実現しようとする固有振動モードの長周期化と、 その構造体 DFRに適用する粘性減衰装置 Bの水平面配置による減衰の増加を検証 するために、縮/ J 型を用いて igft実験を行った。 擁実験では、麵理論により 得られた固有周期と減衰 の算 を検証する自由 β実験と固 モード の形状を検証する振動台加震実験を実施した。自由睡実験では、手で加振した後 の縮小模型の自由振動を観測し、その観測された自由振動の波形から固有周期と 粘性減衰定数を算出し、 «理論による計算値と比較した。 «I台加震実験では、 振動台の正弦波加震による縮小模型の定常振動を観測し、その定常振動の記録か ら固有議モードの形状と位相のずれを算出し、振動理論の形状と比較した。ただ し、位相のずれにつ!/ヽては理論式を示してレヽな Vヽので、実験により得られた定性的 な性状を説明する。
[ 0 1 4 4 ] なお、擁計測にはレーザー変位計湖定範囲 ± 10mm、^#能 0. 002mm)を用い、 振動台実験には熊本大学の導電式 β発生機を用 、た。
[ 0 1 4 5 ] (2)縮 型の諸元
a)折り曲がりせん断構造体模型の諸元
図 1 7は、折り曲がり片持ちせん断構造体 DFR の外観説明図であり、 同構造体 DFRは、 .30上に左右一対のせん断構造体 F, Fを立設し、 両せん断構造体 F, F 間にせん断構造体 Rを配置して、 二つのせん断構造体 F, Fの上端の梁部 31, 31を せん断構造体 Rの上端の梁部 32を、 左右方向に伸延するボノレト 33により連結し ている。この模型は、水 重の矢印の方向の岡リ性が矢印と直角方向の岡リ性に比べ て小さく、矢印の方向に ¾¾¾する平面振動模型である。せん断構造体 Rの下端には ローラー 43を具備する水平 支持装置 34を設けている。 水平 ¾1»支持装置 34 の詳細は後述する。
[ 0 1 4 6 ] 図 1 7は、折り曲がり片持ちせん断構造体 DFR の自由端に水平荷重を作用させ た時の変形の様子を誇張して描写したものである。 せん断構造体 Fとせん断構造 体 Rの位置関係と変形の方向を分かり易くするために、梁部 31, 32 と柱部 35, 36 およびローラー 43を強調し、他の部材は省略して描いている。 この図では、固定端 を基準として、せん断構造体 Fと Rの上端の梁部 31, 31, 32の水平変位 と、せん 断構造体 Rの下端の梁部 37すなわち自由端の水平変位; ¾0を図示している。 この 変形は図 5に示す 1次固有振動モ一ドに良く似たものとなる。 この図の水平変位 の方向が模型の 方向となることに注意が必要である。
[ 0 1 4 7 ] 模型の柱部 35, 36にはァルミ-ューム合金製平角棒?820 2ズ89½(11 6063)を、 梁部 31, 32 にはみがき平角鋼?844 19 240腕(33400〉を用ぃた。 模型の柱部 35, 36は一箇所当たり 2本のボルト (M8、強度区分 10. 9) を用いて梁部 31, 32の 端面に固定した。 図 1 8及ぴ 1 9に示す粘性減衰装置 Aと粘性減衰装置 Bの詳細 は後述する。
[ 0 1 4 8 ] 表 1に、主に固有周期に関係する構造体模型の諸元を示す。表 1に記載するせん 断パネ と層固有周期は、模型の静的載 ^験により求めた値である。詳細につ いては次節で詳述する。
[ 0 1 4 9 ] b)水平 支持装置の諸元
τΚ平可動支離置 34は、 図 2 0に示すように、 下レール 38とローラ一車体 39 と上レール 40 とを具備している。 上 ·下レール 40, 38 はみがき平角鋼 50 X 16 (SS400)とした。 ローラー車体 39は、アルミ-ユーム合金製フレーム 41にシャ フト 42を介して 4個の直径 20膽のフランジ付きローラー 43を取り付けている。 シャフト 42とローラ一 43の材質は炭素鋼 (SC450)である。シャフト間隔は 180mm、 レール幅は 50mmである。 上レール 40はボルト (図示せず) でせん断構造体 Rの 下端の梁部 37に固定する。
[表 1 ] 表 1 折り曲がりせん断構造体模型の諸元 名 称 記号 値 層 数 n 5 層 高 h 170 mm 総 髙 total 850 mm 総 質 量 m iotal 47.5 kg m 虽 " 4.2 kg
a 1.0
質 量 係 数 β 0.3
Ύ 6.3
ローラー鉛直力 Ρ ν 259 N せん断バネ定数 kA 13.5 kN/m
層 固 有 周 期 To 0.111 s [01 50] 図 21は俱斜法によって求めたローラー車体 39 の動摩^^数の頻度分布図で ある。これは、表 1に示すせん断構造体 Fの自重すなわち鉛直力 Pv =259 に相当 する重りを载せた口一ラー車体 39カ僅かに傲斜させた斜面を運動する様子を、レ 一ザ一変位計で計測し、その運動の W力ゝら動摩撤系数を推定したものである。実 験で得られた動摩聽数は 0.1〜 0.3x10一3に分布し、その分布は概ね正規分布に 近い形状であった。 動摩擦係数の平均値は 0.2x10— 3である。 なお、静止摩擦係数 は 0.4〜 0.5 X 10一3に分布し、平均値は 4.5 X 10— 3である。
[0151] c)粘†生減衰装置の諸元
[0 1 52] 図 3で示す System-FRのダッシュポット に相当する粘性減衰装置 Aの^ ft を図 2 2に示す。 粘 I"生減衰装置 Aは透明ァクリ /レネ確の粘性流体ケースとしての オイルケ一シング 44とスライド体としての ¥ί亍板 45とを具備している。
[0 1 53] 図 7で示した System - DFR のダッシュポット cBに相当する粘性減衰装置 Bの タ Mlを図 23に示す。 粘性減衰装置 Bは、アルミ -ユーム合 (A6063)の粘性流 体ケースとしてのオイルケ一シング 46とスライド体としての TO板 47と連結体 48とを具備している。これらの二つの粘性減衰装置 Α,Βは共にオイルケ一シング 44, 46 内に充填したジメチノレシリコーンオイルのせん断変形を禾 IJ用する粘醒 · ¥ί亍板方式の減衰装置である。
[0 1 54] 図 1 8は、模型の振動方向と垂直な横断面における粘性減衰装置 Αと Bの配置図 である。 この図では減衰装置の配置を分かり易く説明するために、せん断構造体 R とせん断構造体 Fは切り離して表している。 実際の構造ではせん断ネ髓体 Rの基 準線 CLとせん断構造体 Fの基準線 CLは重なる。 粘性減衰装置 Aは、 せん断構造 体 Fの上下方向に難する梁部 31, 31の間に介設すると共に、 せん断構造体 Fの 外側に設置する。 粘性減衰装置 Bは、 せん断構造体 Fとせん断構造体 Rの左右方 向に隣接する梁部 31, 32同士の間に介設する。
[01 55] 図 1 9は、図 1 8の a部の拡大図であり、この図を用いて米占性減衰装置 A, Bの配 置を詳細に説明する。 粘性減衰装置 Aはせん断構造体 Fの上下の梁部 31, 31の相 対速度を利用するので、スライド体 45の上端は上側の梁部 31に固定された連結板 49に固定し、スライド体 45の下端を下側の梁部 31の外面に固定したケーシング オイル 44内に挿入する。 この構造を全ての階層で繰り返す。ただし、 System - FR のダッシュポット の配置を再現するためにはせん断 «5 体 Rに粘性減 ¾ A を設置する必要があるが、構造 ί機型内に設置スペースが足りないため、せん断構 造体 Rには粘性減衰装置 Αを設置できなかった。
[ 0 1 5 6 ] 粘性減衰装置 Bはせん断構造体 Rの梁部 32とせん断構造体 Fの梁部 31の相対 速度を利用するので、 TO板 47に取り付けた連結体 48を、せん断構造体 Fの左右 方向に隣接する梁部 31, 31同士の間に機状に架設した横連結フレーム 50の中途 部に固定し、 47の下端をせん断構造体 Rの左右一対の梁部 32, 32間に配設 したオイルケ一シング 46内に挿入する。横連結フレーム 50と連結体 48は、両方 共にアルミニューム合^ M(A6063)である。
[ 0 1 5 7 ] 粘性減衰装置 A, Bの粘性減衰係数は、 次式により算定する。
[数 3 5 ]
_ 4swl
C device一 S
[ 0 1 5 8 ] ここに、 s ί 占性流体の粘度であり と および sはそれぞれ図 2 4に示す平 行板 47の長さと流体の翻深さおよひ '^fi1板 47とオイルケ一シング 46の側壁と の隙間である。 粘性減衰装置 Aの粘性減衰係数 ¾ に一層あたりの粘性 «装 置 Aの設置個数を掛けたものが System- FRのダッシュポット の粘粘性減衰係 数となる。同様に、粘性 装置 Bの粘性減衰係数 に一層あたりの粘性減衰 装置 Bの設置個数を掛けたものが System- FRDのダッシュポット の粘性減衰 係数となる。
[ 0 1 5 9 ] 実験に使用したジメチルシリコーンオイルの標準 ¾ 25°Cにおける設計粘度 は 9. 75 /m2-sである力 実験時の β模型の、? ¾g 30〜38°Cとシリコーンオイル の製造メ一力一が么该している粘度一 曲線を考慮して、粘性減衰係数は? ¾ 34°Cにおける粘度 8. 3 N/m2.sを用いて計算を行った。 #占性減衰装置 A, Bの粘性 減衰係数とダッシュポットの粘性減衰係数を表 2にまとめる。 粘性^装置とダッシュポットの粘性減衰係数
Figure imgf000042_0001
[ 0 1 6 0] d)縮 W、模型における振動系の定義
自由振動実験と振動台加震実験は、折り曲がりせん断構造 ί機型に粘性減衰装 置 Αと Βおよびローラーガイドを装着した Syst em- DFR、 System - DFRの減衰装 置 Bを無効にした System - FR、System-FRからローラー車体を取り外した β 系である System- F について行う。 また、構造 型の構造減衰を計測するた めに、 System- Fの粘性減 置 Aを無効にした振動系である System-F0の自 由振動実験を行う。
[ 0 1 6 1 ] (3)静的载»験
構造体模型のせん断パネ定数を計測するために、図 1 7に示す自由端に作用す る水平荷重と模型の上端および自由端の水平変位の関係を静的載荷試験により調 ベた。
[ 0 1 6 2 ] 図 2 5は、 Syatem— FRと Syatera - Fの 1サイクノレの荷重一変位曲'镍の一例で ある。 図 2 5 (a)の Syatem - FR の履歴には、クーロン摩擦力が作用する 構造系の特徴すなわち載荷と除荷時の荷重のギヤップが顕著に現 れている。 通常、ギャップの大きさは静止摩擦力の 2倍となるので、 ローラーガイ ドの静止摩擦係数 0.45xl0_3とローラ一に作用する鉛直 力 ρν = 259Νによりギヤップの大きさを計算すると 0. 23Νとなり、図 中のギャップの大きさに概ね一致する。 上端 ( ) と自由端 (χ10 ) の履歴曲線の傾きはそれぞれ 2700N/mと 1360 N/mであるので、これ よりせん断パネ定数 を計算するとそれぞれ 13.5kN/mと 13.6kN/m となる。
[ 0 1 6 3 ] 一方、図 2 5 (b)の Syatem- F の履歴には、載荷と除荷時の荷重のギヤ ップは見られず、荷重と変位の関係は線形である。 上端 ( ) と自 由端 し τ10 ) の履歴曲線の傾きはそれぞれ 2200 N/mと 1260 N/mである ので、これらよりせん断パネ定数 を計算するとそれぞれ l l.OkN/m と 12.6kN/mとなる。 Syatem- Fに比べて Syatera - FRのせん断バネ定数 が大きい理由は、 Syatem-FR ではローラーが柱の軸方向変形を拘束 するため と考え られる。 表 1のせん断バネ定数 = 13.5kN/mは、 Syatem-FRの上端 (x5 ) の履歴曲線から計算したものである。
[ 0 1 6 4 ] (4)固有周期と粘性減衰定数に着目した自由振動実験
a)構造繊型の構造減衰
折り曲がりせん断構造体模型の構造減衰を計測するために System- F0の自由 振動記録から算出した 1次固有振動の 1波形の粘性減衰 と振幅の関係おょぴ 1波形の固有周期と振幅の関係を図 2 6に示す。 着目点は模型の上端の梁 5であ る。 ここでの 1波形の粘性減衰定数と固有周期とはそれぞれ変 答時刻歴の隣 り合うピークの振幅とピークの発生時刻から算出した粘性減衰 と周期である。 図では、煩雑さを避けるために波形の 10 個のピーク毎に実験値を示す。 Sys t em - FOの減衰定数は振幅に関わらず一定であり、構造減衰は約 0. 2%である ことが分かる。
[ 0 1 6 5 ] また、固有周期は振幅に関わらず一定であり、模型は弾性体として振動すること が ΐ¾ ^される。前節より Syatem - F0 と Syat em - Fのせん断バネ定数と し て 11.0kN/mを採用する と、この二つの振動系の層固有周期は r0 = 0.123s と計算される。 この層固有周期と System - FR の固有値 AF ?>1 = 0.01949を用いると、 System - F0 と System-F の 1 次固有周期は 7)^ = 0.888と計算される。 この固有周期は図 2 6の実験結果とよく一 致する。 固有周期の計算に必要な縮小模型 System- FRの 1次と 2次 の固有値とそれに対応する固有べクトルを表 3に示す。
[表 3] 縮/ JM型の固有値と固有べクトル
(Η = 5,α = 1.0, ? = 0.3)
Figure imgf000044_0001
[0166] b)固有周期
図 27は、 System - DFR と System - FRおよぴ System - Fの自由 記録か ら算出した 1次固 ffi動モードの 1波形の固有周期と振幅の関係を比較したもの である。着目点は模型の上端の梁 5とローラー上の梁 10である。表 1の層固有 周期 r0=0.111s と表 4の固有値 =0.01949を用いると、数 2 1により Systera-DFRと System - FR の 1次固有周期は 7 ;1 = 0.795sと計算される。 前項で示したように System - Fの 1次固有周期は:? ;1 = 0.88sと計算される。 図より、これらの 2つの固有周期は実験結果と良く一 ¾1 "ることが分かる。
[0 1 6 7] c)ダッシュポットによる粘性減衰
前節の粘性減衰装置の諸元で述べた力 模型のせん断構造体 Fには粘性減衰装 置 Aを設置できる力 せん断構造体 Rには減衰装置 Aを設置できないので、模型に おいては System - DFR と System- FRのダッシュポット の配置を再現できな レ、。 模型のダッシュポット による減衰行列を δ 0)とすると、 は次式で表 される。
[数 36 a] 0) = (10)
[数 36 b]
(5) o(5)
) =
0(5) 0(5)
[0168] ここに、 0(5)は全ての要素の値がゼロである 5次の正方行列である。 5 は非 比例減衰行列であるので、対角近似より粘性減衰定数を近似する。 5 に関する i次固有べクトルの粘性減衰定数 ; と層粘性減衰定数 の比を次式で近似 する。
[数 37] ― « R-CJ― =— - ~~ -==—— - ~~
0 O
ここに、 FR_CFRc,iの対角近 fi¾である。
[0169] 表 4は縮小模型における System - FR と System - DFR の粘性減衰定数を振動 理論に基づいて計算するために必要な諸量と計算結果をまとめたものである。
4] 表 4 振動 S!命に £づく粘性減衰定数
Figure imgf000045_0001
[0170] 層粘 I"生減衰定数 oは = 4.2 kgとん = 13.5 kN/mおよび = 50.4 Ns/mの条件 で計算した。 粘性減衰定数 と ^— はそれぞれ粘性減衰装置 Aと Bによ る減衰を表し、柱の変形や柱と梁の接合部で失われるエネルギー起因する構造減 衰は含まれていない。よって、図 26で示した System-FOの β実験により得ら れた粘性減衰定数^ ^ = 0.002を構造減衰として考慮し、これを表 4に ί并記する。
[0 1 7 1] 図 28tt,System-DFR と System一 FRおよぴ Systetn_F ίこつ!/ヽて、漏模型の 自由 記録から算出した 1波形毎の粘性減衰定数と振幅の関係を、模型の構造減 衰を考慮した理論値と比較したものである。 着目点は模型の上端の梁 5とローラー 上の梁 10である。 System- Fの粘性減衰定数は振幅に関わらず約 1. 9%である。構 造減衰は約 0· 2%なので、ダッシュポット による粘性減衰定数は約 1. 7%である。 System - FRの減衰 は無次元振幅が 1/100禾 において約 2°/。であり、振幅が小さ くなるに従い徐々に減衰定数が大きくなる。 これはクーロン摩擦 を含む «系の 糊敫が¾ たものである。理論値と実験値は一致しているので、本実施形態のせん断 構造体にぉレ、ては、ローラーの転がり抵抗による減衰は、クーロン摩擦力を用レ、た数 26 bによる fffi粘性減衰として評価することが可能であると考えられる。ただし、 実験で用いたローラ一ガイドの動摩鄉系数は非常に小さいので、動摩衞系数が大き くなる:!^には検討が必要と考えられる。 System - DFR の減衰定数は 10%から 7% に分布しているが、振幅が小さいところでは減衰が大きく、振幅が大きくなると減衰 が小さくなる傾向が見られる。 実験値は理論値に比べて約 10〜15%小さいものの、 減衰定数と振幅の関係は定性的に一致してレ、る。理論値が実験値を下回る理由は、 非比例減衰を対角近似により比例減衰とする粘性減衰定数の言¥1面法にあると考えら れる。
[0 1 72] 図 28 {こおレヽて、 System— DFR と System-FR の減衰定数の差 ίま約 5%であり、こ れはダッシュポット ¾の水平面配置により增カ卩した減衰である。 System- DFR の ダッシュポット と System- FR のダッシュポット c の粘性減衰係数の比は τ = 0.223である力 減衰 の増加量の比は約 5%/1.7% « 2.9である。減衰 の比 をて =1に換算すると先の減衰 の増加の比は約 13 となる。 これは図 8で示した ダッシュポット とダッシュポット ^による粘性減衰定数の差にほぼ等しい。 ま た、模型実験におけるダッシュポット と の設置数は等しいことから、ダッシュ ポットに関する提案の水平面配朦は、従来の鉛直面配置に比べて、効率的にせん断構 造体の減衰を増加させられると考えられる。
[ 0 1 7 3 ] (5)固有振動モ一ドに着目した 台加震実験
図 2 9と図 3 Qおよび図 3 1は、それぞれ System - DFR と System- FRおよび System-F の各々の振動系にっレゝて、振動台による正弦波加震時の振動模型の定 常振動を計測して得られた 1次と 2次の固有振動モードを、表 4の 咸衰系の固 有べクトルと比較したものである。 この 3つの振動系は共に非比例減衰振動系で あるため、梁の振幅 fliで表される振動モードの形状に加えて、振動台の動きを基 準とした位相のずれも示している。 正の角度が位相の遅れを表し、負の角度が位 相の進みを表す。 振動台による正弦波加震時は、数 1 5と数 3 1に示す基部の加 速度は έ· = έ0 sin(^)と表せる。 カロ震時の β台の周期 ¾We = 2π/θとカロ S幅 を図中に示す。
[ 0 1 7 4 ] 1次固有振動モードの形状を比較すると、何れの β系も理論値と良く一
る。 表 4の固有べクトルは辦咸衰振動系であるから、理論上は、粘性減衰装置 Bと ローラーの影響が無い System-F が表 4に示すところの理論値に近くなるもの と考えられる力、実験結果は System - DFR、System - FR、System-F の順に理論 値との差が大きくなった。 1次固有 Sgftモードの位相を比較すると、 System- DFR が 65〜80 、System - FRが 57〜70° 、Syetem— F力 69〜175° の f立相の遅れを 示した。
[ 0 1 7 5 ] 2次固額動モードの振幅を比較すると、何れの振動系も理論値と概ね一 ¾ " るが、 System - F では理論値との差が大きい。 2次モードの位相は梁の位置によ り複雑な位相のずれを示し、構造体の固定端から自由端すなわちローラー車体上 の梁部に近づくにつれて位相のずれが大きくなる傾向が見られる。しかし、 »系 の違いと位相のずれの違いには明確な関係は見出せなかった。なお、 2次固有振動 モードの固吉周期の理論値は¾?,2 = 0.27 sec.である。
[ 0 1 7 6 ] (6)まとめ
高層ビルディング等のせん断変形が主となる構造体の而權性能を向上させるた めに、下端を基礎に固定した片持ちせん断構造体と下端を基礎上の水平可動支持 装置で支持したせん断構造体を互いに上端で結合した長周期の固有振動モードを 持つ折り曲がり片持ちせん断構造体と、これを構成する二つのせん断構造体の隣 り合う梁 ·床を互!ヽに水平方向に連結する粘性減衰装置の水平麵己置とした。 粘 性減衰装置を水平面に配置した提案の折り曲がり片持ちせん断構造体の運動方程 式と 咸衰系の固有値問題を «化し、非減衰系の固 動モードの固有周期と 形状おょぴ粘性減衰錄を理論的に導いた。 また、これらの自由麵特性は、小規 模で限られた条件の実験の範囲であるが、具体的に模型を用いた振動実験により 検証した。その結果、本実施形態のせん断構造体と粘性減衰装置の水平麵 S置につ V、て以下の知見が得られた。
[ 0 1 7 7 ] ( a )本折り曲がり片持ちせん断構造体の 1次固 ¾¾モードの固有周期は、同じ 階数の下端を固定した従来の片持ちせん断 «it体の固有周期の約 2倍となる。
(b ) 粘性減衰装置の水平面配置により、 1 次固 »モードの粘性減衰定数は、 粘性減衰装置の従来の鉛直面配置に比べて、約 1 3倍に増カ卩した。
( c ) 模型実験で麟された粘性減衰装置の水平面配置による 1次固有 モー ドの減衰 は、対角近似による粘性減衰定数に比べて約 10〜15%小さレ、。
( d )ローラーの転がり抵抗が小さ 1、^は、これによる減衰をクーロン摩擦 に よる等価粘性減衰として言? ffiできる。
[ 0 1 7 8 ] 本折り曲がりせん断構造体では、せん断構造体の骨組と基礎による支持形式の 変更により固有振動モードの長周期化を達成できるが、水平方向の剛性低下よる 変位振幅の増加を伴なう。 変位振幅は粘性減衰装置の設置による減衰定数の増カロ により低減が可能であり、提案の粘 '14減衰装置の水平面酉 S置は従来の鉛直面酉己置 に比べて効率良く減衰定数を増加することができる。
[ 0 1 7 9 ] よって、本実施形態の構造体を用いた長周期化による地震力の «と粘 減衰 装置の水平面配置を用いた高減衰化を適切に 計に取り入れることにより、 而擴性能の高レ、構造物を構築することができる。
[ 0 1 8 0 ] [地震応答清例]
以下に、 本実施例としての耐震性構造物の而懷性能を明らかにするため、 弾性 ±也» ^答角晰の結果にっ 、て説明する。
[ 0 1 8 1 ] (1)従来 築物の モデル
建築基準法施行令では、 «|¾計の地震力を算定する際の建築物の 1次固有周期 rを、 建築物の軒高 の関数として次式で定めている。
[数 3 8 ]
7 = 0.02H + 0.01α
ここに、 αは ¾¾ぴはりの大部分が木造又は鉄骨造である階の高さの軒高ガに る比である。数 3 8で α=0として、軒高ガを 50mとすると、固有周期は 1秒となる。 また、 建築物の各階層の高さの実績は 3ιι!〜 4mである。 減衰 の実績は 2%〜5% である。 これより、 従来猶築物の纖モデルの赚を 15 P皆、 1次固有周期を約 1 秒、 減衰 を 2%と仮定し、 振動モデルの諸元を決定する。
[ 0 1 8 2 ] 図 3 2に従来 »築物の S)モデルを示す。 Jgftモデルは 7本の柱と 15本のはり カゝらなる平面骨組とする。 柱の断面は高さ方向に一定で、 はりの断面は水平方向に 一定とする。 さらに、 各層の力学特性をそれぞれ 1個の集中質量とせん断パネおよ びダッシュポットで表すせん断振動モデルとする。各層の質量 i221〜! Π15とせん断バ ネ定数 ki〜k および減衰粘性係数 α~Ω5の値はそれぞれ高さ方向に全て等しいと する。 各階層の質量とせん断パネ ¾は 1次固有 »モードの周期が約 1秒となる ように決定する。 粘性減衰係数は 1次固; モードの減衰定数が 2%となるよう に決定する。 なお、 表 5に図 3 2の振動モデルの諸元を示す。 固有値解析によって 求めた固有周期は 0. 98秒、 減衰: ¾は 2. 0%である。
〔以下余白〕 [表 5 ]
表 5 従来型建築物の振動モデルの諸元
Figure imgf000050_0001
[ 0 1 8 3 ] (2) »震性構造物の i »モデノレ
図 3 3は本実施例に係る耐震性構造物の振動モデルである。 自由端側階層部を中 央に設置し、 その両脇に二つの固定端側階層部を設置する¾#«造である。 自由端 側階層部は 2本の柱と 15本のはりで構成する平面骨組、自由端側階層部は 3本の柱 と 16本のはりかなる平面骨組、折曲部形成階層は 2本のはりと自由端側階層部と固 定端側階層部の柱で構成する平面骨組である。 さらに、 各層の力学特性をそれぞれ 1個の集中質量とせん断バネおよびダッシュポットで表すせん断振動モデルとする。 固定端側階層部の各層の質量 nm とせん断パネ定数 a〜½4はそれぞれ高さ 方向に全て等しい。 '自由端側階層部の各層の質量 〜! 2¾13とせん断パネ Ami →mUはそれぞれ高さ方向に全て等しレヽ。 折曲部形成階層の各層の質量 J21Uと i2215 は等しく、 層間変形衛生はせん断パネ定数 isで表わす。
[ 0 1 8 4 ] 表 6は図 3 3の振動モデルの諸元である。 高さと階層高さは従来 築物と同じ である。 固定端側階層部の各層の質量 〜 3は従来型の質量の 1/4とし、 自由 則階層部の各層の質量 mni- ^isは従来型の質量の 1/2 とし、 折曲部形成階層 の各層の質量 ffi!4~i2215と自由端の質量 mM>は従来型と同じとした。 固定端側階層 部の各層のせん断パネ定数は従来型のせん断パネ定数の 1/5とし、 自由端側階層部 の各層のせん断パネ定数は従来型の 2/5とし、 折曲部形成階層のせん断バネ は 従来型の 4/5とした。 自由端側階層部と固定端側階層部を連結する減衰装置の粘性 減衰係数 CD〜G13は、 従擁の振動モデルで用いる粘性減衰係数の 1/20とする。 複 素固有値解析により求めた 1次固有振動モ一ドの周期は 2. 0秒であり、 減衰定数は 29%であった。 2次固有 モードの周期は 0. 75秒で減衰定数は 29%である。 表 1 と表 2を比べると、 本発明の而握性構造物は、 固有周期が従来 «築物の約 2倍と なり、 従来囊築物に比べて極めで生能の低レ、減衰装置を用レ、て高レ、減衰定数を得 られることが ΐ鶴できる。なお、水平 ¾1Β支持装置の動摩聽数は 0. 005と仮定し、 自由端側階層部の総質量に重力加速度と動摩衞系数を掛けて動摩擦力とする。 自由 端階層部の総質量は二つの固定端側階層部の総質量の合計より大きく設定した。 図 3 4と図 3 5は固有働 ||斤によつて計算した而價性構造物の 1次と 2次の固有 振動モードである。 共に自由端側階層部と固定端側階層部の間の大きな相対変位を 糊敷とする モードが «忍できる。
〔以下余白〕
耐震性構造物の振動モデルの諸元
Figure imgf000052_0001
(3)弾性地 JS答囊
β性構造物の運動方程式を下式で表す。
[数 3 9]
Mx + Cx + Kx = -M qz' - sgn(xs ) f es
ここに, M, a まそれぞれ質量行列, 減衰行列, 剛性行列である。 Λ:, ±, は相 対変位ベクトル, 相対速度ベクトル, 相対加速度ベクトルである。 ¾, , は自由 度番号 の質量の相対変位, 相対速度, 相対加速度である。 ^は成分の値が全て 1 のべクトルで, は地 Mftの加速度である。 ^は s番目の成分が 1である単位べ クトルで, /は可動支点の動摩擦力である。 sは自由端の自由度番号である。 数 3 9は線形加速度法を用いて解く。
[ 0 1 8 7 ] 図 3 6は; ffiW答角锊斤に用いる地 Sttの加速度記録である。 これは 1978年 6月
12日発生した宮城県沖地震の NS方向加速度記録を、最大加速度 300galに規; !#{匕し たものである。 図 3 7は上記の加速度記録のフーリエスペクトルである。 図 3 7か ら分かるように地震動の卓越周期は周期 1秒付近にある。
[ 0 1 8 8 ] 図 3 8と図 3 9はそれぞれ最上階 ·屋根部の絶対加速度応答と相対変ィθ^答の比 較である。ここでの相対変位は固定された柱の位置を基準とした各階の変位である。 従来型建築物は約 1秒の周期で強震を繰り返しており、 動の卓越周期と構造物 の 1次固有周期が一 ¾ΤΤることにより、 地震動の加速度振幅を大きく超える大振幅 の振動が生じると予想される。 しカゝし、 本発明の而擴性構造物の »には明確な周 期性は見られず、 振幅も従来 築物に比べて極めて小さいことが分かる。
[ 0 1 8 9 ] 図 4 0と図 4 1は各階の最大 加速度と最大相対変位の比較である。 固有周期 の長期化による地震力の低減効果とダンパーによる効果を調べるために、 ダンパー を設置しな!/ヽ耐震性構造物の結果も併記する。 ダンパーを設置しな ヽ場合は、 加速 度と変位は共に従来 «築物に比べて «する。 ダンパーを設置する は、 加速 度は従来型の 1/6 に減少し、 変位は 1/3離に減少する。 よって、 固有周期の 長期化により構造物に作用する地震力が減少し、 結果として加速度応答と変ィ] ¾5答 が減少することカ ¾|¾される。 また、 減衰装置を設置することにより、 応答加速度 を地震動の水平加速度と同禾 にすることが可能であることが ¾Μされる。
[ 0 1 9 0] 図 4 2は各階層の最大層間せん断力の比較である。 固定端側階層部の層間せん断 力は従来 築物の約 1Λ0であり、振幅の減少により構造物の層間せん断力も小さ くなること力 鶴、される。固定端部すなわち 1 の階層高さを 3. 3mとすると、耐 震十生構造物の基部の最大層間変形角は 1/194、 従来 築物の S¾の最大層間変形 角は 1/63となる。
[ 0 1 9 1 ] (4)減衰装置の性能
従来 築物も減衰装置を設置することにより減衰定数を大きくすることは可能 である。 図 4 3は、 1階層あたりに設置する減衰装-置の粘性減衰係数の合計と得ら れる固有振動モードの減衰定数の関係を比較したものである。 図 4 3より、 従来型 建築物では、而键性構造物と同 asの減衰 を得るためには、 10倍以上の性能の 減衰装置を必要とすることが分かる。 これより本発明の而懷性構造物は減衰装置の 設置により効率的に減衰性能を向上させることが可能であることが分かる。
[ 0 1 9 2 ] (5)まとめ
宫城県沖地震を用いた弾性地 S)¾答角晰により得られた知見を以下にまとめる。
( a ) 而攛性キ髓物の長周期性を利用して, 一次固有周期を«波の卓越周期から 外すことにより, 加速度応答と変 答および層間せん断力を減少させることがで さる。
(b) 而援性構造物の固定端側階層部と自由端側階層部の水平方向に対向する水平 階層間を減衰装置で連結することにより, 効率良く加速度応答と変 答および層 間せん断力を減少させることができる。 産業上の利用可能性
[ 0 1 9 3 ] 高層ビルデイング等のせん断変形が主となるせん断構造体に本発明を適用するこ とで、 同せん断構造体の固有周期を約 2倍となすことができて、 而懷性能を向上さ せることができる。

Claims

請求の範囲 下部構造の上に上部構造を支持させると共に、 同上部構造は、 主に骨組^ t冓造で主た る鉛直荷重と水 Ψ 重に抵抗する構造物であって、
上部構造は、 固定端側となる最下層階を下部構造に固定させた複数の階層からなる固定 端側階層部と、 同固定端側階層部の ±Ji階を形成する折曲部形成階層と、 同折曲部形成 階層が上層階を形成すると共に自由端側となる最下層階を下部構造に水平移動自在に支 持させた複数の階層からなる自由端側階層部とから、 一体の折り曲がり片持ちせん断構 造体となしたことを糊数とする而懷性構造物。
自由端側階層部は、 固定端側階層部よりも質量が大となるように形成したことを樹教 とする請求項 1記載の耐震性構造物。
下部構造に自由 則階層部の下層階を収容する収容凹部を設けて、 同収容凹部内にて 自由端側階層部の最下層階を水平移動自在に支持させたことを ί数とする請求項 1又は
2記載の而觀生構造物。
自由端側階層部の最下層階は、 水平可動支持装置を介して下部構造に水平移動自在に 支持させることを特徴とする請求項 1〜 3の!/、ずれか 1項記載の而儘性構造物。
水平可動支持装置としては、 摩嵐系数が異なる複数の を設けて、 これら水平^!!) 支持装置による摩擦減衰を調整するようにしたことを f とする請求項 4記載の而懷性 構造物。
自由端側階層部の最下層階と下部構造との間に減衰装置を介設したことを特徴とする 請求項 1〜 5のレヽずれか 1項 f己載の而擂†生構造物。
固定端側階層部と自由端側階層部との対向する階層の内、 少なくとも一組の対向する 階層同士間又は対向する片持ち梁部 (もしく片持ち床部)同士間に減衰装置を介設して、 同減衰装置により固定端側階層部と自由端側階層部を水平方向に連結したことを街敷と する請求項 1〜 6の!/、ずれか 1項記載の而嬉性構造物。
固定端側階層部と自由端側階層部との対向する階層の內、 少なくとも一組の対向する 階層同士の梁部 (もしくは床部) 力 らそれぞれ片持ち驟 15 (もしくは片持ち床部) を延 伸させ、対向する片持ち梁部(もしくは片持ち床部)同士間に床用伸縮装置を介設して、 同床用伸縮装置により固定端側階層部と自由端側階層部との水 目対変位を吸収する間 隙を水平方向に伸縮自在に閉塞したことを ' とする請求項 1〜 7のいずれか 1項記載 の麵性構造物。
固定端側階層部と自由端側階層部との対向する側面^ ϋ部または側面 ^^を取り付け る下地骨組部を水平方向に延伸させ、 対向する側面雇部同士間、 対向する下地骨組部 同士間、 又は、 対向する側面 部と下地骨組部の間に聽用伸縮装置を介設して、 同 «用伸縮装置により固定端側階層部と自由端側階層部の水平相対変位を吸収する間隙 を水平方向に伸縮自在に閉塞したことを糊敷とする請求項 1〜 8のレヽずれか 1項記載の 而欞性猶物。
PCT/JP2009/053775 2008-05-22 2009-02-20 耐震性構造物 WO2009142040A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-160969 2008-05-22
JP2008160969A JP5339406B2 (ja) 2008-05-22 2008-05-22 耐震性構造物

Publications (1)

Publication Number Publication Date
WO2009142040A1 true WO2009142040A1 (ja) 2009-11-26

Family

ID=41339979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053775 WO2009142040A1 (ja) 2008-05-22 2009-02-20 耐震性構造物

Country Status (2)

Country Link
JP (1) JP5339406B2 (ja)
WO (1) WO2009142040A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140041320A1 (en) * 2011-09-22 2014-02-13 Tongji University Seismic-incurred-rupture-resistant deformation-recordable buckling-restrained brace and fabricating method thereof
JP2017125742A (ja) * 2016-01-13 2017-07-20 清水建設株式会社 建物の健全性判定用の質量/剛性分布設定方法及び建物の健全性判定用の質量/剛性分布設定システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391359B2 (ja) * 2014-08-19 2018-09-19 三菱重工機械システム株式会社 制震構造塔状構造物の制震性能検証試験方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171338A (ja) * 1990-10-31 1992-06-18 Oiles Ind Co Ltd 球状ゴム支承を使用した構造物用3次元免震装置
JPH09112063A (ja) * 1995-10-20 1997-04-28 Takenaka Komuten Co Ltd 構造物の免震方法及び免震構造物
JPH11241524A (ja) * 1998-02-23 1999-09-07 Shimizu Corp 免震・制震併用建物
JP2002121904A (ja) * 2000-10-18 2002-04-26 Shimizu Corp 既存建物の免震化工法及び免震建物
JP2002266517A (ja) * 2001-03-06 2002-09-18 Takenaka Komuten Co Ltd 連結制震装置を利用した免震構造
JP2006291588A (ja) * 2005-04-12 2006-10-26 Shimizu Corp 免震構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171338A (ja) * 1990-10-31 1992-06-18 Oiles Ind Co Ltd 球状ゴム支承を使用した構造物用3次元免震装置
JPH09112063A (ja) * 1995-10-20 1997-04-28 Takenaka Komuten Co Ltd 構造物の免震方法及び免震構造物
JPH11241524A (ja) * 1998-02-23 1999-09-07 Shimizu Corp 免震・制震併用建物
JP2002121904A (ja) * 2000-10-18 2002-04-26 Shimizu Corp 既存建物の免震化工法及び免震建物
JP2002266517A (ja) * 2001-03-06 2002-09-18 Takenaka Komuten Co Ltd 連結制震装置を利用した免震構造
JP2006291588A (ja) * 2005-04-12 2006-10-26 Shimizu Corp 免震構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKUYA OKABAYASHI ET AL.: "Orimagari Katamochisendan Kozotai no Jiyu Shindo Tokusei ni Kansuru Jikkenteki Kenkyu", HEISEI 19 NENDO DOBOKU GAKKAI SEIBU SHIBU KENKYU HAPPYOKAI KOEN GAIYOSHU, 1, JAPAN SOCIETY OF CIVIL ENGINEERS SEIBU SHIBU, vol. 1, 21 February 2008 (2008-02-21), pages 147 - 148 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140041320A1 (en) * 2011-09-22 2014-02-13 Tongji University Seismic-incurred-rupture-resistant deformation-recordable buckling-restrained brace and fabricating method thereof
US8789319B2 (en) * 2011-09-22 2014-07-29 Tongji University Seismic-incurred-rupture-resistant deformation-recordable buckling-restrained brace and fabricating method thereof
JP2017125742A (ja) * 2016-01-13 2017-07-20 清水建設株式会社 建物の健全性判定用の質量/剛性分布設定方法及び建物の健全性判定用の質量/剛性分布設定システム

Also Published As

Publication number Publication date
JP5339406B2 (ja) 2013-11-13
JP2009281125A (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
Zhu et al. Optimum connecting dampers to reduce the seismic responses of parallel structures
Symans et al. Energy dissipation systems for seismic applications: current practice and recent developments
Wolff et al. Effect of viscous damping devices on the response of seismically isolated structures
Ismail et al. An innovative isolation bearing for motion-sensitive equipment
Cho et al. Dynamic parameter identification of secondary mass dampers based on full‐scale tests
Mousavi et al. Optimum placement and characteristics of velocity-dependent dampers under seismic excitation
Malekinejad et al. Free vibration analysis of tall buildings with outrigger-belt truss system
Lu et al. Theory and experiment of an inertia-type vertical isolation system for seismic protection of equipment
Tait et al. An investigation of tuned liquid dampers equipped with damping screens under 2D excitation
WO2009142040A1 (ja) 耐震性構造物
Villaverde Aseismic roof isolation system: Feasibility study with 13-story building
Wang et al. Controllable outrigger damping system for high rise building with MR dampers
Sone et al. Experimental verification of a tuned mass damper system with two‐phase support mechanism
Faramarz et al. Seismic response of double concave friction pendulum base-isolated structures considering vertical component of earthquake
Mansoori et al. Using viscous damper distribution to reduce multiple seismic responses of asymmetric structures
Sun et al. Connecting parameters optimization on unsymmetrical twin-tower structure linked by sky-bridge
Kim et al. Wind response characteristics for habitability of tall buildings in Japan
Choi et al. Wind-induced response control model for high-rise buildings based on resizing method
Ju et al. Experimental evaluation of a tuned liquid damper system
JP4456515B2 (ja) 軽量鉄骨住宅の制震構造
JP5000222B2 (ja) 建築物及び建築物の施工方法
Gamaliel Frequency-based response of damped outrigger systems for tall buildings
JP4456514B2 (ja) 軽量鉄骨住宅の制震構造
Farghaly Optimization of viscous dampers with the influence of soil structure interaction on response of two adjacent 3-D buildings under seismic load
Smith et al. Damping in tall buildings–uncertainties and solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750402

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750402

Country of ref document: EP

Kind code of ref document: A1