WO2009141100A1 - Procédé pour produire un composant en matériau composite - Google Patents

Procédé pour produire un composant en matériau composite Download PDF

Info

Publication number
WO2009141100A1
WO2009141100A1 PCT/EP2009/003489 EP2009003489W WO2009141100A1 WO 2009141100 A1 WO2009141100 A1 WO 2009141100A1 EP 2009003489 W EP2009003489 W EP 2009003489W WO 2009141100 A1 WO2009141100 A1 WO 2009141100A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
metal
grinding
layers
composite
Prior art date
Application number
PCT/EP2009/003489
Other languages
German (de)
English (en)
Inventor
Horst Adams
Michael Dvorak
Original Assignee
Alcan Technology & Management Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Technology & Management Ltd. filed Critical Alcan Technology & Management Ltd.
Publication of WO2009141100A1 publication Critical patent/WO2009141100A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Definitions

  • the invention relates to a method for producing a component from a composite material made of metal and carbon nanotubes (CNT), in which method a metal / CNT composite material is produced as a powder and the metal / CNT composite powder is compacted.
  • CNT metal and carbon nanotubes
  • CNT carbon nanotubes
  • CNT carbon nanotubes
  • the CNTs are fullerenes and are carbon modifications with a closed polyhedral structure.
  • Known fields of application for CNT are found in the field of semiconductors or to improve the mechanical properties of conventional plastics.
  • HIP hot isostatic pressing
  • CIP cold isostatic pressing
  • spray compacting sintering or hot extruding
  • solid material For example, by hot isostatic pressing (HIP), cold isostatic pressing (CIP), spray compacting, sintering or hot extruding, processed into solid material.
  • the solid materials produced in this way are characterized by very high hardness and tensile strength. However, at the same time they have a low ductility and are therefore difficult to transform into complex component geometries by plastic deformation.
  • MIM metal injection molding
  • the MIM method achieves densities between 96% and 100% of the theoretical material density.
  • material properties are achieved, which correspond largely to the properties of a solid material machined part.
  • the invention has for its object to provide a method for producing a component of a metal / CNT composite material, which can be used to produce components with complex geometries.
  • the core essential to the invention lies in the application of the M! M method to CNT-containing metal powders.
  • complex components can also be produced from high-strength, non-ductile metal / CNT composite materials.
  • the strength of metal / CNT composite materials can now be increased even further beyond the limits achievable with the other compaction methods described above. This effect is based on the fact that in the at least two-phase structure of the metal / CNT composite materials defects always exist in the form of very small cavities that occur at the interfaces between the CNTs and the grain boundaries of the metal matrix. Due to the high degree of compaction in the MIM process these defects are largely eliminated, so that a material with increased density and thus further improved hardness arises.
  • the metal / CNT composite powder preferably has particles with an average particle diameter of 0.5 ⁇ m to 2000 ⁇ m, in particular 1 ⁇ m to 1000 ⁇ m.
  • Suitable metals are metals, such as iron and non-ferrous metals and precious metals.
  • Suitable ferrous metals are iron, cobalt and nickel, their alloys and steels.
  • the non-ferrous metals aluminum, magnesium and titanium etc. as well as their alloys can be enumerated.
  • metals may be mentioned vanadium, chromium, manganese, copper, zinc, tin, tantalum or tungsten and alloys thereof or the alloys brass and bronze. It is also possible to use rhodium, palladium, platinum, gold and silver.
  • the metals mentioned can be sorted or mixed with one another.
  • Aluminum and its alloys are preferred. In addition to pure aluminum are the alloys of Aluminum is preferred.
  • Suitable polymers are all suitable for processing in an injection molding machine thermoplastic, elastic or thermosetting polymers.
  • examples are polyolefins, such as polypropylene or polyethylene, cycloolefin copolymers, polyamides, such as the polyamides 6, 12, 66, 610 or 612, polyesters, such as polyethylene terephthalate, polyacrylonitrile, polystyrenes, polycarbonates, polyvinyl chloride, polyvinyl acetate, styrene-butadiene copolymers, Acrylonitrile-butadiene copolymers, polyurethanes, polyacrylates and copolymers, alkyd resins, epoxides, phenol-formaldehyde resins and urea-formaldehyde resins.
  • the polymers can be sorted or mixed with one another.
  • the CNTs can be single-walled or multi-walled, such as double-walled.
  • the CNTs can be open or closed tubes.
  • the CNTs can range from 0.4 nm (nanometers) to 50 nm in diameter and have a length of 5 nm to 50,000 nm.
  • the CNTs may also be sponge-like structures, ie 2- or 3-dimensional frameworks, of mutually cross-linked carbon nanotubes. The diameter of the individual tubes thereby moves within the above range by, for example, 0.4 nm to 50 nm.
  • the expansion of the sponge structure that the side lengths of a structural body of CNT, there may be exemplified with 10 nm to 50 1 OOO nm, advantageously with 1 ' 0OO nm to 50O00 nm in each of the dimensions.
  • the composite material may contain, for example, from 0.1 to 50% by weight, based on the composite material, of CNT. Suitably, amounts of from 0.3 to 40% by weight, preferably from 0.5 to 20% by weight and in particular from 1 to 10% by weight, of CNT are contained in the composite material. If aluminum or an aluminum alloy is the metal of the composite material, then the composite material can expediently contain 0.5 to 20% by weight of CNT, based on the composite material, with 3 to 17% by weight of CNT being preferred and 3 to 6 weight % CNT are particularly preferred.
  • the composite materials may contain additional admixtures, for example functional admixtures.
  • Functional admixtures are, for example, carbon, also in carbon black, graphite and diamond modification, glasses, carbon fibers, inorganic fibers : glass fibers, silicates, ceramic materials, carbides or nitrides of aluminum or silicon, such as aluminum carbide, aluminum nitride, silicon carbide or silicon nitride , For example, in fiber form, so-called. Whiskers.
  • the composite materials can be produced by mechanical alloying of the respective proportions of metal and CNT.
  • Mechanical alloying can be carried out by repeated deformation, breaking and welding of powdery metal particles to the CNT.
  • Particularly suitable for mechanical alloying are ball mills with high-energy ball collisions.
  • a suitable energy input is achieved for example in ball mills whose grinding chamber has a cylindrical, preferably circular cylindrical, cross section and the grinding chamber, as a rule, is arranged in a horizontal position.
  • the millbase and the grinding balls are moved by the grinding chamber rotating about its cylinder axis and are additionally further accelerated by a driven rotary body extending in the direction of the cylinder axis into the grinding chamber and equipped with a plurality of cams.
  • the speed of the grinding balls is advantageously set to 4 m / s and higher, suitably to 11 m / s and higher.
  • Favorable speeds of the grinding balls from 11 to 14 m / s.
  • a rotary body the plurality of cams are distributed over the entire length.
  • the cams may, for example, extend over 1/10 to 9/10, preferably 4/10 to 8/10, of the radius of the grinding chamber.
  • a rotary body which extends over the entire extent of the grinding chamber in the cylinder axis.
  • the rotary body is, as well as the grinding chamber, driven independently or synchronously, set in motion by an external drive.
  • the grinding chamber and the rotating body can be the same direction or preferably rotate in opposite directions.
  • the grinding chamber can be evacuated and the milling process operated in vacuum, or the grinding chamber can be filled and operated with a protective or inert gas.
  • protective gases are, for example, N 2 , CO 2 , of inert gases He or Ar.
  • the grinding chamber and therefore the grinding stock can be heated or cooled. Case by case can be cryogenically ground.
  • Typical is a grinding time of 10 hours and less.
  • the minimum grinding time is expediently 15 min.
  • a milling time between 15 minutes and 5 hours is preferred.
  • Particularly preferred is a grinding time of 30 minutes to 3 hours, in particular up to 2 hours.
  • the ball collisions are the main reason for the energy transfer.
  • Mechanical ball milling is typically performed with steel balls, for example, 2.5 mm in diameter and weighing about 50 g or zirconia balls (ZrO 2 ) of the same diameter, weighing 0.4 g.
  • the composite material contains the metal layered in layers, alternately with layers of CNT.
  • the thickness of the individual layers can be changed.
  • the thickness of the CNT structure fed to the milling process can be used to control the thickness of the CNT layers in the milled material.
  • the thickness of the individual layers can be reduced and the respective position can be increased with respect to the expansion in the area. For example, increasing surface area may cause individual layers of CNT to touch, as well as CNT layers continuous in two dimensions or CNT layers in two dimensions throughout through a particle. This makes it possible to substantially maintain the excellent properties of CNT, for example the thermal conductivity and the electrical conductivity of the CNT on the one hand, and the ductility of the metal or the elasticity of the polymer on the other, in the composite material.
  • Further control of the properties of the composite materials can be achieved by mixing two or more composite materials of different starting material and / or energy input during their production.
  • metals free of CNT, and composite materials containing one or more CNTs may be mixed or mechanically alloyed, i. be ground.
  • the different composite materials, occasionally with the CNT-free metals, can be mixed or subjected to a second refining or several grinding operations.
  • the second refining or subsequent refining may take a grinding time of 10 hours or less.
  • the minimum time of the second refining is expediently 5 min.
  • a second grinding time is between 10 minutes and 5 hours.
  • Particularly preferred is a second grinding time of 15 minutes to 3 hours, in particular up to 2 hours.
  • a composite material of high CNT content and a composite material of lower CNT content or composite materials of different energy input can be processed in a second grinding process.
  • composite material such as e.g. an aluminum / CNT composite, with a CNT-free metal, e.g. also aluminum, be processed in a second grinding.
  • the second grinding or several grinding operations, resp. The mechanical alloying is performed only to the extent that the resulting composite material is not fully homogenized, but the inherent properties of any material or material are retained and supplement the effects in the final material.
  • the inherent intrinsic properties of the CNT can be Stems, which in themselves make impossible a targeted processing, such as a lower specific gravity compared to the specific weight of metals and the poor wettability of CNT by metals overcome.
  • a targeted processing such as a lower specific gravity compared to the specific weight of metals and the poor wettability of CNT by metals overcome.
  • the components produced by the method according to the invention have good thermal conductivity and electrical conductivity.
  • the temperature behavior of components is excellent.
  • the thermal expansion is low.
  • the creep strain improves.
  • CNT to the metals, such as aluminum, a substantial refinement of the grain structure to grain sizes of, for example, 0.6 to 0.7 ⁇ m can be observed.
  • the addition of the CNT to the metals can prevent the recrystallization of the metal. Crack propagation can also be reduced or prevented by the CNT in the metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

L'invention concerne un procédé pour la production d'un composant à partir d'un matériau composite constitué de métal et de nanotubes de carbone. Selon l'invention, on produit un matériau composite métal/nanotubes de carbone sous forme de poudre. On produit à partir de la poudre composite métal/nanotubes de carbone et d'un polymère un matériau de départ injectable qui est transformé en une pièce moulée dans une machine à mouler par injection. On élimine le polymère de la pièce moulée et on fritte la pièce moulée pour obtenir le composant.
PCT/EP2009/003489 2008-05-23 2009-05-15 Procédé pour produire un composant en matériau composite WO2009141100A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08405144A EP2127784A1 (fr) 2008-05-23 2008-05-23 Procédé de fabrication d'un composant à partir d'une matière première composite
EP08405144.0 2008-05-23

Publications (1)

Publication Number Publication Date
WO2009141100A1 true WO2009141100A1 (fr) 2009-11-26

Family

ID=40810877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/003489 WO2009141100A1 (fr) 2008-05-23 2009-05-15 Procédé pour produire un composant en matériau composite

Country Status (2)

Country Link
EP (1) EP2127784A1 (fr)
WO (1) WO2009141100A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014822A1 (de) * 2013-09-10 2015-03-12 Airbus Defence and Space GmbH Strukturüberwachungssystem für einen Werkstoff und Herstellungsverfahren
CN111500911A (zh) * 2020-06-03 2020-08-07 上海鑫烯复合材料工程技术中心有限公司 一种高强韧纳米增强金属基复合材料的制备方法
CN113751704A (zh) * 2021-07-28 2021-12-07 北京科技大学 一种用于选区激光烧结打印覆膜钨合金及制备和打印方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173847B1 (ko) * 2009-02-05 2012-08-14 주식회사 대유신소재 탄소나노튜브를 이용하여 제조된 나노입자 및 그 제조방법
DE102010028801A1 (de) * 2010-05-10 2011-11-10 Freie Universität Berlin Thermisch leitfähige Zusammensetzung umfassend thermisch leitfähige Kohlenstoffnanoröhren und eine kontinuierliche Metallphase
CN110903590B (zh) * 2019-12-16 2022-08-26 重庆理工大学 一种润湿性可控表面及其制备方法和应用
DE102020207625A1 (de) * 2020-06-05 2021-12-09 Siemens Aktiengesellschaft Elektrischer Motor
CN112342420B (zh) * 2020-10-16 2022-03-22 湘潭大学 一种高强高韧耐蚀变形CNTs增强Zn-Al基复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600231A1 (fr) * 2004-05-24 2005-11-30 Nissin Kogyo Co., Ltd Materiau métallique et méthode de fabrication, matériau composite de métal et fibres de carbone et son procédé de fabrication
EP1637255A1 (fr) * 2004-09-09 2006-03-22 Nissin Kogyo Co., Ltd Matériau composite métallique et sa méthode de production
JP2006265686A (ja) * 2005-03-25 2006-10-05 Nissan Motor Co Ltd 金属/カーボンナノチューブ複合焼結体の製造方法
EP1918249A1 (fr) * 2006-10-31 2008-05-07 Alcan Technology & Management Ltd. Matériau comprenant des nanotubes de carbone, méthode pour sa production et son utilisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600231A1 (fr) * 2004-05-24 2005-11-30 Nissin Kogyo Co., Ltd Materiau métallique et méthode de fabrication, matériau composite de métal et fibres de carbone et son procédé de fabrication
EP1637255A1 (fr) * 2004-09-09 2006-03-22 Nissin Kogyo Co., Ltd Matériau composite métallique et sa méthode de production
JP2006265686A (ja) * 2005-03-25 2006-10-05 Nissan Motor Co Ltd 金属/カーボンナノチューブ複合焼結体の製造方法
EP1918249A1 (fr) * 2006-10-31 2008-05-07 Alcan Technology & Management Ltd. Matériau comprenant des nanotubes de carbone, méthode pour sa production et son utilisation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014822A1 (de) * 2013-09-10 2015-03-12 Airbus Defence and Space GmbH Strukturüberwachungssystem für einen Werkstoff und Herstellungsverfahren
US9678026B2 (en) 2013-09-10 2017-06-13 Airbus Defence and Space GmbH Structural health monitoring system for a material and production method
CN111500911A (zh) * 2020-06-03 2020-08-07 上海鑫烯复合材料工程技术中心有限公司 一种高强韧纳米增强金属基复合材料的制备方法
CN113751704A (zh) * 2021-07-28 2021-12-07 北京科技大学 一种用于选区激光烧结打印覆膜钨合金及制备和打印方法

Also Published As

Publication number Publication date
EP2127784A1 (fr) 2009-12-02

Similar Documents

Publication Publication Date Title
EP1918249B1 (fr) Matériau comprenant des nanotubes de carbone, méthode pour sa production et son utilisation
WO2009141100A1 (fr) Procédé pour produire un composant en matériau composite
EP2178664A1 (fr) Matériau aluminium duplex à base d'aluminium présentant une première et une seconde phase et procédé de production d'un matériau aluminium duplex
DE10331785B4 (de) Verfahren zur Herstellung feiner Metall-, Legierungs-und Verbundpulver
DE602004012147T2 (de) Hybridhartmetall-verbundwerkstoffe
DE3937526C2 (de) Verschleißfeste Titanlegierung, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4413306C1 (de) Verfahren zur Verstärkung eines Bauteils und Anwendung des Verfahrens
DE102005001198A1 (de) Metallische Pulvermischungen
DE60130027T2 (de) Verfahren zur herstellung nanokristalliner strukturen
Azimi et al. Optimizing consolidation behavior of Al 7068–TiC nanocomposites using Taguchi statistical analysis
EP2046520A1 (fr) Mélanges de poudres métalliques
DE19640788C1 (de) Beschichtungspulver und Verfahren zu seiner Herstellung
DE102018113340A1 (de) Dichteoptimierte Molybdänlegierung
EP2046522A1 (fr) Mélanges de poudres métalliques
DE102006024358B4 (de) Hochfeste, bei Raumtemperatur plastisch verformbare Formkörper aus Eisenlegierungen
DE112021005360T5 (de) Pulverisier-/rühr-/misch-/knetmaschinenkomponente
EP2046521A1 (fr) Mélanges de poudres métalliques
EP2347020A2 (fr) Corps composite en cuivre ou en un alliage de cuivre avec des nanotubes de carbone incrustés et procédé de fabrication d'un tel corps composite ainsi qu'utilisation du corps composite
DE102007047874B4 (de) Poröser Formkörper aus Metalloxiden und Verfahren zu seiner Herstellung
DE19711642A1 (de) Verfahren zur Herstellung eines Stahl-Matrix-Verbundwerkstoffes sowie Verbundwerkstoff, hergestellt nach einem derartigen Verfahren
DE60002476T2 (de) Hochdichtes, bei niedrigen temperaturen gesintertes material aus wolfram
WO1995033079A1 (fr) Production d'alliages-mere de type intermetallique
EP1548137B1 (fr) Utilisation d'un métal dur pour des outils
KR100734433B1 (ko) 고강도, 고연성을 가지는 철기 벌크 나노공정 합금
DE102004051288B4 (de) Polykristallines Hartstoffpulver, Kompositwerkstoff mit einem polykristallinen Hartstoffpulver und Verfahren zur Herstellung eines polykristallinen Hartstoffpulvers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09749590

Country of ref document: EP

Kind code of ref document: A1